THE MOORE BUILDING ADDITION

UNIVERSITY PARK, PA 16802

MOHAMMAD ALHUSAINI CONSTRUCTION MANAGEMENT

INTRODUCTION

Project Background The Theme Presentation Overview

Analysis I

Analysis II Mechanical Breadth

Analysis III

Analysis IV

Conclusions

ACKNOWLEDGEMENTS & THANKS

BUILDING SYSTEMS

STEEL STRUCTURE LATERALLY BRACED FRAMES BASEMENT HOUSES MECHANICAL EQUIPMENT BRICK VENEER FAÇADE + ALUMINUM PANELS & GLAZING GROUND LEVEL GLASS CURTAIN WALL UNDERPINNING REQUIRED FOR EXISTING STRUCTURE

BUILDING SUMMARY Dep

PROJECT DELIVERY CLASSI

PROJECT BACKGROUND

PARTMENT	Department of Psychology at PSU
BUDGET	~\$26.1 MILLION STATE FUNDS INCLUDED
SIZE	57,000 SF ADDITION + 16,000 SF NORTH WING
TIME	JUNE 2010 TO JANUARY 2012
Method	Design Bid Build
IFICATION	B (BUSINESS)

PHOTO: BING MAPS

PHOTO: BING MAPS

BUILDING SITE & BRACING

INTRODUCTION

Project Background THE THEME Presentation Overview

ANALYSIS I

Analysis II Mechanical Breadth

ANALYSIS III

ANALYSIS IV

CONCLUSIONS

ACKNOWLEDGEMENTS & THANKS

THE THEME

DEPARTMENT OF PSYCHOLOGY

Research intensive – 45% of liberal arts research funds Focus on new and innovative research and techniques CURRENTLY LOCATED IN EXISTING MOORE BUILDING "DISPLACED" RESEARCHERS

GOAL: EXPLORE METHODS THAT WILL [THEORETICALLY] ALLOW THE DEPT. OF PSYCHOLOGY TO BE ABLE TO OCCUPY THE MOORE BUILDING ADDITION AT A DATE SOONER THAN ANTICIPATED.

TOP PRIORITIES (CONSTRUCTION)

- 1. EXPAND & ENHANCE LABS
- 2. LAB TECHNOLOGIES
- 3. SOUNDPROOFING

INTRODUCTION

Project Background The Theme Presentation Overview

Analysis I

Analysis II Mechanical Breadth

ANALYSIS III

Analysis IV

CONCLUSIONS

ACKNOWLEDGEMENTS & THANKS

PRESENTATION OVERVIEW

- Analysis I: Demolition
- Analysis II: Façade Mechanical Breadth presented STRUCTURAL BREADTH NOT PRESENTED
- **ANALYSIS III:** STRUCTURAL STEEL
- Analysis IV: BIM through AE

INTRODUCTION

Project Background The Theme Presentation Overview

ANALYSIS I

Analysis II Mechanical Breadth

ANALYSIS III

ANALYSIS IV

CONCLUSIONS

ACKNOWLEDGEMENTS & THANKS

ASBESTOS

COST OF REMOVING ASBESTOS FROM NORTH WING: ~\$350K

ANALYSIS I: DEMOLITION

NORTH WING

- 16,000SF
- SELECTIVE DECONSTRUCTION
- STRUCTURALLY INDEPENDENT OF ADDITION
- CONTAINS ASBESTOS

CALENDAR DAYS REQUIRED FOR ASBESTOS ABATEMENT AND SELECTIVE DEMOLITION: **103 DAYS**

SELECTIVE DEMOLITION WILL OCCUR ON NORTH WING

WING: ~\$280K

CANNOT BEGIN BEFORE ASBESTOS ABATEMENT

COST OF SELECTIVE DEMOLITION ON NORTH

INTRODUCTION

Project Background THE THEME Presentation Overview

ANALYSIS I

ANALYSIS II Mechanical Breadth

ANALYSIS III

ANALYSIS IV

CONCLUSIONS

ACKNOWLEDGEMENTS & THANKS

DEMOLITION/DECONSTRUCTION 16,000SF PROPOSED SCHEDULE ACCELERATOR MUST OCCUR AFTER ASBESTOS ABATEMENT DECONSTRUCTION; LESS DEBRIS, LOW COST

9 WORKDAYS TO DECONSTRUCT **\$81K** TO DECONSTRUCT

ANALYSIS I: DEMOLITION

- **SUPERSTRUCTURE RECONSTRUCTION** 16,000SF
- THIS NEEDS TO OCCUR AFTER DEMOLITION
- CONSIDERED AS PART OF ENTIRE STRUCTURE COST/SF OF STEEL W/O HSS BRACING

- **26 WORKDAYS TO ERECT SUPERSTRUCTURE** (SCHEDULE-DERIVED)
- **10** WORKDAYS TO ERECT SUPERSTRUCTURE (COMPARATIVE)
- **\$426K** COST OF RECONSTRUCTION

ADDED BENEFITS

POSSIBLE INCREASE IN BASEMENT SIZE BY 5,400SF & UNDERPINNING WILL BE ELIMINATED FOR NORTH WING

COST WOULD BE \$24K LESS THAN UNDERPINNING ALONE

INTRODUCTION

Project Background The Theme Presentation Overview

ANALYSIS I

Analysis II Mechanical Breadth

ANALYSIS III

Analysis IV

CONCLUSIONS

ACKNOWLEDGEMENTS & THANKS

Risks IF >17,000SF ASBESTOS; LOSSES DEMOLITION POLLUTION DANGEROUS; 9X INCREASE

GENERAL CONDITIONS SAVINGS: \$34.4K Based on \$17K/wk

ANALYSIS I: DEMOLITION

FINAL COMPARISON (NO ASBESTOS) SELECTIVE DEMOLITION

Cost: \$237K

DURATION: 29 WORKDAYS

FINAL COMPARISON (NO ASBESTOS) DEMOLITION/DECONSTRUCTION

Cost: \$390K

DURATION: 19 WORKDAYS

INTRODUCTION

Project Background The Theme Presentation Overview

Analysis I

Analysis II Mechanical Breadth

Analysis III

Analysis IV

Conclusions

ACKNOWLEDGEMENTS & THANKS

FAÇADE SYSTEM COMPOSITION

BRICK VENEER METAL PANELS GLAZING

ANALYSIS II: FAÇADE

FAÇADE SYSTEM IMPORTANCE

FACE OF PSYCHOLOGY AT PSU ARCHITECTURAL SIGNIFICANCE

INTRODUCTION

Project Background The Theme Presentation Overview

ANALYSIS I

Analysis II Mechanical Breadth

ANALYSIS III

Analysis IV

CONCLUSIONS

ACKNOWLEDGEMENTS & THANKS

BRICK VENEER 13,300SF BRICK FAÇADE (+WASTE) CFMF BACKING 46PSF – 307.5 TONS

98 DAYS TO CONSTRUCT (FRAMING SEPARATE CONTRACT)\$300K TO CONSTRUCT

P 1 C

ANALYSIS II: FAÇADE

- **PRECAST PANELS (OLDCASTLE PRECAST)**
- 12,100SF BRICK FAÇADE (+WASTE)
- CFMF BACKING
- 44.5PSF 270.5 TONS
- 7-20 DAYS TO CONSTRUCT (AFTER SUPERSTRUCTURE) \$304-363K TO CONSTRUCT
- SCHEDULE IMPACT: 67 DAYS REDUCTION

INTRODUCTION

Project Background The Theme Presentation Overview

ANALYSIS I

Analysis II Mechanical Breadth

ANALYSIS III

Analysis IV

CONCLUSIONS

ACKNOWLEDGEMENTS & THANKS

STRUCTURAL BREADTH

Performed hand calculation Performed STAAD analysis Realized load implications Bending moments and deflections in Report Precast panels have no ill effect on Structure

Brick I

ANALYSIS II: FAÇADE

MECHANICAL BREADTH

ENERGY SAVINGS

Energy Through Façade Systems						
	q = U * A * Δ T					
açade	q = 0.1059 * 12100SF 25 F	*	32,044	BTU/h	279,900,0 00	BTU/year
st Façade	q = 0.0769 * 12100SF 25 F	*	23,251	BTU/h	203,100,0 00	BTU/year
				Difference	76,800,00	BTU/year
					22,500	kWh/year
5/kWh Commercial 2010 Data Cost Saving = 22,500*0.1026 = 2,310 \$/ye			0 \$/year			

R VALUES (COLORADOENERGY)

R & U Values for Different Systems					
Material	R Value/Inch	Brick Façade	Precast		
			Façade		
Concrete	0.08	0.00 (0")	0.40 (5")		
Brick	0.11	0.44 (4")	0.11 (1")		
Air Film	1.00 (0.5" - 4")	1.00 (2")	0.00 (0")		
Rigid Insulation	4.00	8.00 (2")	0.00 (0")		
Polyurethane	6.25	0.00 (0")	12.50 (2")		
Insulation					
	Sum of R Values	9.44	13.01		
	U Value (1/R)	0.1059	0.0769	BTU/(ft ² * °F * h)	

INTRODUCTION

Project Background The Theme Presentation Overview

ANALYSIS I

Analysis II Mechanical Breadth

ANALYSIS III

Analysis IV

CONCLUSIONS

ACKNOWLEDGEMENTS & THANKS

Panels 66 panels Range of sizes: 3' x 24' to 12' x 30'

ANALYSIS II: FAÇADE

LOGISTICS

TRANSPORT BY SEMI-TRAILER MAX LOAD 55,000LBS 8.5' x 53' (W x L)

10 TRIPS REQUIRED SLOT = ROW ON BED OF TRUCK

AMPLE TURNING ROOM FORM PARK AVENUE TO SITE

Slot	1 (x2)	2 (x2)
1	12x30	6x24
	12x20	12x1
2	12x30	6x24
	12x20	12x1
3	3x24	12x1
	12x20	12x1
		12x1
4	3x24	12x1
	12x20	12x1
		12x1
5	3x24	12x1
	3x24	12x1
		12x19
6	3x24	12x1
	3x24	12x1
		12x19
7	3x24	8x24
	3x24	8x24

Trailer		
3 (x3)	4 (x1)	5 (x2)
12x19	9x24	12x24
3x24	9x24	12x24
12x19	4x24	12x24
3x24	4x24	12x24
3x24	4x24	12x24
3x24	4x24	12x24
12x19	3x24	12x24
12x19	3x24	12x24
12x19	6x24	
12x19	6x24	
12x19	12x16	
12x19	7x16	
12x19		
12x19		

Photo: Google

INTRODUCTION

Project Background THE THEME Presentation Overview

Analysis I

ANALYSIS II Mechanical Breadth

ANALYSIS III

Analysis IV

CONCLUSIONS

ACKNOWLEDGEMENTS & THANKS

ARCHITECTURAL IMPLICATIONS

MAY NOT BE APPROPRIATE HIGHER COST TO BETTER MIMIC MASONRY

ANALYSIS II: FAÇADE

CONCLUSIONS

COSTS MORE SAVES AT LEAST 2 MONTHS STRUCTURALLY SOUND PERFORMS BETTER IN ENERGY SAVINGS: \$2.3K/YEAR REDUCES ON-SITE CLUTTER AND WASTE MAY BE HARD TO COORDINATE

INTRODUCTION

PROJECT BACKGROUND THE THEME Presentation Overview

ANALYSIS I

ANALYSIS II Mechanical Breadth

ANALYSIS III

ANALYSIS IV

CONCLUSIONS

ACKNOWLEDGEMENTS & THANKS

DESIGN ASSIST (DA) CONTRACT SIMILAR TO DESIGN-BUILD, BUT FOR ONE

SUBCONTRACT (E.G. STEEL PRIME)

MOORE GOAL: ACCELERATE STEEL FABRICATION & ERECTION

ANALYSIS III: STRUCTURAL STEEL

SIGNIFICANCE OF STRUCTURAL STEEL

MOST IMPORTANT CRITICAL PATH ITEM 2 UNSUCCESSFUL ATTEMPTS AT ACCELERATING

1ST ATTEMPT: ACCELERATE FOUNDATIONS 2ND ATTEMPT: ACCELERATE STEEL FABRICATION

SHORTCOMINGS: NO MONEY INVOLVED

DESIGN ASSIST PROCESS PHASE I: OWNER MUST HAVE CLEARLY DEFINED SCOPE, SCHEDULE

AND BUDGET

PHASE II: COLLABORATION BETWEEN DA PROFESSIONAL/CONTRACTOR AND OWNER TO CREATE DESIGN GOALS AND SPECIFICATIONS

PHASE III: CONTRACT ADAPTED FOR DA INTRODUCTION, AND DA PROFESSIONAL FORMALLY SELECTED.

INTRODUCTION

Project Background THE THEME Presentation Overview

ANALYSIS I

Analysis II Mechanical Breadth

ANALYSIS III

Analysis IV

CONCLUSIONS

ACKNOWLEDGEMENTS & THANKS

CASE STUDIES Based on Don Proffer studies on HAVEN STEEL DIRECT DA CORRELATION Performed in 2000's

ANALYSIS III: STRUCTURAL STEEL

CASE 1: DAKOTA DOME

- SCOPE: TEAR DOWN AIR SUPPORTED FABRIC ROOF
- OFF DOME; CREATE STRUCTURAL STEEL ROOF
- SCHEDULE: 4.5 MONTHS
- SUCCESSFUL THROUGH DA CONTRACT

CASE 2: CONVENTION CENTER

SUCCESS STORY AS WELL!

INTRODUCTION

Project Background The Theme Presentation Overview

Analysis I

Analysis II Mechanical Breadth

ANALYSIS III

Analysis IV

Conclusions

ACKNOWLEDGEMENTS & THANKS

SURVEY

Performed to quantify BENEFITS/DRAWBACKS OF DA 50+ PARTICIPANTS MAJORITY CM, OWNERS AND PMS REPLIED MOST PERFORMED >1 DA PROJECTS

Question	Average
3. How much more (or less) effective is a design-assist contract (generally) in terms of schedule reduction than a typical contract?	15.3859
4. How much more (or less) effective is a design-assist contract for structural steel in terms of schedule reduction than a typical contract?	15.7699
5. How much more (or less) effective is a design-assist contract (generally) in terms of cost reduction than a typical contract?	10.3889
6. How much more (or less) effective is a design-assist contract for structural steel in terms of cost reduction than a typical contract?	8.462%
7. How would you quantify the risk involved with taking on a design-assist contract as opposed to holding a typical contract with a steel subcontractor, as a percentage of the contract value?	13.88%

ANALYSIS III: STRUCTURAL STEEL

SURVEY RESULTS

SURVEY RESULTS

Final Analysis					
ltem	%	Average	Original Quantity	Increase/(Savings)	
	increase/decre	ease			
Schedule Impact	15.769%		71 Days (from design to delivery of structural steel)	(12 work days)	
Cost Impact	8.462%		\$1.28M (structural steel only)	(\$108K)	
Risk Involved	13.88%		\$26.1M	(\$3.62M)	

INTRODUCTION

Project Background The Theme Presentation Overview

Analysis I

Analysis II Mechanical Breadth

ANALYSIS III

Analysis IV

CONCLUSIONS

ACKNOWLEDGEMENTS & THANKS

ANALYSIS III: STRUCTURAL STEEL

CONCLUSIONS

OWNER BUY-IN ACTION MUST BE TAKEN EARLY Most cost savings in terms of less changes EARLY PURCHASE OF STEEL TRUSTWORTHY CONTRACTORS

BARRIER

THE ONLY BARRIER TO THIS APPROACH IS MONEY

INTRODUCTION

Project Background The Theme Presentation Overview

ANALYSIS I: DEMOLITION

Analysis II: Façade Mechanical Breadth

ANALYSIS III: STRUCTURAL STEEL

Analysis IV: BIM Through AE

CONCLUSIONS

ACKNOWLEDGEMENTS & THANKS

DEPT.

MEDIUM: AE222

ANALYSIS IV: BIM THROUGH AE

OUTLINE

COLLABORATION EFFORT BETWEEN OPP AND AE

MAIN PARTICIPANTS: DR. ED GANNON, COLLEEN KASPRZAK, CRAIG DUBLER, PAUL BOWERS, DR. DAVID RILEY

IMPORTANT TO NOTE

Previous trial: good and bad! **AE222** CONSISTS OF INEXPERIENCED STUDENTS, MANY HAVE LITTLE/NO EXPERIENCE WITH REVIT LACK OF DEFINITIVE STANDARD OPP CONSIDERED AS CLIENT IN THIS ANALYSIS

INTRODUCTION

Project Background THE THEME Presentation Overview

ANALYSIS I: DEMOLITION

Analysis II: Façade Mechanical Breadth

ANALYSIS III: STRUCTURAL STEEL

Analysis IV: BIM Through AE

CONCLUSIONS

ACKNOWLEDGEMENTS & THANKS

ANALYSIS IV: BIM THROUGH AE

OPP: WHAT DO THEY WANT?

- USEABLE MODELS
- MODELING UN-MODELED BUILDINGS AND
- RENOVATIONS
- 425 PROJECTS AVAILABLE
- M.E.P. MODELED ACCURATELY
- EXTERIOR MODELED TO CLOSE RESEMBLANCE
- (DIFFERING OPINION AVAILABLE!)
- **S**PACES NEED TO BE REPRESENTATIVE

INTRODUCTION

Project Background THE THEME PRESENTATION OVERVIEW

ANALYSIS I: DEMOLITION

Analysis II: Façade Mechanical Breadth

ANALYSIS III: STRUCTURAL STEEL

ANALYSIS IV: BIM THROUGH AE

CONCLUSIONS

ACKNOWLEDGEMENTS & THANKS

PSU AE EDUCATION IS NUMBER 1; NO INTRUSIONS NO TEDIOUS MODELING; NO BENEFIT EQUAL LEARNING OPPORTUNITY MUST BE RELATED TO CLASSWORK

ANALYSIS IV: BIM THROUGH AE

DUAL-BENEFIT APPROACH

Fully integrated approach – 2^{ND} to 3^{RD} year EXTERIOR AND INTERIOR SPACES MODELED IN 2ND YEAR

3RD YEAR:

STRUCTURAL CLASS: MODEL STRUCTURE AND USE IN STAAD MECHANICAL CLASS: MODEL MECHANICAL EQUIPMENT AND USE IF NECESSARY ELECTRICAL CLASS: MODEL ELECTRICAL EQUIPMENT AND LIGHT FIXTURES CM CLASS: PERFORM BIM INTEGRATION TO PUT MODELS TOGETHER

ACOUSTICS CAN ALSO BE INTEGRATED

4TH YEAR: IF ALSO INTEGRATED, COULD BE USED FOR DATA

INTRODUCTION

Project Background THE THEME Presentation Overview

Analysis I: Demolition

Analysis II: Façade Mechanical Breadth

ANALYSIS III: STRUCTURAL STEEL

Analysis IV: BIM Through AE

CONCLUSIONS

ACKNOWLEDGEMENTS & THANKS

CHALLENGES

VALUE 3D MODEL VS. BIM MODEL TRIAL AND ERROR SUFFERED UNUSUAL FATE VERY OPTIMISTIC TOO MANY CONSTRAINTS LOST INVESTMENTS OFF-LIMITS BUILDINGS

ANALYSIS IV: BIM THROUGH AE

INTERNSHIP

OPP IN FULL CONTROL STUDENTS BENEFIT FORM PAY AND EXPERIENCE NO RESTRICTIONS TO PROGRAM LACCD CURRENTLY DO THIS

PHOTO: GOOGLE

INTRODUCTION

Project Background THE THEME Presentation Overview

ANALYSIS I: DEMOLITION

Analysis II: Façade Mechanical Breadth

ANALYSIS III: STRUCTURAL STEEL

Analysis IV: BIM Through AE

CONCLUSIONS

ACKNOWLEDGEMENTS & THANKS

CONCLUSIONS

- ANALYSIS 1: ASBESTOS MUST BE CONSIDERED ON DEMO PROJECTS FULL DEMOLITION WILL REDUCE SCHEDULE MARGINALLY
- ANALYSIS 2: FAÇADE CHANGE MUST BE INCORPORATED EARLY IN PROJECT – DESIGN ISSUES
- ANALYSIS 3: DA CONTRACT MUST BE A PLANNING PHASE THOUGHT COMMUNICATION IS KEY
- ANALYSIS 4: THE ANSWER MAY BE SIMPLER THAN YOU THINK! INTERNSHIP MAY BE THE BEST METHOD

INTRODUCTION

Project Background THE THEME Presentation Overview

Analysis I

Analysis II Mechanical Breadth

ANALYSIS III

Analysis IV

CONCLUSIONS

ACKNOWLEDGEMENTS & THANKS

ED GANNON, PH.D.

JAMES FAUST, P.E.

JOHN BECHTEL, P.E.

DR. MOSES LING, P.E., R.A.

OFFICE OF PHYSICAL PLANT

ACKNOWLEDGEMENTS & THANKS

ANDY SCHRENK

- CHAD SPACKMAN
- COLLEEN KASPRZAK
- CRAIG DUBLER, (PH.D.)
- DAVID RILEY, PH.D.
- DEPARTMENT OF PSYCHOLOGY AT PENN
 - STATE

INTRODUCTION

Project Background The Theme Presentation Overview

ANALYSIS I

Analysis II Mechanical Breadth

ANALYSIS III

Analysis IV

Conclusions

Acknowledgements & Thanks

Project Background The Theme Presentation Overview

ANALYSIS I

Analysis II Mechanical Breadth

ANALYSIS III

Analysis IV

Conclusions

ACKNOWLEDGEMENTS & THANKS

Appendix

Asbestos Abatement Cost Analysis - North Wing					
	Unit	Cost / Unit			
os Abatement & Removal	16,375 SF	\$20/SF	\$327,500		
e Demolition for Asbestos Preparation	3,986 SF	\$10/SF	\$39,860		
rary Equipment for Abatement	1 EA	\$25,000	\$25,000		
ve Demolition for North Wing	16,375 SF	\$12.10/SF	\$198,080		
tion of Concrete, Casework etc.	16,375 SF	\$2.4/SF	\$39,303		
		Total	\$629,750		

Asbestos Abatement Schedule Impact Analysis – North Wing + Selective

Demolition

	W/O Basement Abatement	W/ Basement Abatement	Total Area (SF)
	93 days	207 days	16,375 SF
;	80 days	177 days	
CSF	0.4885 days/CSF	1.0809 days/CSF	
CSF	11.7252 hrs./CSF	25.9420 hrs./CSF	

UNDERPINNING

nderpinning Elimination and Basement Expansion					
Analysis					
ition	Item	Quantit v		Unitcos t	Totalcost
ng	SOG Basement	, 5,788	S F	9.26	\$53,596.8 8
ct	Underpin North Wing	1,620	S F	50	\$81,000.0 0
	SOG New Basement	5,461	S F	9.26	\$50,568.8 6
	Concrete Deck Fill New	5,461	S F	6.41	\$35,005.0 1
ct	Strip Footings 18X12	136	L F	130	\$17,680.0 0
	Strip Footings 24X12	500	L F	140	\$70,000.0 0
Cost					\$57,000

INTRODUCTION

Project Background The Theme Presentation Overview

ANALYSIS I

Analysis II Mechanical Breadth

Analysis III

Analysis IV

Conclusions

ACKNOWLEDGEMENTS & THANKS

Ite M

Appendix

asonry Construction Costs						
m	Quantity		Unitcost	Totalcost		
etal Panels	2,020	SF	40	\$80,800		
indow Sills	585 LF		35	\$20,475		
				\$101,275		
asonry Veneer	13,360	SF	20	\$267,200		
one Base - Granite	168	SF	100	\$16,800		
ulking & Sealants	13,360	SF	0.75	\$10,020		
gid Insulation 3"	13,260	SF	2.5	\$33,150		
				\$327,170		
			TOTAL	\$428,500		