Technical Report #2_____

Matthew R Peyton

This Document is Technical Report #2 for 5th year senior thesis in the Architectural Engineering Departments at The Pennsylvania State University. This Report is to prepare a study and comparison of at least four different alternation floor framing systems for the structure.

Structural Option Professor Behr Hospital Patient Tower Virginia, U.S.A. 10/4/2010

Table of Contents

Executive Summary
Introduction4
Structural Systems5
Foundations5
Columns6
7
Floor System
Roof System9
Lateral System10
Design & Code Review
Design Codes and References
Thesis Codes and References11
Deflection Criteria
Floor Deflection Criteria11
Material Specifications12
Gravity Loads12
Gravity Loads
Gravity Loads12Dead Loads12Live Loads12Snow Loads13Design Considerations13Floor Systems14Two-Way Reinforced Flat Plate - Existing14W- Flange Beams with Composite Metal Deck15
Gravity Loads. 12 Dead Loads. 12 Live Loads. 12 Snow Loads 13 Design Considerations 13 Floor Systems 14 Two-Way Reinforced Flat Plate - Existing 14 W- Flange Beams with Composite Metal Deck. 15 Open Web Steel Joist with Non-composite Metal Deck. 17
Gravity Loads 12 Dead Loads 12 Live Loads 12 Snow Loads 13 Design Considerations 13 Floor Systems 14 Two-Way Reinforced Flat Plate - Existing 14 W- Flange Beams with Composite Metal Deck 15 Open Web Steel Joist with Non-composite Metal Deck 17 One-Way Slab and Beam 20
Gravity Loads12Dead Loads12Live Loads12Snow Loads13Design Considerations13Floor Systems14Two-Way Reinforced Flat Plate - Existing14W- Flange Beams with Composite Metal Deck15Open Web Steel Joist with Non-composite Metal Deck17One-Way Slab and Beam20Floor System Comparison21
Gravity Loads12Dead Loads12Live Loads12Snow Loads13Design Considerations13Floor Systems14Two-Way Reinforced Flat Plate - Existing14W- Flange Beams with Composite Metal Deck15Open Web Steel Joist with Non-composite Metal Deck17One-Way Slab and Beam20Floor System Comparison21Structural21
Gravity Loads12Dead Loads12Live Loads12Snow Loads13Design Considerations13Floor Systems14Two-Way Reinforced Flat Plate - Existing14W- Flange Beams with Composite Metal Deck15Open Web Steel Joist with Non-composite Metal Deck17One-Way Slab and Beam20Floor System Comparison21Structural21Architectural22
Gravity Loads12Dead Loads12Live Loads12Snow Loads13Design Considerations13Floor Systems14Two-Way Reinforced Flat Plate - Existing14W- Flange Beams with Composite Metal Deck15Open Web Steel Joist with Non-composite Metal Deck17One-Way Slab and Beam20Floor System Comparison21Structural21Architectural22Construction22

Structural Concepts/Existing Conditions

Design Comparison	24
Appendix I	25
Appendix II	29
Annendix III	32
Appendix V	41
Appendix VI	46

Executive Summary

Technical Report #2 is a study and comparison of four different structural floor systems. In this report the existing two-way slab will be compared to 3 different system designed for the Hospital Patient Tower. The three alternative systems studied include:

- Composite deck on Wide flange steel beams
- Non-Composite deck on Open web steel joists
- One-way concrete slab with Beams

The typical bays for the Hospital tower are 29' x29'. All of the bays found in the patient tower are the square 29'x 29' except the center span in the east west direction which is cut in half in one span. With the typical bay sizing for the tower a 3 bay x 3 bay section of a typical 29' x 29' bays was used during the structural analysis.

These alternative structural floor systems will be compared based on a few different criteria. The primary means of these comparisons will be by system weight, architectural impact and serviceability. In addition to those criteria, several other factors will be taken in to account such as; fire protection, constructability and cost.

After the completion of the analysis, it was determined that the best option of the four Systems considered is the existing Two-way flat slab. The major advantage of this system is that it allows the floor elevations of the new tower to line up with those of the existing patient tower while still keeping a low system total thickness.

The composite deck system remains a viable option because it works with the existing column layout and will lower the total building weight affecting the seismic loading and the foundation. The other two alternatives are ruled out from further consideration due to the need for floor layout changes and lack of available mechanical space.

Figure 1: Rendering by Wilmot Sanz

Introduction

The Patient Tower is part of the 2015 Capital Improvement Project, of which the Tower Expansion is one of the earlier phases. The new Patient Tower will connect with an existing patient tower by a bank of elevators separated into two sections one for visitors and the other for patients at every floor. The Tower will also await the connection of a women health facility that is one of the next phases of the Capital Improvement Project. The Façade of the Patient Tower will blend in with the existing buildings by keeping some of the red brick on the exterior, but also taking on a more modern look by incorporating aluminum curtain wall and precast concrete panels. The new Tower consists of 12 stories above grade with one level below grade. The Tower is 216,000 square feet with 174 patient rooms, an operation facilities and a mechanical level. The Contract for this tower was awarded to Turner Construction, the general contractor, in a Design-Bid-Build method with a contact value of \$161 million.

One of the main design considerations is individual patient rooms. Based on the Hospital's goals for care the individual patient rooms were a large factor in the design of the floor plan. During the design phases the project team requested input for the physician, nurses and staff to help make the design as efficient as possible. Medical/surgical patients aging 65 years and older were the focus of this Tower with a special emphasis on their safety and a good healing environment. With the hospital team input the placements for monitoring stations were optimized to ensure patient privacy as well as enhancing the monitoring capabilities.

One of the hospital's goals along with excellent patient care is as so to lower the hospital's impact on the environment. The hospital's plan for this new tower included green features such as living roofs, low flow water fixtures, and rain gardens. The design also calls for no/low VOC building materials to be used in construction of the Tower. The Tower design has been submitted for a LEED Silver certification.

Figure 2: Sketch by Wilmot Sanz

Structural Systems

Foundations

The geotechnical report was prepared by Schnabel Engineering, LLC, on March 25, 2010. The foundation of the patient tower is set on piles, with pile caps and grade beams. Each column location has a range of 4 to 12 piles. The slab on grade for the tower is 5" with integrated slab pile caps in locations of high stress such as the elevator shaft and stair well. During the excavation for the new tower the existing basement and caissons supporting the connecting structure were exposed. The existing 66" caissons will support a small portion of the tower connection while the rest will be supported by new piles. In a few locations where there is no basement level piles were drilled to reach up to the ground floor level to support irregular building features.

Columns

The column layout of the patient tower is very regular with a few variations on the 1st through 3rd floors. The bay spacing in the patient tower is mostly square 29' x 29' with a few exceptions as see in Figure 6. The columns are reinforced concrete ranging in size from 30" x 30" to 12" x 18". The typical column size is 24" x 24" with vertical reinforcing of #11 bars numbering from 4 bars to 12 bars as they move through the structure. The vertical reinforcing is tied together with #4 bars placed every 18". The columns on the basement level up through the 4th floor are poured with 7,000 psi concrete and from the 5th floor up they are 5,000 psi concrete. The structural system of the Patient Tower utilizes column capitals to resist punching shear with in the slab. The typical capital in the tower is 10' x 10' x 6" depth, making the slab thickness at the capitals 15 ½".

Figure	4:	Column	Rein	forcing	Detail

	~ 2	IN Z	n zi	N Z	~ 2	in z
	\sim			$\mid \times \mid$		
NECH ROOM FLOOR	$ \land \rangle$	$ \land \rangle$	$\langle \ $	$ \land \rangle$	$\langle \cdot \rangle$	$ \land \rangle$
	$\langle - \rangle$	$\langle \rangle$	\leftarrow	$\langle - \rangle$	$\langle \rangle$	$\overline{}$
		\sim	\sim	\sim	\sim	$>$ $ $
Mala POOF	$ \land $	$ \land \rangle$	$ \land $	$ \land $		
MAIN NOOF	\longleftrightarrow	25-24	25-25	20-20	28-28	28-24
	\sim	4#11	4#11	4#11	4#11	4#11
	$ \land $	#4®18	#4@18	#4@18*	#4018	#4 0 18
ELEVENTH FLOOR	\longleftrightarrow					
	\mathbb{N}	24"x24" 4#11	24°x24° 4 <u>#</u> 11	24"x24" 4#11	24 x24 4#11	24°x24 4 <u>#</u> 11
		#4®18	#4®18	#4018	#4018°	#4 0 18
TENTH FLOOR	$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ $			-		
	\wedge /	24 x24	24 x24	24 x24	24"x24"	24*x24
	X	47711 ±40018	4#11 #4@18	4711 ±40018*	4#11 #40018*	4#11 #40918
NINTH FLOOR	\lor	Preio.	11010	11010	11010	11010
	\setminus \angle	24*x24*	24*x24*	24 x24	24"x24"	24*x24
	X	4#11 Kaonat	4#11 Kreat/*	4#11	4#11	4#11
EGHTH FLOOR	$ \land \rangle$	#4®18	#4®18	# 4618	#40918	#4 9 18
	$\langle \rangle$	24*x24*	24*x24*	24 x24	24"x24"	24*x24
	\sim	4 # 11	4#11	4 # 11	8 # 11	4#11
	$ \land $	#4®18	#4®18"	#4@18"	#4 0 18"	#4 0 18
JEVENIII LEXXX	\longleftrightarrow	24*+24*	24*-24*	24"v24"	24 24	24**24
	\sim	4#11	4#11	4#11	8#11	4#11
	$ \land $	#4918	#4918 [*]	#4@18*	#4018"	#40918
SIXTH FLOOR	\longleftrightarrow	out out	out out	20.00		o.* o.
	\sim	24 x24 4#11	24 x24 4#11	24 x24 4#11	24 x24 12#11	24 x24 4#11
		#4918	#4®18	#4018	#4018	#4 0 18
PERTH FLOOR				-		
0	\wedge /	24*x24*	24 x24	24 x24	24"x24"	24*x24
		47711 #40918	4711 #4@18	4711 #4018	12#11 #4@18*	4711 #40918
FOURTH FLOOR	\lor	11010	11010	11010	1.0.0	11010
	\setminus /	24*x24*	24*x24*	24 x24	24"x24"	24*x24
	X	4#11 Kanak	4 / 11 Key/*	4#11 Maxet	12#11	8#11
THIRD FLOOR	$ \land \setminus$	1 +1810	44810	79910	₩40010	#+#10
	24*x24*	24*x24*	24*x24*	24 x24	26"x26"	24*x24
	4#11	4#11	4 / 11	8#11	16#11	8 # 11
SECOND FLOOR	#4918"	#4918"	#4918"	#4@18"	#40918"	#40918
SECOND TECON	24*x24*	24*x24*	24*x24*	24"x24"	25 x26	24*x24
	4#11	8#11	8#11	8#11	16#11	12#11
DOT DOD	#4®18	#4®18	#4@18	#4@18*	#4018°	#4 9 18
FIRST FLOOR	21.21	21-21	24*-24*	26-26	28"28"	21-21
	2+ x2+ 4#11	24 X24 8#11	24 x24 8#11	24 X24 12#11	20 x28 20#11	24 x24 12#11
	#4918	#4@18*	#4@18	#4@18	#4018°	#4 9 18
GROUND FLOOR	,	,				
	\wedge /	\mathbb{N}	24 x24 12 11	\mathbb{N}	30"x30"	26"x26
BASEVENT FLOOR		X	#4@18 [*]	X.	#4018"	#40918
> TOP OF FOUNDATION	$ \land \rangle$	$ \langle \rangle \rangle$		\lor		

Figure 5: Partial Column Schedule

Structural Concepts/Existing Conditions

Floor System

The floor system for this patient tower is a 9.5" 2-way flat plate. For the ground floor through the 4th floor the slab is 5000 psi concrete with the remaining floors at 4000 psi concrete. The largest span for this flat plate is 29' in each direction with square bays. The flat plate system has both top and bottom steel reinforcing. The top steel placed at regions of negative moment is typical notated with a number of #5 bars. The bottom reinforcing is a 2-way mat of #5 bars at 12" on center. In the end bays of the slab there are extra bottom bars added to handle the carry over moments for the interior span. On the 5th floor of the tower is the mechanical level, which increases the loading on the slab giving it a 10.5" concrete slab. See figure 7 below for details.

Roof System

The roof system for the patient tower is designed with the same conditions at a typical floor, a 9.5" Twoway flat plate with mat and bar reinforcing detailed in the above section. The roof does have a few variations from a typical floor; the roof area that will support the mechanical penthouse has been increased to a 14" slab to support the extra weight of the equipment and there were supports added to the main slab to support the new helipad (Figure 8) for the tower.

Lateral System

The lateral system in the new patient tower consists of seven 12" reinforced concrete shear walls. These walls are located in different locations throughout the building depicted to the right. The shear walls consisted of 5000 psi concrete and were run continuously through the tower from the foundations up to the roof with the northern core extending through the penthouse. This system of two shear wall cores resists lateral loads in both the north-south and east-west direction based on the orientation of the wall.

Design & Code Review

Design Codes and References

- International Building Code 2006 "International Code Council".
- ASCE 7 05 "Minimum Design loads for Buildings and Other Structures" American Society of

Civil Engineers.

- ACI 318-05 "Building Code Requirements for Structural Concrete" American Concrete Institute.
- ACI Manual of Concrete Practice.
- AISC "Manual of Steel Construction Allowable Stress Design".

Thesis Codes and References

- International Building Code 2006 "International Code Council".
- ASCE 7 10 "Minimum Design loads for Buildings and Other Structures" American Society of Civil Engineers.
- ACI 318-08 "Building Code Requirements for Structural Concrete" American Concrete Institute.

Deflection Criteria

Floor Deflection Criteria

Typical Live load Deflection limited to L/360

Typical Total load Deflection limited to L/240

Material Specifications

Materials	Grade	Strength		
Concrete				
Piles	-	f′ _c = 4,000 psi		
 Foundations 	-	f′ _c = 3,000 psi		
 Slab-on-grade 	-	f' _c = 3,500 psi		
 Shear Walls 	-	f′ _c = 5,000 psi		
Columns	-	f′ _c = 5,000/7,000 psi		
 Floor Slabs 	-	f' _c = 4,000/5,000 psi		
W Flange Shapes	ASTM A992	F _y = 65,000 psi		
HSS Round	ASTM A53 grade B	F _y = 35,000 psi		
HSS Rectangular	ASTM A500 grade B	F _y = 46,000 psi		
Reinforcing bars	ASTM 615 grade 60	F _y = 60,000 psi		
Steel Decking	ASRM A653 SS Grade 33	F _y = 33,000 psi		

Table 1: Material Specifications

Gravity Loads

Loads for the Patient Tower were calculated from IBC 2006 in Reference with ASCE 7 -05. Loads are displayed below.

Dead Loads

Occupancy	Design Loads
Normal Weight Concrete	150 psf
MEP Equipment	15 psf
Superimposed	20 psf

Table 2: Dead Loads

Live Loads

Occupa	ancy	ASCE 7 – 10 Loads				
Corrido	ors First floor	100 psf				
Hospita	als					
•	Operating Rooms, Laboratories	60 psf				
•	Patient Rooms	40 psf				
•	Corridors above 1 st floor	80 psf				
Helipad	ds	60 psf				
Lobby		100 psf				
Roof w	rith Garden	100 psf				

Table 3: Live Loads

Structural Concepts/Existing Conditions

Matthew R Peyton

Snow Loads

 $p_f = 0.7C_eC_tI_sp_g$

Factor	Value
Exposure Factor C _e	0.9
Thermal Factor C _t	1.0
Importance Factor Is	1.10
Ground Snow Loads pg	25 psf
Flat Roof Snow Load p _f	17.3 psf ≈ 20 psf

Table 4: Snow Loads

Design Considerations

In order to have a complete investigation for the floor systems explored in this report, a set of comparison criteria has been established.

Structural	Architectural	Construction	Serviceability
System Weight	System Depth	Constructability	Deflection
Lateral system impact	Floor plan adjustments	Cost	
Foundations impacts			
Fire Protection			

Each of these factors will be discussed in terms of each system design and compared to see if how each system stacks up against the others. Each of these systems was designed using a typical 3 bay x 3 bays section of the towers floor plan.

A large consideration was taken in to account during the design of these floor systems to keep the floors elevations aligned with those of the existing patient tower. During the design of the alternate floor systems a ceiling cavity of 28" from the top of the slab to the bottom of the ceiling was considered to be the maximum allowable spaced used. Within the ceiling cavity there must also be a cavity maintained for the mechanical system. Each system was able to be designed to fit with in the 28" cavity but there were varying amounts of space left for mechanical system.

A wide range of materials and systems were investigated during this assignment. These systems were chosen with a basic idea of their strength and constructability but upon farther investigation strengths and weaknesses for all of the system became more apparent.

Floor Systems

Two-Way Reinforced Flat Plate - Existing

The Existing Two-way reinforced slab was designed to be 9.5"in depth with 6" drop panel around the columns. This system is mildly reinforced with 60k steel rebar. This system was chosen because of the 29'x29' square bays that are used in the floor plan design of the tower which are ideal for a two-way slab. With the two-way slab the total depth is kept to a minimum giving a lot of room for the mechanical systems to be placed in the ceiling cavity. The slab is reinforced with #5 each way bottom mat with spacing @12" O.C. with extra #8 bars in the end spans to support carry over and end span moment s. Top reinforcing is located perpendicular over column lines in both directions and at the end of slab where column are connected. The top bars are #5 and #6 bars with varies spacing depending on the locations and the forces at that location. Detailed layout of a slab section is showed below in Figure #9. Calculations for this system can be found in Appendix II.

W- Flange Beams with Composite Metal Deck

This system was designed using the Vulcraft steel Deck design guide (figure 10) and AISC steel manual. For the typical bay size of 29' x29' a 3" normal weight concrete on 3" on Vulcraft 3VLI Composite deck. Since a 3" normal weight concrete deck does not meet the 2 hour fire rating a fire proofing will need to be applied. The composite deck spans 9'-4" perpendicular to the supporting wide flange beam and parallel to the wide flange girders. The Composite deck 3VLI 18Ga. was found to support 238psf at a span of 9'-6" which is more than adequate to carry the load required. The beams were designed using the AISC Steel manual it was found that a beam size of W10x26 with 30 0.75" shear studs would be adequate to carry the loads needed. A camber of 0.75" is needed in order for the beams to handle the wet concrete deflection in this composite design. For the Girder the same protocols and design criteria were used as in the beam design giving a girder size of W16x45 with 34 shear studs with a diameter of 0.75". In order to keep the floor to floor height at the same level as the existing patient tower there were design decision make accordingly to maintain a proper floor to ceiling height in the new tower.

3 VLI

Maximum Sheet Length 42'-0 Extra Charge for Lengths Under 6'-0 ICBO Approved (No. 3415)

Interlocking side lap is not drawn to show actual detail.

	Design	Deck		Section F				
Deck	Thickness	Weight	I _p	S _p	l _n	Sn	Va	Fv
Туре	in	psf	in ⁴ /ft	in ³ /ft	in ⁴ /ft	in ³ /ft	bs/ft	ksi
3VLI22	0.0295	1.77	0.730	0.414	0.729	0.426	1528	50
3VL 20	0.0358	2,14	0,920	0.534	0,919	0.551	2698	50
3VLI19	0.0418	2.50	1.104	0.654	1.102	0.676	3678	50
3VL18	0.0474	2.84	1,254	0,770	1,252	0.797	4729	50
3VLI16	0.0598	3.58	1.580	1.013	1.580	1.013	5309	40

STEEL SECTION PROPERTIES

(N=9.35) NORMAL WEIGHT CONCRETE (145 PCF)

TOTAL SDI Max. Unshored				Superimposed Live Load, PSF															
SLAB	DECK		Clear Span	1							Clea	r Span (f	tin.)						
DEPTH	TYPE	1 SPAN	2 SPAN	3 SPAN	7'-0	7'-6	8'-0	8'-6	9'-0	9'-6	10'-0	10'-6	11'-0	11'-6	12'-0	12'-6	13'-0	13'-6	14'-0
	3VLI22	9'-2	10'-7	11'-8	216	195	1 7 6	161	148	109	99	90	83	76	70	64	59	54	50
5.00	3VLI20	10'-8	12'-11	13'-4	241	216	196	178	163	150	139	129	93	85	78	72	66	61	57
(t=2.00)	3VL[19	12'-0	14'-4	14'-7	265	237	214	194	178	163	151	140	131	122	115	79	73	67	62
45 PSF	3VLI18	12'-10	15'-1	15'-1	289	261	238	218	201	186	173	161	151	142	134	127	92	86	80
	3VLI16	13'-5	15'-7	15'-11	327	294	267	243	223	206	191	178	167	156	147	139	132	96	89
	3VL 22	8'-9	9'-8	10'-11	247	222	201	184	137	124	113	103	94	87	80	73	67	62	57
5.50	3VLI20	10'-1	12'-4	12'-9	275	247	223	203	186	171	159	116	106	97	89	82	76	70	65
(t=2.50)	3VLI19	11'-4	13'-8	14'-2	302	270	244	222	203	186	172	160	149	10 7	98	90	83	77	71
51 PSF	3VLI18	12'-5	14'-7	14'-7	330	298	271	248	229	212	19 7	184	173	162	153	112	105	98	92
	3VL 16	12'-9	14'-11	15'-5	373	335	304	277	255	235	218	203	190	178	168	159	117	109	102
	3VLI22	8'-4	8'-10	10'-1	277	249	226	171	154	140	127	116	106	97	89	82	76	70	65
6.00	3VLI20	9'-8	11'-10	12'-3	309	277	250	228	209	193	143	130	119	109	100	92	85	79	73
(t=3.00)	3VLI19	10'-10	13'-2	13'-7	339	304	274	249	227	209	193	179	131	120	110	102	94	87	80
57 PSF	3VLI18	11'-10	14'-2	14'-2	370	334	304	279	25 7	238	221	207	194	182	136	126	118	110	103
	3VLI16	12'-2	14'-4	14'-10	400	376	341	311	286	204	245	228	213	200	189	141	132	123	115
	25/1122	010	01.2	014	207	077	251	100	171	166	444	100	140	100	00	01	0.4	70	70

In figure 11 the beam and girder layout and sizing can be seen. Calculations for this system can be found in Appendix III.

			r	W10 x 26	т	W10 x 26	т	W10 x 26	т								
29.0		W16 x 45	W16 x 45	W1	W1	W1	W1	1 W	W1	W1	9_33'	W10 x 26	W1	W10 x 26	- W1	W10 x 26	
	00'			9.33'	W10 x 26	6 x 45	W10 x 26	6 x 45	W10 x 26	6 x 45							
				9_33'	W10 x 26		W10 x 26		W10 x 26								
				W10 x 26		W10 x 26		W10 x 26									
29	00'	W16 x 45	W16 x 45	W16 x 45		W10 x 26	W16 x 45	W10 x 26	W16 x 45	W10 x 26	W16 x 45						
			[W10 x 26	I	W10 x 26	t	W10 x 26	I								
				W10 x 26		W10 x 26		W10 x 26									
29	.00'	W16 x 45		W10 x 26	W16 x 45	W10 x 26	W16 x 45	W10 x 26	W16 x 45								
		-	-	W10 x 26		W10 x 26		W10 x 26									
		-	-			-29.00'	+	-29.00'									

Figure 11: Composite deck system layout

Open Web Steel Joist with Non-composite Metal Deck

This System was designed using the Vulcraft non-composite deck tables (figure 12) and the Long Span steel joists LH-series tables (figure 13). A 3.5" light weight concrete topping was selected to be placed on the 1.3C24 deck which will give the system a 2 hour fire rating. The deck is supported by 20LH06 Vulcraft open web joists spaced at 4'-10" O.C. The Long span joists are 20 inches deep each carrying 1018 lb/ft which is adequate with still keeping the total floor system thickness below the necessary 28" to maintain proper floor alignment with the existing tower. The girders for this system were designed to be wide flange W21x101. This girder size is adequate to carry all of the loads need for the system but since the design needed to stay within the given 28" ceiling to floor cavity there were some economic sacrifices made in this design. Calculations for this system can be found in Appendix IV.

SLAB INFORMATION

Total Slab	Theo. Cond	rete Volume	Recommended
Depth, in.	Yd ³ / 100 ft ²	ft ³ / ft ²	Welded Wire Fabric
3.3	0.82	0.221	6x6 - W1.4xW1.4
3.8	0.97	0.263	6x6 W1.4xW1.4
4.3	1.13	0.304	6x6 W1.4xW1.4
4.55	1.20	0.325	6x6 - W1.4xW1.4
4.8	1.28	0.346	6x6 W2.1xW2.1
5.3	1.44	0.388	6x6 - W2.1xW2.1
5.55	1,51	0.408	6x6 - W2 1xW2 1
5.8	1.59	0.429	6x6 - W2.1xW2.1

	Design	Deck						
Деск Туре	Thickness	Weight	l _p	l _n	Sp	Sn	Va	Fy
	in.	psf	in ⁴ /ft	in ⁴ /ft	in ³ /ft	in ³ /ft	lbs/ft	ksi
1.3C26	0.0179	0.99	0.070	0.069	0.097	0.098	1940	60
1.3C24	0.0239	1,33	0.093	0.093	0.132	0.132	3458	60
1.3C22	0.0295	1.62	0.115	0.115	0.163	0.162	4789	60
1.3C20	0.0358	1.97	0.140	0.140	0.197	0.197	5727	60

SECTION PROPERTIES

ALLOWABLE UNIFORM LOAD (PSF)

TYPE	NO. OF	DESIGN		CLEAR SPAN (ft-in)											
NO.	SPANS	CRITERIA	4-0	4-6	5-0	5-6	6-0	6-6	7-0	7-6	8-0	8-6	9-0	9-6	10-0
		Fb = 36,000	145	115	93	77	65	55	47	41	36	32	29	26	23
	1	Defl. = I/240	72	50	37	28	21	17	13	11	9	7	6	5	5
		Defl. = I/180	96	67	49	37	28	22	18	15	12	10	8	7	6
		Fb = 36,000	144	114	93	77	65	55	48	42	37	32	29	26	23
1.3C26	2	Defl. = I/240	172	121	88	66	51	40	32	26	21	18	15	13	11
		Defl. = I/180	229	161	117	88	68	53	43	35	29	24	20	17	15
		Fb = 36,000	179	142	115	96	81	69	59	52	46	40	36	32	29
	3	Defl. = I/240	134	94	69	52	40	31	25	20	17	14	12	10	9
		Defl. = I/180	179	126	92	69	53	42	33	27	22	19	16	13	11
		Fb = 36,000	198	156	126	105	88	75	65	56	49	44	39	35	32
	1	Defl. = I/240	95	67	49	37	28	22	18	14	12	10	8	7	6
		Defl. = I/180	127	89	65	49	38	30	24	19	16	13	11	9	8
		Fb = 36,000	196	155	126	104	87	75	64	56	49	44	39	35	32
1.3C24	2	Defl. = I/240	230	161	118	88	68	54	43	35	29	24	20	17	15
		Defl. = I/180	306	215	157	118	91	71	57	46	38	32	27	23	20
		Fb = 36,000	243	193	157	130	109	93	80	70	62	55	49	44	39
	3	Defl. = I/240	180	126	92	69	53	42	34	27	22	19	16	13	12
		Defl. = I/180	240	168	123	92	71	56	45	36	30	25	21	18	15
		Fb = 36,000	244	193	156	129	108	92	80	69	61	54	48	43	39

Structural Concepts/Existing Conditions

Matthew R Peyton

	STANDARD LOAD TABLE FOR LONGSPAN STEEL JOISTS, LH-SERIES Based on a 50 ksi Maximum Yield Strength - Loads Shown in Pounds per Linear Foot (plf)																			
Jo Desig	oist gnation	Approx. Wt in Lbs. Per Linear Ft (Joists only)	Depth in inches	SAFE LOAD* in Lbs. Between 21-24	25	CLEAR SPAN IN FEET														
18	H02	10	18	18000	702	663	627	586	550	517	486	459	433	409	388	367				
					313	284	259	234	212	193	175	160	147	135	124	114				
18L	_H03	11	18	19950	781	739	700	657	613	573	538	505	475	448	424	400				
					348	317	289	262	236	213	194	177	161	148	136	124				
18L	_H04	12	18	23250	906	856	802	750	703	660	619	582	547	516	487	462				
					403	367	329	296	266	242	219	200	182	167	153	141				
18L	_H05	15	18	26250	1026	972	921	871	814	762	714	672	631	595	562	532				
4.01	1.10.0	45	10	04050	454	414	378	345	311	282	256	233	212	195	179	164				
181	_H06	15	18	31050	1213	1123	1044	972	907	849	796	748	705	664	627 105	190				
10	L07	17	10	20050	1260	409	419	1090	1017	052	200	254	790	744	702	666				
101	/	17	10	32250	553	513	476	428	386	349	317	288	264	241	222	204				
18	H08	19	18	33600	1314	1264	1218	1176	1137	1075	1020	961	906	856	810	768				
101		10	10	00000	577	534	496	462	427	387	351	320	292	267	246	226				
18L	_H09	21	18	36000	1404	1351	1302	1257	1215	1174	1138	1069	1006	949	897	849				
					616	571	527	491	458	418	380	346	316	289	266	245				
				22-24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
20L	_H02	10	20	16950	663	655	646	615	582	547	516	487	460	436	412	393	373	355	337	322
					306	303	298	274	250	228	208	190	174	160	147	136	126	117	108	101
20L	_H03	11	20	18000	703	694	687	678	651	621	592	558	528	499	474	448	424	403	382	364
	110.4	10		00050	337	333	317	302	280	258	238	218	200	184	169	156	143	133	123	114
201	_H04	12	20	22050	861	849	837	792	744	700	660	624	589	558	529	502	477	454	433	412
201	H05	14	20	23700	428	406	386	802	320	291	265	726	697	205	616	595	556	520	504	129
201		14	20	23700	924 459	437	416	395	366	337	308	281	258	238	219	202	187	173	161	150
201	H06	15	20	31650	1233	1186	1144	1084	1018	952	894	840	790	745	703	666	631	598	568	541
201		10	20	01000	606	561	521	477	427	386	351	320	292	267	246	226	209	192	178	165
201	_H07	17	20	33750	1317	1267	1221	1179	1140	1066	1000	940	885	834	789	745	706	670	637	606
					647	599	556	518	484	438	398	362	331	303	278	256	236	218	202	187
20L	_H08	19	20	34800	1362	1309	1263	1219	1177	1140	1083	1030	981	931	882	837	795	754	718	685
					669	619	575	536	500	468	428	395	365	336	309	285	262	242	225	209
20L	_H09	21	20	38100	1485	1429	1377	1329	1284	1242	1203	1167	1132	1068	1009	954	904	858	816	775
0.01	14.0			11100	729	675	626	581	542	507	475	437	399	366	336	309	285	264	244	227
20L	_H10	23	20	41100	1602	1542	1486	1434	1386	1341	1297	1258	1221	1186	1122	1060	1005	954	906	862
					786	724	673	626	585	545	510	479	448	411	377	346	320	296	274	254

Figure 13: Open Web Joists Charts

Structural Concepts/Existing Conditions

Matthew R Peyton

			20LH06	т_	20LH06	т	20LH06	т			
		4.83'	20LH06	†	20LH06	†	20LH06	Ť			
	_	4.83'	20LH06		20LH06		20LH06				
29,00'	W21 x	4.83'	20LH06	W21 x	20LH06	W21 x	20LH06	W21 3			
	: 101	4.83'	20LH06	(101	20LH06	(101	20LH06	(101			
		4.83'	20LH06		20LH06		20LH06				
		4.83'	20LH06	<u>+</u>	20LH06	<u>+</u>	20LH06				
	Ī	-	20LH06		20LH06	Ī	20LH06	Ī			
	_	20LH06		20LH06		20LH06					
29.00'	N21 x		20LH06	N21 *	20LH06	N21 *	20LH06	N21 *			
	101	20LH06		101	20LH06	101	20LH06	101			
		20LH06		20LH06		20LH06					
			20LH06	<u>+</u>	20LH06	$-\pm$	20LH06	ł			
			20LH06	[20LH06		20LH06	[
	_	20LH0			20LH06		20LH06	<			
29.00'	W21 x 101	W21 x 101	W21 >	W21 >	20LH06		V21 *	20LH06	V21 *	20LH06	V21 *
			20LH06	101	20LH06	101	20LH06	101			
		20LH06		_	20LH06		20LH06				
			20LH06	Į_	20LH06		20LH06				
					-29.00		29.00'				

Figure 14: Open web joist system layout

One-Way Slab and Beam

This system consists of a concrete slab and beams, with the tower having square bays both the slab and the beams will span a length of 29'. The beams will be designed in the North-South direction while the slab will span in the east-west direction. The slab thickness was designed using ACI design table 9.5(a) from this table it was determined that a 12.5" slab was needed to support the loads. The slab is reinforced on the top and bottom with a #6 bar @ 12" O.C. From the ACI design table 9.5(a) the beam height was also designed to be 18" and a width of 24". The beams for this system require a minimum of 10 #8 rebar to support the loads and control deflection for this system. With the depth and cover of this system there is no need to provide extra fire protection. Calculations for this system can be found in Appendix V.

Figure 15: Open web joist system layout

Floor System Comparison

Structural

The floor system has a significant impact on the lateral force resisting system of a building. Since the existing system is a cast in place concrete system the lateral system shear walls are also cast in place concrete allowing the use of the same lateral force resisting for another concrete system. With the one-way concrete slab and beam system the design of the existing lateral system would be suitable to resist the load. With the beams in the one way system there will be an internal moment connection in the North –South direction so there maybe the ability to remove some of the shear walls from the existing design for the direction.

The composite deck and the open web joist systems will require significant changes to the lateral system. Since the frame type is changing from concrete to steel the lateral system would also need to be redesigned for these systems. With the use of a steel gravity system it would likely to use steel bracing to act as the lateral force resisting system.

The current concrete floor system as well as the alternate concrete system is heavier system then the other two alternate composite steel systems making the building stiffer and able to resist wind forces more easily.

With the composite steel alternate systems the building will decrease in weight of the structure and allow the foundations to intern be decreases. The number of piles per column would be able to be decreases as well as the size of the grade beams.

An advantage of the concrete systems is that they will not need to have fireproofing applied. Both of the composite systems will need to have an applied fireproofing in order for them to reach the required two hour rating that a concrete system has naturally.

Seismic considerations must also be considered. From Tech Report #1 it was determined that seismic loads controlled in the North - South lateral design. If the concrete system is switched out for a composite system the seismic load will be decreased and might lead to the wind load controlling in both directions.

Architectural

Each of the floor systems was designed for a 29' x29' bay but a square bay is more efficient for some systems then other. The existing two-way flat slab is ideal for square bays with the higher load that we are working with. The alternative composite deck and beam is also a good design when spanning a square with normal column layout. For both the open web joist and the one way concrete system the design is capable of spanning the square bays but the systems could be made more efficient by shorting the bays in one direction to make the more rectangular. The girder supporting the open web joists has to support a large deflection force; with a shorter span you would be able to decrease that member size.

The column size of 24" x 24" for the existing system as well as the one-way alternative is a considerable size in comparison to the estimated size of a steel column to support the other two alternative systems. To support alterative systems two and three the column would range from a W14 to a W18 which would give up to 10 inches of space for expansion of walls.

Another significant architectural consideration is the depth of the floor system. Special considerations for this were taken in to account during the design of these alternate systems. Since the New patient tower will be meeting with an existing tower the floor to floor heights need to remain at the current design level. The existing system has a total depth of 15.5 inches under the drop panels with a slab depth of only 9.5". The Composite beam and the one way slab and beam have a total depth of 22" and 18" respectively. Both of these systems leave space for mechanical equipment without increasing the total height of the building but these cavities would be a challenging space for the designers of those systems. The open web joist system has a total depth of 25.8" which occupies all but 2.2" of the ceiling cavity. The advantage to the open web joist system is that the mechanical equipment will be able to run though the web of these members. If special consideration during the design was not taken for the systems the elevations of the new patient tower would not match the levels of the existing tower.

Construction

The easiest of the floor systems to build is the composite metal deck because the deck acts at the formwork that there is no shoring needed unlike conventional concrete systems. The Open web joist has similar conditions to the composite beam and deck with easy construction due no formwork or shoring. The existing concrete two-way slab and the alternative one-way slab with beams will both need to be formed and shored which is a very labor intensive and slow process. Concrete does have a shorter lead time compared to steel and concrete can also be delivered as needed allowing less area for shake out.

Constructability doesn't necessarily equate to lower system cost. The least expensive floor system between the alternates and the existing system is the two-way flat slab at \$17/SF. The most easily constructible of the floor systems the composite deck and beam system is at a cost of \$19/SF. These calculations can be seen in Appendix VI.

Serviceability

With the need of each floor system to stay with in the 28" ceiling cavity and maintain space for the mechanical system the deflection criteria was something that need to be monitored. With the design of the alternate system as member were designed to support the deflection member tended to grow much larger in weight to compensate for the inability to make the system deeper. The Open web system girders were designed to be W21-101 to support the live load deflection the weight on this girder was need due to the inability for the girder to be a deeper member that would have supported the load more efficiently. The Composite deck system also had to use a specialty design to support the total load on the system. The beams of the composite deck system were designed with .75" of camber to support the total load deflection.

Design Comparison

Floor Systems	Two -way flat slab	Composite Beam	Open web Joist	One-way slab with beams
Lateral Impacts	None	Braced frame in building core with moment connections if needed	Braced frame in building core with moment connections if needed	Existing lateral system design should be sufficient.
Weight	120 psf	62 psf	47 psf	173 psf
Foundation Impacts	None	Lower total building weight	Lower total building weight	Existing piles and footing design is sufficient
Fire Protection	No Fireproofing	Fireproof girders, beams and slab to achieve 2 hour rating	Fireproof joists and girder to achieve 2 hour rating	No Fireproofing
Depth	9.5″	6″	4.8″	12.5″
Total Depth	9.5"-15.5"	22"	25.8″	18″
Floor Plan Impact	None	None	Would a more suitable system for a rectangular bay	Needs short bays to decrease slab thickness
Constructability	Labor intensive formwork with longer time to strength	Faster construction with quick to strength	Faster construction with quick to strength	Labor intensive formwork with longer time to strength
Cost	\$17/sf	\$19/sf	\$20/sf	\$18/sf
Deflection	No issues	Beam camper was needed to resist total load deflection	High girder weight to resist total load deflection	No issues
Viable Alternative	Existing	Yes, no need to rearrange the floor plan and will decrease total building weight.	No, System does not yield enough ceiling cavity for the mechanical system	No, there is an increase in concrete and no other benefits compared to the existing system.

Table 5: System Comparison

Technical Report #2 Structural Concepts/Existing Conditions

Matthew R Peyton

Appendix I

This section of Technical Report #1 is where the supplementary information for the layout and design for the Hospital Patient Tower can be found.

Structural Concepts/Existing Conditions

North Ground Floor Plan

Structural Concepts/Existing Conditions

Structural Concepts/Existing Conditions

Matthew R Peyton

South Typical Floor Plan

Technical Report #2 Structural Concepts/Existing Conditions

Matthew R Peyton

Appendix II

This section of Technical Report #2 is where the supplementary information for analysis of the existing Two-way flat slab designed using SPbeam

Structural Concepts/Existing Conditions

Structural Concepts/Existing Conditions

Technical Report #2 Structural Concepts/Existing Conditions

Matthew R Peyton

This section of Technical Report #2 is where the supplementary information for Alternate system #1, Composite Deck with Beam for the Hospital Patient Tower can be found.

Structural Concepts/Existing Conditions

Patient Tower Tech Report # 2 System # 1 % Alternative Floor # 1 W-Flange Beams, with composite Metal Deck Slab and Normal weight concrete Typical Floor Slab - 3" NW concrete on 3" composite Steel deck -Vuleraft catalog - 3VLI with 3" topping - Max Unshorded span > 9:4" A. = 280.3' Dead Load = 57 pof (from Valerafi) 15prf MEP/STOL Total Dead = 72 pot Live Loud + 60pel + 20pet partiens = 80 pet LL = 71 pef LLeed = 80 + 0.5 + 15 + 0.884 Wu = 1.2 DL + 161L -29-= 1.2(72) + 1.4(71) 9.9 = 200 psf 29 9'.4" U.S.C. 31/17 @ 9-6" span 251 pet 7 200 psf /or 14: 7" > 9'-4" / OK

Structural Concepts/Existing Conditions

Tech Report # 2 System #1 Patient Tower
$$\frac{\pi}{4}$$

Beam Design
 $\frac{1}{4!\sqrt{4}}$
 $\frac{1}{4!\sqrt{4!}}$
 $\frac{1}{4!\sqrt{4!}}$

Structural Concepts/Existing Conditions

Tech Report * 2 System * 1 Patient Tower 2
Check Unshored Strength
W 10× 26
$$\#M_p + 117K \cdot 44$$

 $W_n = 1.4(57(9.33)+20) = 0.781 K$
 $= 1.2(57(9.33)+20) = 0.781 K$
 $= 1.2(57(9.33)+20) = 102K < 117K : 0K f$
 $M_n = \frac{0.970}{2} = 102K < 117K : 0K f$
Check deflection
 $W_{11} = 71(9.33) = 0.662 K$
 $T_{18} = 491.4(Table 3-20 AISC)$
 $\Delta_{11} = 5(0.62)(29)^{41} 128$
 $384 (2000)(491) = 0.74 K = 0.966 : 0K f$
 $Mor \Delta_{11} = \frac{29(12)}{360} \cdot 0.966K$
Check Wet concrete deflection
 $W_{10c} = 57(9.33) \cdot 26 = 0.557 K^{10}$
 $\Delta_{11} = \frac{5(0.557)(9.9)^{7}(1728)}{384(2000)(491)} = 2.12 in > 1.45^{6} No cooll
 $\Delta_{12} = \frac{29(12)}{240} = 1.45 m$
 $2.12 \cdot 0.755 = 1.37^{8}1.45^{6} : 0K f$
U 10×26 U+H $\frac{3}{4}$ Camber is adquate to carry the leade
U+H 30 $\frac{3}{4}$ * stude$

Structural Concepts/Existing Conditions

This section of Technical Report #2 is where the supplementary information for Alternate system #2, Composite Deck with Beam for the Hospital Patient Tower can be found.

Structural Concepts/Existing Conditions

Tech Report #2 System #2 Patient Tower Alternative floor # 2 Open Web Steel Joist with Non-comparite Metal deck Slab + Light Weight Concrete 31/3" LWL topping for 291 2 hour fire 4'10" 4'10" Vuleraft Seck 1.3624 4.8" total with 291 4'10" 31/2" topping 4'10" 4'10" light weigh concrete 4'10" 110 pcf Max span 7:1" Dead loads = 40 psf (Vulcraft) : 15 psf SIDL total = 55.psf Live load = 60+20 psf partions = 80 psf Unreducable A. = 400 ft total load = 135 psf FL= 36,000 = 157 psf > 135 .: OK V DEFL = 1/240 = 92 pof > 80 pof .. OK / Construction span max = 7'-1" > 4'-10" :. OK /

Structural Concepts/Existing Conditions

Tech Report System #2 Patient Tower Open Web Steel Joist Wy+1 = 1.2(55) = 1.6(80) = 194 gef (4.883) = 938 14/64 + Salf Weight From Vulcroft standard LRFD Longspoor steel Joints LH-Series 20LH 04 Oepth 20" Weish 15 161/46 938 10/4+ + 1.6(15)= 962 10/4+ < 1018 1/4+ : OK / Check Deflection Um . 80 part (4.833) = 387 14/2 < 427 16/6+ (Valurant+ table) 1. OK J

Structural Concepts/Existing Conditions

A A A A A A A A A A A A A A	$s = 29' \times 29' \times 841$ $U_{0,+} = 1.2(55) + 1.2(16)$ $+ 1.6(80)$ $= 212. \text{ psf} (29)$ $= 6.1 \text{ Kif}$ $M_{0,-} = W_{0,-} \frac{2^{2}}{8}$ $= \frac{6.1(29)^{2}}{8}$ $= 641.3 \text{ Kift}$ $M_{0,-} \text{ wight}$
beff = 87" (from presous) 29' Span From table 3-2 AISC Try WI8x 86 For moment capabily + Maintaining floor to floor height	$U_{n+} = 1.2(55) + 1.2(15) + 1.2(15) + 1.2(15) + 1.6(90) = 212. perf (29) = 6.1 \text{ Kif}$ $M_{n} = W_{n} \frac{1^{2}}{8}$ $= \frac{6.1(29)^{2}}{8} + 6.$
beff = 87" (from previous) 29' Span From table 3-2 AISC Try WI8x 86 for moment capabily t Maintaining floor to floor height	= 212 pef (24) = 6.1 KIF $M_{u} = W_{u} \frac{L^{2}}{8}$ = $\frac{6.1(29)^{2}}{8}$ = 641.3 K.ft $M_{u} = 446.8er$ weight
29' Span From table 3-2 AISC Try WI8x 86 for moment capability + Maintaining floor to floor height	$M_{n} = \frac{W_{n}L^{2}}{8}$ $= \frac{G(1)(29)^{2}}{8}$ $= G(1)(3)^{2} + 6^{2}$ $M_{n} = G(1)(3)^{2} + 6^{2}$ $M_{n} = G(1)(3)^{2} + 6^{2}$
From tuble 3-2 AISC Try VI8x 86 for moment enpusity + Maintaining floor to floor height	= <u>G.1 (29)</u> ² 8 = G41.3 K.f+ Mx w/Großer weight
Try W18x 86 for moment exposity + Maintaining floor to floor height	= 641.3 K.ft Mx Warder weight
ØMp = 698 > 650.3 k-A :. OKV	= 650.3×.ft
L6 = 4,83' < 9.29' : OK /	
Check Live Loud deflection	
$\Delta_{LL} = \frac{5' \omega_{LL} L^{4} (1728)}{384 ET} \pm \frac{L}{350}$	80)(29) = 3.7 k)f
V	18×119 needed to
1 = 675 Nu L' = 2100.4 m9 Su	pport ALL I = 2140:04
Check Total Load deflection	
1/240 WnL = 6	.1 KIF
Irey = 450 We L3 =2308.5 Sup	+101 needed to port Δ+L I=2420 mª
	$L_{b} = 4.83' < 9.29' : 0 \text{ M}^{2}$ Check Live Local deflection $U_{cc} = 1.6($ $\Delta_{cc} = \frac{5}{394} \frac{L^{4}(1728)}{59485} \pm \frac{1}{360}$ $T = \frac{675}{39400} \frac{M_{cc}}{L^{4}} \pm 2100.44 \text{ m}^{4}$ Su Check Total Load deflection $\Delta_{rc} \pm \frac{1}{340}$ $U_{rc} = 6$ $I_{reg} = \frac{450}{E} \frac{M_{ec}}{L^{3}} \pm 2308.5$ U_{cc}

Technical Report #2 Structural Concepts/Existing Conditions

Matthew R Peyton

This section of Technical Report #2 is where the supplementary information for Alternate system #3, One-way concrete slab and beam system for the Hospital Patient Tower can be found.

Structural Concepts/Existing Conditions

Structural Concepts/Existing Conditions

Matthew R Peyton

Structural Concepts/Existing Conditions

Tech Report #2 System #3 Patient Tower
Check Reinforcing for Creek Centrol

$$S = 15 \left(\frac{40,000}{4_{3}}\right) = 2.5 C_{c} \in 12 \left(\frac{40000}{4_{3}}\right) = \frac{1}{5} = \frac{2}{5} f_{3}$$

 $= 40000$
 $= 12.5 \in 12$
 $S = 12^{\circ} : 0k$
Determine the Strinkoge + temp reinforce ment
 $A_{4}(stT) = 0.0018(b)(b) = 0.0018 \times (12)(12.5) = 0.27.n^{2}/64$
Mox Specing $f = 5 \times h = 62.5^{\circ}$
 $= 18^{\circ} \ll \text{ controls}$
 $A_{5} = #6 \otimes 12^{\circ} : 0k \cdot 1$

Structural Concepts/Existing Conditions

Matthew R Peyton

"CURIN

Tech Report #2 System #3 Patient Tower
Beam design

$$h = \frac{q}{21} = \frac{2q_{12}}{21} = 16.5 \approx 18^{\circ} (ACI = 4.5a)$$

$$b_{0} = 0.75 h = 13.5^{\circ}$$

$$W_{0.4} = \frac{(18 - 12.5) \times 12.5}{144} \times 150^{16} hr^{3} + 77.3 \text{ plf}$$

$$W_{0.4} = \frac{(18 - 12.5) \times 12.5}{144} \times 150^{16} hr^{3} + 77.3 \text{ plf}$$

$$W_{0.4} = \frac{(18 - 12.5) \times 12.5}{144} \times 150^{16} hr^{3} + 77.3 \text{ plf}$$

$$W_{0.4} = \frac{(18 - 12.5) \times 12.5}{144} \times 150^{16} hr^{3} + 77.3 \text{ plf}$$

$$W_{0.4} = \frac{(18 - 12.5) \times 12.5}{144} \times 150^{16} hr^{3} + 77.3 \text{ plf}$$

$$W_{0.4} = \frac{(18 - 12.5) \times 12.5}{144} \times 12.5 \times 10^{10} (0.00) = 8.455 \text{ K/A}$$

$$D_{0.4} = \frac{(18 - 12.6) \times 10.5 \times 100 \times 10.5}{(16 \times 10^{10} \times 10$$

Technical Report #2 Structural Concepts/Existing Conditions

Matthew R Peyton

This section of Technical Report #2 is where the supplementary information for the floor system cost analysis for the Hospital Patient Tower can be found.

These table values were taken from RSMeans Assemblies Cost Data manual 2011. The location factor for Virginia is 0.92 to be multiplied against the average data given.

System	Locations Factor	Material Cost (\$/SF)	Installations Cost (\$/SF)	Total Cost (\$/SF)
Two-way Slab	0.92	7.60	10.15	16.33
Composite Beam	0.92	13.70	6.65	18.72
Open Web Joists	0.92	13.90	7.40*	19.6
One-way Slab &	0.92	6.95	12.70	18.1
Beam				

*Material cost for Open web joist does not take in to account the increase weight of the girder to support the total load deflection as discussed above. This would only add to the cost of the system making it the most expensive by a larger margin