

SteelStacks

Michael Dean Mechanical Option Thesis Advisor- Dr. Treado

Introduction

I. Introduction

I. Building Background
II. Architecture/Layout
II. Existing Conditions
III. Proposed New Design
IV. Breadth
V. Recommendations
VI. Questions

2011

Michael Dean Mechanical Option Dr. Treado

- I. Introduction
- II. Existing Conditions
- Owner-Alts Preposed New Design
- Location Bendenh, Pa
- Site-Former Betterhame Scheeli Plass with views
- of Blast Runagestions
- Use-Year round concerts and festivals
- Cost-\$26 million
- Size- 67,000 square feet
- Construction Dates- January 2010- April

Introduction

Introduction

I. Building Background II. Architecture/Layout II. Existing Conditions III. Proposed New Design IV. Breadth V. Recommendations VI. Questions

2011

Michael Dean Mechanical Option Dr. Treado

Owner-ArtsQuest

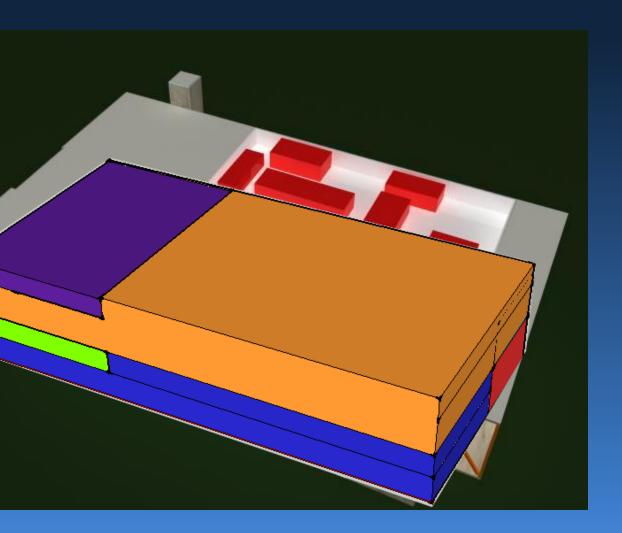
- Location-Bethlehem, Pa
- Site-Former Bethlehem Steel Plant with views
- of Blast Furnace
- Use-Year round concerts and festivals
- Cost-\$26 million
- Size- 67,000 square feet
- Construction Dates- January 2010- April

Steelstacks Performing Arts Center Bethlehem, Pa

Building Background

- Introduction
- I. Building Background II. Architecture/Layout II. Existing Conditions III. Proposed New Design IV. Breadth V. Recommendations
- VI. Questions

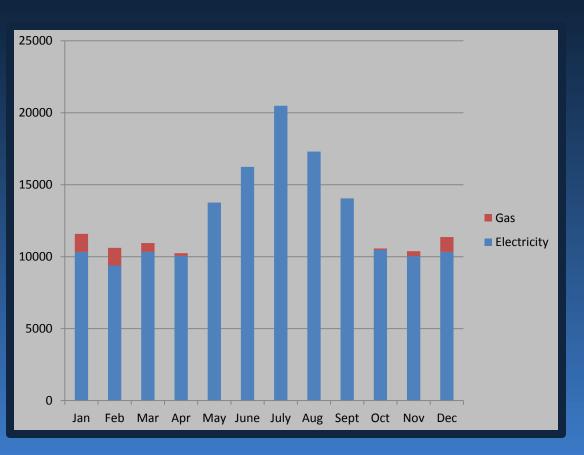
Open floor plan Exposed Elements Large Viewing Windows


Architecture/Layout

Steelstacks Performing Arts Center Bethlehem, Pa

Structural/Electrical/Mechanical

- Introduction
- II. Existing Conditions
 - I. AHU
- II. Energy Consumption
- III. Proposed New Design
- IV. Breadth
- V. Recommendations
- VI. Questions


Six Roof-top units 2-53 tons One indoor AHU

Serves Blast Furnace Room

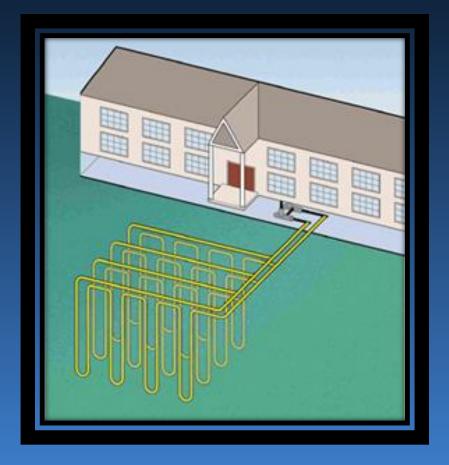
- I. Introduction
- II. Existing Conditions
 - I. AHU
- II. Energy Consumption III. Proposed New Design
- IV. Breadth
- V. Recommendations
- VI. Questions

Energ
\$154,988
\$2.31/sq. ft.

Steelstacks Performing Arts Center Bethlehem, Pa

Energy Consumption

- I. Introduction
- II. Existing Conditions
- III. Proposed New Design
 - I. GSHP
 - II. Thermal Storage
 - III. Solar
- IV. Breadth
- V. Recommendations
- VI. Questions

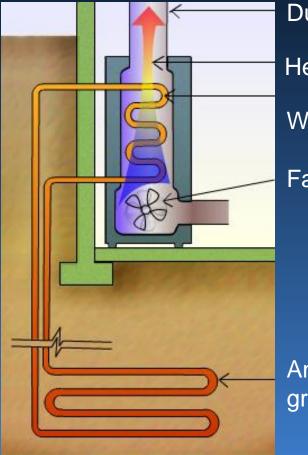

Goals

Minimize Energy Cost
Make building more efficient
Ease of Operability

Proposed New Design

- Introduction
- II. Existing Conditions
- III. Proposed New Design
 - . GSHP
 - II. Thermal Storage
 - III. Solar
- IV. Breadth
- V. Recommendations
- VI. Questions

Advantages Thermal Comfort


- Low maintenance
- Quiet system

Disadvantages • High first cost

- Introduction
- II. Existing Conditions
- III. Proposed New Design
 - . GSHP
 - II. Thermal Storage
 - III. Solar
- IV. Breadth
- V. Recommendations
- VI. Questions

Ductwork

Heat Exchanger

Warm liquid from ground

Fan

Antifreeze solution in ground loop

How GSHP works

- Use constant ground temperature as a • summer
- the heat pump

Steelstacks Performing Arts Center Bethlehem, Pa

heat source in winter and heat sink in

Refrigerant changes temperature through the ground and is used as the heat coil in

- Introduction
- II. Existing Conditions
- III. Proposed New Design
 - . GSHP
 - II. Thermal Storage
 - III. Solar
- IV. Breadth
- V. Recommendations
- VI. Questions

Site Considerations

- 35,325 sq. ft. available for well field
- No plans for possible new buildings
- cost

Steelstacks Performing Arts Center Bethlehem, Pa

• Field located close which reduces piping

- Introduction
- II. Existing Conditions
- III. Proposed New Design
 - . GSHP
 - II. Thermal Storage
 - III. Solar
- IV. Breadth
- V. Recommendations VI. Questions

Loads

Boreholes

Michael Dean Mechanical Option Dr. Treado

Modeling

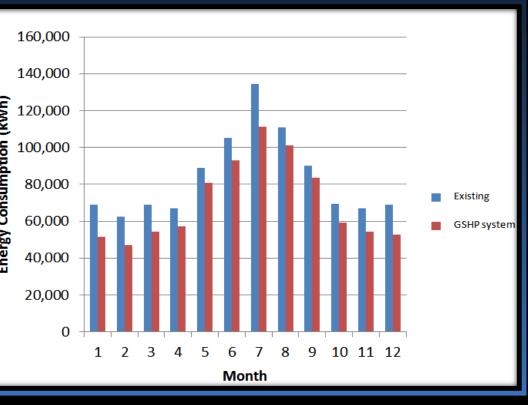
Initial Information Ground conductivity - 1.00 Btu/(hr.*ft.*F) Undisturbed Ground Temperature - 53 F Borehole Spacing- 15 ft. Borehole Diameter- 6 in Borehole Thermal Resistance-0.3339 F/(Btu/(hr.*ft.))

- Introduction
- II. Existing Conditions
- III. Proposed New Design
 - . GSHP
 - II. Thermal Storage
 - III. Solar
- IV. Breadth
- V. Recommendations
- VI. Questions

Sizing

-Loops • 300 ft. wells • 85 wells Heat Pumps • Same ductwork was used

> Steelstacks Performing Arts Center Bethlehem, Pa



Sized to designed specification

- Introduction
- II. Existing Conditions
- III. Proposed New Design
 - . GSHP
 - II. Thermal Storage
 - III. Solar
- IV. Breadth
- V. Recommendations
- VI. Questions

Yearly Consumption

Cost Comparison

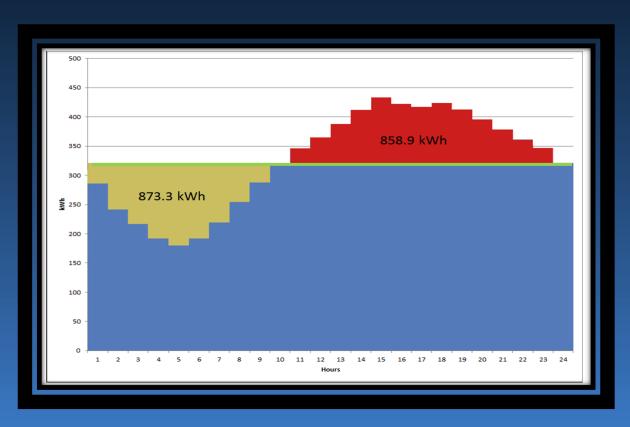
Nama		e Back	Estimated Cost*		
Name	(ton)		Existing		
GSHP-1	Increase percentage	Payback period	\$22,200		
GSHP-2	percentage	peniou	\$10,600		
GSHP-3	0	10.6	\$10,600		
GSHP-4	5	9	\$39,600		
GSHP-5	10	7.5	\$39,600		
GSHP-6	15	6.6	\$2,025		
GSHP-7	20	6.2	\$22,200		
Total	25	5.7	\$146,825		

Steelstacks Performing Arts Center Bethlehem, Pa

\$23,495

GSHP

- Introduction
- II. Existing Conditions
- III. Proposed New Design
 - I. GSHP
 - II. Thermal Storage
 - III. Solar
- IV. Breadth
- V. Recommendations
- VI. Questions


Advantages Constant Loads • Higher efficiencies

Disadvantages • First cost • Space

Thermal Storage

- Introduction
- II. Existing Conditions
- III. Proposed New Design
 - . GSHP
 - II. Thermal Storage
 - III. Solar
- IV. Breadth
- V. Recommendations
- VI. Questions

Ebistei Saverlyse Storage • Baaladerate descriving safe as based on • heepsindally establishing establishing

- electric utility
- the terristized smallelaily basis

\$7,627 per year

Steelstacks Performing Arts Center Bethlehem, Pa

Thermal Storage

• Develoakentoat of to Pataky stoift chaters

I. Introduction
II. Existing Conditions
III. Proposed New Design
I. GSHP
II. Thermal Storage
III. Solar
IV. Breadth
V. Recommendations
VI. Questions

Payback Period 248 ton-hours of cooling capacity 10,000 gallon tank Chillers remained, & were left \bullet oversized to allow for redundancy

Initial Investment: \$32,125 **Payback Period:** 4.2 years

Michael Dean Mechanical Option Dr. Treado

Thermal Storage

- Introduction
- II. Existing Conditions
- III. Proposed New Design
 - I. GSHP
 - II. Thermal Storage
 - III. Solar
- IV. Breadth
- V. Recommendations
- VI. Questions

Advantages Lowers Energy Cost

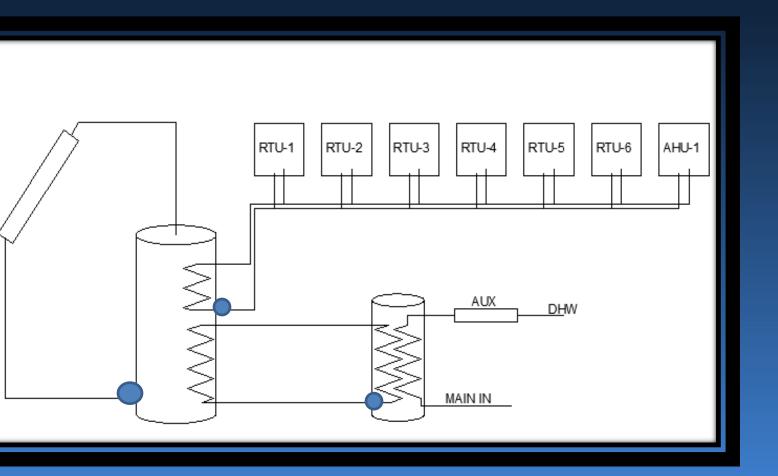
Disadvantages

- High first cost
- Architecture effects

- Introduction
- II. Existing Conditions
- III. Proposed New Design
 - I. GSHP
 - II. Thermal Storage
 - III. Solar
- IV. Breadth
- V. Recommendations
- VI. Questions

Site Considerations

- Site 1- 15,690 sq. ft.


Steelstacks Performing Arts Center Bethlehem, Pa

• Site 2- Unlimited (~150 ft. from building)

- Introduction
- II. Existing Conditions
- III. Proposed New Design
 - . GSHP
 - II. Thermal Storage
 - III. Solar
- IV. Breadth
- V. Recommendations
- VI. Questions

Calculation

 \dot{q}_{H} - hour load of the largest heating use (from TRACE software) T_{DH} -heating design set point T_{0A} -outside air temperature at when heating design occurs.

Steelstacks Performing Arts Center Bethlehem, Pa

 $UA = \frac{\dot{q}_H}{T_{DH} - T_{OA}}$

TRNSYS

I. Introduction
II. Existing Conditions
III. Proposed New Design
I. GSHP
II. Thermal Storage
III. Solar
IV. Breadth
V. Recommendations
VI. Questions

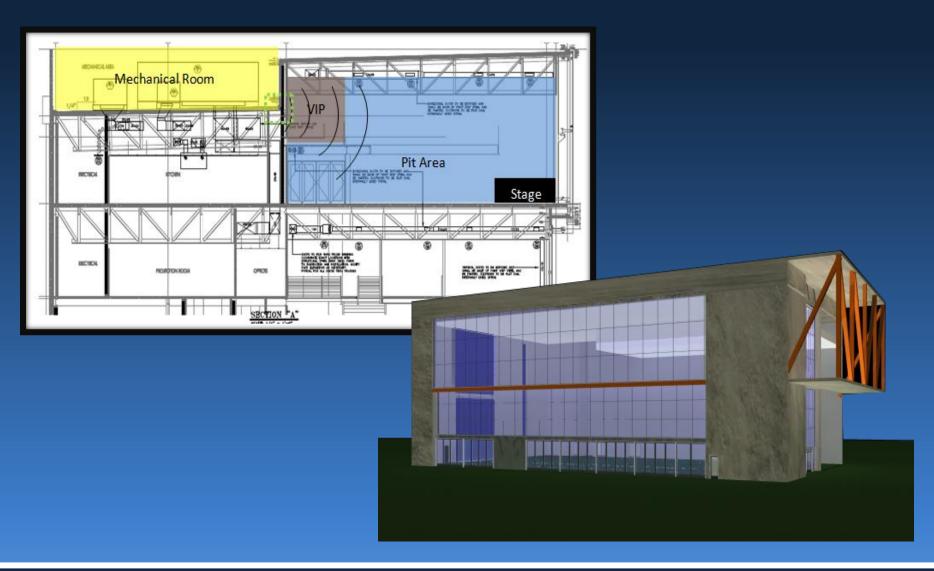
Patyosick

Savings

• Full load could not fit on roof(538 panels) • 75% load covered entire room(404 panels) Not effective due to low DHW load Most cost effective system was very small (50 panels)

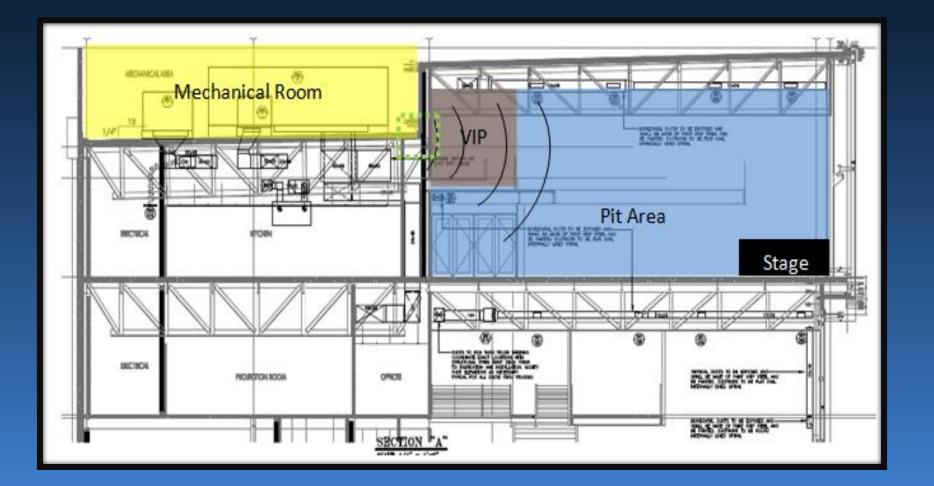
 Could not effectively cover space heating load

		30	00							
	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	Run 9	Run 10
Collector Area	1600	1200	800	600	400	200	150	100	60	20
Storage Unit Size	75	75	75	75	75	75	75	75	75	75
Collector Slope	60	60	60	60	60	60	60	60	60	60
kJ	1.84E+06	4714479	1.90E+07	3.31E+07	5.45E+07	8.97E+07	1.03E+08	1.18E+08	1.33E+08	1.53E+08
kWh	5.10E+02	1309.5775	5.28E+03	9.20E+03	1.52E+04	2.49E+04	2.85E+04	3.28E+04	3.71E+04	4.24E+04
therm	1.74E+01	44.684633	1.80E+02	3.14E+02	5.17E+02	8.51E+02	9.72E+02	1.12E+03	1.27E+03	1.45E+03
Cost Natural Gas \$	1.74E+02	446.84633	9.02E+02	1.57E+03	2.59E+03	4.25E+03	4.86E+03	5.60E+03	6.33E+03	7.23E+03
Cost Electricity \$	571.54253	1466.7268	2959.2314	5150.5174	8485.2805	13960.411	15950.816	18378.61	20761.5741	2.37E+04
Collectors	538	404	259	202	135	67	50	34	20	7
Payback	177	139	99	84	69	55	53	54	67	251
Natural Gas Rates	1.25	\$/therm								
Electricity Rates	0.14	<mark>\$/</mark> kWh	-	-			-			
Number of solar collectors (32 sq ft)										



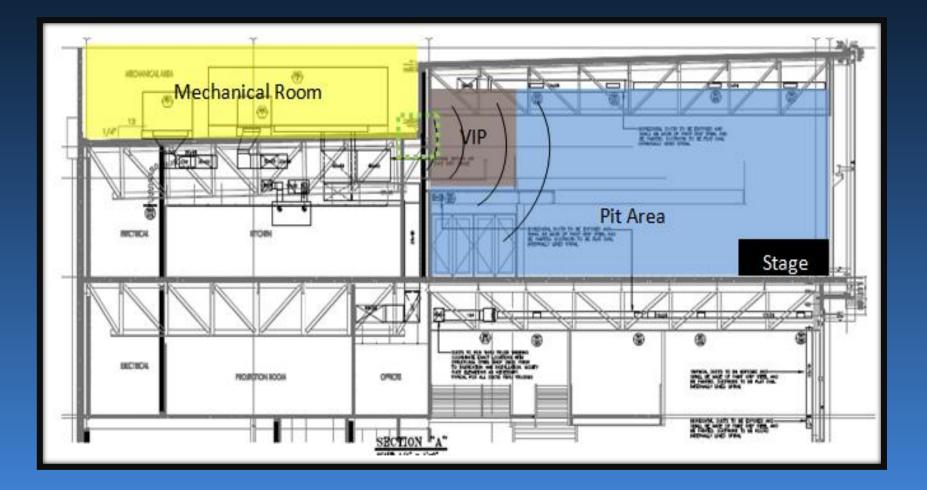
- I. Introduction
- II. Existing Conditions
- III. Proposed New Design
- IV. Breadth
- I. Acoustic II. Architectural V. Recommendations
- VI. Questions

Breadth


- Acoustical
- Architectural

- Introduction
- II. Existing Conditions III. Proposed New Design IV. Breadth
- . Acoustic II. Architectural V. Recommendations VI. Questions

Breadth


- Improper installation of RTU
- Vibration on roof could translate into the concert area
- Effect the view experience

Steelstacks Performing Arts Center Bethlehem, Pa

Acoustic Breadth

- Introduction
- II. Existing Conditions III. Proposed New Design IV. Breadth
- . Acoustic II. Architectural V. Recommendations VI. Questions

Acoustic Breadth

Steelstacks Performing Arts Center Bethlehem, Pa

Solutions

- Introduction
- II. Existing Conditions
- III. Proposed New Design
- IV. Breadth
- V. Recommendations
- VI. Questions

Payba

- S

Profit

Michael Dean Mechanical Option Dr. Treado

ck Period	
SHP	10.6
olar	50
hermal Storage	4.2

Over Expected Life	
SHP	
olar	
hermal Storage	

\$338,328 \$0 \$158,641

Recommendations

- Introduction
- II. Existing Conditions
- III. Proposed New Design
- IV. Breadth
- V. Recommendations
- VI. Questions

Questions??

