Introduction
System Optimization Analysis
Acoustical Breadth
Conclusion
Acknowledgements
Questions

Army National Guard Readiness Center Addition Arlington, VA Mitchell E. Peters

Mechanical Option

Thesis Final Presentation

 Introduction Building Overview Mechanical Overview •Goals System Optimization Analysis Acoustical Breadth Conclusion Acknowledgements •Questions

Army National Guard Readiness Center Addition Arlington, VA

Location:

Size: 8 Levels

Total Cost:

Occupancy:

Delivery Method:

Architect:

Engineers:

Owner:

Construction Period:

Mitchell E. Peters

Mechanical Option

Building Overview

Arlington, VA

251,000 SF

\$100,000,000

Administrative/Office

Design-Bid-Build with Lump Sum CH2MHILL AECOM | DMJM H&N Army National Guard

Dec. 2008 to March 2011

Introduction

 Facility Information Mechanical Overview •Goals System Optimization Analysis Acoustical Breadth Conclusion Acknowledgements Questions

Army National Guard Readiness Center Addition Arlington, VA

Air Delivery System:

Chilled Water System: Hot Water System: Control System:

Mitchell E. Peters Mechanical Option

Mechanical Overview

Hydronic 4 Pipe VAV 17 AHU with FCU (2) 400 Ton Water Cooled Chillers (5) 1000 MBH Natural Gas Boilers Direct Digital Control using BAS

Introduction

 Facility Information Mechanical Overview •Goals System Optimization Analysis Acoustical Breadth Conclusion Acknowledgements Questions

Army National Guard Readiness Center Addition Arlington, VA

Cooling

Supply (cfm/SF) Ventilation (cfm/SF) Load(SF/ton)

Annual Energy Use(kB Cooling Heating Pump Fan TOTAL

Mitchell E. Peters

Mechanical Option

Heating	
Design Load (SF/ton)	543

	Annual Operating	Annual Operating Costs		
Ū/SF*yr)	Electricity(45.3%)	221,231.40		
19.11	Chilled Water(16.3%)	79,780.35		
25.18	Hot Water(18.7%)	91,527.15		
5.65	Domostic Water(19.8%)	96,911.10		
17.6	TOTAL	489,450		
67.54	Total/SF	1.95		

Introduction

 Facility Information Mechanical Information

•Goals

 System Optimization Analysis Acoustical Breadth Conclusion Acknowledgements Questions

Army National Guard Readiness Center Addition Arlington, VA

> Reduce Operating Costs as well as Energy Consumption at a reasonable first cost.

Mitchell E. Peters Mechanical Option

Redesign Goal:

Accomplish with DOAS with incorporated ACB system.

Army National Guard Readiness Center Addition Arlington, VA

 Introduction System Optimization Analysis •DOAS Analysis Design Conditions •Sensible Load Reductions •Energy Cost Savings Cost Analysis •Acoustical Breadth Conclusion Acknowledgements Questions

1. Less Ventilation Air

2. Indoor Air Quality

3. Decoupled Loads

Mitchell E. Peters

Mechanical Option

Dedicated Outdoor Air System

 Introduction System Optimization Analysis •DOAS Analysis Design Conditions •Sensible Load Reductions •Energy Cost Savings Cost Analysis •Acoustical Breadth Conclusion Acknowledgements Questions

Army National Guard Readiness Center Addition Arlington, VA

> Ventilation air supply Cool discharge air

Mitchell E. Peters

Mechanical Option

Active Chilled Beams

Introduction

System Optimization Analysis

DOAS Analysis

 Design Conditions •Sensible Load Reductions •Energy Cost Savings Cost Analysis Acoustical Breadth

 Conclusion Acknowledgements

Questions

Army National Guard Readiness Center Addition Arlington, VA

Mitchell E. Peters

Mechanical Option

 Introduction System Optimization Analysis •DOAS Analysis Design Conditions •Sensible Load Reductions •Energy Cost Savings •Cost Analysis Acoustical Breadth Conclusion Acknowledgements •Questions

Army National Guard Readiness Center Addition Arlington, VA

> Cooling: Dry Bulb: **Relative Humidity: Dew Point:** Humidity Ratio: ACB Surface Temp:

Heating:

Mitchell E. Peters

Mechanical Option

Indoor Design Conditions:

77°F 50% 57.3°F 72.27°F 62°F

95°F ACB Temp: 97°F Inlet: Outlet: 93°F

 Introduction System Optimization Analysis •DOAS Analysis Design Conditions •Sensible Load •Reductions •Energy Cost Savings Cost Analysis Acoustical Breadth Conclusion Acknowledgements •Questions

Army National Guard Readiness Center Addition Arlington, VA

Required: 52,100 CFM $Q_{L}=0.68V_{SA}(\Delta W)$, or $W_{SA}=W_{SP}-Q_{L}/(0.68V_{SA})$

W_{SA}= Supply Air Humidity Ratio (gr/lb of dry air) W_{SP}= Space Humidity Ratio (gr/lb of dry air) Q_L= Space Latent Load (BTU/hr) V_{SA}= Supply Air Flow Rate (CFM)

Humidity Ratio:

Mitchell E. Peters Mechanical Option

Supply Air:

42.1 gr/lb dry air

 Introduction System Optimization Analysis •DOAS Analysis Design Conditions •Sensible Load •Reductions •Energy Cost Savings •Cost Analysis Acoustical Breadth Conclusion Acknowledgements Questions

Army National Guard Readiness Center Addition Arlington, VA

Temperature difference: 77-45= 32°F

 $Q_{S}=1.08V_{SA}(\Delta T)$

Qs= Space Sensible Load (BTU/hr) V_{SA}= Supply Air Flow Rate (CFM) ΔT = Difference between Room Air DB and Supply Air DB (°F)

ACB required: 1,277

Mitchell E. Peters Mechanical Option

Sensible Load:

ACB cooling capacity: 2,200 BTU/hr

 Introduction System Optimization Analysis •DOAS Analysis Design Conditions •Sensible Load Reductions •Energy Cost Savings Cost Analysis Acoustical Breadth Conclusion Acknowledgements Questions

Army National Guard Readiness Center Addition Arlington, VA

Mitchell E. Peters Mechanical Option

	CFM	OA%	Reduction
	52,100	100	148,700
١V	200.800		

em	Cooling (TONS)	Heating (MBH)
CB	656	4957.3
g VAV	728	6320

Introduction

System Optimization Analysis

•DOAS Analysis Design Conditions

•Sensible Load

Reduction

•Energy Cost Savings

 Cost Analysis •Acoustical Breadth Conclusion Acknowledgements Questions

Army National Guard Readiness Center Addition Arlington, VA

Annual Energy Use (kBTU/SF*yr)			
Cooling	19.11	14.52	
Heating	25.18	19.14	
Pump	5.65	12.34	
Fan	17.60	14.11	
Total:	67.54	60.11	

Over 11% reduction in Energy Consumption

Mitchell E. Peters Mechanical Option

 Introduction System Optimization Analysis •DOAS Analysis Design Conditions •Sensible Load Reduction •Energy Cost Savings Cost Analysis Acoustical Breadth Conclusion Acknowledgements Questions

Army National Guard Readiness Center Addition Arlington, VA

Initi
Equip. Type
AHU
VAV
FCU
PUMP
FAN
ACB's
Total:

Mitchell E. Peters Mechanical Option

Daily operating cost/SF reduced from 1.95-1.83

Resulting payback of 25 years

 Introduction System Optimization Analysis Acoustical Breadth •SCIF Area Overview Soundproofing Considerations •Conclusion Acknowledgements •Questions

Army National Guard Readiness Center Addition Arlington, VA

Door: requirements

Mitchell E. Peters

Mechanical Option

SCIF:

- Sensitive Compartmented Information Facility
 - SCI storage
 - single entry(fire escape) min. 1-3/4" thick
- Walls: Ceilings, floors and walls must all be connected
- Required STC of 50 or better-very load noise can faintly heard
- ArNG doors- STC 55 ArNG walls- STC 56 with welded metal mesh

 Introduction System Optimization Analysis Acoustical Breadth •SCIF Area Overview Soundproofing Considerations •Conclusion •Acknowledgements •Questions

Army National Guard Readiness Center Addition Arlington, VA

mesh

Mitchell E. Peters

Mechanical Option

Soundproofing Considerations:

Current wall construction: 4 layers 5/8" GWB with welded

- STC 55 Cost: \$12.02/SF
- Redesign: 2 layers 5/8" GWB with resilient channel STC 44 sound class 3-appropriate for SCIF Cost: \$7.18/SF- \$30,000 in savings Use in conjunction with sound masking device Single unit covers 6,000 SF- costs less than savings

 Introduction System Optimization Analysis Acoustical Breadth

Conclusion

 Recommendations Acknowledgements •Questions

Army National Guard Readiness Center Addition Arlington, VA

Maintence benefits

by operating costs.

Mitchell E. Peters

Mechanical Option

Conclusion:

- More Energy Efficien
- DOAS and its use of 100% OA inheriently has a higher IAQ
- Maintained Thermal Comfort
- Savings not as beneficial as hoped: First costs not overcome
- VAV system as designed is cheap and economical

Introduction
System Optimization Analysis
Acoustical Breadth
Conclusion

Acknowledgements

Questions

Army National Guard Readiness Center Addition Arlington, VA Mitchell E. Peters

Mechanical Option

Acknowledgements:

Special Thanks To: AE Faculty & Family and Friends

Introduction
System Optimization Analysis
Acoustical Breadth
Conclusion
Acknowledgements
Questions

Army National Guard Readiness Center Addition Arlington, VA Mitchell E. Peters Mechanical Option

Questions

