
- Project Team
- Project Overview
- Existing Mechanical Systems
- Proposed Redesign
- Mechanical Depth
- Electrical Breadth
- Construction Management Breadth
- Cost and Energy Savings
- Summary and Conclusion

Coppin State University Physical Education Complex Kaylee Damico – Mechanical Option April 12th, 2011

- Project Team
- Project Overview
- Existing Mechanical Systems
- Proposed Redesign
- Mechanical Depth
- Electrical Breadth
- Construction Management Breadth
- Cost and Energy Savings
- Summary and Conclusion

Coppin State University Physical Education Complex Kaylee Damico – Mechanical Option April 12th, 2011

Project Team

Owner: Maryland Stadium Authority Architect: Cochran, Stephenson & Donkervoet **Construction Manager:** Gilbane **Mechanical Engineer:** James Posey Associates **Electrical Engineer:** Diversified Engineering **Structural Engineer:** Hope Furrer Associates **Civil Engineer:** Site Resources

- Project Team
- Project Overview
- Existing Mechanical Systems
- Proposed Redesign
- Mechanical Depth
- Electrical Breadth
- Construction Management Breadth
- Cost and Energy Savings
- Summary and Conclusion

Project Site

- Architecture
 - 246,000 GSF
 - 1-4 stories

Project Overview

 New Main Entrances for University • Adjacent track and field and other sporting fields

\$136 million

LEED Silver Certification

- Project Team
- Project Overview
- **Existing Mechanical Systems**
- Proposed Redesign
- Mechanical Depth
- Electrical Breadth
- Construction Management Breadth
- Cost and Energy Savings
- Summary and Conclusion

Project Site

- Architecture
 - 246,000 GSF
 - 1-4 stories
 - LEED Silver Certification
- **Specialty Spaces**
 - 4,100 seat Arena
 - 8-lane NCAA regulation pool
 - Dance Studio
 - Auxiliary Gym
 - Fitness Center

Project Overview

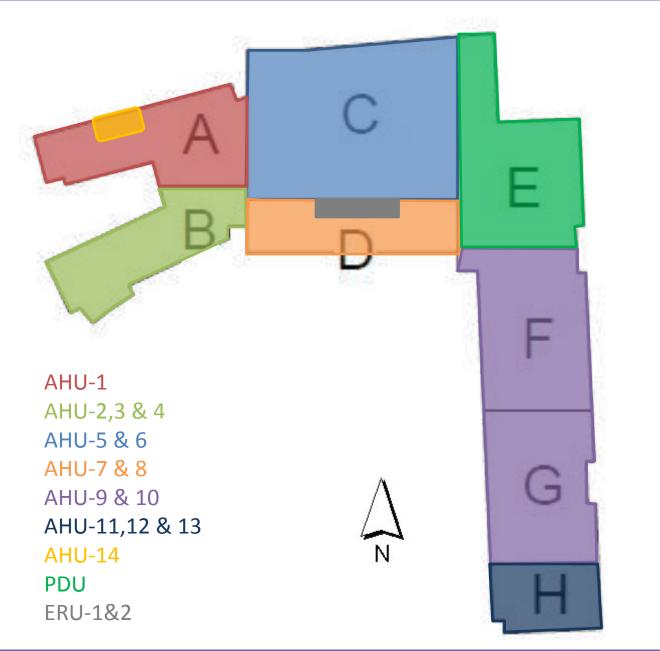
• New Main Entrances for University • Adjacent track and field and other sporting fields

\$136 million

- Project Overview
- Existing Mechanical Systems
- Proposed Redesign
- Mechanical Depth
- Electrical Breadth
- Construction Management Breadth
- Cost and Energy Savings
- Summary and Conclusion

Air Systems

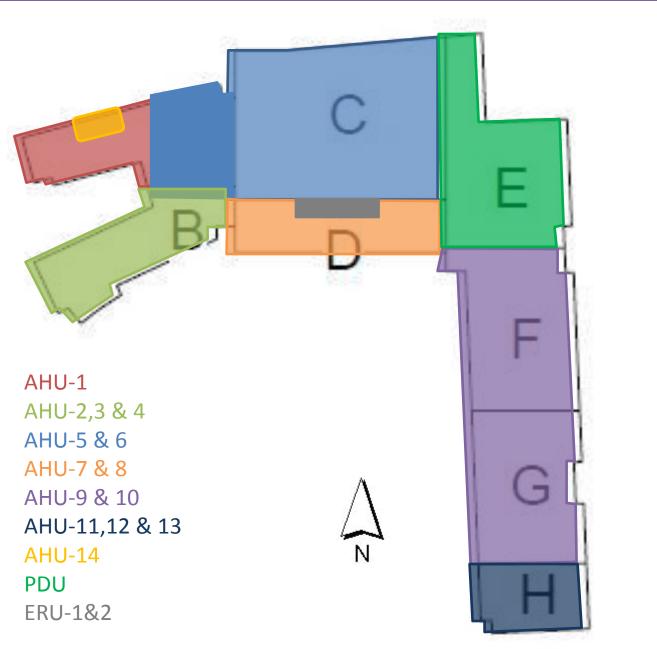
- 14 Variable Air Volume AHUs • Single zone and multiple zone
- 2 Energy Recovery Units
- 1 Pool Dehumidification System



AHU-1: Level 1 Shops

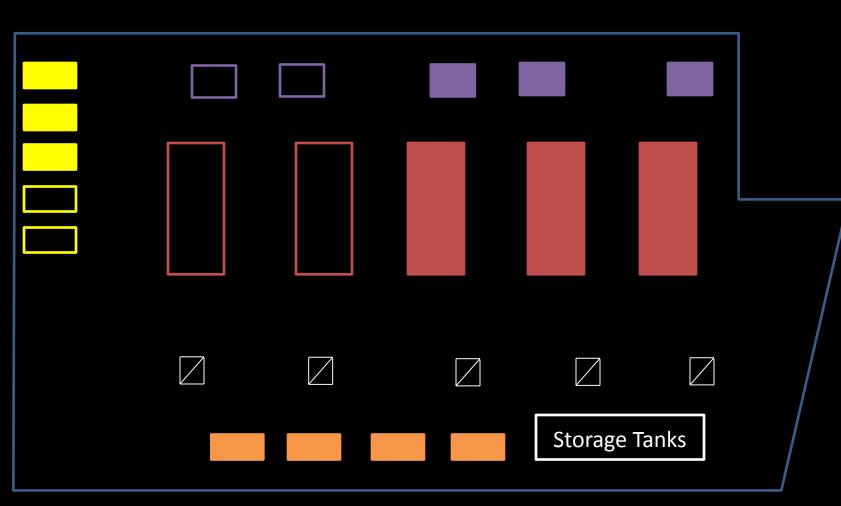
- AHU-2: Level 1 Offices
- Level 2 Offices
- Level 3 Offices
- Ting Mechanical Systems
- Concessions
- J-8: Level 3 Coach Offices
- ectrical Breadth HU-9& 10: Auxiliary Gym
- Classrooms & Dance Studio
- HU-12: Muitipurpose Room
- AHU-13: Fitness Area
- AHU-14: Heating Unit for Shops
- PDU-1: Pool
- ERU-1 & 2: Locker Rooms

- Air Systems
 - 14 Variable Air Volume AHUs • Single zone and multiple zone
 - 2 Energy Recovery Units
 - **1** Pool Dehumidification System



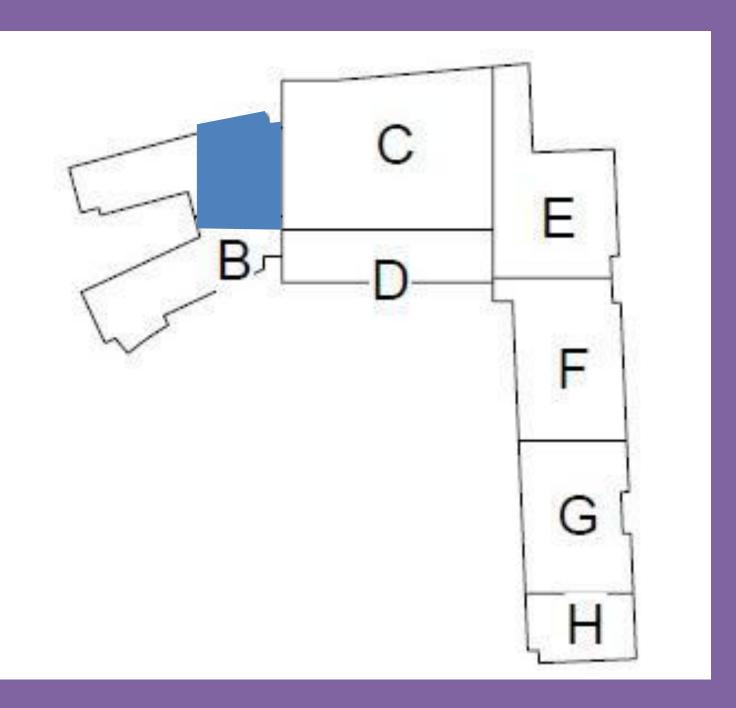
Air Systems

- 14 Variable Air Volume AHUs •
 - Single zone and multiple zone
- 2 Energy Recovery Units
- 1 Pool Dehumidification System
- **Central Plant**
 - Two 500 ton chillers
 - 1000 ton cooling tower \bullet



Air Systems

- 14 Variable Air Volume AHUs
 - Single zone and multiple zone
- 2 Energy Recovery Units
- 1 Pool Dehumidification System


Central Plant

- Two 500 ton chillers \bullet
- 1000 ton cooling tower
- Three dual fuel 250HP boilers
- Primary-Secondary system
- Space for future expansion

Boilers

Primary Heating Water Pumps Secondary Heating Water Pumps Variable Flow Heating Water Pumps **Pressure Relief**

•	Project Team
•	Project Overview
•	Existing Mechanical Systems
•	Proposed Redesign
•	Mechanical Depth
•	Electrical Breadth
•	Construction Management Breadth
•	Cost and Energy Savings
•	Summary and Conclusion

Design Objectives

- More efficient mechanical systems
- Lower Overall Energy Usage
 - Lower Emissions
- **Design Components**
 - Ground Source Heat Pump System
 - - Electrical Redesign of MCC
 - Construction Reorganization

Proposed Redesign

Heat Recovery Chiller

- Project Team
- Project Overview
- Existing Mechanical Systems
- Proposed Redesign
- Mechanical Depth
 - GSHP
 - HRC
- Electrical Breadth
- Construction Management Breadth
- Cost and Energy Savings
- Summary and Conclusion

- Soil Type Resistance
- Depth Allowed

Mechanical Depth - GSHP

Paleozoic basic igneous rock

Mechanical Depth - GSHP

Site

- Soil Type
- Resistance
- Depth Allowed

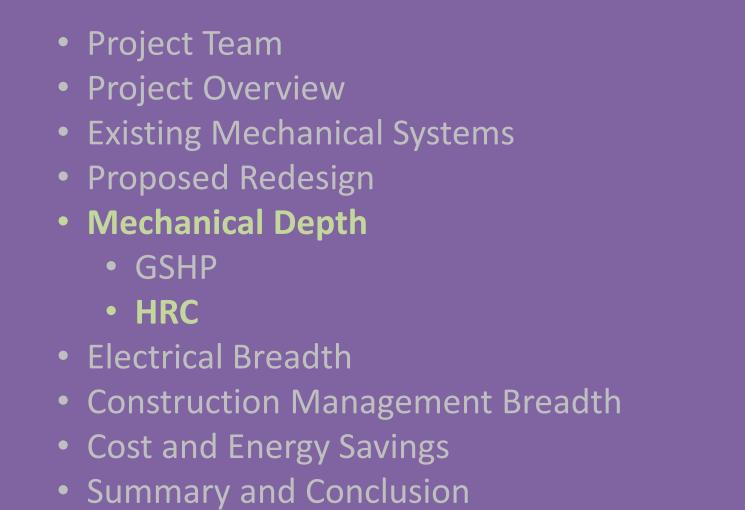
Calculations

- Only Zones A and B • 55 bores at 4

Equipment

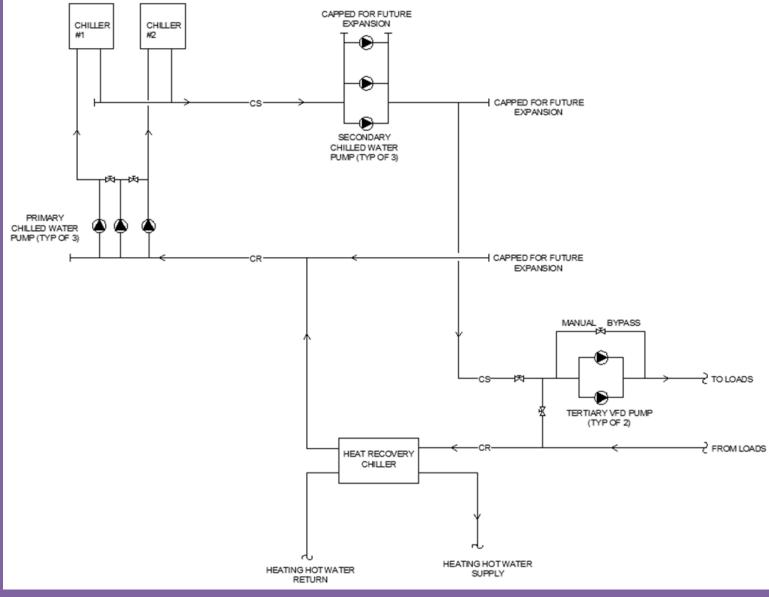
- 5 water to wa • Each with Reverse Retu
- Polyethylene •

$$L_{c} = \frac{q_{a} \cdot R_{ga} + [q_{ic} - 3.142 \cdot W_{c}] \cdot [R_{p} + PLF_{m} \cdot R_{gm} + R_{gd} \cdot F_{sc}]}{t_{g} - \left[\frac{t_{wi} - t_{wo}}{2}\right] - t_{p}}$$



Unit	EWT (°F)	GPM	Total Cooling Capacity (MBH)	Power <mark>(</mark> kW)	EER
50PSW360	50	70	304.6	12.43	24.5

Paleozoic basic igneous rock


Sizing

Reheat Load = 3500 MBH $\Delta T = (140^{\circ}F - 120^{\circ}F) = 20^{\circ}F$

Mechanical Depth - HRC

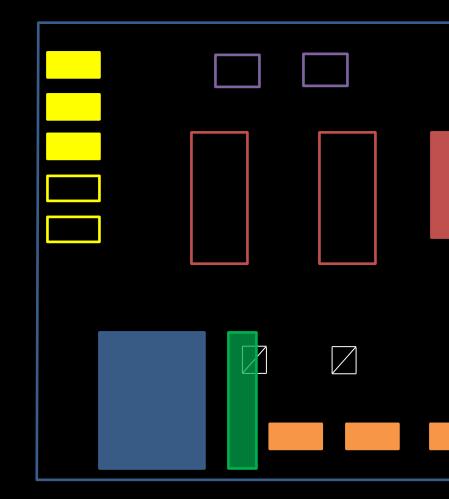
Hourly loads Available heating hot water HRC can handle 52% of load

Reheat Load (MBH) \cdot 1000 = GPM \cdot 500 \cdot Δ T

Unit	GPM	Input Power (kW)	Heating (MBH)	Cooling (MBH)
TGZ120A	209	109.5	2094.5	1720.9

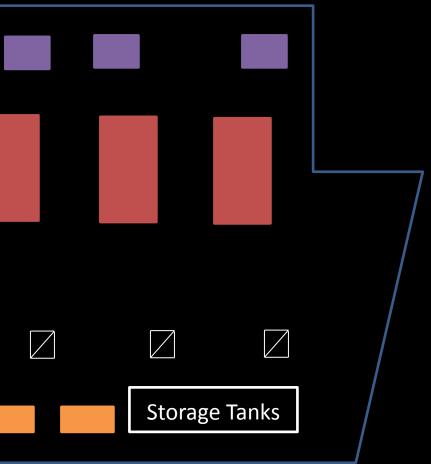
Equipment	Manufacturer	Model	Gross Output (MBH)
Dual Fuel Boilers	Cleaver Brooks	CEW200	6695
Condensing Boiler	Weil-McClain	UG-310	289

Sizing


- Hourly loads •
- Available heating hot water •
- HRC can handle 52% of load •

Equipment

- (2) McQuay Templifier HRC (5) Weil McLain Condensing Boilers Downstel existing to 12902 F Brow 5980 Ters


Reheat Load = 3500 MBH $\Delta T = (140^{\circ}F - 120^{\circ}F) = 20^{\circ}F$

Mechanical Depth - HRC

Boilers

Primary Heating Water Pumps Secondary Heating Water Pumps Variable Flow Heating Water Pumps Pressure Relief

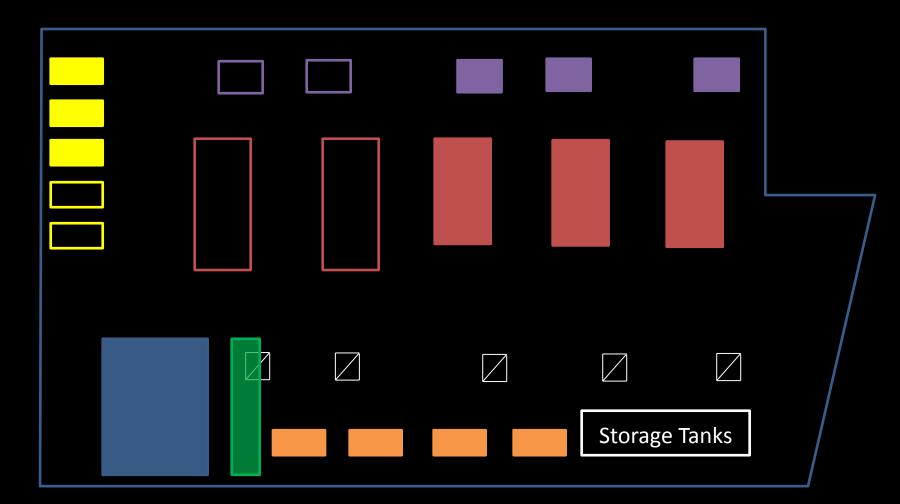
Heat Recovery Chillers **Condensing Boilers**

Where, Q = 9kg of R134a Heating Input Power Cooling GPM Unit (MBH) (MBH) (kW) 209 109.5 2094.5 1720.9 TGZ120A

	Equipment	Manufa	acturer	Mod	el	Gross Output (MBH)	
Ean T	Dual Fuel Boilers	Cleaver	Brooks	CEW2	200	6695	Motor HP
Fan Ty	Condensing Boller	Weil-N	/cClain	UG-3	10	289	
Roof Up	blast ACIVIE PD	0135	DIre	ect		750	1/3

Sizing

- Hourly loads
- Available heating hot water
- HRC can handle 52% of load


Equipment

- (2) McQuay Templifier HRC
- (5) Weil McLain Condensing Boilers
- Downsize existing Cleaver Brooks boilers

- Exhaust 1400 CFM required for R-134a 2 Roof Upblast Fans \bullet

Mechanical Depth - HRC

Refrigerant Leak Detection

Boilers

Primary Heating Water Pumps Secondary Heating Water Pumps Variable Flow Heating Water Pumps Pressure Relief

Heat Recovery Chillers **Condensing Boilers**

- Project Team Project Overview • Existing Mechanical Systems Proposed Redesign Mechanical Depth Electrical Breadth Construction Management Breadth • Cost and Energy Savings
- Summary and Conclusion

Calculations

- **Electrical Information**
 - HP
 - KVA •
 - FLA

Electrical Breadth

Equipment Removed	HP	KVA	FLA
Boiler Blower Motor 1	10	11.14	14
Boiler Blower Motor 2	10	11.14	14
Boiler Blower Motor 3	10	11.14	14
Equipment Added			
New Boiler Blower Motor-1	7.5	8.4	10.1
New Boiler Blower Motor-2	7.5	8.4	10.1
New Boiler Blower Motor-3	7.5	8.4	10.1
Condensing Boiler Motor-1	1.75	2.0	2.4
Condensing Boiler Motor-2	1.75	2.0	2.4
Condensing Boiler Motor-3	1.75	2.0	2.4
Condensing Boiler Motor-4	1.75	2.0	2.4
Condensing Boiler Motor-5	1.75	2.0	2.4
HRC-1	23	25.8	31.1
HRC-2	23	25.8	31.1

Electrical Info of Equipment Added for GSHP

Equipment Added	HP	KVA	FLA
HP-1	16.6	18.4	41.4
HP-2	16.6	18.4	41.4
HP-3	16.6	18.4	41.4
HP-4	16.6	18.4	41.4
HP-5	16.6	18.4	41.4

Electrical Info of Equipment Added for HRC

- Project Team Project Overview • Existing Mechanical Systems Proposed Redesign Mechanical Depth • Electrical Breadth Construction Management Breadth Cost and Energy Savings
- Summary and Conclusion

Calculations

- **Electrical Information** \bigcirc
 - HP
 - KVA
 - FLA
- Scheduling
 - Spares and spaces on previous MCC's

Electrical Breadth

MCC-2 Partial Schedule Electrical Info of Equipment Added for HRC							
Verti	n Bus: 600A Volts: 48 Equipment Removed	HP	KVA	se: 3 FLA			
Compart	Boiler Blower Motor 1	10	11.14	14			
No	Boiler Blower Motor 2	10	11.14	14			
1BL	Boiler Blower Motor 3	10	11.14	14	14		
2BL 3BL	Equipment Added				14 14		
3M	New Boiler Blower Motor-1	7.5	8.4	10.1	14		
	New Boiler Blower Motor-2	7.5	8.4	10.1			
4M	New Boiler Blower Motor-3	7.5	8.4	10.1			
5B	Condensing Boiler Motor-1	1.75	2.0	2.4			
5D	Condensing Boiler Motor-2	1.75	2.0	2.4			
SF SJ	Condensing Boiler Motor-3	1.75	2.0	2.4			
J Total	Condensing Boiler Motor-4	1.75	2.0	2.4	H		
	Condensing Boiler Motor-5	1.75	2.0	2.4			
	HRC-1	23	25.8	31.1			
	HRC-2	23	25.8	31.1			

Main Bu	us: 1200A	Vo
Vertical	nto of	
Compartme		
No.	Equipment	Added
5BR	HP-1	
7HL	HP-2	
7HR		
8DL	HP-3	
9G	HP-4	
Total Load	HP-5	
		Dem

olts: 480VAC Phase: 3 Wires: 4 HP KVA FLA FLA 16.6 18.4 41.4 16.6 18.4 16.6 18.4 16.6 18.4 41.4³⁵ Amps 16.6 18 4 and Factor:70%

Feeders from HRC Equipment

Compartment #	Feeder Size
1BL	3#12+1#12G, 1/2" C
2BL	3#12+1#12G, 1/2" C
3BL	3#12+1#12G, 1/2" C
3M	3#8+1#10G, 1/2" C
4K	3#8+1#10G, 1/2" C
4M	3#8+1#10G, 1/2" C
5B	3#8+1#10G, 1/2" C
5D	3#8+1#10G, 1/2" C
5F	3#8+1#8G, 1" C
5J	3#8+1#8G, 1" C

Feeders from GSHP Equipment

Compartment #	Feeder Size
5BR	3#8+1#8G, 1"C
7HL	3#8+1#8G, 1"C
7HR	3#8+1#8G, 1"C
8DL	3#8+1#8G, 1"C
9G	3#8+1#8G, 1"C

Calculations

- Electrical Information
 - HP
 - KVA
 - FLA

Scheduling

- Spares and spaces on previous MCC's
- Installed and replaced with new equipment
- Sizing
 - Feeders sized for each addition •

Electrical Breadth

Main Bus: 600A		Volts: 480VAC		Phase: 3		
Vertical Bus: 300A			Wires: 3			
Compartment	Circuit	Name Plate		Load		
No.	Number	Name Plate	HP	KVA	FLA	
1BL	MCC2-1	Boiler #1 Blower Motor	10	11.14	14	
2BL	MCC2-2	Boiler #2 Blower Motor	10	11.14	14	
3BL	MCC2-3	Boiler #3 Blower Motor	10	11.14	14	
ЗM	MCC2-26	SPARE	-	-	-	
4К	MCC2-31	SPARE	-	-	-	
4M	MCC2-32	SPARE	-	-	-	
5B	MCC2-33	SPARE	-	-	-	
5D	MCC2-34	SPARE	-	-	-	
5F	MCC2-35	SPARE	-	-	-	
5J	-	SPACE	-	-	-	
Total Load: 349 KVA			Total L	.oad: 443.1	Amps	
		Demand Factor:70%				

New WCC-3 Partial Schedule

Main Bus: 1200A		Volts: 480VAC	Phase: 3		
Vertical Bu	is: 600A			Wires: 4	
Compartment	Circuit	Name Plate	Load		
No.	Number		HP	KVA	FLA
5BR	MCC3-27	SPARE	-	-	-
7HL	MCC3-48	SPARE	-	-	-
7HR	MCC3-49	SPARE	-	-	-
8DL	MCC3-55	SPARE	-	-	-
9G	-	SPACE	-	-	-
Total Load: 1399 KVA			Total Load: 1808.95 Amps		5 Amps
		Demand Factor:70%			

New MEE:2 Partial Schedule

Construction Management Breadth

Preject Teamsts for HRC

•	P Equipment Removed	Cost		
	Boiler 1	\$131,500.00		
	E Boiler 2	\$131,500.00	ystems _{Fa}	
	Boiler 3	\$131,500.00	ysterns Eq	uij
	D Equipment Added		E	qui
	New Boiler -1	\$129,650.00	H	IP-1
	New Boiler -2	\$129,650.00	H	IP-2
•	New Boiler -3	\$129,650.00	H	IP-3
	Condensing Boiler	\$ 6,499.00	H	IP-4
	Condensing Boiler	\$ 6,499.00	<mark>н</mark>	IP-5
	Condensing Boiler	\$ 6,499.00		ota
	Condensing Boiler	\$ 6,499.00	ement Brea	ac
	Condensing Boiler	\$ 6,499.00		
•	HRC-1	\$250,500.00	igs	
	HRC-2	\$250,500.00	•	
	S Total Cost Added	\$527,945.00	sion	

ipment Costs for GSHP

Equipment Added	Cost
HP-1	\$ 24,900.00
HP-2	\$ 24,900.00
HP-3	\$ 24,900.00
HP-4	\$ 24,900.00
HP-5	\$ 24,900.00
Total Cost Added	\$124,500.00
Panth	

Costs

- GSHP
 - Installation
 - Piping
 - Equipment
- HRC •
 - Equipment

Cost of Labor and Equipment for GSHP Installation

Length of Pipe (ft)	Man Power (ft/day/rig)	# of rigs	Days	Man Power Cost per linear foot	Piping Installation Cost	Renting rig (\$/week)	Cost rigs	Total Price
22000	400	2	28	\$24	\$528,000	\$4,500	\$24,750	\$ 552,750.00

Cost Polyethylene Pipe

Size (in)	# of Wells	Depth (ft)	Total Length (ft)	Price per 40'	Price per Size
3	30	400	12000	1.32	15840
2	15	400	6000	1.1	6600
1.25	10	400	4000	0.66	2640
				Total	\$ 25,080.00

Construction Management Breadth

Equipment Costs for HRC

Equipment Removed	Cost
Boiler 1	\$131,500.00
Boiler 2	\$131,500.00
Boiler 3	\$131,500.00
Equipment Added	
New Boiler -1	\$129,650.00
New Boiler -2	\$129,650.00
New Boiler -3	\$129,650.00
Condensing Boiler	\$ 6,499.00
HRC-1	\$250,500.00
HRC-2	\$250,500.00
Total Cost Added	\$527,945.00

Equipment Costs for GSHP

Equipment Added	Cost
HP-1	\$ 24,900.00
HP-2	\$ 24,900.00
HP-3	\$ 24,900.00
HP-4	\$ 24,900.00
HP-5	\$ 24,900.00
Total Cost Added	\$124,500.00

Costs

- GSHP

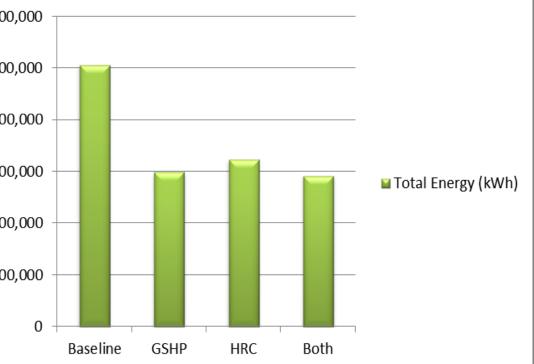
 - Piping
- HRC

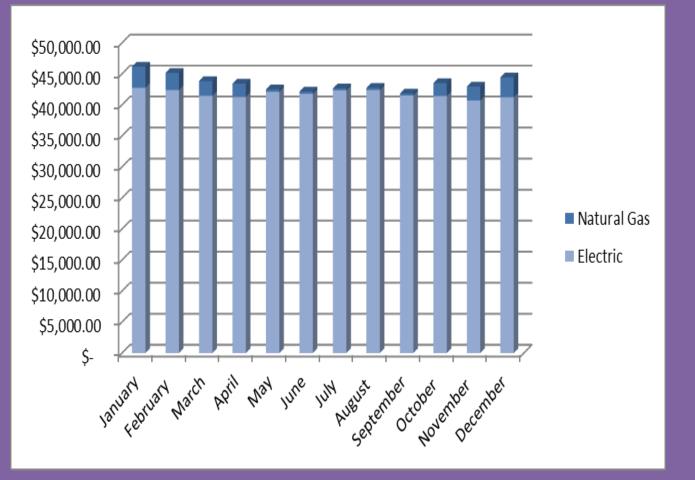
Site

- •

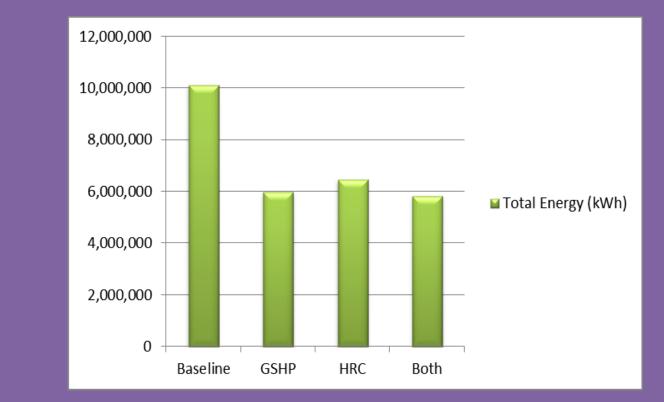
Installation

• Equipment

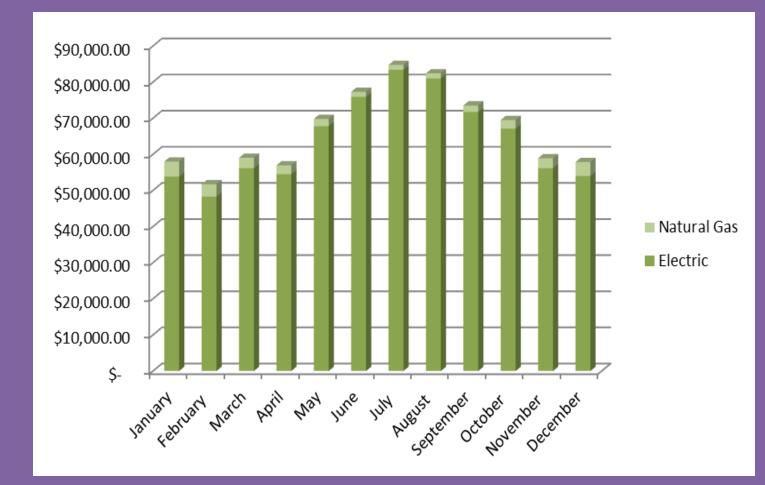

• Equipment


Installed in adjacent parking lot • Trailers can be moved • Excavation – Finishing Zone B

	Cost	: of Labor a	nd Equ	lipment fo	r GSHP	Installa	tion	
Length of Pipe (ft)	Man Power (ft/day/rig)	# of rigs	Days	Man Power Cost per linear foot	Piping Installation Cost	Renting rig (\$/week)	Cost rigs	Total Price
22000	400	2	28	\$24	\$528,000	\$4,500	\$24,750	\$ 552,750.00
			ost Po	lyethylene	Pipe			
	Size		Depth (ft)	Total Length (ft			A DESCRIPTION OF THE PARTY OF T	
		3 30		00 1200			5840	A data
		2 15 1.25 10		00 600 00 400			6600	
	THIN.	1.23		400	Total	\$ 25,08	and the second se	


•	Project Team	
•	Project Overview	12,000
•	Existing Mechanical Systems	10,000
•	Proposed Redesign	8,000
•	Mechanical Depth	-
•	Electrical Breadth	6,000
•	Construction Management Breadth	4,000
•	Cost and Energy Savings	2,000
•	Summary and Conclusion	

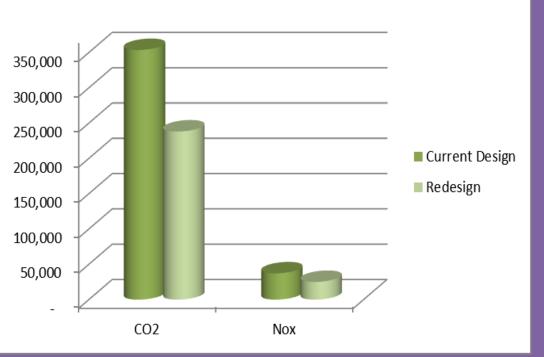
Cost and Energy Savings



Redesign Cost of Utilities

Cost and Energy Savings

Baseline Cost of Utilities

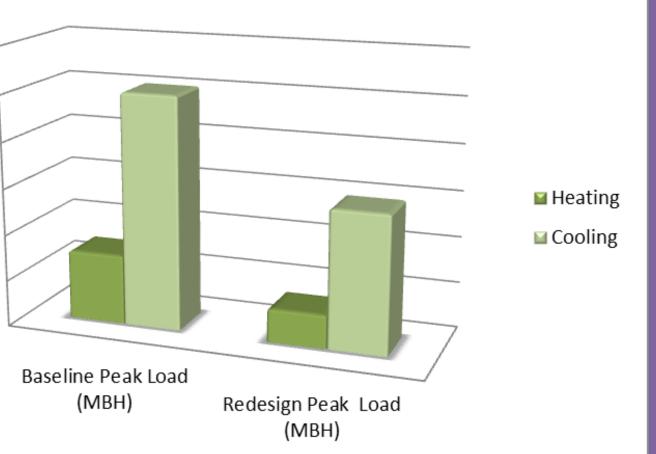

Annual Emissions for Baseline

Pollutants	lb of Pollutant per 1000 cubic feet of Natural gas	Natural Gas per year (1000 cubic feet)	Amount of Pollutant per year (lb)
CO2	11.6	30,486	353,638
Nox	0.0164	30,486	500
Sox	1.22	30,486	37,193

Annual Emissions for Redesign

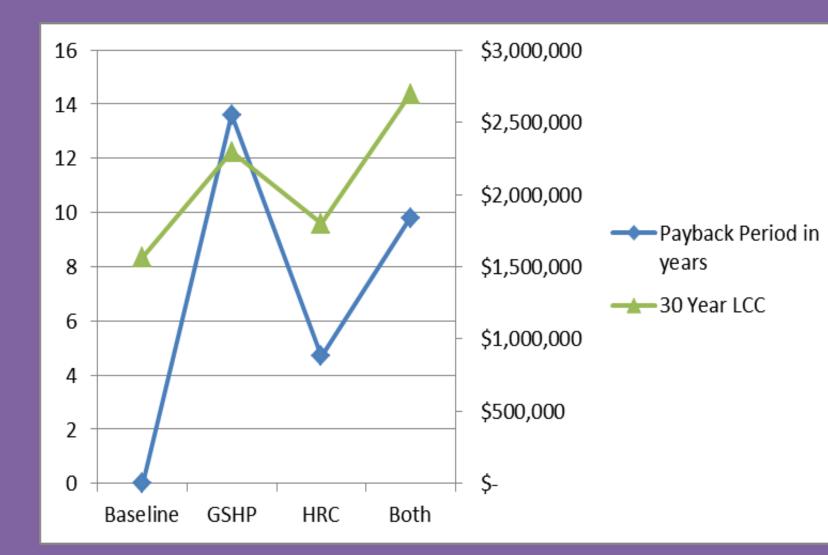
Pollutants	Ib of Pollutant per 1000 cubic feet of Natural gas	Natural Gas per year (1000 cubic feet)	Amount of Pollutant per year (lb)
CO2	11.6	20,530	238,148
Nox	0.0164	20,530	337
Sox	1.22	20,530	25,047

Cost and Energy Savings



Emission Comparison in pounds of Pollutant

		ľ
		C


Project Team	
Project Overview	12000
 Existing Mechanical Systems 	10000
 Proposed Redesign 	8000
Mechanical Depth	6000
Electrical Breadth	4000
 Construction Management Depth 	2000
 Cost and Energy Savings 	0
Summary and Conclusion	

Summary and Conclusion

Suggestions to Owner

- Definite Additions
 - ✓ Heat Recovery Chiller
- Possible Additional Savings
 - ✓ Ground Source Heat Pump
- Implementing both can possibly increase LEED points
- **Owner's Discretion**

Summary and Conclusion

30-Year LCC Details

	Initial Capital Cost	Discount Rate	Yearly aintance	30-Year Life Cycle Cost (NPV)	Discounted Payback Period (years)
Baseline	\$ 1,567,600.00	7%	\$ 87,283	\$ 9,130,491	0
GSHP	\$ 2,293,202.00	7%	\$ 90,976	\$ 9,505,982	13.6
HRC	\$ 1,799,600.00	7%	\$ 98,625	\$ 9,635,367	4.7
Both	\$ 2,694,202.00	7%	\$ 110,763	\$ 10,049,383	9.8

Special Thanks to:

- James Posey Associates
- Gilbane Company
- McClure Company
- Professors
- Family and Friends

Questions or Comments?

