BENTWORTH MIDDLE SCHOOL BENTLEYVILLE, PENNSYLVANIA

BUILDING OVERVIEW

MECHANICAL SYSTEM OVERVIEW

MECHANICAL DEPTHS

AIR SYSTEM MODIFICATIONS

NATURAL VENTILATION SYSTEM

GEOTHERMAL HYBRID SYSTEM

DECENTRALIZED PUMPS SYSTEM

ARCHITECTURAL BREADTH

FAÇADE REDESIGN

ROOF REDESIGN

CONCLUSION

BUILDING OVERVIEW

MECHANICAL SYSTEM OVERVIEW

MECHANICAL DEPTHS

AIR SYSTEM MODIFICATIONS

NATURAL VENTILATION SYSTEM

GEOTHERMAL HYBRID SYSTEM

DECENTRALIZED PUMPS SYSTEM

ARCHITECTURAL BREADTH

FAÇADE REDESIGN

ROOF REDESIGN

CONCLUSION

Building Name: Bentworth Middle School Location: Bentleyville, PA Building Owner: Bentworth School District Architect and MEP Engineer: Hayes Large Architects Occupancy Type: Educational Size: 83,800 Square Feet Stories Above Grade: 3 Stories Start Construction Date: May 2007 End Construction Date: January 2009 Cost: \$18 Million Project Delivery Method: Design-Bid-Build

KYLE COURTNEY | MECHANICAL OPTION | DUSTIN EPLEE

Front Entrance View

BUILDING OVERVIEW

MECHANICAL SYSTEM OVERVIEW

MECHANICAL DEPTHS

AIR SYSTEM MODIFICATIONS

NATURAL VENTILATION SYSTEM

GEOTHERMAL HYBRID SYSTEM

DECENTRALIZED PUMPS SYSTEM

ARCHITECTURAL BREADTH

FAÇADE REDESIGN

ROOF REDESIGN

CONCLUSION

- > 96 bore (350' deep each) geothermal loop field
- > 2 DOAS rooftop heat pump units
- Terminal heat pump units located in the academic and administrative areas
- \succ 3 single zone rooftop heat pump units
- Design heating thermostat setpoint is 70°F
- Design cooling thermostat setpoint is 75°F
- Hydronic side is driven by 2 VSD pumps in parallel
- > Entering water temperature from loop field for heating is 42°F
- 75°F

Mechanical System Overview

> Entering water temperature from loop field for cooling is

Design Considerations

- Location
- > Tower construction
- Component selections
- > A slightly modified version of this system could also be used in the Administration area

KYLE COURTNEY | MECHANICAL OPTION | DUSTIN EPLEE

- Goals of Redesigned Air System
 - Eliminate mechanical mezzanine
 - Reduce ductwork
 - \succ Reduce fan energy
 - Provide additional usable space
 - > Ensure proper ventilation but reduce the amount of conditioned outdoor air
 - > Achieve energy savings through the use of a higher efficiency flat
 - plate heat exchanger
 - \succ Improved air quality
 - > Maintain ease of maintenance access
 - > Maintain remote location of heat pumps for acoustical purposes

 - > Outdoor air intake control
 - Energy recovery core selection and usage

Mechanical Plan of as Designed **Typical Classrooms**

Tower Locations

Mechanical Plan of Redesigned Typical Classrooms

BUILDING OVERVIEW

MECHANICAL SYSTEM OVERVIEW

MECHANICAL DEPTHS

AIR SYSTEM MODIFICATIONS

NATURAL VENTILATION SYSTEM

GEOTHERMAL HYBRID SYSTEM

DECENTRALIZED PUMPS SYSTEM

ARCHITECTURAL BREADTH

FAÇADE REDESIGN

ROOF REDESIGN

CONCLUSION

Energy Analysis

- > Schedule

System	Cooling	Cooling Heating		Pumps	Total Consumption	
	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	
Designed	59,538	27,048	71,872	17,992	183,585	
Redesigned	64,339	1,282	40,900	15,648	122,171	

Result Analysis

- Unanticipated increase in cooling load
- Unusually low heating load

KYLE COURTNEY | MECHANICAL OPTION | DUSTIN EPLEE

Cost Analysis

Carrier HAP was used as the modeling tool All heat pumps in the building were considered

	Unit	Total	Total
Material		Price/Unit	Price
	SF/LF/Unit	\$	\$
Ductwork	180	4.41	794
Split Face Masonry Wall	2785	7.87	21,918
CO ₂ Sensor	39	800	31,200
Insulation	2785	0.63	1,755
Roofing	740	9.70	7,178
Energy Wall	5019	1.44	7,227
Piping	960	30.65	29,424
Exhaust Fans	30	1465	43,950
RTHP-A1	1	44,475	-44,475
RTHP-B1	1	18,250	-18,250
		Total Cost	80,721

> 33% reduction in the building's mechanical energy consumption

Cost Analysis Results

- > System costs total to \$80,721

> Annual electric savings of \$6,755 Simple payback period of 12 years

BUILDING OVERVIEW

MECHANICAL SYSTEM OVERVIEW

MECHANICAL DEPTHS

AIR SYSTEM MODIFICATIONS

NATURAL VENTILATION SYSTEM

GEOTHERMAL HYBRID SYSTEM

DECENTRALIZED PUMPS SYSTEM

ARCHITECTURAL BREADTH

FAÇADE REDESIGN

ROOF REDESIGN

CONCLUSION

Goals of Natural Ventilation System Reduce mechanical system loads > Improved air quality > Maintain thermal barrier

Design Considerations ASHRAE Standard 62.1 requirements > System operation Window selection and placement

System Analysis

Cost Analysis

- Excel analysis resulted in a \$1200 annual electric savings
- "Green light" system cost approximately \$8000
- > Window upgrade cost approximately \$10,000
- Simple payback period of 15 years

Analyzed through the use of Carrier HAP and Excel > Appropriate outdoor conditions for natural ventilation

CONCLUSION

Goals of Geothermal Hybrid System Reduce environmental impact Reduce initial costs

Reduce operation costs

Disadvantages of System Increased maintenance costs due to additional equipment Increased mechanical space

System Analysis

Ground loop design software is ideal but unavailable Spreadsheet used by designers at McClure Company was utilized

KYLE COURTNEY | MECHANICAL OPTION | DUSTIN EPLEE

Spreadsheet inputs were available from previously designed loop field, schedule, and Carrier HAP model

	GEC	THERMAL V	ERTICA	L GROU	IND LOOP D	ESIGN		
Project:	Bentworth Mid	dle School						
Job Number:								
Date:	04/07/11							
User:	Kyle Courtney							
			INDU					
	Total Buildin	g Load (Ton)=	100	DATA	Bldg Area	60000	Sa Ft	
	Outdoor Desid	n Temp. (°F)=	95		Sq. Ft / Ton	600		
	Indoor Desig	n Temp. (°F)=	75					
	Baland	e Temp. (°F)=	65					
Total	Heat Pump Ca	apacity (Ton)=	202					
	•	COP _{COOLING} =	3.5					
Pipe	Resistance (H	lr-Ft-°F/BTU)=	0.141					
Soil	Resistance (H	Ir-Ft-°F/BTU)=	0.5					
	Average Wat	er Temp. (°F)=	75					
Mean Earth Temp.(°F)= 55								
locian Month	lubz		BIN	DATA				
Location:	Bentlyville PA							
Location.	Denuyville FA		DIN	Danga	Mean	Hours		
				cange 05	92.5	14	749	
			85	90	87.5	69	73.1	
			80	85	82.5	400	68.7	
			75	80	77.5	465	66.1	
			70	75	72.5	703	64.0	
			65	70	67.5	603	61.3	
			60	65	62.5	1060	57.0	
			55	60	57.5	708	50.9	
						4022		
			CALCU	ILATIONS				
DIN Danas	Bidg Load							
95/100	10 ns	nours 0.53			D	n Erostien-	0.63	
90/95	112.50	38.43	Ground	Loop Heat	Evchanger Len	th(Et(Top)=	310.60	
85/90	87.50	173 27	oround	Loop near	Total Ground Lo	on Length=	31060.00	
80/85	62 50	143.87			rotal orotalia Ec	op Longin	01000.00	
75/80	37.50	130.51		Bo	res Required:	Depth (Ft)	Number	
70/75	12.50	37.31				400	78	
65/70	-12.50	-65.59				375	83	
		467.33				350	89	
						325	96	
						300	104	
						250	124	
						200	155	

8 1 .		GEOTHERMAL	VERI	ICAL GR	DUNDLOOP	PDESIGN	
Project: Job Number:	Bentworth	vildale School					
Date:	04/11/11						
Us er:	: Kyle Courtr	ney					
			1	NPUT DAT)		
Т	otal Building	g Load (MBH)= 87	6		Bldg Area	60000 S	q Ft
01	itdoor Desi Indoor Desi	gn Lemp. (°F)= 0 an Temp. (°F)= 70			BIUH/SF	15	
2	Balan	ce Temp. (°F)= 55					
Total He	at Pump Ca	pacity (MBH)= 21	60				
Pine R	esistance (Hr-Ft-°F/BTU)= 0.1	41				
Soil R	lesistance (Hr-Ft-°F/BTU)= 0.5					
F	Average Wa	ter Temp. (°F)= 42					
	Mean Ea	rth Temp.(~F)= 55					
				BIN DATA			
esign Month:	January						
Location:	. Denneyvine	10 C	BIN	Range	Mean	Hours	WB(°F)
			60	65	62.5	1060	57.0
			55 50	60	57.5	708	50.9 46.8
			45	50	47.5	595	42.5
			40	45	42.5	540	38.3
			30	40	37.5	705	29.4
			25	30	27.5	523	24.9
			20	25	22.5	334	20.5
			10	15	12.5	112	10.9
			5	10	7.5	50	5.3
			-5	0	-2.5	29	-0.1
			1922	1925	STATES.	1053	1.000
						6506	
			<u>C</u> /	LCULATIO	NS		
BIN Range	Load	Heat Pump Hours					
62.5	-93.86	0.00		31 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	R	un Fraction= ()	69
57.5 52.5	-31.29	0.00	Groun	d Loop Heat	Exchanger Len Total Ground	gth(Ft.MBH)=2 oon Length= 2	3.86 0899 39
47.5	93.86	25.85				oop congut-2	
42.5	156.43	39.11		Bor	es Required:	Depth (Ft)	Number
37.5	219.00	91.90				375	52
27.5	344.14	83.33				350	60
22.5	406.71	62.89				325	64
12.5	531.86	27.58				250	84
7.5	594.43	13.76				200	104
25	657.00	8.82				600	35
0	688.29	0.00					
0	688.29	0.00					
U	668.29	0.00					

27.5	344.14	83
22.5	406.71	62
17.5	469.29	64
12.5	531.86	27
75	594.43	13
25	657.00	8
-2.5	719 57	2
0	688.29	D
0	688.29	0
0	688.29	0
0	688.29	0
0	688.29	0
0	688.29	0
0	688.29	0
0	688.29	0
0	688.29	0
0	688 29	0
0	688 29	Ő
n.	688 29	0
0	688.29	0
0	688 29	0
0	688.29	0
100		51

BUILDING OVERVIEW

MECHANICAL SYSTEM OVERVIEW

MECHANICAL DEPTHS

AIR SYSTEM MODIFICATIONS

NATURAL VENTILATION SYSTEM

GEOTHERMAL HYBRID SYSTEM

DECENTRALIZED PUMPS SYSTEM

ARCHITECTURAL BREADTH

FAÇADE REDESIGN

ROOF REDESIGN

CONCLUSION

Analysis Results

- > 89 bores needed for cooling
- \succ 60 bored needed for heating
- > 27 ton cooling tower needed to cover the difference

Cost Analysis

- Based on an average price of \$6350 per well, \$184,450 can be saved on initial upfront cost
- Cooling tower cost is equal to \$90,000
- > Assumed pumping savings due to 10' less head
- Cooling tower only used 8% of the total system operation time

KYLE COURTNEY | MECHANICAL OPTION | DUSTIN EPLEE

Schematic of Hydronic System with Supplemental Cooling Tower

- locations

Disadvantages of System

- > Increase in maintenance costs
- > No redundancy
- > Additional mechanical space required

System Analysis

- Hourly profiles exported from Carrier HAP to Excel
- Based upon a 3gpm/ton load
- Affinity laws and pump curves

Analysis Results

- > Unexpected that the decentralized pumps used more than twice the amount of energy
- \succ Possible explanation high amount of head
- Second alternative primary/secondary system also used much more energy
- \succ Due to the infeasibility of the design no cost analysis was performed

INTRODUCTION

BUILDING OVERVIEW

MECHANICAL SYSTEM OVERVIEW

MECHANICAL DEPTHS

AIR SYSTEM MODIFICATIONS

NATURAL VENTILATION SYSTEM

GEOTHERMAL HYBRID SYSTEM

DECENTRALIZED PUMPS SYSTEM

ARCHITECTURAL BREADTH

FAÇADE REDESIGN

ROOF REDESIGN

CONCLUSION

KYLE COURTNEY | MECHANICAL OPTION | DUSTIN EPLEE

Goals of Decentralized Pump System Reduce overall required pumping energy > Minimize the introduction of noise into areas adjacent to pump

HP-B3 20' 5.4' HP-B4 20' 7.1'

election					GPM	Haad	Annual Hours	Annual	
nuf	Size	RPM	Impeller Size	Effciency		пеац	Operation	kW	
1510	2G	1750	13 in	0.58	0-180	56	3480	11389	
1510	2G	1150	13 in	0.58	180-275	130	663	7695	
					275-360	112	319	4176	
					360-455	186	55	1511	
					455-550	260	10	464	
							Total	25236	

				Pu	mp Selection		_	Annual Hours of	Annual
PD	Total Head	Total GPM	Manuf	Size	Impeller Size	RPM	Effciency	Operation	kW
	130	40	Arm 4300IVS	1.5x1.5x6	6.19 in	3500	0.46	2328	4956
	32	20	Arm 4300IVS	1.5x1.5x6	6.19 in	1740	0.47	550	141
	130	40	Arm 4300IVS	1.5x1.5x6	6.19 in	3500	0.46	2238	4764
	32	20	Arm 4300IVS	1.5x1.5x6	6.19 in	1740	0.47	687	176
	130	40	Arm 4300IVS	1.5x1.5x6	6.19 in	3500	0.46	2359	5022
	32	20	Arm 4300IVS	1.5x1.5x6	6.19 in	1740	0.47	645	165
	130	40	Arm 4300IVS	1.5x1.5x6	6.19 in	3500	0.46	2240	4768
	32	20	Arm 4300IVS	1.5x1.5x6	6.19 in	1740	0.47	752	193
	125	40	Arm 4300IVS	1.5x1.5x6	6.19 in	3500	0.45	2692	5633
	31	20	Arm 4300IVS	1.5x1.5x6	6.19 in	1740	0.47	232	58
	115	85	Arm 4300IVS	2x2x6	5.81 in	3500	0.53	1757	6102
	28	42	Arm 4300IVS	2x2x6	5.81 in	1740	0.51	1648	716
	115	65	Arm 4300IVS	2x2x6	5.81 in	3500	0.42	2139	7169
	28	33	Arm 4300IVS	2x2x6	5.81 in	1740	0.45	1056	408
	125	69	Arm 4300IVS	2x2x6	5.81 in	3500	0.44	1746	6445
	31	34	Arm 4300IVS	2x2x6	5.81 in	1740	0.46	42	18
	125	26	Arm 4300IVS	1.5x1.5x6	5.89 in	3500	0.32	3526	6743
	31	13	Arm 4300IVS	1.5x1.5x6	5.89 in	1740	0.41	0	0
	125	102	Arm 4300IVS	2x2x6	5.81 in	3500	0.55	1755	7661
	31	51	Arm 4300IVS	2x2x6	5.81 in	1740	0.58	677	348
								Total	61138

ROOF REDESIGN

CONCLUSION

Goals of Redesigned Façade

- Provide area for redesigned mechanical system
- Allow for natural ventilation
- Incorporate elements previously used in the building
- Maintain views
- Balance vertical and horizontal elements
- Provide structural support

Disadvantages of Redesigned Façade

- Additional material and construction costs
- Concerns about removable panels

As Designed Building Renderings

Redesigned

<u>Windows</u>

As Designed <u>Windows</u>

As Designed Elevations

-

.

As Designed Elevations

ROOF REDESIGN

CONCLUSION

Goals of Redesigned Façade

- Provide area for redesigned mechanical system
- Allow for natural ventilation
- Incorporate elements previously used in the building
- Maintain views
- Balance vertical and horizontal elements
- Provide structural support

Disadvantages of Redesigned Façade

- Additional material and construction costs
- Concerns about removable panels

As Designed Building Renderings

Redesigned

<u>Windows</u>

As Designed <u>Windows</u>

As Designed Elevations

-

.

As Designed Elevations

INTRODUCTION BUILDING OVERVIEW

MECHANICAL SYSTEM OVERVIEW

MECHANICAL DEPTHS

AIR SYSTEM MODIFICATIONS

NATURAL VENTILATION SYSTEM

GEOTHERMAL HYBRID SYSTEM

DECENTRALIZED PUMPS SYSTEM

ARCHITECTURAL BREADTH

FAÇADE REDESIGN

ROOF REDESIGN

CONCLUSION

Goals of Redesigned Roof

- Reduce the overall height of the academic wing
- Tie the two wings of the building together
- Give the roof a lighter appearance
- Utilize previously used materials
- Design with appropriate slope to maintain proper water drainage Disadvantages of Redesigned Roof
 - Possibly more expensive

As Designed Building Renderings

Redesigned

<u>Windows</u>

<u>As Designed</u> <u>Windows</u>

As Designed Elevations

-

.

As Designed Elevations

BUILDING OVERVIEW

MECHANICAL SYSTEM OVERVIEW

MECHANICAL DEPTHS

AIR SYSTEM MODIFICATIONS

NATURAL VENTILATION SYSTEM

GEOTHERMAL HYBRID SYSTEM

DECENTRALIZED PUMPS SYSTEM

ARCHITECTURAL BREADTH

FAÇADE REDESIGN

ROOF REDESIGN

CONCLUSION

KYLE COURTNEY | MECHANICAL OPTION | DUSTIN EPLEE

Life Cycle Cost Assumptions Baseline

- Maintenance \$1900/year
- Terminal Unit Redesign

Maintenance - \$1900/year Periodic Cost - \$30,000 every 20 years Natural Ventilation System Maintenance - \$1950/year Periodic Cost - \$30,000 every 20 years

Hybrid System

- Maintenance \$2200/year

Recommendations

Periodic Cost - \$30,000 every 20 years

Periodic Cost - \$90,000 every 17 years Periodic Cost - \$30,000 every 20 years

> All of the proposed systems are viable options with reasonable payback periods

ACKNOWLEDGEMENTS

- > The Pennsylvania State University Architectural Engineering Faculty and Staff
- Thesis Advisor: Dustin Eplee
- Professor William Bahnfleth, Ph.D., PE
- Project Sponsor: Hayes Large Architects
- Sponsor Contact: Donald Goodman, PE
- David Barto and Barton Associates
- Alyssa Adams and McClure Company
- My fellow classmates who have supported me over the last five years,
- especially the gentlemen and ladies of 612
- My friends and family for all their love and encouragement

QUESTIONS?

APPENDICES

	System Psychrometrics for Tower 1	
Project Name: BMS New Windows and Air		04/06/2011
Prepared by: PSUAE		06:24PM

January DESIGN COOLING DAY, 1400

TABLE 1: SYSTEM DATA

Component	Location	Dry-Bulb Temp (°F)	Specific Humidity (Ib/lb)	Airflow (CFM)	CO2 Level (ppm)	Sensible Heat (BTU/hr)	Laten Hea (BTU/hr
Ventilation Air	Inlet	45.8	0.00605	2303	400	-14602	-1992
Ventilation Reclaim	Outlet	70.3	0.01377	2303	400	-58407	-8071
Vent - Return Mixing	Outlet	0.0	0.00000	0	0		
Ventilation Fan	Outlet	70.3	0.01377	2303	400	0	
Cold Supply Duct	Outlet	70.3	0.01377	2303	400	0	
Zone Air	-	75.7	0.01567	2303	1223	45343	3239
Return Plenum	Outlet	75.7	0.01567	2303	1223	0	
Exhaust Fan	Outlet	76.4	0.00000	2303	1223	1707	

Air Density x Heat Capacity x Conversion Factor: At sea level = 1.080; At site altitude = 1.033 BTU/(hr-CFM-F) Air Density x Heat of Vaporization x Conversion Factor: At sea level = 4746.6; At site altitude = 4540.4 BTU/(hr-CFM) Site Altitude = 1224.0 ft

TABLE 2: ZONE DATA

		Dry-Bulb Temp	Specific Humidity	Airflow	CO2 Level	Sensible Heat	Latent Heat
Component	Location	(°F)	(Ib/lb)	(CFM)	(ppm)	(BTU/hr)	(BTU/hr)
Zone 1 (Cooling)							
Ventilation Air	-	-		392	-	-	-
Cooling Coil Inlet	-	73.9	0.01486	815	0	-	-
Cooling Coil Outlet	-	66.4	0.01418	815	0	6317	2556
Heating Coil Inlet	-	66.4	0.01418	815	0	-	-
Heating Coil Outlet	-	66.4	0.01418	815	0	0	-
Zone Air	-	75.7	0.01588	815	1195	7858	-
Zone 2 (Cooling)							
Ventilation Air	-	-	-	342		-	
Cooling Coil Inlet		73.6	0.01418	634	0	~	
Cooling Coil Outlet	-	64.3	0.01313	634	0	6056	3027
Heating Coil Inlet	-	64.3	0.01313	634	0	-	-
Heating Coil Outlet	-	64.3	0.01313	634	0	0	-
Zone Air	-	75.8	0.01466	634	1277	7476	-
Zone 3 (Cooling)							
Ventilation Air	-	-	-	483		-	
Cooling Coil Inlet	-	73.2	0.01473	803	0	-	-
Cooling Coil Outlet	-	66.8	0.01438	803	0	5387	1300
Heating Coil Inlet	-	66.8	0.01438	803	0	-	-
Heating Coil Outlet	-	66.8	0.01438	803	0	0	-
Zone Air	-	75.7	0.01618	803	1145	7445	-
Zone 4 (Cooling)							
Ventilation Air	-	-	-	351	-	-	-
Cooling Coil Inlet	-	74.1	0.01377	784	0	-	-
Cooling Coil Outlet	-	63.2	0.01254	784	0	8878	4390
Heating Coil Inlet		63.2	0.01254	784	0	-	-
Heating Coil Outlet	-	63.2	0.01254	784	0	0	
Zone Air	-	75.8	0.01376	784	1289	10255	
Zone 5 (Cooling)							
Ventilation Air	-	-	-	392		-	
Cooling Coil Inlet		74.0	0.01559	898	0	-	-
Cooling Coil Outlet	-	68.7	0.01547	898	0	4907	529
Heating Coil Inlet	-	68.7	0.01547	898	0	-	
Heating Coil Outlet		68.7	0.01547	898	0	0	
Zone Air	-	75.5	0.01702	898	1195	6304	
Zone 6 (Cooling)							
Ventilation Air	-	<i></i>	-	342	-	-	
Cooling Coil Inlet	-	73.9	0.01498	699	0	-	
Cooling Coil Outlet	-	67.5	0.01477	699	0	4612	709
Heating Coil Inlet		67.5	0.01477	699	0	1012	705
Heating Coil Outlet		67.5	0.01477	699	0	0	
Zone Air		75.8	0.01615	600	1277	6005	

ARMSTRONG

ARMSTRONG

APPENDICES

