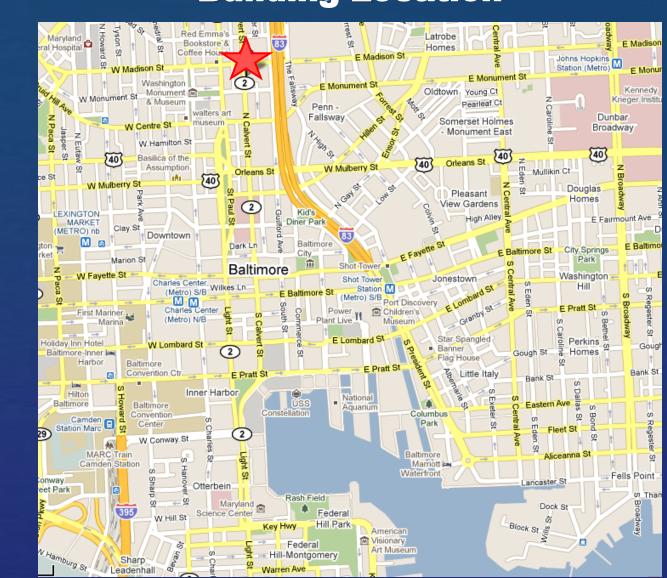


AE Senior Thesis 2011

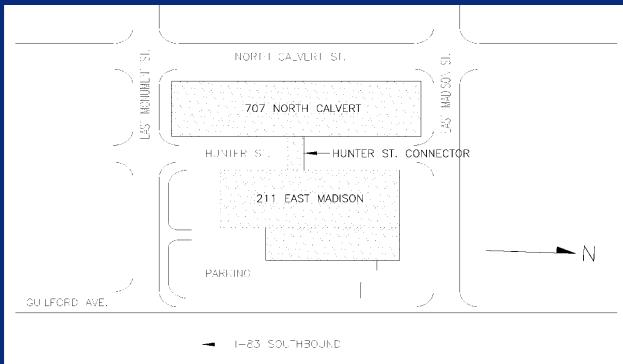
SHA Headquarters Systems Renovations Baltimore, MD

Stephanie Kunkel | Mechanical Option | Dr. Bahnfleth


Presentation Outline

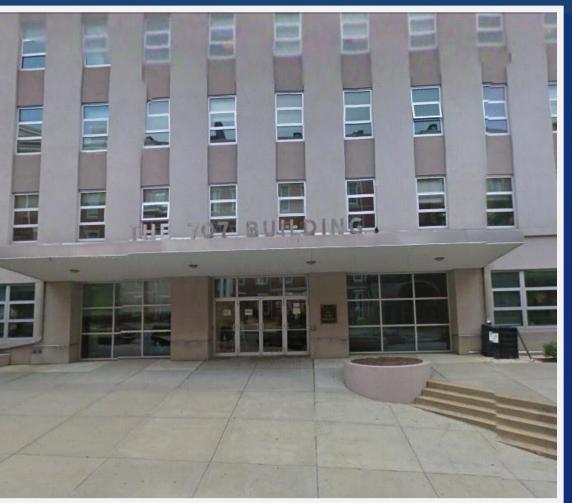
- Mechanical System Redesign Depth
 - Two-Pipe to Four-Pipe Conversion
 - Background
 - Existing Piping Analysis
 - Installation & Results
 - Chilled Beam Renovation
 - Background
 - Sizing and Selection
 - Energy Consumption and Operation Results
- Construction Management Breadth
 - Background
 - Schedule
 - Cost Estimate
 - Payback Analysis
- Conclusions and Recommendations

Presentation Outline


- Mechanical System Redesign Depth
 - Two-Pipe to Four-Pipe Conversion
 - Background
 - Existing Piping Analysis
 - Installation & Results
 - Chilled Beam Renovation
 - Background
 - Sizing and Selection
 - Energy Consumption and Operation Results
- Construction Management Breadth
 - Background
 - Schedule
 - Cost Estimate
 - Payback Analysis
- Conclusions and Recommendations

Building Location

707 North Calvert Street



General Building Information

Building Name: SHA Headquarters—707 Systems Renovations Location: Baltimore, MD Occupancy Type: Office Building Gross Building Area: 226,000 SF Total Number of Stories: 8 (including 2 below grade) State Total Renovation Cost: Approx. \$4,435,500 Dates of Renovation: 9/2010 - 5/2013Project Delivery Method: Design-Bid-Build

The 707 Building

AE Firm

Mechanical Contractor

Architect

Presentation Outline

- Mechanical System Redesign Depth
 - Two-Pipe to Four-Pipe Conversion
 - Background
 - Existing Piping Analysis
 - Installation & Results
 - Chilled Beam Renovation
 - Background
 - Sizing and Selection
 - Energy Consumption and Operation Results
- Construction Management Breadth
 - Background
 - Schedule
 - Cost Estimate
 - Payback Analysis
- Conclusions and Recommendations

Air Side

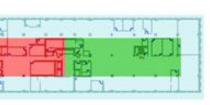
<u>AHU-S1:</u>

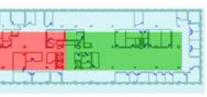
- Built-up air handler with steam preheat, filters, cooling coil, and steam reheat coil
- Constant volume
- Serves perimeter induction units on 6 office floors

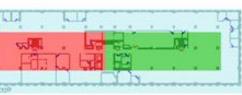
AHU-S2 & S3:

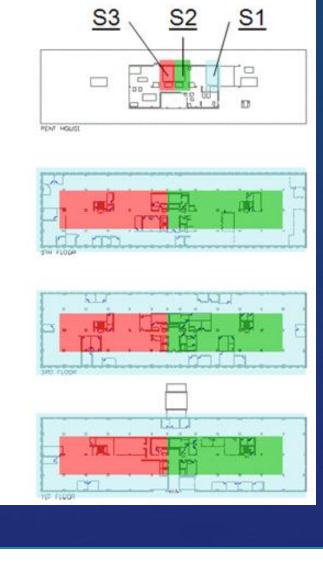
- Built-up air handler with filters and cooling coil
- Constant volume
- Serve core of 6 office floors one north, one south

Induction Units:


• (534) perimeter induction units on 6 office floors







Existing Mechanical System

Water Side

Chilled Water:

- Induced draft cooling tower

Hot Water:

• (2) gas-fired steam boilers

• Plant includes dual compressor, single condenser, single evaporator chiller and primary chilled water pump

Presentation Outline

- Mechanical System Redesign Depth
 - Two-Pipe to Four-Pipe Conversion
 - Background
 - Existing Piping Analysis
 - Installation & Results
 - Chilled Beam Renovation
 - Background
 - Sizing and Selection
 - Energy Consumption and Operation Results
- Construction Management Breadth
 - Background
 - Schedule
 - Cost Estimate
 - Payback Analysis
- Conclusions and Recommendations

Air Side

<u>AHU-S1:</u>

- Replace with 32,000 CFM unit
- Constant volume
- Continue serving perimeter of 6 office floors

AHU-S2 & S3:

- Replace with 30,000 and 37,000 CFM units
- Constant volume
- Continue serving core of 6 office floors

Induction Units:

• Replace (534) perimeter induction units on 6 office floors

Improve: Energy efficiency Occupancy comfort

Planned Mechanical System Redesign

Goals

Criteria:

Disturbance to tenants Maintenance requirements

Water Side

Hot Water:

• (2) hot water boilers - no steam

Chilled Beams:

- Enhance occupancy comfort
- Few maintenance requirements
- Highly energy efficient

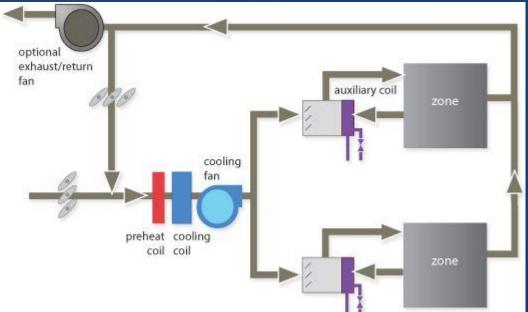
Four-Pipe:

- Enhance occupancy comfort
- Additional flexibility and control
- Constant availability of heating and cooling

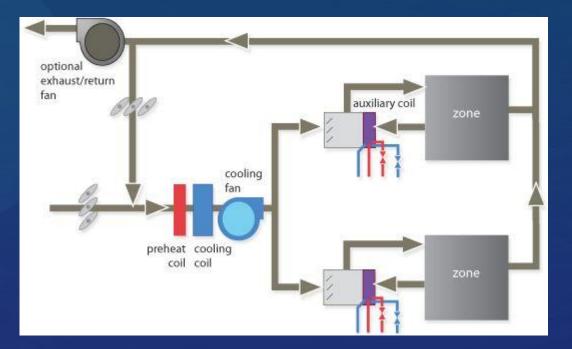
Benefits

Presentation Outline

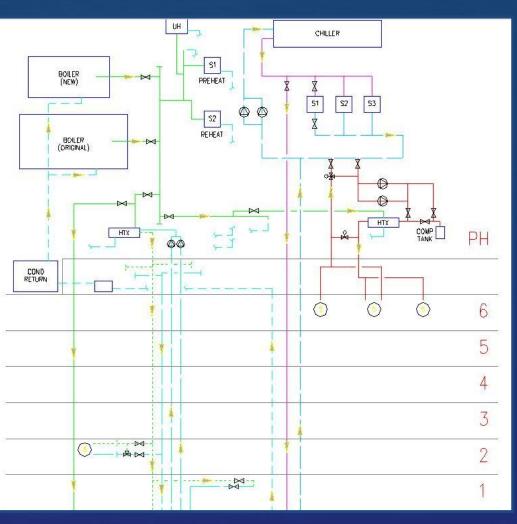
- Mechanical System Redesign Depth


Two-Pipe to Four-Pipe Conversion

- Background
- Existing Piping Analysis
- Installation & Results
- Chilled Beam Renovation
 - Background
 - Sizing and Selection
 - Energy Consumption and Operation Results
- Construction Management Breadth
 - Background
 - Schedule
 - Cost Estimate
 - Payback Analysis
- Conclusions and Recommendations


Project Information Existing Mechanical System Mechanical System Redesign - Depth Two-Pipe to Four-Pipe Conversion **Background** Existing Piping Analysis Installation & Results Chilled Beam Renovation Background Sizing and Selection Energy Consumption and Operation Results Construction Management – Breadth Background Schedule Cost Estimate Payback Analysis Conclusions and Recommendations

Two-Pipe


Four-Pipe

Project Information Existing Mechanical System Mechanical System Redesign - Depth Two-Pipe to Four-Pipe Conversion Background Existing Piping Analysis Installation & Results Chilled Beam Renovation Background Sizing and Selection Energy Consumption and Operation Results Construction Management – Breadth Background Schedule Cost Estimate Payback Analysis Conclusions and Recommendations

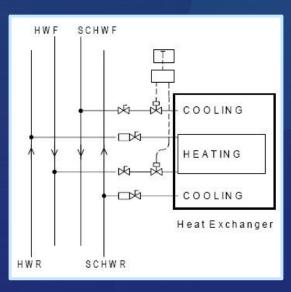
Existing Piping

<u>Two-Pipe:</u> • 15 vertical runs ╩┧╩╁╩╫╩╁╩┟╩┟╩┼╬╁╝╆╝╝╝╝╝╝╝╝╝╝╝╝╝╝╝╝╝╝╝╝╝╝╝╝ 8 8 8 8 8 8 8

Induction Air & Water

				-	NORTH	WALL		
(4-	-4 (4	-3 (4	-2) (A-		-) (•	-) (-	-) (E-	-1) ROOF
<		1			R 3 24		(R) 3	6TH FLOOR
8 8 55 65	8 8 8	8 8 8	8 8 8	<u>0</u> 33 0 33	1 <u>3</u> <u>3</u> <u>3</u>	0 35 30 35 35 35	0 0 33 33	5TH FLOOR
8 8	8,8,8,8,			<u>0</u> 33 35	1 <u>8</u> 358	<u>8</u> <u>8</u> <u>8</u> <u>8</u>	<u>0</u> 33 35 35	4TH FLOOR
8 8 55 65	8 8 8 8 8 8 		8 8 8 8	<u>3</u>		<u>8</u> 8 8	<u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u>	3RD FLOOR
8] &		8 8 8	80 8 8	0 35 35			0 35 35 35	2ND FLOOR
\$ \$	ۆر			و			870 870 870	1ST FLOOR

Project Information Existing Mechanical System Mechanical System Redesign - Depth Two-Pipe to Four-Pipe Conversion Background Existing Piping Analysis **Installation & Results** Chilled Beam Renovation Background Sizing and Selection Energy Consumption and Operation Results Construction Management – Breadth Background Schedule Cost Estimate Payback Analysis Conclusions and Recommendations


Four-Pipe:

Selection:

Installation

• 15 vertical runs • 6,000 LF

• Hot water piping of 1-1/2"

Results

<u>Piping Determines:</u>

- Quality of performance
- Ease of operation
- Initial cost

Four-Pipe:

- No zoning of two-pipe system
- No changeover from heating to cooling = decreased energy consumption

Presentation Outline

- Mechanical System Redesign Depth
 - Two-Pipe to Four-Pipe Conversion
 - Background
 - Existing Piping Analysis
 - Installation & Results

Chilled Beam Renovation

- Background
- Sizing and Selection
- Energy Consumption and Operation Results
- Construction Management Breadth
 - Background
 - Schedule
 - Cost Estimate
 - Payback Analysis
- Conclusions and Recommendations

Project Information Existing Mechanical System Mechanical System Redesign - Depth Two-Pipe to Four-Pipe Conversion Background Existing Piping Analysis Installation & Results Chilled Beam Renovation Background Sizing and Selection Energy Consumption and Operation Results Construction Management – Breadth Background Schedule Cost Estimate Payback Analysis Conclusions and Recommendations

How They Work:

- Can both heat and cool

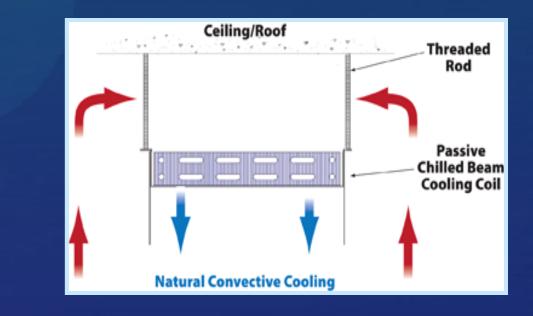
Increased Usable Square Footage: • Area of induction unit ~ 2ft²

Types:

- Passive
- Active

Background

• Water can transport energy more efficiently than air

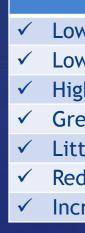


	Total SF
Existing	171,630
Induction Units	1,112
Proposed	172,742

Passive Chilled Beam

How They Work:

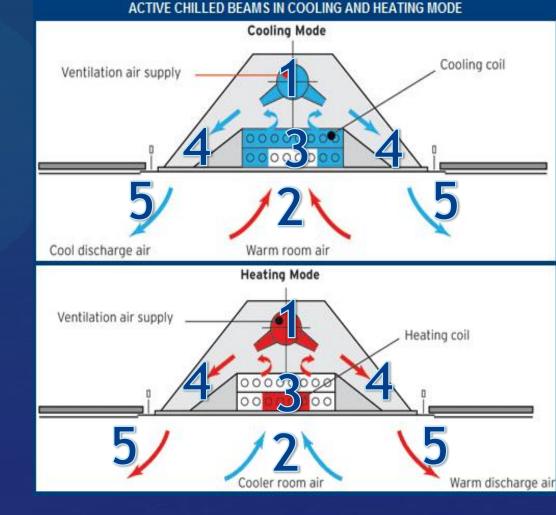
- Only supply cooling
- No fans, ductwork
- Chilled water piped to finned tube heat exchanger coil



Project Information Existing Mechanical System Mechanical System Redesign - Depth Two-Pipe to Four-Pipe Conversion Background Existing Piping Analysis Installation & Results Chilled Beam Renovation Background Sizing and Selection Energy Consumption and Operation Results Construction Management – Breadth Background Schedule Cost Estimate Payback Analysis Conclusions and Recommendations

How They Work:

- 1. Primary air supplied through nozzles
- 2. Room air rises to ACB
- 3. Air pulled through secondary water coil & induced air is cooled/heated
- 4. Primary air and induced air mixed


Summary:

Active Chilled Beam (ACB)

5. Discharged through diffuser

Crucial	Less Concern
wer operating cost	Noiseless
wer energy consumption	Higher ceiling heights
ghly efficient	Future tenant flexibility
eater occupancy comfort	
tle maintenance	
duced ductwork	
reased usable square footage	

Project Information Existing Mechanical System Mechanical System Redesign - Depth Two-Pipe to Four-Pipe Conversion Background Existing Piping Analysis Installation & Results Chilled Beam Renovation Background Sizing and Selection Energy Consumption and Operation Results Construction Management – Breadth Background Schedule Cost Estimate Payback Analysis Conclusions and Recommendations

1. Primary Air:

2. Sensible Cooling Capacity:

3. Latent Load:

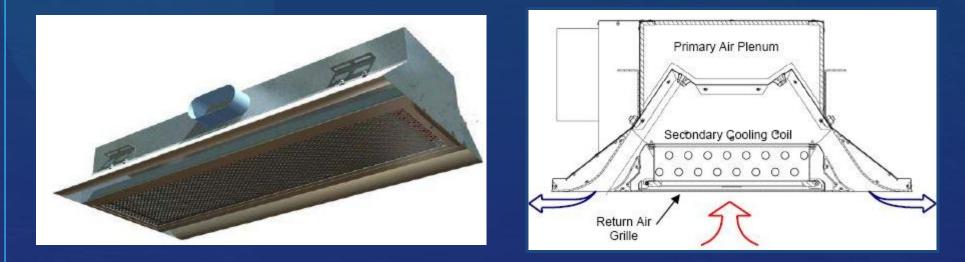
4. Latent Cooling Capacity:

Floor	Zone	People	Primary Air (CFM)	Sensible Cooling Capacity (BTU/hr)		Latent Cooling Capacity (BTU/hr)
1st	SW	10	50	1134	148	303

Sizing

• Calculate minimum ventilation air from ASHRAE Standard 62.1 • Primary Air Required = 5 CFM/person x People in Zone

• Sensible cooling refers to dry bulb temperature of the building • Sensible Cooling Capacity = $1.08 \times Primary Air CFM \times (T_{room} - T_{supply})$


• Latent loads must be satisfied by primary air • Latent Load = 0.69 x Primary Air CFM x (RH_{room} - RH_{supply})

• If Latent Cooling Capacity > Latent Load, primary air can support latent load Latent Cooling = 4840 x Primary Air CFM x (W_{room} - W_{primary})

Selection

DADANCO's ACB40:

- 4-pipe ceiling unit
- 2-way supply discharge
- Delivers higher energy efficiency at lower air quantities

Project Information Existing Mechanical System Mechanical System Redesign - Depth Two-Pipe to Four-Pipe Conversion Background Existing Piping Analysis Installation & Results Chilled Beam Renovation Background Sizing and Selection Energy Consumption and Operation Results Construction Management – Breadth Background Schedule Cost Estimate Payback Analysis Conclusions and Recommendations

1. Primary Air:

2. Sensible Cooling Capacity:

3. Latent Load:

4. Latent Cooling Capacity:

Floor	Zone	People	Primary Air (CFM)	Sensible Cooling Capacity (BTU/hr)		Latent Cooling Capacity (BTU/hr)
1st	SW	10	50	1134	148	303

Sizing

• Calculate minimum ventilation air from ASHRAE Standard 62.1 • Primary Air Required = 5 CFM/person x People in Zone

• Sensible cooling refers to dry bulb temperature of the building • Sensible Cooling Capacity = $1.08 \times Primary Air CFM \times (T_{room} - T_{supply})$

• Latent loads must be satisfied by primary air Latent Load = 0.69 x Primary Air CFM x (RH_{room} - RH_{supply})

• If Latent Cooling Capacity > Latent Load, primary air can support latent load • Latent Cooling = 4840 x Primary Air CFM x (W_{room} - W_{primary})

	Primary Air Cooling Sensible Cooling (Btuh)									
Primary Airflow	Sensible	Latent		ll 2 Foot oil		ll 3 Foot oil		il 4 Foot oil		ll 5 Foot pil
(CFM)	(Btuh)	(Btuh)	Coil	Total	Coil	Total	Coil	Total	Coil	Total
15	340	90	1075	1415			_			
20	455	120	1240	1695	1495	1950				
25	570	150	1365	1935	1665	2235	1840	2410		
30	684	180	1385	2070	1835	2520	2005	2690		
35	800	210			2030	2830	2165	2965	2415	3215
40	910	240			2100	3010	2335	3245	2570	3480
45	1025	270			2140	3165	2525	3550	2720	3745
50	1140	300			2150	3290	2565	3705	2880	4020
55	1255	330					2610	3865	3050	4305
60	1365	365					2615	3980	3145	4510
65	1480	395							3230	4710
70	1595	425							3280	4875
75	1710	455							3295	5005
80	1825	485							3305	5130

Amount of ACB's:

- DADANCO's rule of thumb
- Number of Units = Area / 150ft²

Total Number of ACB's = 391

Floor	Zone	Area (ft²)	Number of Units	
1st	South West	1669	12	

Project Information Existing Mechanical System Mechanical System Redesign - Depth Two-Pipe to Four-Pipe Conversion Background Existing Piping Analysis Installation & Results Chilled Beam Renovation Background Sizing and Selection Energy Consumption and Operation Results Construction Management – Breadth Background Schedule Cost Estimate Payback Analysis Conclusions and Recommendations

1. Primary Air:

2. Sensible Cooling Capacity:

3. Latent Load:

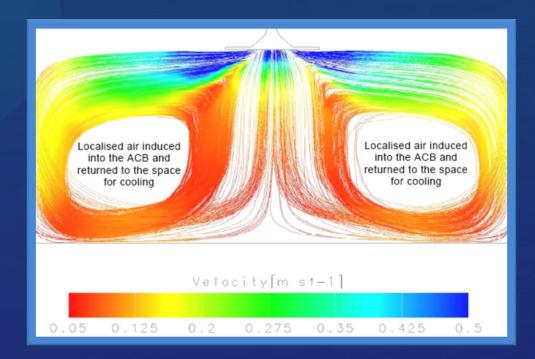
4. Latent Cooling Capacity:

Floor	Zone	People	Primary Air (CFM)	Sensible Cooling Capacity (BTU/hr)		Latent Cooling Capacity (BTU/hr)
1st	SW	10	50	1134	148	303

Sizing

• Calculate minimum ventilation air from ASHRAE Standard 62.1 Primary Air Required = 5 CFM/person x People in Zone

• Sensible cooling refers to dry bulb temperature of the building • Sensible Cooling Capacity = $1.08 \times Primary Air CFM \times (T_{room} - T_{supply})$


• Latent loads must be satisfied by primary air • Latent Load = 0.69 x Primary Air CFM x (RH_{room} - RH_{supply})

• If Latent Cooling Capacity > Latent Load, primary air can support latent load • Latent Cooling = 4840 x Primary Air CFM x (W_{room} - W_{primary})

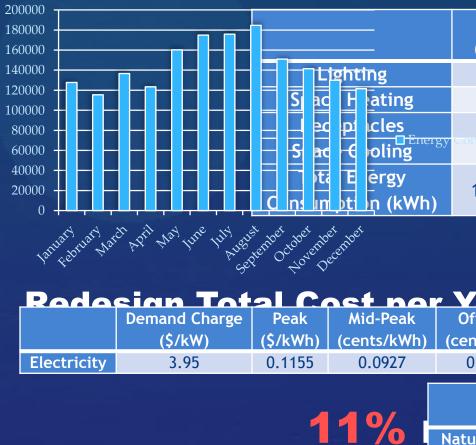
Selection

DADANCO's ACB40:

- Comfort
 - Uniform temperatures throughout
 - Elimination of drafts and hot spots

Project Information Existing Mechanical System Mechanical System Redesign - Depth Two-Pipe to Four-Pipe Conversion Background Existing Piping Analysis Installation & Results Chilled Beam Renovation Background Sizing and Selection Energy Consumption and Operation Results Construction Management – Breadth Background Schedule Cost Estimate Payback Analysis Conclusions and Recommendations

DrisiggyCanditisiss


ASHRAE HOF Values	Summer Design Cooling (0.4%)	Winter Design Heating (99.6%)
DA Dry Bulb (°F)	93.9	12.9
DA Wet Bulb (°F)	78.1	-

ne	End Time	Percentage	
nt	7 a.m.	0	
	8 a.m.	30	
	11 a.m.	100	
•	Noon	80	
	1 p.m.	40	
	2 p.m.	80	
	5 p.m.	100	
	6 p.m.	30	
	9 p.m.	10	
	Midnight	5	

		Lighting	- 35%
Start Time	End Time	Percentage	ating 270/
Midnight	7 a.m.	5	ating - 32%
7 a.m.	8 a.m.	80	les - 22%
8 a.m.	10 a.m.	90	
10 a.m.	Noon	95	oling - 11%
Noon	2 p.m.	80	0
2 p.m.	4 p.m.	90	
4 p.m.	5 p.m.	95	
5 p.m.	6 p.m.	80	
6 p.m.	7 p.m.	70	
7 p.m.	8 p.m.	60	
8 p.m.	9 p.m.	40	
9 p.m.	10 p.m.	30	
10 p.m.	Midnight	20	

Energy Consumption & Operating Cost

Monthly Energy Consumption

Energy	Total Er	nergy			
(kWh/yr)	(%)				
543,183	35	Start Tim	ne	End Time	Rate
496,624	32	11 p.m.	•	7 a.m.	Off-Peak
341,429	22	7 a.m.		10 a.m.	Mid-Peak
170,714	11	10 a.m.	•	8 p.m.	Peak
170,714		8 p.m.		11 p.m.	Mid-Peak
1,551,951	100	%			

nts/kWh) 0.0882 \$200,808 or \$1.17/s t	
Up to first 10,000 therms Above 10,000 therm (\$/therm) (\$/therm)	าร
ural Gas 0.198 0.095	

Project Information Existing Mechanical System Mechanical System Redesign - Depth Two-Pipe to Four-Pipe Conversion Background Existing Piping Analysis Installation & Results Chilled Beam Renovation Background Sizing and Selection Energy Consumption and Operation **Results** Construction Management – Breadth Background Schedule Cost Estimate Payback Analysis Conclusions and Recommendations

Benefits:

- Lower energy consumption
- Improved comfort
- More usable square footage
- No regular maintenance
- Primary air reduction \rightarrow duct reduction


Reduced Maintenance:

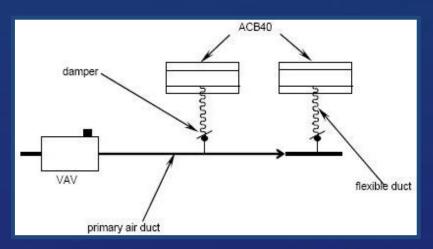
• No moving parts

Results

ide the return air grille panel toward the rear of the unit wi slight upward lifting motion at the front edge of the panel

Allow the return air grille to gently swing down, taking ca not to damage the painted surface of the grille against the

wer the front edge of the return air panel when the edge of e panel clears the grille extrusion


With the unit removed from th ceiling, remove grille panel from init by removing hinge pi securing screws at each side c

Primary Air Reduction:

• Percent PA Reduction = [1-(Primary Air CFM/Total Current Supply CFM)]*100 **Average Percent of PA Reduction = 80%**

Duct Reduction:

- With % PA decrease, downsize amount of ductwork
- Flex duct connects PA duct to PA spigot of ACB unit

Presentation Outline

- Mechanical System Redesign Depth
 - Two-Pipe to Four-Pipe Conversion
 - Background
 - Existing Piping Analysis
 - Installation & Results
 - Chilled Beam Renovation
 - Background
 - Sizing and Selection
 - Energy Consumption and Operation
 - Results

Construction Management – Breadth

- Background
- Schedule
- Cost Estimate
- Payback Analysis
- Conclusions and Recommendations

Project Information Existing Mechanical System Mechanical System Redesign - Depth Two-Pipe to Four-Pipe Conversion Background Existing Piping Analysis Installation & Results Chilled Beam Renovation Background Sizing and Selection Energy Consumption and Operation Results Construction Management – Breadth Background Schedule Cost Estimate Payback Analysis Conclusions and Recommendations

Potential Savings:

Background

• Installation schedule Construction costs

Research Tools:

- Microsoft Project 2010
- Microsoft Excel 2010

Project Information Existing Mechanical System Mechanical System Redesign - Depth Two-Pipe to Four-Pipe Conversion Background Existing Piping Analysis Installation & Results Chilled Beam Renovation Background Sizing and Selection Energy Consumption and Operation Results Construction Management – Breadth Background **Schedule** Cost Estimate Payback Analysis Conclusions and Recommendations

ask name	
Mechanical System	Renovation
Boiler Replacement	
AHU 1 Replacement	
Ductwork	
Electrical Switchgear	rii
Remove Induction U	nits
Install New Inductio	n Units

Typical Induction Unit Replacement Relocate Tenants / Sta Area 1 Verify Existing Utilities

Floor Protection & Move Furniture Drain Riser and Cap

Piping Demo Existing Inductio Units Patch & Paint Wall Area

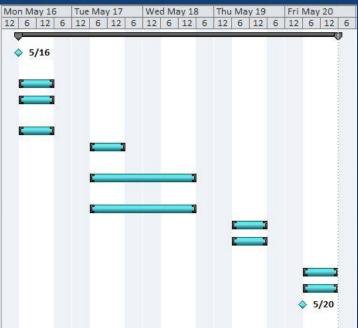
(NIGHT) Install New Induction Unit

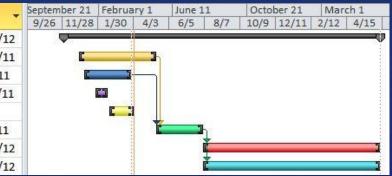
Clean & Replace Furnit Preliminary Balancing Induction Units

Provide Balancing Report

Commission Induction Units

Subs. Complete Area / Reoccupy Area


1	Duration 🖕	Start _	Finish 🖕	Th	u M	ay 1	2		May				May		5	Sun M			ay 16			May			Ned	May	18		Thu	May	/19
1980				12	2 6	i 1;	2 6	12	6	12	6	12	6	12	6 :	12 6				6	12	6	12	6	12	6 1	12	6	12	6	12
t	6 days	Thu 5/12/11	Thu 5/19/11																												_
art	0 days	Thu 5/12/11	Thu 5/12/11		\$	5/12	2																								
es	1 day	Thu 5/12/11	Thu 5/12/11		C		3																								
ove	1 day	Fri 5/13/11	Fri 5/13/11						C	2																					
	1 day	Fri 5/13/11	Fri 5/13/11						<u>C</u>	2																					
ion	1 day	Mon 5/16/11	Mon 5/16/11															C	3												
ea	2 days	Mon 5/16/11	Tue 5/17/11															C	-	_			3								
ı	2 days	Mon 5/16/11	Tue 5/17/11															C	-	-	-		3								
itur	1 day	Wed 5/18/11	Wed 5/18/11																						C.		5				
g -	1 day	Wed 5/18/11	Wed 5/18/11																						8	-	3				
	1 day	Thu 5/19/11	Thu 5/19/11																											C	2
n	1 day	Thu 5/19/11	Thu 5/19/11																											C	3
1	0 days	Thu 5/19/11	Thu 5/19/11																											> 5/	/10


_	Duration	Start _	Finish 🖕	October 1	. 1.	lanuar	y 1	April 1		July 1		Oct	ober 1	Jan	uary 1	A	pril 1	1	July 1
×.,	×			9/5 10/17	11/28	1/9	2/20	4/3	5/15	6/26	8/7	9/18	10/30	12/11	1/22	3/4	4/15	5/27	7/8
1	419 days	Wed 12/1/10	Mon 7/9/12				_											_	Ý
	98 days	Mon 12/27/10	Wed 5/11/11		C			2	η										
	91 days	Wed 1/5/11	Wed 5/11/11			C		1	Ь										
	20 days	Tue 1/25/11	Mon 2/21/11			C]		1										
	31 days	Sat 2/19/11	Fri 4/1/11				C :	1											
	303 days	Thu 5/12/11	Mon 7/9/12						¢										1
	303 days	Thu 5/12/11	Mon 7/9/12						Č									_	1

Proposed System

ask Name 👻	Duration 🖕	Start 👻	Finish .
Typical ACB Installation	5 days	Mon 5/16/11	Fri 5/20/11
Relocate Tenants / Start Area 1	<mark>0 d</mark> ays	Mon 5/16/11	Mon 5/16/11
Verify Existing Utilities	1 day	Mon 5/16/11	Mon 5/16/11
Floor Protection & Move Furniture	1 day	Mon 5/16/11	Mon 5/16/11
Drain Riser and Cap Piping	1 day	Mon 5/16/11	Mon 5/16/11
Demo Existing Induction Units	1 day	Tue 5/17/11	Tue 5/17/11
Patch & Paint Wall Area (NIGHT)	2 days	Tue 5/17/11	Wed 5/18/11
Install ACB Units	2 days	Tue 5/17/11	Wed 5/18/11
Clean & Replace Furniture	1 day	Thu 5/19/11	Thu 5/19/11
Preliminary Balancing - ACB Units	1 day	Thu 5/19/11	Thu 5/19/11
Provide Balancing Report	1 day	Fri 5/20/11	Fri 5/20/11
Commission ACB Units	1 day	Fri 5/20/11	Fri 5/20/11
Subs. Complete Area / Reoccupy Area	0 days	Fri 5/20/11	Fri 5/20/11

Task Name 💂	Duration 🖕	Start 💂	Finish
Mechanical System Renovation	401 days	Wed 12/1/10	Wed 6/13/
Boiler Replacement	98 days	Mon 12/27/10	Wed 5/11/
AHU 1 Replacement	60 days	Wed 1/5/11	Tue 3/29/1
Ductwork	15 days	Tue 1/25/11	Mon 2/14/
Electrical Switchgear	31 days	Sat 2/19/11	Fri 4/1/11
4-way Piping Installation	60 days	Thu 5/12/11	Wed 8/3/1
Removal of Induction Units	225 days	Thu 8/4/11	Wed 6/13/
Chilled Beams	225 days	Thu 8/4/11	Wed 6/13/

Project Information Existing Mechanical System Mechanical System Redesign - Depth Two-Pipe to Four-Pipe Conversion Background Existing Piping Analysis Installation & Results Chilled Beam Renovation Background Sizing and Selection Energy Consumption and Operation Results Construction Management – Breadth Background Schedule Cost Estimate Payback Analysis Conclusions and Recommendations

New AHU 5-17 Ductwork Remove Induct vew Active Ci

AHU S-1 707

Remove Induction

Ductwork

Floor by Floor [

4-way Pipe

Initial Cost Estimate

cription	QTY	Unit	Bare Unit Cost - Material	Bare Unit Cost - Labor	Bare Unit Cost - Equipment	Taxes - Material & Equipment	Labor Overhead	Sub-Total
	1	EA	\$90,000	\$12,000	\$1,000	\$4,550.00	\$2,400.00	\$109,950.00
	2,000	lb.	\$0.75	\$3.75	\$0.50	\$0.06	\$0.75	\$11,625.00
n Units	534	EA		\$300		\$0.00	\$60.00	\$192,240.00
tion Units	534	EA	\$170	\$100		\$8.50	\$20.00	\$159,399.00
twork Modifications	12	LS	\$2,550	\$11,000		\$127.50	\$2,200.00	\$190,530.00
Total			\$92,721	\$23,404	\$1,001	\$4,686	\$4,681	\$663,744

Description	οτγ	Unit	Bare Unit Cost - Material	Bare Unit Cost - Labor	Bare Unit Cost - Equipment	Taxes - Material & Equipment	Labor Overhead	Sub-Total
707	1	EA	\$70,000	\$10,000	\$1,000	\$3,550.00	\$2,000.00	\$86,550.00
	1,000	lb.	\$0.75	\$2.75	\$0.50	\$0.06	\$0.55	\$4,612.50
tion Units	534	EA		\$300		\$0.00	\$60.00	\$192,240.00
nilled Beam Units	391	EA	\$750		-	\$37.50	\$0.00	\$307,912.50
Ductwork Modifications	12	LS	\$2,550	\$11,000		\$127.50	\$2,200.00	\$190,530.00
	6,000	LF	\$11.80	\$9.65		\$0.59	\$1.93	\$143,820.00
Total			\$73,313	\$21,312	\$1,001	\$3,716	\$4,262	\$925,665

Removal of Induction Units Includes:

- Relocating tenants
- Verifying existing utilities
- Floor protection & furniture moving
- Draining riser & pipe capping
- Patching & painting wall

Initial Cost of:

- Materials
- Labor
- Equipment

Assumptions:

- 5% sales tax
- 20% labor overhead

Included

Project Information Existing Mechanical System Mechanical System Redesign - Depth Two-Pipe to Four-Pipe Conversion Background Existing Piping Analysis Installation & Results Chilled Beam Renovation Background Sizing and Selection Energy Consumption and Operation Results Construction Management – Breadth Background Schedule Cost Estimate **Payback Analysis** Conclusions and Recommendations

Ductwork

New AHU S-170 Remove Inducti New Active Chil

Floor by Floor D

4-way Pipe

Cost Estimate

ription	QTY	Unit	Bare Unit Cost - Material	Bare Unit Cost - Labor	Bare Unit Cost - Equipment	Taxes - Material & Equipment	Labor Overhead	Sub-Total
	1	EA	\$90,000	\$12,000	\$1,000	\$4,550.00	\$2,400.00	\$109,950.00
	2,000	lb.	\$0.75	\$3.75	\$0.50	\$0.06	\$0.75	\$11,625.00
n Units	534	EA		\$300		\$0.00	\$60.00	\$192,240.00
tion Units	534	EA	\$170	\$100		\$8.50	\$20.00	\$159,399.00
twork Modifications	12	LS	\$2,550	\$11,000		\$127.50	\$2,200.00	\$190 530 00
Total			\$92,721	\$23,404	\$1,001	\$4,686	\$4,681	\$663,744

escription	QTY	Unit	Bare Unit Cost - Material	Bare Unit Cost - Labor	Bare Unit Cost - Equipment	Taxes - Material & Equipment	Labor Overhead	Sub-Total
07	1	EA	\$70,000	\$10,000	\$1,000	\$3,550.00	\$2,000.00	\$86,550.00
	1,000	lb.	\$0.75	\$2.75	\$0.50	\$0.06	\$0.55	\$4,612.50
tion Units	534	EA		\$300		\$0.00	\$60.00	\$192,240.00
illed Beam Units	391	EA	\$750	·	5 A.	\$37.50	\$0.00	\$307,912.50
Ductwork Modifications	12	LS	\$2,550	\$11,000		\$127.50	\$2,200.00	\$190,530.00
	6,000	LF	\$11.80	\$9.65		\$0.59	\$1.93	\$143 820 00
Total			\$73,313	\$21,312	\$1,001	\$3,716	\$4,262	\$925,665

\$22,089 energy savings per year \$261,921 initial cost increase \$1.49 / ft² increase Potential payback of <u>12</u> years!

Payback

Presentation Outline

- Mechanical System Redesign Depth
 - Two-Pipe to Four-Pipe Conversion
 - Background
 - Existing Piping Analysis
 - Installation & Results
 - Chilled Beam Renovation
 - Background
 - Sizing and Selection
 - Energy Consumption and Operation Results
- Construction Management Breadth
 - Background
 - Schedule
 - Cost Estimate
 - Payback Analysis
- **Conclusions and Recommendations**

Improve: ✓ Energy efficiency ✓ Occupancy comfort

Conclusions

<u>Criteria:</u>

✓ Disturbance to tenants

✓ Maintenance requirements

Additionally:

✓ Lowered operating cost

✓ Reduced ductwork

✓ Increased usable square footage

\$22,089 energy savings per year

Reasonable payback of <u>12</u> years!

Acknowledgements

Questions?

Penn State Architectural Engineering Faculty Thesis Advisor William Bahnfleth Corporate Consultants Matt Keller, JMT – Facilities Senior Associate **Pat Harillal**, JMT – Mechanical Engineer Ron Saunders, JMT – Environmental Facilities CADD Technician Adam Raver, JMT – Facilities CADD Technician **Jim Hovey**, JMT – Construction Management Alyssa Adams, McClure Company – Energy Services Specialist **Panda Aumpansub**, Havtech Corporation – Application Engineer **Cassidy Bowman**, DADANCO – Project Manager Jan Kaczmarek, SHA Project Manager

Family & friends

AE Class of 2011