

Lynn Appel Construction Management

The Office Building Washington, D.C.

Penn State AE Senior Capstone Project

Lynn Appel| Construction Managemen

Presentation Overview

Presentation Outline:

I. Project Overview

- II. Integrated Project Deliver
- I. Critical Industry Iss
- III. PV Panels on the Green Roo
- IV. Coordination of the Chilled Water Plan
- I. Acoustics Breadth
- V. Conclusion
- VI. Acknowledgements
- VII. Q & A

The Office Building Washington, D.C.

ynn Appel| Construction Management

Lynn Appel| Construction Management

Presentation Outline:

- . Project Overview
- II. Integrated Project Delivery
- I. Critical Industry Issue
- III. PV Panels on the Green Roof
- IV. Coordination of the Chilled Water Plant
- I. Acoustics Breadth
- V. Conclusions
- VI. Acknowledgements
- VII. Q & A

Project Overview

- Location: 200 C Street SW, Washington, D.C. 20024
- <u>**Type of Building:**</u> Government Office Space
- <u>Size:</u> 550,000 ft²
- Number of Stories: Below Grade 2, Above Grade 6 + PH
- **Dates of Construction:** March 2010 August 2012
- **Project Delivery Method:** Design Bid Build

'he Office Building Washington, D.C.

Lynn Appell Construction Management

Presentation Outline:

- II. Integrated Project Delivery
- I. Critical Industry Issue
- III. PV Panels on the Green Roof
- IV. Coordination of the Chilled Water Plant
- I. Acoustics Breadth
- V. Conclusions
- VI. Acknowledgements
- VII. Q & A

Building Systems

• Structure

- Existing 8" concrete slabs will remain with the addition of
- New Steel Moment frame beams and columns around the perimeter
 • Building Enclosure
- - New glass entry pavilion, new curtain wall, bay windows

The Office Building

• Sustainability Features

- LEED Gold Rating
- Green Roof
- Maximum use of natural light
- Storm water retention for landscape irrigation
- Energy saving LEDsSmart building controls technology
- Charging stations in the lower parking level for electric

Presentation Outline:

- I. Project Overview
- II. Integrated Project Delivery
 - II. Drawbacks of Design-Bid-Build
 - III. Overview of IPD

 - IV. IPD for the Office Building
 - V. Conclusions and Recommendations
- III. PV Panels on the Green Roof
- IV. Coordination of the Chilled Water Plant
- V. Conclusions
- VI. Acknowledgements
- VII. Q & A

Integrated Project Delivery

• Background

- industry \$15.8 billion annuallyThe construction industry is the only non-farm industry to

The Office Building

Research Goals

- Investigate the benefits and possible outcomes of using an IPD method compared to a traditional DBB
- Show how an IPD method would benefit the Office

Presentation Outline:

- I. Project Overview
- II. Integrated Project Delivery
 - I. Problem Identification/Research Goals

 - III. Overview of IPD
 - IV. IPD for the Office Building
 - V. Conclusions and Recommendations
- III. PV Panels on the Green Roof
- IV. Coordination of the Chilled Water Plant
- V. Conclusions
- VI. Acknowledgements
- VII. Q & A

Drawbacks of Design-Bid-Build

- Does not take advantage of collaboration between the owner, architect and construction manager
 Construction management personnel are not brought onto the
- project until the bid process
- Everyone is making decisions based on what is best for them and

Presentation Outline:

- I. Project Overview
- II. Integrated Project Delivery
 - I. Problem Identification/Research Goals
 - II. Drawbacks of Design-Bid-Build

 - IV. IPD for the Office Building
 - V. Conclusions and Recommendations
- III. PV Panels on the Green Roof
- IV. Coordination of the Chilled Water Plant
- V. Conclusions
- VI. Acknowledgements
- VII. Q & A

IPD - Contracting

- the required collaboration Owner, Architect and Contractor are under one contract

Presentation Outline:

- I. Project Overview
- II. Integrated Project Delivery
 - I. Problem Identification/Research Goals
 - II. Drawbacks of Design-Bid-Build
 - IV. IPD for the Office Building
 - V. Conclusions and Recommendations
- III. PV Panels on the Green Roof
- IV. Coordination of the Chilled Water Plant
- V. Conclusions
- VI. Acknowledgements
- VII. Q & A

IPD - Communication

- Share and apply common goals
 Co-location of the project team Edith Green-Wendell Wyatt

 - Early bid packages

The Office Building

Edith Green-Wendell Wyatt Federal Building modernization - iRoom

Presentation Outline:

- I. Project Overview
- II. Integrated Project Delivery
 - I. Problem Identification/Research Goals
 - II. Drawbacks of Design-Bid-Build

 - IV. IPD for the Office Building V. Conclusions and Recommendations
- III. PV Panels on the Green Roof
- IV. Coordination of the Chilled Water Plant
- V. Conclusions
- VI. Acknowledgements
- VII. Q & A

IPD - Schedule

- of design Shorter amount of time to establish the goals of the project Subcontractors provide valuable information

The Office Building Washington, D.C.

Lynn Appell Construction Management

Presentation Outline:

- I. Project Overview
- II. Integrated Project Delivery
 - I. Problem Identification/Research Goals
 - II. Drawbacks of Design-Bid-Build
 - III. Overview of IPD
 - IV. IPD for the Office Building
 - V. Conclusions and Recommendations
- III. PV Panels on the Green Roof
- IV. Coordination of the Chilled Water Plant
- V. Conclusions
- VI. Acknowledgements
- VII. Q & A

IPD for the Office Building

- A more collaborative project delivery method would be very beneficial for the Office Building
 The Office Building is a federal building so a "true" IPD may not
- The Office Building is a federal building so a "true" IPD may not be possible
- Project managers at GSA do not have the authority to enter into multi-party agreements
- The Association of General Contractors (AGC) considers this to be a Level 2 IPD or IPD-ish method

The Office Building Washington, D.C.

Lynn Appel| Construction Management

Level 2 IPD or IPD-ish Method:

- Do not need to use a multi-party contract
- Co-location of team members
- Design team involvement in performance and risk sharing
- Construction team incentivized by productivity

Owner involvement is key!

Lynn Appel| Construction Management

Presentation Outline:

- I. Project Overview
- II. Integrated Project Delivery
 - I. Problem Identification/Research Goals
 - II. Drawbacks of Design-Bid-Build
 - III. Overview of IPD
 - IV. IPD for the Office Building

V. Conclusions and Recommendations

- III. PV Panels on the Green Roof
- IV. Coordination of the Chilled Water Plant
- V. Conclusions
- VI. Acknowledgements
- VII. Q & A

IPD - Conclusions

Conclusions

-IPD is an innovative solution to solving the problems that are associated with a DBB delivery method -Federal or public projects can still pursue a more collaborative delivery approach without entering into multi-party contracts -Owner involvement is crucial!

The Office Building Washington, D.C.

ynn Appel| Construction Management

Recommendations

- If the Office Building had been delivered in a more collaborative fashion, it is believed that the owner would end up with a higher quality building

Lynn Appel| Construction Management

Presentation Outline:

- I. Project Overview
- II. Integrated Project Delivery
- III. PV Panels on the Green Roof
 - . Problem Identification/Research Goa
 - II. PV Panels and Green Roofs
 - III. System Design
 - IV. Feasibility Analysis
 - V. Recommendations/Conclusion
- IV. Coordination of the Chilled Water Plant
- V. Conclusions
- VI. Acknowledgements
- VII. Q & A

Photovoltaic Array System

Problem Identification:

- Project is pursuing a LEED Gold certification -As a public funded project, the Office Building should be doing everything possible to achieve this The Office Building Washington, D.C.

Lynn Appel| Construction Management

Research Goals:

-Determine the feasibility of implementing photovoltaic panels onto the green roof

Lynn Appel| Construction Management

Presentation Outline:

- I. Project Overview
- II. Integrated Project Delivery
- III. PV Panels on the Green Roof
 - I. Problem Identification/Research Goal

I. PV Panels and Green Roo

- III. System Design
- IV. Feasibility Analysis
- V. Recommendations/Conclusion
- IV. Coordination of the Chilled Water Plant
- V. Conclusions
- VI. Acknowledgements
- VII. Q & A

PV Panels and Green Roofs

- PV Arrays and Green Roof technologies complement each other
- Green roofs can improve photovoltaic efficiency by reducing the ambient temperature
- Shading provided by the solar panels benefit green roof vegetation, which often suffers during hot, dry months
- Solar panels also protect the green roof from damage from gusting winds

The Office Building Washington, D.C.

ynn Appel| Construction Management

http://solarseeds.blogspot.com/2010/05/solar-pv-power-on-green-roofs.html

Lynn Appel| Construction Management

Presentation Outline:

- I. Project Overview
- II. Integrated Project Delivery
- III. PV Panels on the Green Roof
 - I. Problem Identification/Research Goal
 - II. PV Panels and Green Roofs
 - II. System Design
 - IV. Feasibility Analysis
 - V. Recommendations/Conclusion
- IV. Coordination of the Chilled Water Plant
- V. Conclusions
- VI. Acknowledgements
- VII. Q & A

System Design

Diagram of Panel Spacing

The Office Building Washington, D.C.

Lynn Appel| Construction Management

Orientation:

-Large, flat roof with a central atrium -The west side of the is the most logical location for the photovoltaic panels

Solar Shading:

-No shading of panels throughout the day -Panels do not cast shadows on each other

Lynn Appel| Construction Management

Presentation Outline:

I. Project Overview

- II. Integrated Project Delivery
- III. PV Panels on the Green Roof
 - I. Problem Identification/Research Goal
 - II. PV Panels and Green Roofs
 - II. System Design
 - IV. Feasibility Analysis
 - V. Recommendations/Conclusion
- IV. Coordination of the Chilled Water Plant
- V. Conclusions
- VI. Acknowledgements
- VII. Q & A

PV Array System

Actual System Size:

• 40.0 kW

- 99 PV par
- Fixed at 39.2° tilt

System Production:

- 49,282 kWh per year
- 4,100 kWh average per month
 - 140 kWh average per day

The Office Building Washington, D.C.

ynn Appel| Construction Management

PV Watts Energy Production Results					
Month	Solar Radiation (kWh/m ² /day)	AC Energy (kWh)	Energy Value (\$)		
1	3.59	3544	283.52		
2	4.28	3719	297.52		
3	4.80	4492	359.36		
4	5.34	4644	371.52		
5	5.32	4534	362.72		
6	5.66	4676	374.08		
7	5.46	4556	364.48		
8	5.38	4569	365.52		
9	5.07	4258	340.64		
10	4.72	4227	338.16		
11	3.56	3206	256.48		
12	3.03	2854	228.32		
Year	4.68	49282	3942.56		
PV Watts Factor = Annual AC Energy/System DC Rating = 1232					

PV Watts Calculator – www.pvwatts.org

Presentation Outline:

- I. Project Overview
- II. Integrated Project Delivery
- III. PV Panels on the Green Roof
 - I. Problem Identification/Research Goal
 - II. PV Panels and Green Roofs

III. System Design

- V. Recommendations/Conclusion
- IV. Coordination of the Chilled Water Plant
- V. Conclusions
- VI. Acknowledgements
- VII. Q & A

Feasibility Analysis

System Cost:

completed a similar project – quoted \$5.75/Watt

Rebates/Incentives:

•Business Energy Investment Tax Credit (BEIT) – 30% gross installation cost •D.C. Renewable Incentive Program (DC-REIP)

- \$2.00/W DC for the following 7 kW installed

Lynn Appel Construction Management				

The Office Building Washington, D.C.

initial Investment						
ibera	Quantity	Cont/Unit		Total Cost		
PV Parents	40,000 W	\$5.75/W	5	230,000,00		
Investors	8	\$3,000.00	5	18,000.00		
Incentive Savings BEIT: \$90,000		000,000		(\$69.000)		
recentive savings	0C-REP: \$33,000			(\$33.000)		
Total Cost				146,000.00		

Lynn Appel| Construction Management

Presentation Outline:

- I. Project Overview
- II. Integrated Project Delivery
- III. PV Panels on the Green Roof
 - I. Problem Identification/Research Goal
 - II. PV Panels and Green Roofs
 - III. System Design
 - IV. Feasibility Analysis
 - V. Recommendations/Conclusion
- IV. Coordination of the Chilled Water Plant
- V. Conclusions
- VI. Acknowledgements
- VII. Q & A

Feasibility Analysis

Yearly Savings:

• Using the data provided by the PV Watts Calculator, it was determined that the 40 kW system would essentially save \$3,942.56 on electricity annually

Payback Period:

 Considering the initial investment of \$146,000 and the fact that the array produces approximately \$4,000 of electricity per year in savings:

Payback Period = (\$146,000)/(\$4,000/year) = **36 years**

The Office Building Washington, D.C.

ynn Appel| Construction Management

PV Watts Energy Production Results						
Month	AC Energy (kWh)	Energy Value (\$)				
1	3544	283.52				
2	3719	297.52				
3	4492	359.36				
4	4644	371.52				
5	4534	362.72				
6	4676	374.08				
7	4556	364.48				
8	4569	365.52				
9	4258	340.64				
10	4227	338.16				
11	3206	256.48				
12	2854	226.32				
Visor	492192	3942.56				

PV Watts Calculator - www.pvwatts.org

Lynn Appel| Construction Management

Presentation Outline:

I. Project Overview

- II. Integrated Project Delivery
- III. PV Panels on the Green Roof
 - I. Problem Identification/Research Goal
 - II. PV Panels and Green Roofs
 - III. System Design
 - IV. Feasibility Analysis

V. Recommendations/Conclusion

- IV. Coordination of the Chilled Water Plant
- V. Conclusions
- VI. Acknowledgements
- VII. Q & A

PV Array System

Conclusions:

- •A 40 kW solar array would occupy approximately 3600 sf of the
- roof and provide 49,282 kWh of energy annually
- •Initial Investment = \$146,000
- •Approximately \$4,000 worth of electricity produced annually •Payback Period = 36 years

The Office Building Washington, D.C.

Lynn Appel| Construction Management

Recommendations:

- It is recommended that the PV array system not be installed at the Office Building
- The benefits do not outweigh the initial investment
- The system does not produce enough electricity to make the installation worthwhile

Ivmn Annall Construction Management

Presentation Outline:

- I. Project Overview
- II. Integrated Project Delivery
- III. PV Panels on the Green Roof
- IV. Coordination of the Chilled Water Plant

I. Problem Identification/Research Goa

II. Background Information

III. How BIM Could have Helped

IV. Acoustic Concerns

- V. Recommendations/Conclusion
- V. Conclusions
- VI. Acknowledgements

VII. Q & A

Coordination of the Chilled Water Plant

Problem Identification

- The interior of the Office Building was completely demolished with the exception of an existing Chilled Water plant located in the sub-basement
- Chilled Water plant must remain in operation 24/2
- Chilled Water plant supplies chilled water to an adjacent office building

The Office Building Washington, D.C.

Lynn Appel| Construction Management

Research Goals

•Determine how BIM could have been used more effectively to help with the coordination of the Chilled Water Plant

Lynn Appel| Construction Management

Presentation Outline:

- I. Project Overview
- II. Integrated Project Delivery
- III. PV Panels on the Green Roof
- IV. Coordination of the Chilled Water Plant
- I. Problem Identification/Research Goals

II. Background Information

- III. How BIM Could have Helped
- IV. Acoustic Concerns
- V. Recommendations/Conclusion
- V. Conclusions
- VI. Acknowledgements
- VII. Q & A

Coordination of the Chilled Water Plant

Background Information:

- There are 4 chillers located in the sub-basement
 - Two out of the four chillers were only replaced five years ago so they were to remain in the sub-basement and not be demolished
 - They were intended to keep running throughout the construction process so the adjacent building would continue to receive chilled water

The Office Building Washington, D.C.

ynn Appel| Construction Management

- There are 6 cooling towers located on the roof
 - At first, it was determined that only two of the six cooling towers were needed for the two chillers to continue to run properly
 - Before demolition, it was discovered that all six cooling towers were running at full power to keep the two chillers running
 - The cooling towers were in such bad shape that it was necessary for all six to be running
- The general contractor had to issue a change order to the owner

Lynn Appel| Construction Management

Presentation Outline:

- I. Project Overview
- II. Integrated Project Delivery
- III. PV Panels on the Green Roof
- IV. Coordination of the Chilled Water Plant
- I. Problem Identification/Research Goals
- II. Background Information

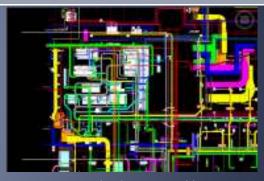
III. How BIM Could have Helped

IV. Acoustic Concerns

- V. Recommendations/Conclusion
- V. Conclusions
- VI. Acknowledgements

VII. Q & A

Coordination of the Chilled Water Plant


BIM could have been used more efficiently to:

Perform a constructability review of the demolition and replacement o the chillers and cooling towers.

- There are 2 options that need to be thought through
 - 1. Keeping the two existing chillers running
 - Performing a complete demolition of the chillers and cooling towers

The Office Building Washington, D.C.

Lynn Appel| Construction Management

Screenshot of current BIM model

Lynn Appel| Construction Management

Presentation Outline:

- I. Project Overview
- II. Integrated Project Delivery
- III. PV Panels on the Green Roof
- IV. Coordination of the Chilled Water Plant
- I. Problem Identification/Research Goals
- II. Background Information
- III. How BIM Could have Helped
- IV. Acoustic Concern
- V. Recommendations/Conclusion
- V. Conclusions
- VI. Acknowledgements

VII. Q & A

Acoustic Concerns

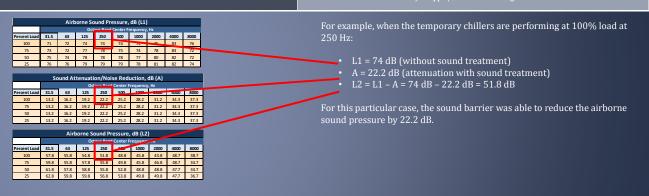
<u>GOAL</u>: Reduce the airborne sound pressure around the temporary chillers

- The temporary chillers were placed on the north side of the building, right across the street from another building
- Currently the temporary chillers have no sound treatment
- A sound harrier must be constructed around the temporary chi
- and then the attenuation must be calculated

The Office Building Washington, D.C.

ynn Appel| Construction Management

$\frac{Attenuation Equation:}{A = 10*log(H^2/R) + 10*log f - 17}$


Lynn Appel| Construction Management

Presentation Outline:

- I. Project Overview
- II. Integrated Project Delivery
- III. PV Panels on the Green Roof
- IV. Coordination of the Chilled Water Plant
- I. Problem Identification/Research Goals
- II. Background Information
- III. How BIM Could have Helped
- IV. Acoustic Concern
- V. Recommendations/Conclusion
- V. Conclusions
- VI. Acknowledgements

VII. Q & A

Acoustic Concerns

The Office Building

Lynn Appel| Construction Management

Presentation Outline:

I. Project Overview

- II. Integrated Project Delivery
- III. PV Panels on the Green Roof
- IV. Coordination of the Chilled Water Plant

V. Conclusions

- VI. Acknowledgements
- VII. Q & A

Conclusions

Analysis #1: Integrated Project Delivery

If the Office Building had been delivered in a more collaborative fashion, it is believed that the owner would end up with a higher quality building

Analysis #2: PV Panels on the Green Roof

- It is recommended that the PV array system not be installed at the Office Building
- The system does not produce enough electricity to make the installation worthwhile

The Office Building Washington, D.C.

Lynn Appel| Construction Management

Analysis #3: Coordination of the Chilled Water Plant

•BIM could have helped the project team weigh their options from the beginning so a change order could have been avoided •Sound treatment of the temporary chillers would provide a more comfortable working environment

Lynn Appel| Construction Management

Presentation Outline:

I. Project Overview

- II. Integrated Project Delivery
- III. PV Panels on the Green Roof
- IV. Coordination of the Chilled Water Plant
- V. Conclusions
- VI. Acknowled
- VII. Q & A

Acknowledgments

<u>Academic Acknowledgements:</u> Dr. David Riley – CM Advisor Penn State AE Faculty

Special Thanks: Sarah Hartsfield at Turner Construction Tom Sawyer at Turner Construction Tony Lopacki at GSA My Family and Friends

The Office Building Washington, D.C.

nn Appel| Construction Management

Industry Acknowledgements:

HEERY

GS۸

Lynn Appel| Construction Management

Presentation Outline:

- I. Project Overview
- II. Integrated Project Delivery
- III. PV Panels on the Green Roof
- IV. Coordination of the Chilled Water Plant
- V. Lessons Learned
- VI. Acknowledgements
- **VII. Q &**

Questions?

The Office Building Washington, D.C.

Lynn Appel| Construction Management