Charles E. Smith Center

Introduction

- Proposed Alterations
- Combined Heat and Power
- Energy Recovery Wheel
- Construction Management Breadth
- Conclusions
- Acknowledgements
- Questions

Center Smith Ш U Chai Wasi

DC

Project Background

Location:	Washington, DC
Cost:	\$43 M
Туре:	Athletic Arena
Size:	4 Stories
	104,000 SF
Schedule:	Construction Start- Oct 2008
	Construction Finish- Fall 2010
Delivery:	Design, Bid, Build
Owner:	George Washington University

Paul ta Jo

Me 0 C Opti 0

Introduction

- Proposed Alterations
- Combined Heat and Power
- Energy Recovery Wheel
- Construction Management Breadth
- Conclusions
- Acknowledgements
- Questions

ente Ŭ Smith Ш 5 Charle: Washir

DC

Design Objectives

- Sustainability
- ASHRAE Standards
- Quality
- Aesthetics
- Center Piece

Paul Hallo ell

Me 0 Option

Introduction

- Proposed Alterations
- Combined Heat and Power
- Energy Recovery Wheel
- Construction Management Breadth
- Conclusions
- Acknowledgements
- Questions

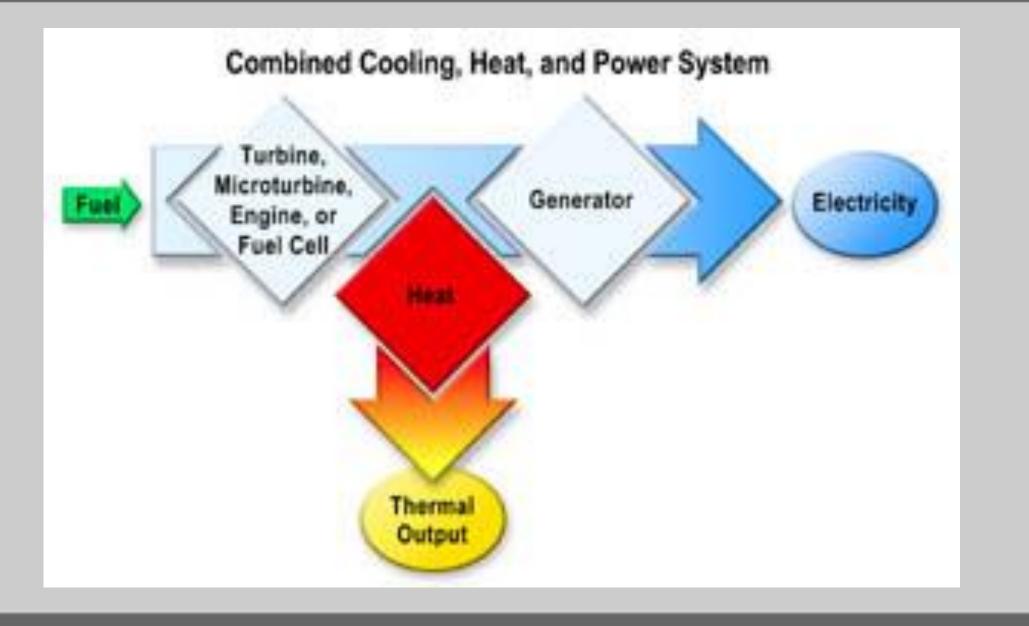
ente Ŭ Smith Ш 5 Charle: Washir

DC

Mechanical Systems

- Natatorium
- 1st Floor
- 2nd and 3rd Floors
- Arena

Paul Hallo ell


Me 0 nic Option

- Introduction
- Proposed Alterations
- Combined Heat and Power
- Energy Recovery Wheel
- Construction Management Breadth
- Conclusions
- Acknowledgements
- Questions

ente 0 Smith Ш 5 Charles Washin

DC lot

CHP

Paul

ta

lo

ell

Me

Opt

- Introduction
- Proposed Alterations
- Combined Heat and Power
- Energy Recovery Wheel
- Construction Management Breadth
- Conclusions
- Acknowledgements
- Questions

Charles E. Smith Cente

Washington, DC

Energy Recovery

Paul Hallowell

Mechanical Option

- Introduction
- Proposed Alterations
- Combined Heat and Power
- Energy Recovery Wheel
- **Construction Management** Breadth
- Conclusions
- Acknowledgements
- Questions

nte 0 C Smith 00 Ш Charles Wash

Electrical/CM Investigations

Electrical

- Effect of CHP
- **Construction Management**
- Schedule Impact
- Operations and Maintenance

Me Paul Hallo **Optio**

- Introduction
- Proposed Alterations
- **Combined Heat and Power**
- Energy Recovery Wheel
- Construction Management Breadth
- Conclusions
- Acknowledgements
- Questions

ente C Smith Ш 5 Charle: Washir

00

CHP

Objectives

- Reduce dependability on electric
- Increase facility efficiency
- Reduce overall costs

Me

0

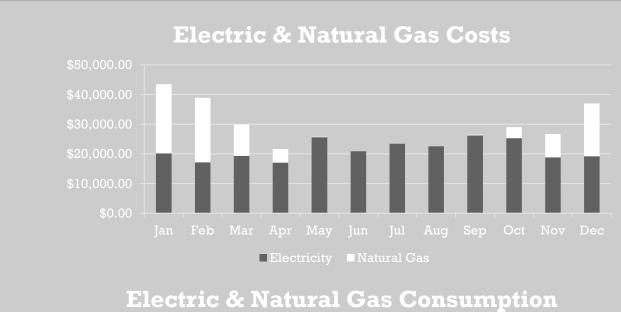
Optio

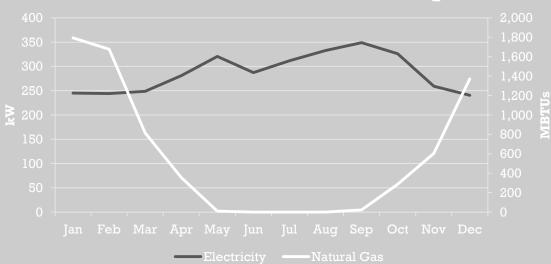
- Introduction
- **Proposed Alterations**
- **Combined Heat and Power**

nte

Smith

Ш


)e


Char

ă

sh

- Energy Recovery Wheel
- **Construction Management** Breadth
- Conclusions
- Acknowledgements
- Questions

CHP

Feasibility

- Utility Prices
- Utility Use
- Spark Gap
- Thermal/Power Ratio

Paul fallo Op

- Introduction
- Proposed Alterations
- Combined Heat and Power
- Energy Recovery Wheel
- Construction Management Breadth
- Conclusions
- Acknowledgements
- Questions

Center	
Smith	
Щ	
Charles	

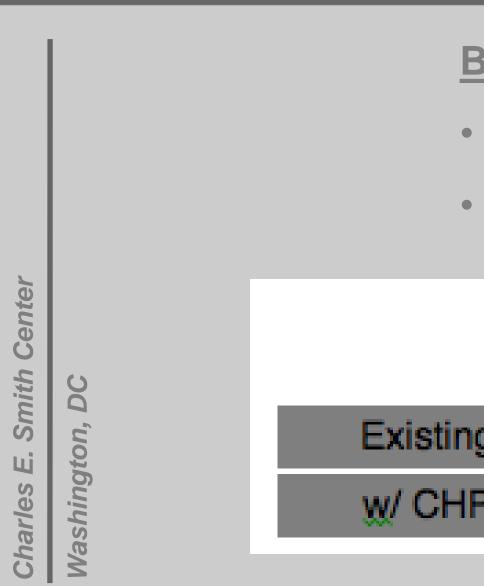
DC Washington,

Microturbine	Small number of moving parts.	High costs.	30 kW to 250
	Compact size and light weight.	Relatively low mechanical	kW
	Low emissions.	efficiency.	
	No cooling required.	Limited to lower temperature cogeneration applications.	
Spark ignition	High power efficiency with part-	High maintenance costs.	< 5 MW in
(SI)	load operational flexibility.	Limited to lower temperature	DG
reciprocating	Fast start-up.	cogeneration applications.	applications
engine	Relatively low investment cost.	Relatively high air emissions.	
Compression	Can be used in island mode	Must be cooled even if recovered	High speed
ignition (CI)	and have good load following	heat is not used.	(1,200 RPM)
reciprocating	capability.	High levels of low frequency noise.	≤4MW
engine (dual	Can be overhauled on site with		Low speed
fuel pilot	normal operators.		(102-514
ignition)	Operate on low-pressure gas.		RPM) 4-75
			MW

CHP

Prime Mover

Paul Option


0

hanical

- Introduction
- Proposed Alterations
- Combined Heat and Power
- Energy Recovery Wheel
- Construction Management Breadth
- Conclusions
- Acknowledgements
- Questions

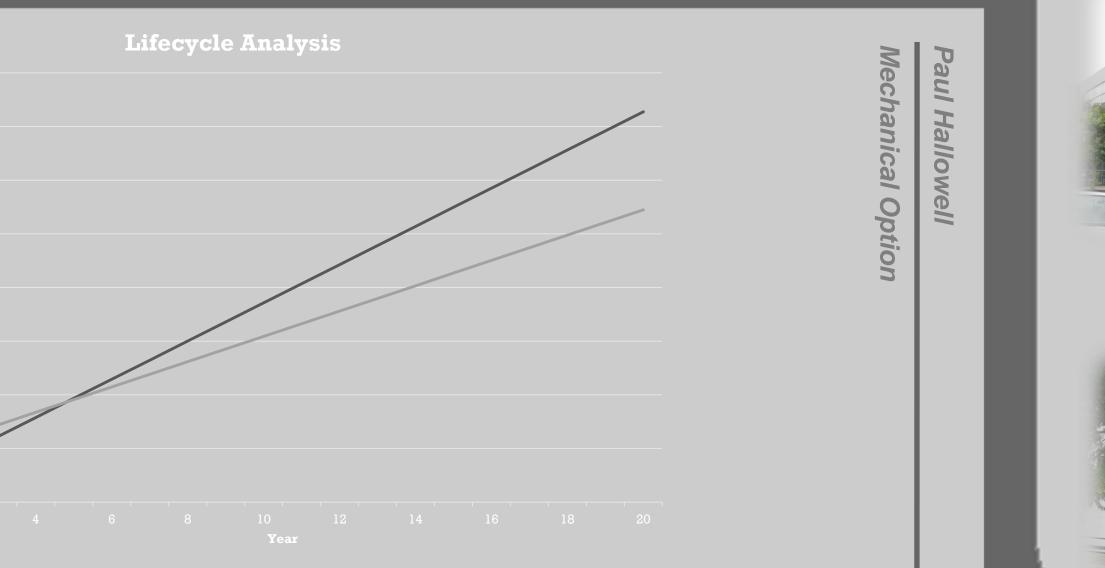
CHP

Base Cost

- Includes Boiler
- Exclude Generator

	Initial Cost	Price Difference
g	\$230,000	\$390,000
Р	\$620,000	φ 3 90,000

Paul Hallowell


Mechanical Option

- Introduction
- Proposed Alterations
- Combined Heat and Power
- Energy Recovery Wheel
- Construction Management Breadth
- Conclusions
- Acknowledgements
- Questions

CHP

—Existing —w/ CHP

- Introduction
- **Proposed Alterations**
- Combined Heat and Power
- **Energy Recovery Wheel**
- Construction Management Breadth
- Conclusions
- Acknowledgements
- Questions

nte 0 Smith Ш Charles

00 Wash

Energy Recovery

Objectives

- Reduce energy use through lost heat
- Increase facility efficiency
- Reduce overall costs

Me Paul Hallo **Optio**

0

- Introduction
- Proposed Alterations
- Combined Heat and Power
- **Energy Recovery Wheel**
- Construction Management Breadth
- Conclusions
- Acknowledgements
- Questions

ente Ŭ Smith Charles E. Sn Washington,

DC

	Capaci
AHU-4	58
AHU-5	20
AHU-6	29
AHU-7	18
Total	12

Energy Recovery

ity (CFM)

800

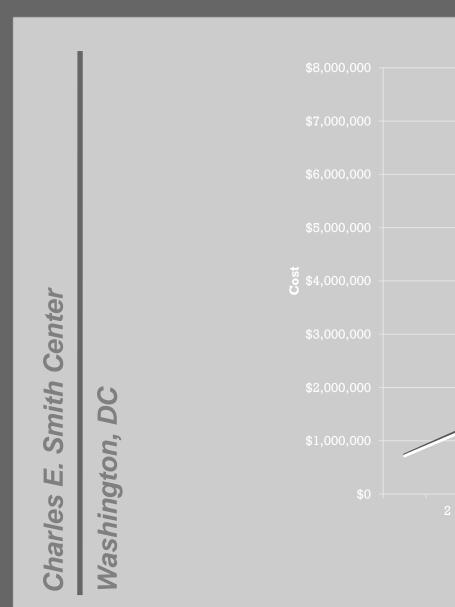
- 030
- 900
- 800
- 2530

New Air Conditioning Unit

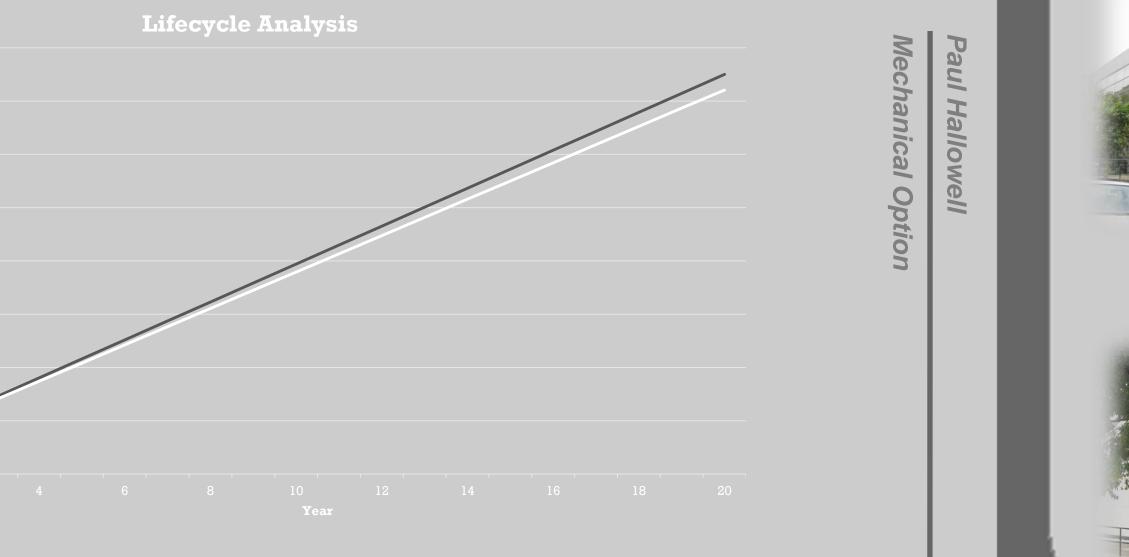
- 2nd Floor Mechanical Room
- BCs in Ceiling
- Acoustic
- Space

	P
	au
5	
5	Ha
5	20
	well
5	
2	

- Introduction
- Proposed Alterations
- Combined Heat and Power
- Energy Recovery Wheel
- Construction Management Breadth
- Conclusions
- Acknowledgements
- Questions



Energy Recovery


-----Proposed ____

- Introduction
- Proposed Alterations
- Combined Heat and Power
- Energy Recovery Wheel
- Construction Management Breadth
- Conclusions
- Acknowledgements
- Questions

Energy Recovery

- Introduction
- Proposed Alterations
- Combined Heat and Power
- Energy Recovery Wheel
- Construction
 Management Breadth
- Conclusions
- Acknowledgements
- Questions

Charles E. Smith Cente

Washington, DC

CM Considerations

Objectives

- Minimize learning curve
- Increase worker efficiency
- Reduce overall costs

Paul Hallowell

- Introduction
- Proposed Alterations
- Combined Heat and Power
- Energy Recovery Wheel
- Construction
 Management Breadth
- Conclusions
- Acknowledgements
- Questions

Charles E. Smith Center

Washington, DC

		2008 2009 Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan F														2010											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Basketball Season																											
Water Polo Season																											
																									-		
Phase I																											\square
Phase II																											
							((CHP C	onstr	ucti	on)	-															<u> </u>
Phase III																											
															(Energy Recovery Wheel Construction)												

CM Considerations

Paul Hallowell

Mechanical Option

- Introduction
- Proposed Alterations
- Combined Heat and Power
- Energy Recovery Wheel
- Construction Management Breadth
- Conclusions
- Acknowledgements
- Questions

Charles E. Smith Cente

Washington, DC

Recommendations

<u>CHP</u>

- Yearly savings of ~ \$100K
- Life cycle cost ~ \$2M
- Payback period ~ 6 yrs
- Operations and Maintenance
- Space

Mechanical Option

Paul

Hallo

- Introduction
- Proposed Alterations
- Combined Heat and Power
- Energy Recovery Wheel
- Construction Management Breadth
- Conclusions
- Acknowledgements
- Questions

Charles E. Smith Center

Washington, DC

Recommendations

Energy Recovery

- Yearly savings of ~ \$13K
- Life cycle cost ~ \$250K
- Payback period ~ Instant

Paul Hallowell

Mechanical Option

- Introduction
- Proposed Alterations
- Combined Heat and Power
- Energy Recovery Wheel
- **Construction Management** Breadth
- Conclusions
- Acknowledgements
- Questions

Acknowledgements

Special Thanks:

George Washington University

Summer Consultants, Inc

Penn State Faculty and Staff

All My Family and Friends

Paul

CARRESS & SWITH CER.

- Introduction
- Proposed Alterations
- Combined Heat and Power
- Energy Recovery Wheel
- Construction Management Breadth
- Conclusions
- Acknowledgements
- Questions

