

Mechanical Option



# Kevin Edstrom

- 2011 Senior Thesis
- April 12<sup>th</sup>, 2011

- Existing Mechanical System
  - DOAS
  - Space Heating and Cooling
  - Plumbing
  - Energy Consumption
- Mechanical Depth: Solar Thermal System
  - Overview
  - Key Design Decisions
  - Energy Savings and Payback Period
- Construction Breadth
  - Constructability
  - Trade Coordination and Schedule
- Summary and Conclusion

# Kevin Edstrom



- Mechanical Option
- 2011 Senior Thesis
- April 12<sup>th</sup>, 2011

## Project Overview

### Project Overview

- Existing Mechanical System
  - DOAS
  - Space Heating and Cooling
  - Plumbing
  - Energy Consumption
- Mechanical Depth: Solar Thermal System
  - Overview
  - Key Design Decisions
  - Energy Savings and Payback Period
- Construction Breadth
  - Constructability
  - Trade Coordination and Schedule
- Summary and Conclusion

| Georgetown |
|------------|
|------------|

Size:

Client:

Architect:

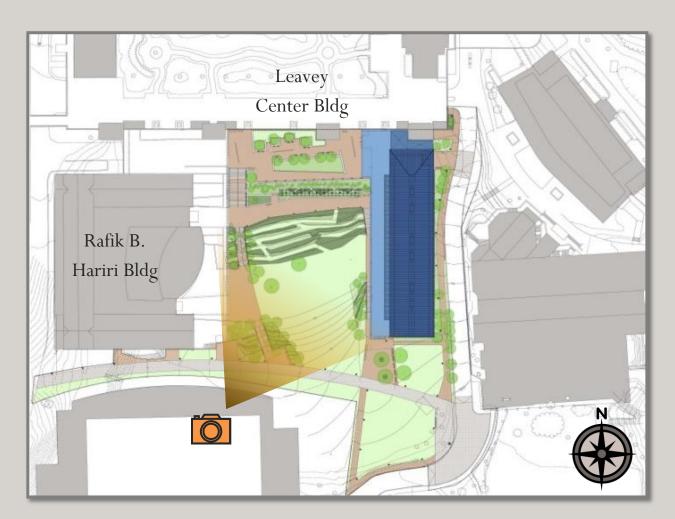
**MEP Consultants:** 

CM:

**Construction Date** 

| University | New Science Center         |
|------------|----------------------------|
|            | 154,000 SF                 |
|            | Georgetown University      |
|            | Payette Associates         |
| 5:         | R.G. Vanderweil Engineers  |
|            | Whiting-Turner Contracting |
| es:        | May 2010 – July 2012       |
|            |                            |




### Location

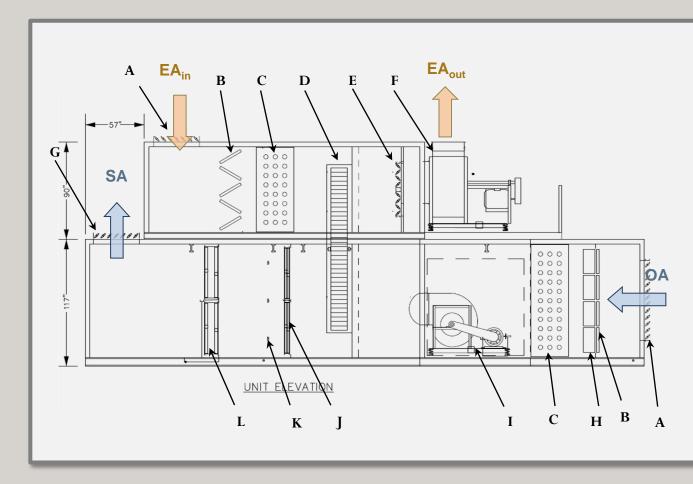


## Project Overview

### Project Overview

- Existing Mechanical System
  - DOAS
  - Space Heating and Cooling
  - Plumbing
  - Energy Consumption
- Mechanical Depth: Solar Thermal System
  - Overview
  - Key Design Decisions
  - Energy Savings and Payback Period
- Construction Breadth
  - Constructability
  - Trade Coordination and Schedule
- Summary and Conclusion




Site Plan



- Project Overview
- Existing Mechanical System
  - DOAS
  - Space Heating and Cooling
  - Plumbing
  - Energy Consumption
- Mechanical Depth: Solar Thermal System
  - Overview
  - Key Design Decisions
  - Energy Savings and Payback Period
- Construction Breadth
  - Constructability
  - Trade Coordination and Schedule
- Summary and Conclusion
- Q/A

- (4) Built-up AHUs
  - 50,000 cfm supply/exhaust each •
- VAV supply and exhaust terminal units
- (97) High efficiency fume hoods

Dedicated Outdoor Air System





A - Inlet air dampers **B** - Pre-filters C - Sound attenuator **D** - Enthalpy wheel **E** - Fan isolation damper **F** - Exhaust fan G - Discharge dampers H - Final filters I - Supply fan J - HW coil **K** - Steam humidifier L - Cooling coil

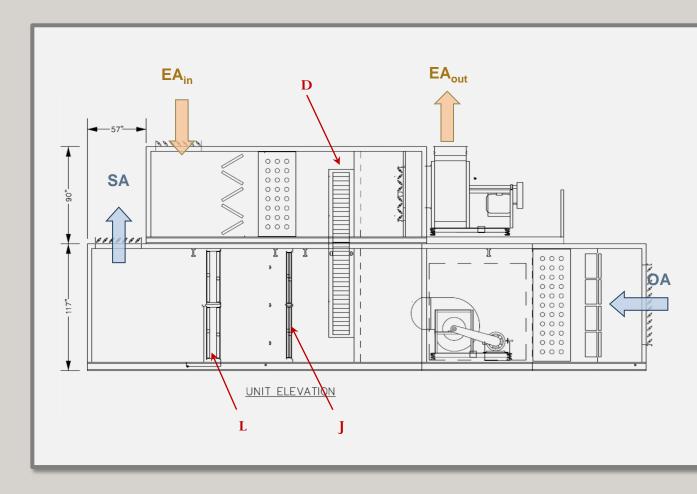
### Typical Air Handling Unit detail

- Project Overview
- Existing Mechanical System
  - DOAS
  - Space Heating and Cooling
  - Plumbing
  - Energy Consumption
- Mechanical Depth: Solar Thermal System
  - Overview
  - Key Design Decisions
  - Energy Savings and Payback Period
- Construction Breadth
  - Constructability
  - Trade Coordination and Schedule
- Summary and Conclusion
- Q/A

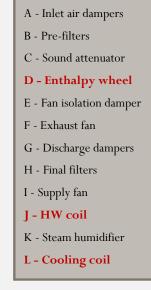
- AHU preconditioning

- Active chilled beams
- Fan coil units
- Unit heaters

- Space Heating and Cooling System


- Project Overview
- Existing Mechanical System
  - DOAS
  - Space Heating and Cooling
  - Plumbing
  - Energy Consumption
- Mechanical Depth: Solar Thermal System
  - Overview
  - Key Design Decisions
  - Energy Savings and Payback Period
- Construction Breadth
  - Constructability
  - Trade Coordination and Schedule
- Summary and Conclusion

Q/A


### - AHU preconditioning

- Active chilled beams
- Fan coil units
- Unit heaters

Space Heating and Cooling System

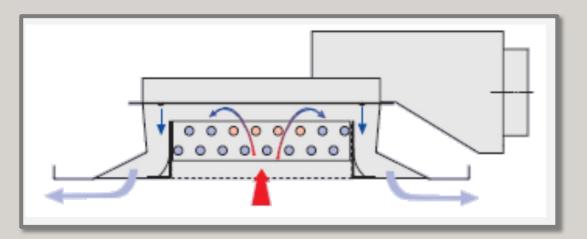






### Typical Air Handling Unit detail

- Project Overview
- Existing Mechanical System
  - DOAS
  - Space Heating and Cooling
  - Plumbing
  - Energy Consumption
- Mechanical Depth: Solar Thermal System
  - Overview
  - Key Design Decisions
  - Energy Savings and Payback Period
- Construction Breadth
  - Constructability
  - Trade Coordination and Schedule
- Summary and Conclusion
- Q/A


Space Heating and Cooling System

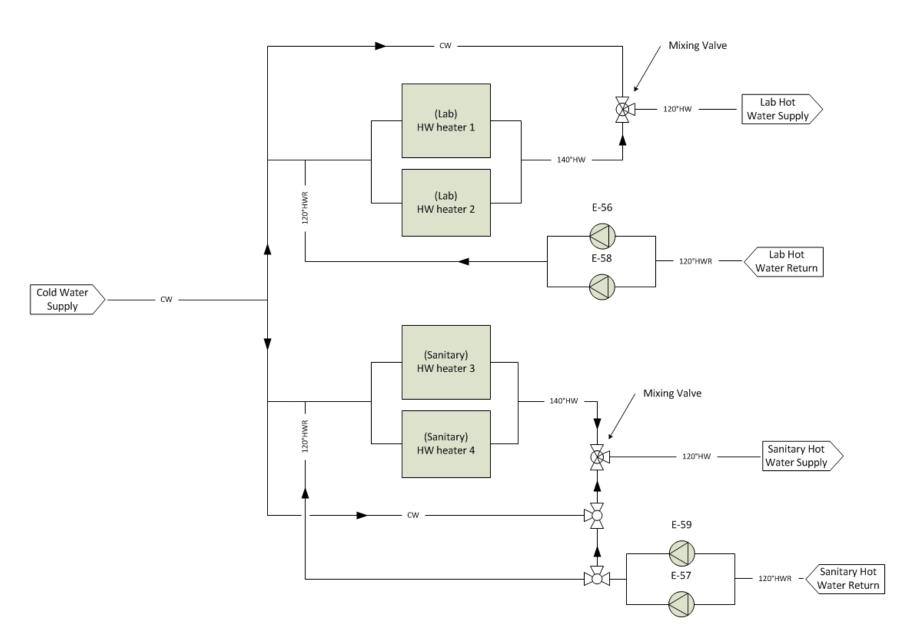
- AHU preconditioning

- Active chilled beams

- Fan coil units

- Unit heaters




### Typical chilled beam detail

- Project Overview
- Existing Mechanical System
  - DOAS
  - Space Heating and Cooling
  - Plumbing
  - Energy Consumption
- Mechanical Depth: Solar Thermal System
  - Overview
  - Key Design Decisions
  - Energy Savings and Payback Period
- Construction Breadth
  - Constructability
  - Trade Coordination and Schedule
- Summary and Conclusion

- Plumbing System
- Domestic Hot Water
  - Sanitary and lab loop
  - Recirculated system

Q/A

### Existing Domestic Hot Water Distribution



- Project Overview
- Existing Mechanical System
  - DOAS
  - Space Heating and Cooling
  - Plumbing
  - **Energy Consumption**
- Mechanical Depth: Solar Thermal System
  - Overview
  - Key Design Decisions
  - Energy Savings and Payback Period
- Construction Breadth
  - Constructability
  - Trade Coordination and Schedule
- Summary and Conclusion

Energy Consumption

**HVAC Cooling Demand:** 848.5 MMBtu/yr

- Primarily summer demand

**HVAC Heating Demand:** 

6411 therms/year or 641.1 MMBtu/yr

- Primarily winter demand

### **Domestic HW Demand:**

2080 gal/day  $\rightarrow$  1223 MBtu/day 1223 x 1.25 = 1529 MBtu/day

3,975 therms/yr or **397.5 MMBtu/yr** 

- Relatively constant demand throughout the year

# (recirculated system losses)

- Project Overview
- Existing Mechanical System
  - DOAS
  - Space Heating and Cooling
  - Plumbing
  - Energy Consumption
- Mechanical Depth: Solar Thermal System
  - Overview
  - Key Design Decisions
  - Energy Savings and Payback Period
- Construction Breadth
  - Constructability
  - Trade Coordination and Schedule
- Summary and Conclusion
- Q/A

System Objective:

Design Goals:


- Minimize changes in existing design (structural / mechanical)
- Prevent delays in existing construction schedule

## Mechanical Depth - Solar Thermal System

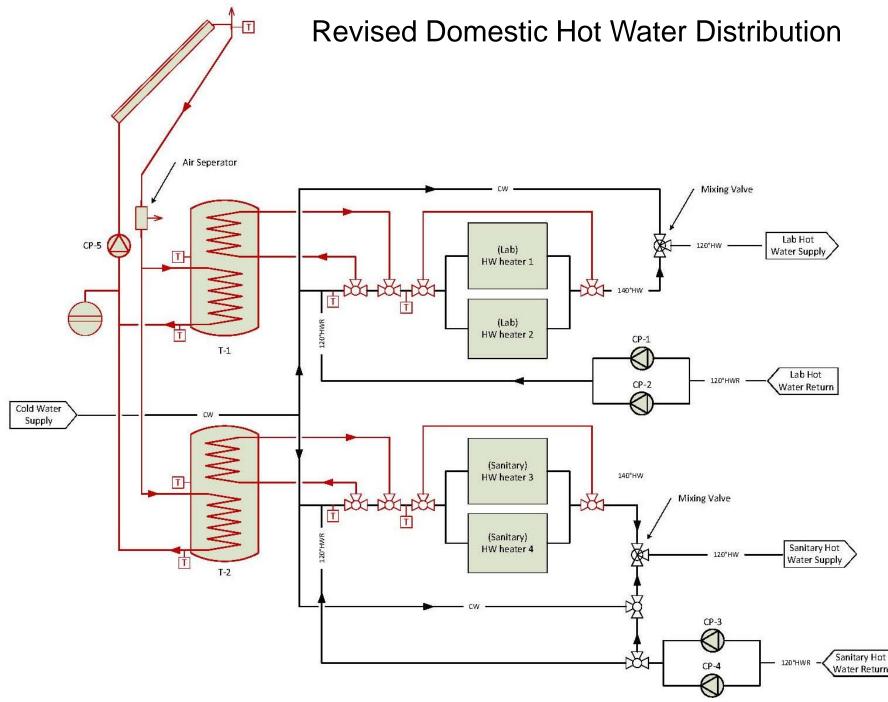
Utilize solar energy to offset district steam demand

Reduced operating costs and carbon footprint





- Project Overview Existing Mechanical System
  - DOAS
  - Space Heating and Cooling
  - Plumbing
  - Energy Consumption
- Mechanical Depth: Solar Thermal System
  - Overview
  - Key Design Decisions
  - Energy Savings and Payback Period
- Construction Breadth
  - Constructability
  - Trade Coordination and Schedule
- Summary and Conclusion
- Q/A


## Mechanical Depth - Solar Thermal System

### Overview

heaters

- (77) Evacuated tube solar collectors (1716 sf total absorber area)
- (2) 5000 liter (total 2641 gal) thermal storage tanks
- 17.4 gpm circulator pump
- 1100 gal diaphragm expansion tank
- Air separation equipment

Proposed system will supplement existing domestic hot water



- Project Overview
- Existing Mechanical System
  - DOAS
  - Space Heating and Cooling
  - Plumbing
  - Energy Consumption
- Mechanical Depth: Solar Thermal System
  - Overview
  - Key Design Decisions
  - Energy Savings and Payback Period
- Construction Breadth
  - Constructability
  - Trade Coordination and Schedule
- Summary and Conclusion

Key Design Decisions

**Collector location**: Mechanical penthouse level

- 45° tilt angle

## Mechanical Depth - Solar Thermal System

- Sufficient space for (77) 2x3m solar collectors at

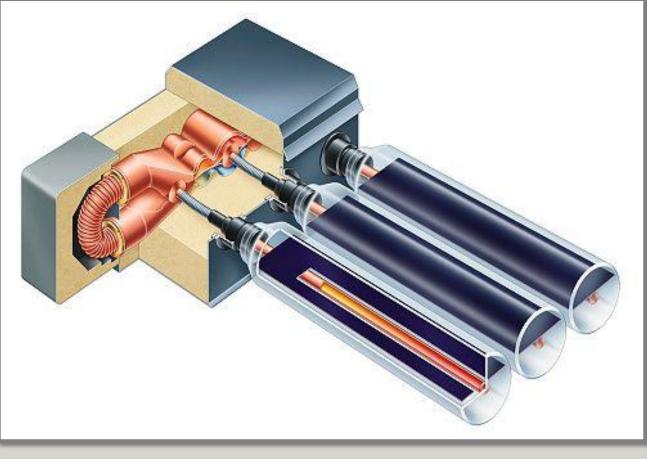
- Total absorber area: 1716 sf



- Project Overview
- Existing Mechanical System
  - DOAS
  - Space Heating and Cooling
  - Plumbing
  - Energy Consumption
- Mechanical Depth: Solar Thermal System
  - Overview
  - Key Design Decisions
  - Energy Savings and Payback Period
- Construction Breadth
  - Constructability
  - Trade Coordination and Schedule
- Summary and Conclusion
- Q/A

# Mechanical Depth - Solar Thermal System

Key Design Decisions


Collector location:

Collector type:

- Better insulation reduces heat losses at low ambient temperatures
- serviceability

- Mechanical penthouse level
- Evacuated tube

- Dry connection increases flexibility and

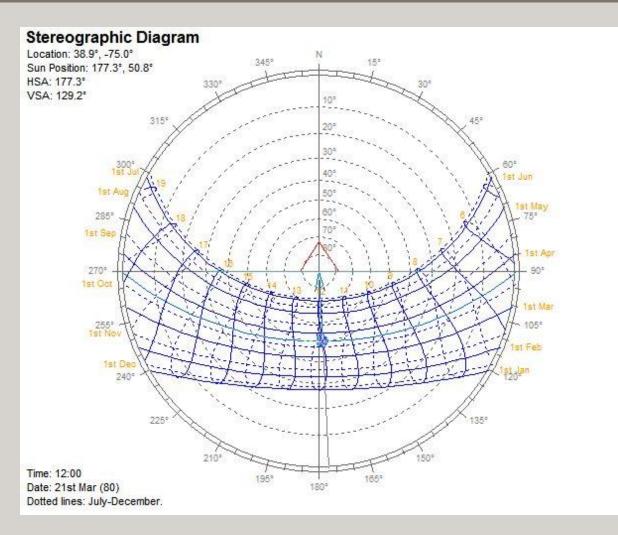


Viessman Vitosol 300-T model

- Project Overview
- Existing Mechanical System
  - DOAS
  - Space Heating and Cooling
  - Plumbing
  - Energy Consumption
- Mechanical Depth: Solar Thermal System
  - Overview
  - Key Design Decisions
  - Energy Savings and Payback Period
- Construction Breadth
  - Constructability
  - Trade Coordination and Schedule
- Summary and Conclusion

# Mechanical Depth - Solar Thermal System

Key Design Decisions


Collector location:

Collector type:

Increased winter exposure accounts for greater

- Mechanical penthouse level Evacuated tube
- **Collector orientation**:45° tilt angle facing south

heat losses and higher demand in winter



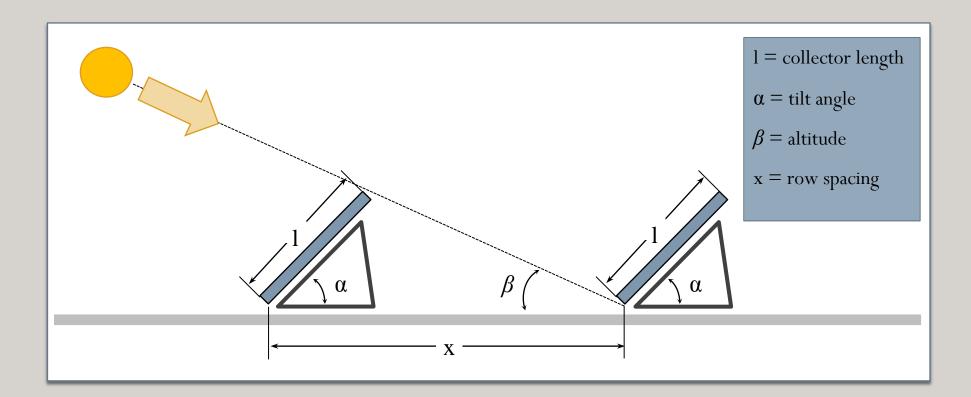
27.7° to 74.55°.

### At latitude of 38°54'N, solar altitude ranges from

- Project Overview
- Existing Mechanical System
  - DOAS
  - Space Heating and Cooling
  - Plumbing
  - Energy Consumption
- Mechanical Depth: Solar Thermal System
  - Overview
  - Key Design Decisions
  - Energy Savings and Payback Period
- Construction Breadth
  - Constructability
  - Trade Coordination and Schedule
- Summary and Conclusion

## Mechanical Depth - Solar Thermal System

### Key Design Decisions


Collector location:

Collector type:

**Collector spacing:** 13.7 ft

Sufficient collector spacing provides maximum solar exposure throughout the year

- Mechanical penthouse level Evacuated tube
- Collector orientation: 45° tilt angle facing south



Tilt angle ( $\alpha$ ) = 45°

At winter solstice: solar altitude ( $\beta$ ) = 27.7°

- Project Overview
- Existing Mechanical System
  - DOAS
  - Space Heating and Cooling
  - Plumbing
  - Energy Consumption
- Mechanical Depth: Solar Thermal System
  - Overview
  - Key Design Decisions
  - Energy Savings and Payback Period
- Construction Breadth
  - Constructability
  - Trade Coordination and Schedule
- Summary and Conclusion

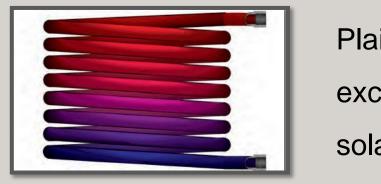
# Mechanical Depth - Solar Thermal System

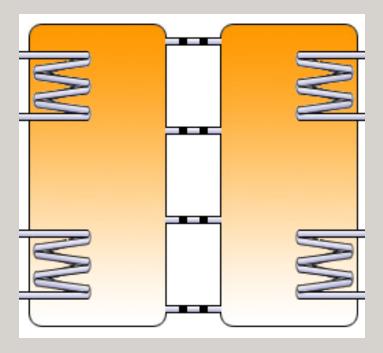
## **Key Design Decisions**

Collector location:

Collector type:

Collector spacing:


Thermal storage:


Mechanical penthouse level

Evacuated tube

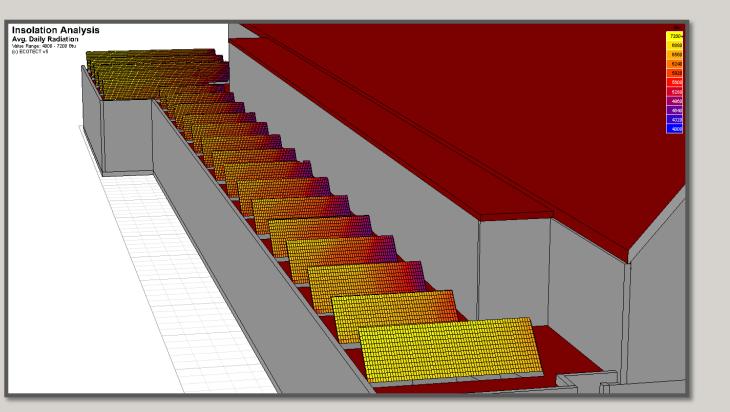
- Collector orientation: 45° tilt angle facing south
  - 13.7 ft
  - (2) 5,000 liter tanks (2,641 gal total)

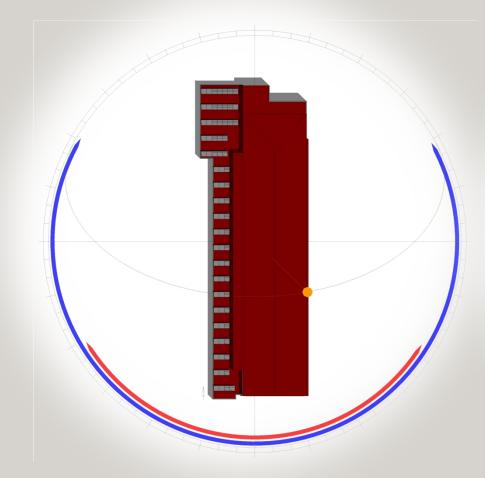
- Unpressurized storage
- Vertical orientation
- Parallel connection



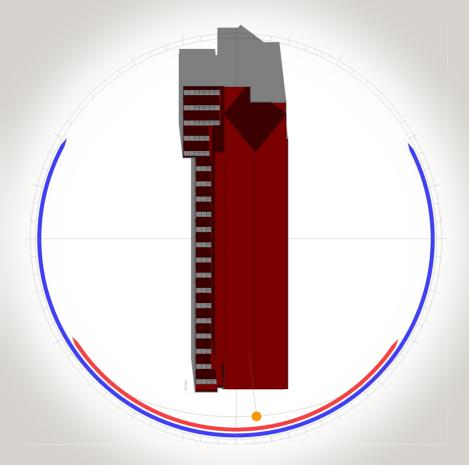


Plain tube internal heat exchangers required on the solar and load side


- Project Overview
- Existing Mechanical System
  - DOAS
  - Space Heating and Cooling
  - Plumbing
  - Energy Consumption
- Mechanical Depth: Solar Thermal System
  - Overview
  - Key Design Decisions
  - Energy Savings and Payback Period
- Construction Breadth
  - Constructability
  - Trade Coordination and Schedule
- Summary and Conclusion


## Mechanical Depth - Solar Thermal System

### Solar Availability


# Ecotect Analysis results:

Full direct exposure after 11:05-11:40AM





11:05 AM Summer Solstice Full Direct Solar

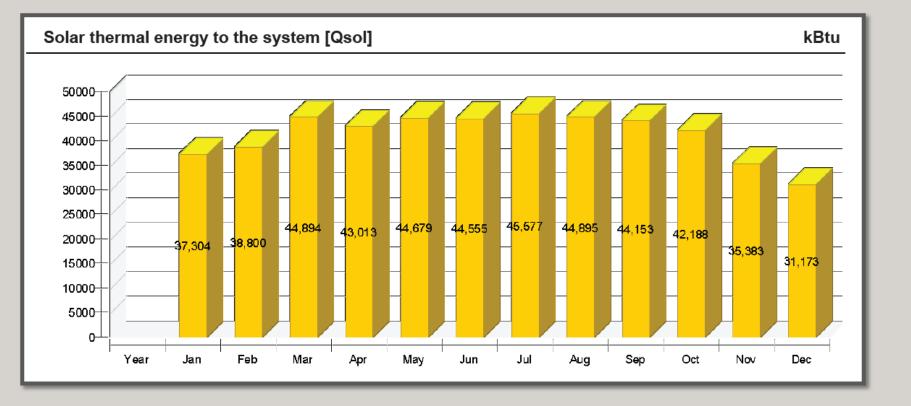


11:40 AM Winter Solstice Full Direct Solar

- Project Overview
- Existing Mechanical System
  - DOAS
  - Space Heating and Cooling
  - Plumbing
  - Energy Consumption
- Mechanical Depth: Solar Thermal System
  - Overview
  - Key Design Decisions
  - **Energy Savings and Payback Period**
- Construction Breadth
  - Constructability
  - Trade Coordination and Schedule
- Summary and Conclusion

## Energy Savings

Polysun simulation results:


Additional losses will include:

- Variations in energy load profiles

## Mechanical Depth - Solar Thermal System

Useful solar gain = 496.6MMBtu/yr or 4966 therms/yr

- Heat losses and inefficiencies of tanks and heat exchangers

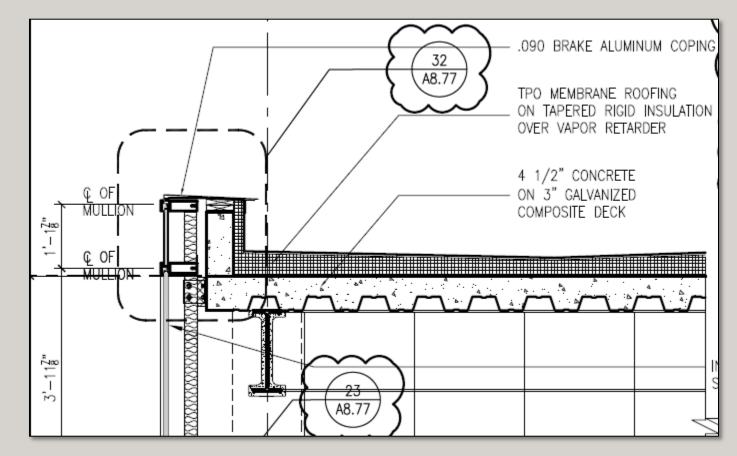


- Project Overview
- Existing Mechanical System
  - DOAS
  - Space Heating and Cooling
  - Plumbing
  - Energy Consumption
- Mechanical Depth: Solar Thermal System
  - Overview
  - Key Design Decisions
  - **Energy Savings and Payback Period**
- Construction Breadth
  - Constructability
  - Trade Coordination and Schedule
- Summary and Conclusion

## Mechanical Depth - Solar Thermal System

### Payback Period

- Life cycle cost analysis results:
- 10 year revenue (present value) = **\$534,103**
- Payback period = **3 years of operation**
- (assumed 100% useful solar energy gain into system)


| Ann energy offset              |               |      |           | 4966 therms    |              | Base discount rate: 1                   |          |      |              | 1.9%      |            |    |           |
|--------------------------------|---------------|------|-----------|----------------|--------------|-----------------------------------------|----------|------|--------------|-----------|------------|----|-----------|
| Base fuel rate Steam (nat gas) |               |      | is)       | \$14.95 /therm |              | (based on 7yr OMB estimate as of Apr 20 |          |      |              | Apr 2010) |            |    |           |
| nn fuel co                     | st savings (2 | 010) |           | \$74,258       |              |                                         |          |      |              |           |            |    |           |
| 100                            | Analysis      |      |           |                |              |                                         | se steam |      |              | PV r      | evenue per | P  | √ revenue |
| Date                           | year          | _    | Capital   | PV maint       | Nat gas esc. | :                                       | savings  | PV s | team savings |           | year       |    | total     |
| 2010                           |               | \$   | (210,000) |                |              |                                         |          |      |              | \$        | (210,000)  | \$ | (210,00   |
| 2011                           |               |      |           |                |              |                                         |          | į.   |              |           |            |    |           |
| 2012                           | 1             |      |           | \$ (1,000)     | 1.14         | \$                                      | 84,655   | \$   | 80,006.93    | \$        | 79,007     | \$ | (130,99   |
| 2013                           | 2             |      |           | \$ (1,000)     | 1.14         | \$                                      | 84,655   | \$   | 78,515.14    | \$        | 77,515     | \$ | (53,47    |
| 2014                           | 3             |      |           | \$ (1,000)     | 1.14         | \$                                      | 84,655   | \$   | 77,051.17    | \$        | 76,051     | \$ | 22,57     |
| 2015                           | 4             |      |           | \$ (1,000)     | 1.16         | \$                                      | 86,140   | \$   | 76,941.06    | \$        | 75,941     | \$ | 98,51     |
| 2016                           | 5             |      |           | \$ (1,000)     | 1.17         | \$                                      | 86,882   | \$   | 76,157.36    | \$        | 75,157     | \$ | 173,67    |
| 2017                           | 6             |      |           | \$ (1,000)     | 1.17         | \$                                      | 86,882   | \$   | 74,737.35    | \$        | 73,737     | \$ | 247,40    |
| 2018                           | 7             |      |           | \$ (1,000)     | 1.18         | \$                                      | 87,625   | \$   | 73,970.68    | \$        | 72,971     | \$ | 320,38    |
| 2019                           | 8             | Ъ    |           | \$ (1,000)     | 1.18         | \$                                      | 87,625   | \$   | 72,591.45    | \$        | 71,591     | \$ | 391,97    |
| 2020                           | 9             |      |           | \$ (1,000)     | 1.2          | \$                                      | 89,110   | \$   | 72,445.35    | \$        | 71,445     | \$ | 463,41    |
| 2021                           | 10            |      |           | \$ (1,000)     | 1.21         | \$                                      | 89,853   | \$   | 71,687.01    | \$        | 70,687     | \$ | 534,10    |

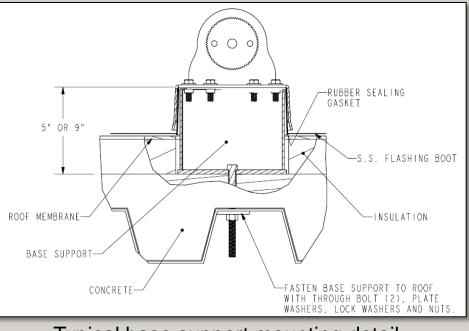
- Project Overview
- Existing Mechanical System
  - DOAS
  - Space Heating and Cooling
  - Plumbing
  - Energy Consumption
- Mechanical Depth: Solar Thermal System
  - Overview
  - Key Design Decisions
  - Energy Savings and Payback Period
- Construction Breadth
  - Constructability
  - Trade Coordination and Schedule
- Summary and Conclusion

**Construction Breadth** 

### Constructability Analysis: Existing Roof Integration

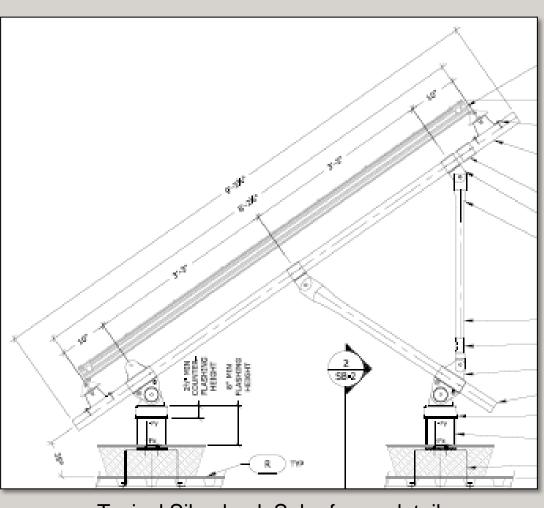
- A solar collector mounting system needs to be integrated into the existing flat roof.
- $7\frac{1}{2}$ " total depth concrete slab-on-deck
- Up to 8" rigid insulation
- Waterproof membrane




Penthouse level roof section

- Project Overview
- Existing Mechanical System
  - DOAS
  - Space Heating and Cooling
  - Plumbing
  - Energy Consumption
- Mechanical Depth: Solar Thermal System
  - Overview
  - Key Design Decisions
  - Energy Savings and Payback Period
- Construction Breadth
  - Constructability
  - Trade Coordination and Schedule
- Summary and Conclusion

# Construction Breadth


## Constructability Analysis: Existing Roof Integration

Silverback Solar frame and mounting system will be used to provide a secure mounting solution with minimal effects to existing roofing system.

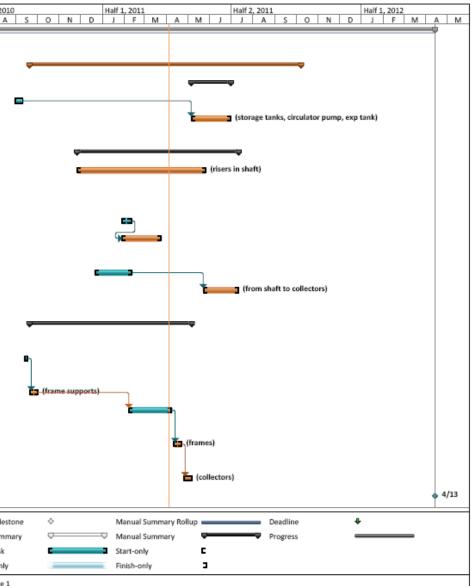


Typical base support mounting detail





Typical Silverback Solar frame detail


- Project Overview
- Existing Mechanical System
  - DOAS
  - Space Heating and Cooling
  - Plumbing
  - Energy Consumption
- Mechanical Depth: Solar Thermal System
  - Overview
  - Key Design Decisions
  - Energy Savings and Payback Period
- Construction Breadth
  - Constructability
  - Trade Coordination and Schedule
- Summary and Conclusion

# Construction Breadth

## Trade Coordination and Schedule Impacts

- Additional solar subcontractor will allow an efficient installation without any delays in construction
- A. Equipment in ground floor mechanical room
- B. Piping risers and distribution
- C. Collectors and mounting equipment

| ID    | Task Name                                  |                  | Duration     | Start        | Finish            | 2010<br>F M A M | Half 2, 20    |
|-------|--------------------------------------------|------------------|--------------|--------------|-------------------|-----------------|---------------|
| 1     | Building Construction                      |                  | 545 days     | Mon 3/15/10  | Fri 4/13/12       |                 |               |
| 2     | Start Construction                         |                  | 0 days       | Mon 3/15/10  | Mon 3/15/10       | 3/15            |               |
| 3     | Solar Thermal Installa                     | 275 days         | Mon 9/20/10  | Fri 10/7/11  |                   |                 |               |
| 4     | Distribution Equipm                        | ent              | 40 days      | Fri 5/6/11   | Thu 6/30/11       |                 |               |
| 5     | Foundation Slab-                           | 10 days          | Mon 8/30/10  | Fri 9/10/10  |                   |                 |               |
| 6     | Start-up Mechani<br>Equipment              | cal / Electrical | 40 days      | Fri 5/6/11   | Thu 6/30/11       |                 |               |
| 7     | Piping                                     | 162 days         | Fri 11/26/10 | Mon 7/11/11  |                   |                 |               |
| 8     | Core HVAC/Pluml<br>Protect. Rough-in       |                  | 130 days     | Fri 11/26/10 | Thu 5/26/11       |                 |               |
| 9     | Frame Partitions                           | 10 days          | Fri 1/28/11  | Thu 2/10/11  |                   |                 |               |
| 10    | Mechanical Brand<br>Distribution Level     | 40 days          | Fri 1/28/11  | Thu 3/24/11  |                   |                 |               |
| 11    | Building Envelope                          | 39 days          | Tue 12/21/10 | Fri 2/11/11  |                   |                 |               |
| 12    | Mechanical Brand<br>Distribution PH le     | 36 days          | Mon 5/23/11  | Mon 7/11/11  |                   |                 |               |
| 13    | Collectors and Mounting Equipment          |                  | 165 days     | Mon 9/20/10  | Fri 5/6/11        |                 |               |
| 14    | Concrete Slab-on-deck -<br>Penthouse Level |                  | 5 days       | Mon 9/13/10  | Fri 9/17/10       |                 |               |
| 15    | Install Frame Base Supports                |                  | 10 days      | Mon 9/20/10  | Fri 10/1/10       |                 |               |
| 16    | Main Roofing & Plaza Deck<br>Waterproofing |                  | 45 days      | Mon 2/7/11   | Fri 4/8/11        |                 |               |
| 17    | Install Collector Mounting<br>Equipment    |                  | 10 days      | Mon 4/11/11  | Fri 4/22/11       |                 |               |
| 18    | Install Solar Colle                        | 10 days          | Mon 4/25/11  | Fri 5/6/11   |                   |                 |               |
| 19    | Construction Complete                      | 0 days           | Fri 4/13/12  | Fri 4/13/12  |                   |                 |               |
|       |                                            | Task             |              |              | Project Summary   |                 | Inactive Mile |
|       | t: Project coordination sche               | Split            |              |              | External Tasks    |                 | Inactive Sum  |
| Date: | Tue 4/5/11                                 | Milestone        | *            |              | External Mileston | ie 🔶            | Manual Task   |
|       |                                            | Summary          |              |              | Inactive Task     |                 | Duration-on   |



- Project Overview
- Existing Mechanical System
  - DOAS
  - Space Heating and Cooling
  - Plumbing
  - Energy Consumption
- Mechanical Depth: Solar Thermal System
  - Overview
  - Key Design Decisions
  - Energy Savings and Payback Period
- Construction Breadth
  - Constructability
  - Trade Coordination and Schedule
- Summary and Conclusion
- Q/A

## Summary

Short payback period

- 3 years

Reduced carbon footprint

- sustainable image and additional LEED points

Minimal structural and construction impacts

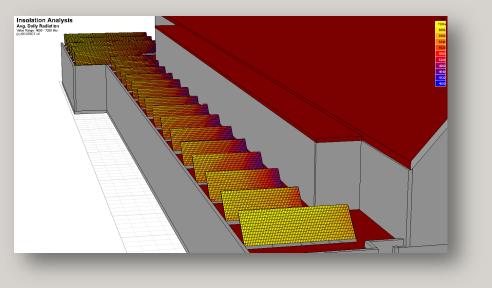
- no additional structural resizing (see final report)
- no construction delays with additional solar subcontractor

### Highly recommend considering solar thermal implementation for this building

...even after completed construction

- Project Overview
- Existing Mechanical System
  - DOAS
  - Space Heating and Cooling
  - Plumbing
  - Energy Consumption
- Mechanical Depth: Solar Thermal System
  - Overview
  - Key Design Decisions
  - Energy Savings and Payback Period
- Construction Breadth
  - Constructability
  - Trade Coordination and Schedule
- Summary and Conclusion

## Questions?




### Acknowledgments

Penn State University AE Department

Project Team Owner: Georgetown University CM: Whiting-Turner Architect: Payette Associates MEP Consultant: Vanderweil Engineers

Industry Specialists SOLARHOT Silverback Solar Penn State Center for Sustainability

