

THE MILLENNIUM SCIENCE

COMPLEX

IPD/BIM THESIS

2010-2011

TEAM
BIM CEPTION

FUND

JSSELL

TOUGH

BIM CEPTION INTRODUCTION

STEPHEN PFUND - STRUCTURAL

CHRISTOPHER RUSSELL - LIGHTING/ELECTRICAL

ALEXANDER STOUGH - MECHANICAL

THOMAS VILLACAMPA - CONSTRUCTION MANAGER

BIMCEPTION IS DEDICATED TO IMPROVING
DESIGN THROUGH INNOVATION AND
COORDINATION.

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

PROJECT BACKGROUND

- OWNER: THE PENNSYLVANIA STATE
 UNIVERSITY
 - LOCATION: UNIVERSITY PARK, PA
 - 275,600 SF RESEARCH FACILITY
 CONTAINING THE HUCK INSTITUTES FOR LIFE
 SCIENCES AND MATERIAL SCIENCES
 - LEED CERTIFICATION
- 20,000 SF OF VIVARIUM SPACE
- 40,000 SF OF QUIET LAB SPACE
- 9,500 SF OF NANA-CLEAN LAB SPACE

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

DEPTH INTRODUCTION

PFUND

Russell

STOUGH

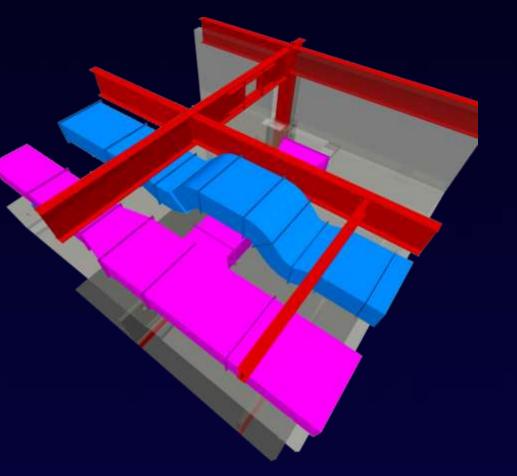
VILLAGAMPA

FAÇADE INVESTIGATION
PLENUM INVESTIGATION
CANTILEVER PLAZA
IPD/BIM REFLECTION

DEPTH INTRODUCTION

FAÇADE INVESTIGATION

FAÇADE INVESTIGATION


PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

DEPTH INTRODUCTION

- FAÇADE INVESTIGATION
- PLENUM INVESTIGATION

PFUND

USSELL

STOUGH

FAÇADE INVESTIGATION
PLENUM INVESTIGATION
CANTILEVER PLAZA
IPD/BIM REFLECTION

DEPTH INTRODUCTION

- FAÇADE INVESTIGATION
- PLENUM INVESTIGATION
- CANTILEVER PLAZA INVESTIGATION

FAÇADE INVESTIGATION
PLENUM INVESTIGATION
CANTILEVER PLAZA
IPD/BIM REFLECTION

ELECTRICAL DEPTH

- (19) INDIVIDUALLY EATON POWERWARE UPS
 WITHOUT BATTERY RACK
- (1) EATON SAG RIDE THROUGH CENTRAL POWER

 CONDITIONER
- (1) ADDITIONAL 1200A PANELBOARD
 - FIRST FLOOR ELEC. CLOSET N-P129

FAÇADE INVESTIGATION
PLENUM INVESTIGATION
CANTILEVER PLAZA
IPD/BIM REFLECTION

ELECTRICAL DEPTH

- SYSTEM COST COMPARISON
- VOLTAGE DROP CHECK

Overall Price Comparison	
System	Total Price
Existing Eaton Powerware UPSs	\$794,625.30
New Eaton SRT Central Power Conditioning	\$665,540.80

COST DATA OBTAINED FROM EATON AND RSMEANS

PFUND

Russell

STOUGH

FAÇADE INVESTIGATION
PLENUM INVESTIGATION
CANTILEVER PLAZA
IPD/BIM REFLECTION

ELECTRICAL DEPTH

- EATON POWERWARE WITHOUT BATTERY RACK
- SPACE LIMITATIONS
- FUTURE FLEXIBILITY AND EXPANSION

PFUND

USSELL

STOUGH

FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

FAÇADE INVESTIGATION

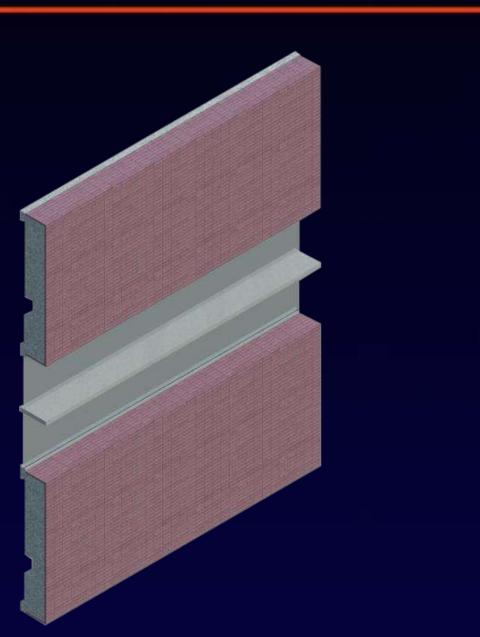
FAÇADE INVESTIGATION

OVERVIEW

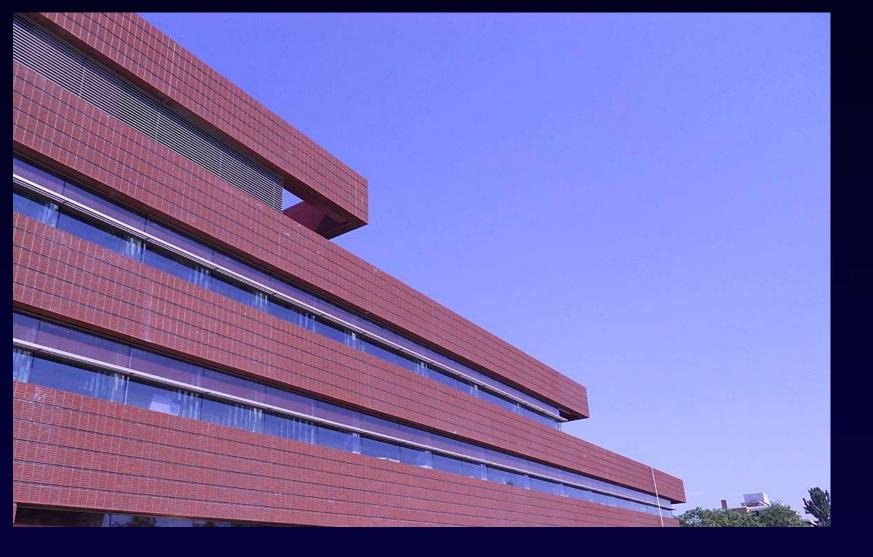
WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS


PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

FACADE ANALYSES

PFUND

Russell

STOUGH

VILLAGAMPA

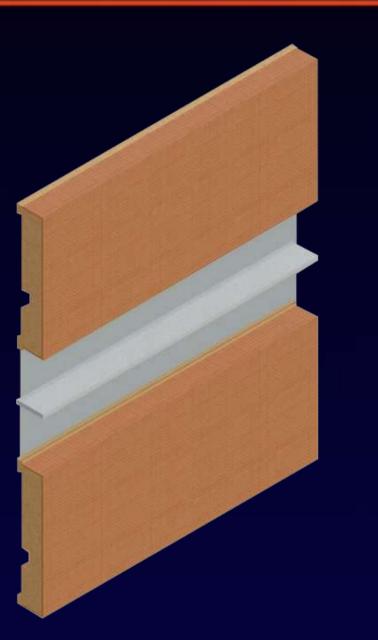
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

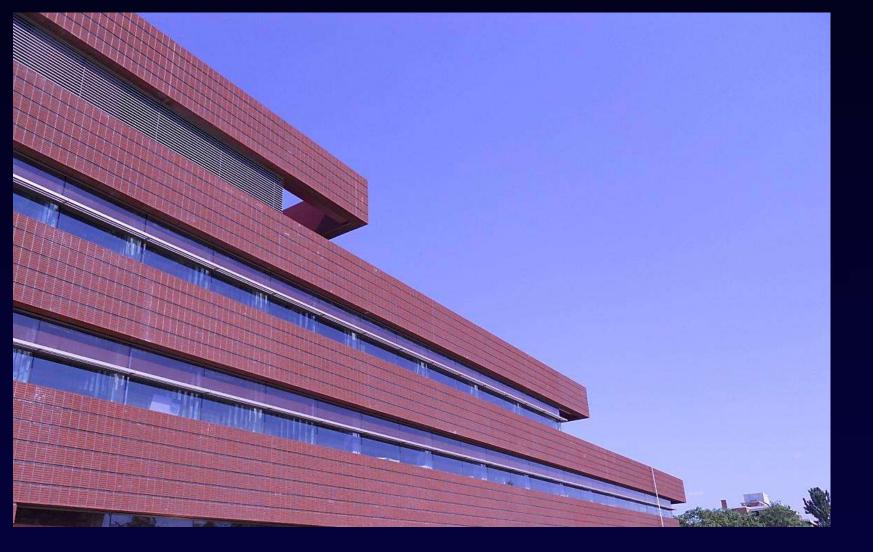
WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION


CANTILEVER PLAZA

IPD/BIM REFLECTION

FACADE ANALYSES

WALL COMPOSITION ANALYSIS

PFUND

Russell

STOUGH

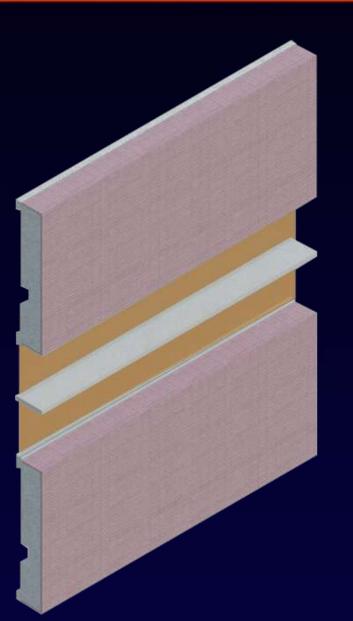
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

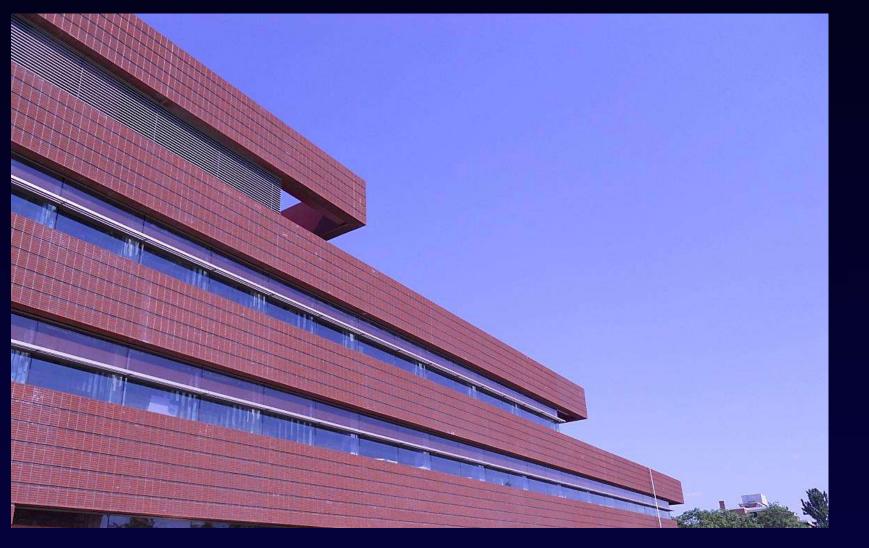
WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION


CANTILEVER PLAZA

IPD/BIM REFLECTION

FACADE ANALYSES

- WALL COMPOSITION ANALYSIS
- WINDOW TO WALL RATIO ANALYSIS

FUND

RUSSELL

STOUGH

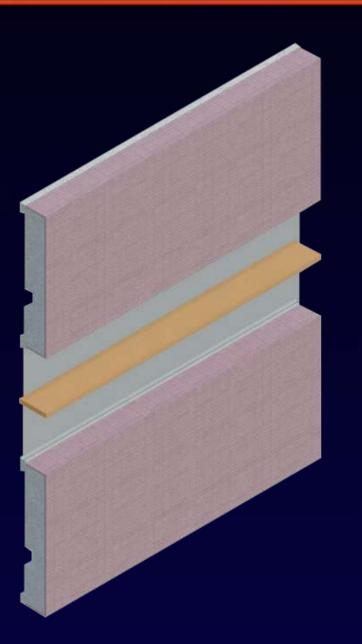
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

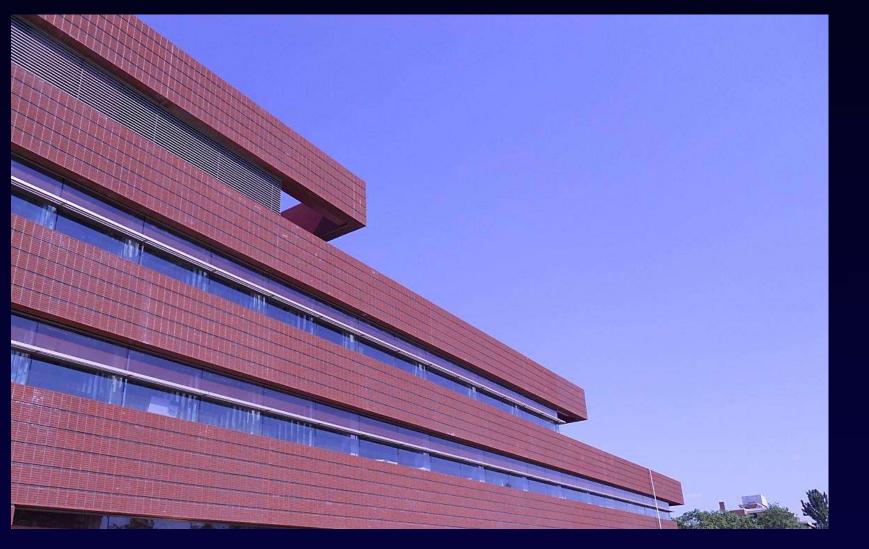
WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION


CANTILEVER PLAZA

IPD/BIM REFLECTION

FACADE ANALYSES

- WALL COMPOSITION ANALYSIS
- WINDOW TO WALL RATIO ANALYSIS
- SHADE ANALYSIS

FUND

RUSSELL

STOUGH

FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

WALL COMPOSITION ANALYSIS

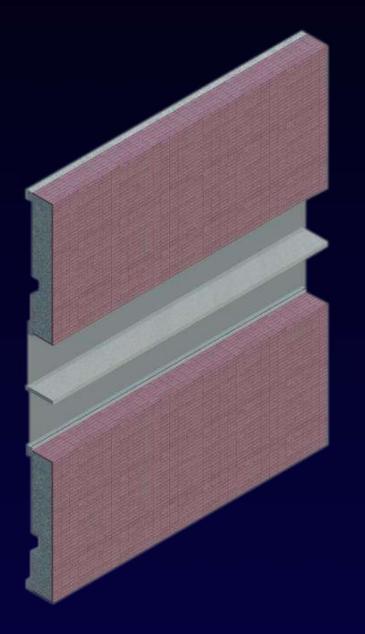
FAÇADE INVESTIGATION

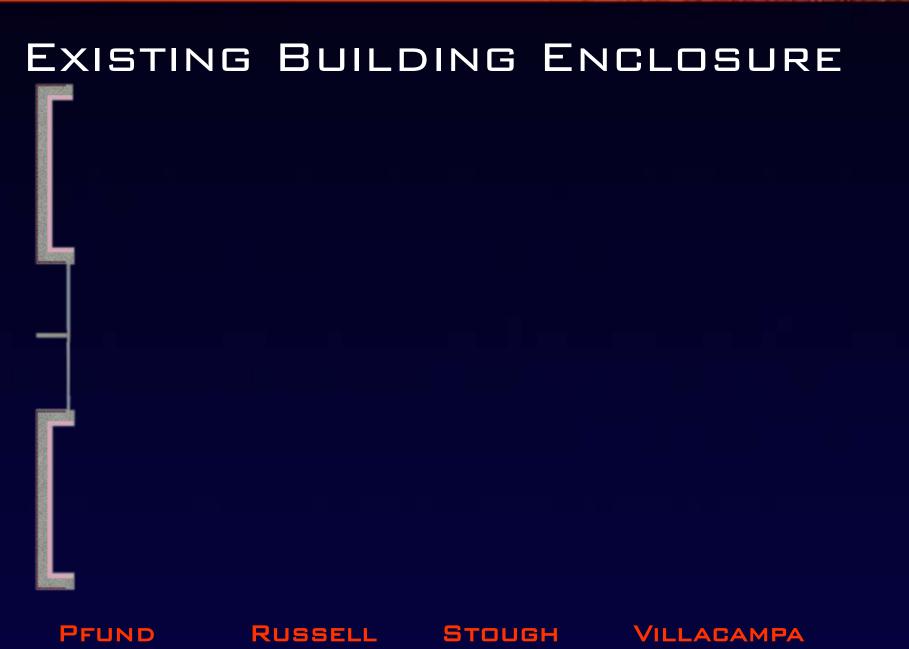
OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN


CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

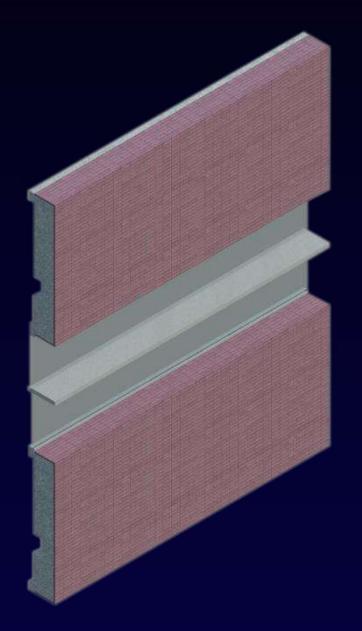
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

EXISTING BUILDING ENCLOSURE • DOUBLE PANE LOW-E GLAZING

PFUND

Russell

STOUGH

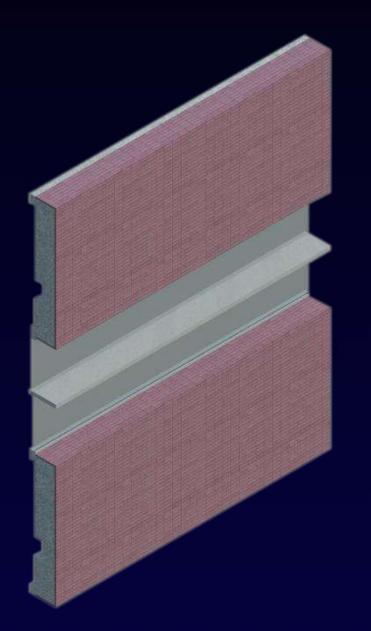
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

EXISTING BUILDING ENCLOSURE

- DOUBLE PANE LOW-E GLAZING
- 24" OVERHANG AND SHELF

PFUND

RUSSELL

STOUGH

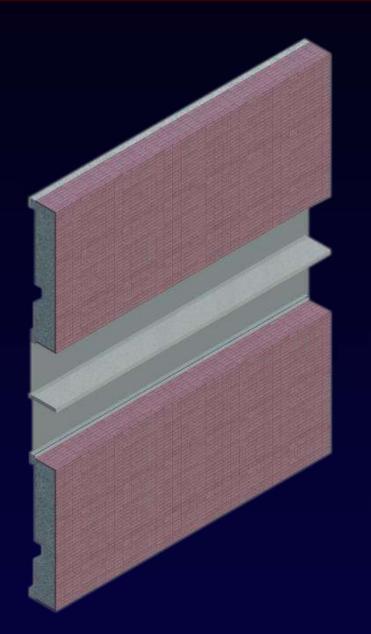
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

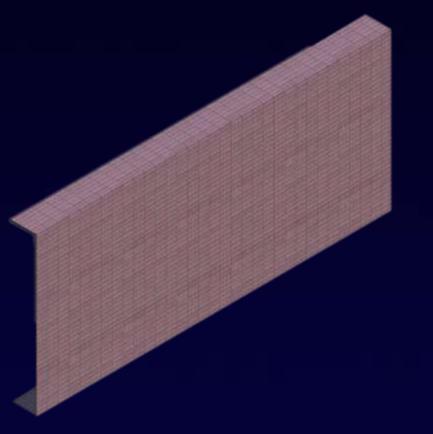
WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION


CANTILEVER PLAZA

IPD/BIM REFLECTION

EXISTING BUILDING ENCLOSURE

- DOUBLE PANE LOW-E GLAZING
- 24" OVERHANG AND SHELF
- 2" FACE BRICK

FUND

Russell

STOUGH

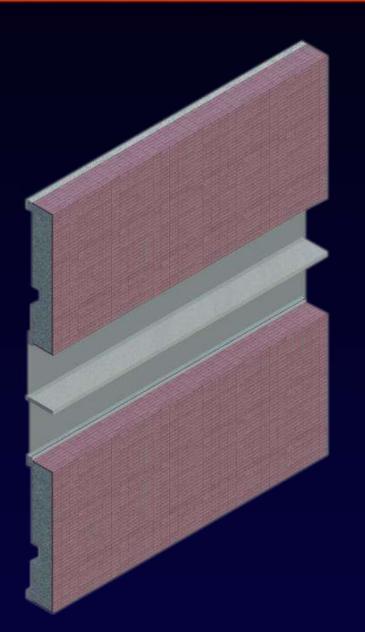
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

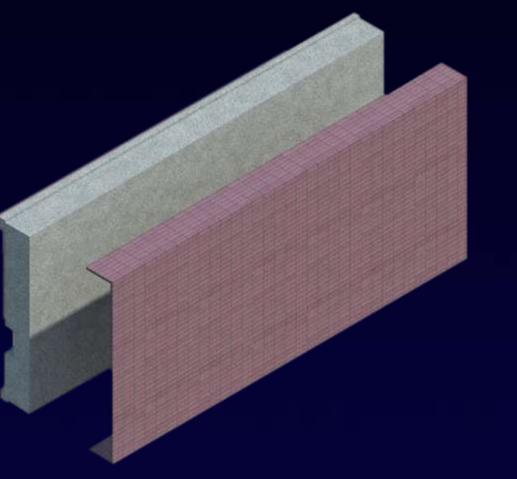
WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION


CANTILEVER PLAZA

IPD/BIM REFLECTION

EXISTING BUILDING ENCLOSURE

- DOUBLE PANE LOW-E GLAZING
- 24" OVERHANG AND SHELF
- 2" FACE BRICK
- 6" C-PANEL WITH SIDE RETURNS

FUND

RUSSELL

STOUGH

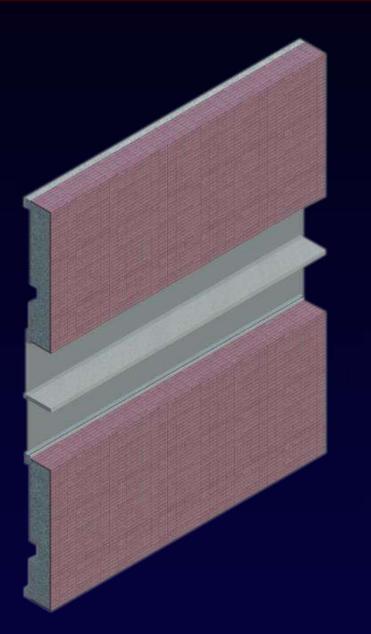
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

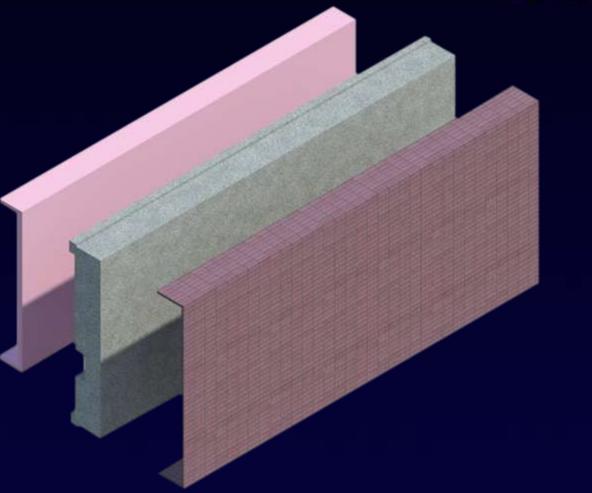
WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION


CANTILEVER PLAZA

IPD/BIM REFLECTION

EXISTING BUILDING ENCLOSURE

- Double Pane Low-e Glazing
- 24" OVERHANG AND SHELF
- 2" FACE BRICK
- 6" C-PANEL WITH SIDE RETURNS
- 3" RIGID INSULATION

FUND

RUSSELL

STOUGH

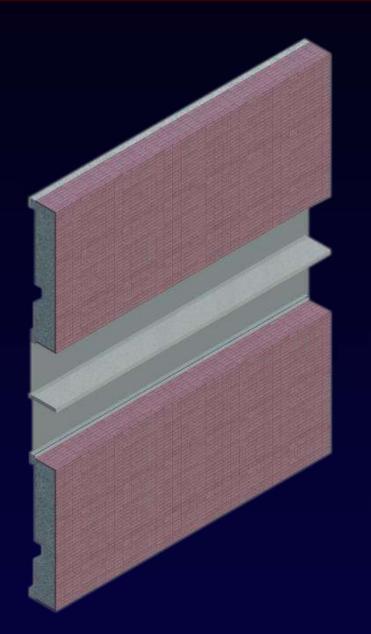
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

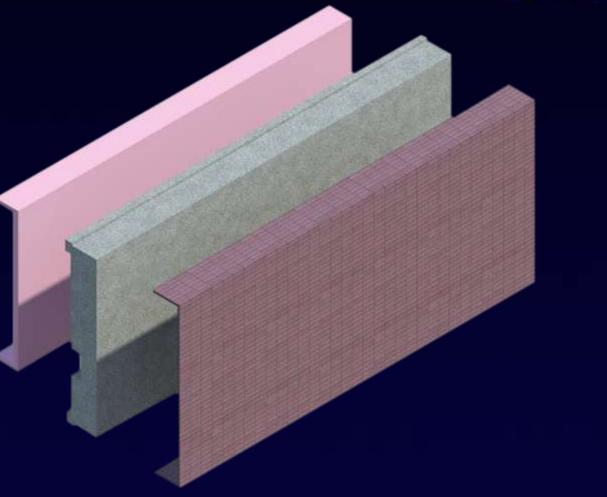
WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION


CANTILEVER PLAZA

IPD/BIM REFLECTION

EXISTING BUILDING ENCLOSURE

- DOUBLE PANE LOW-E GLAZING
- 24" OVERHANG AND SHELF
- 2" FACE BRICK
- 6" C-PANEL WITH SIDE RETURNS
- 3" RIGID INSULATION
- BEARING CONNECTIONS IN SIDE RETURNS

FUND

Russell

STOUGH

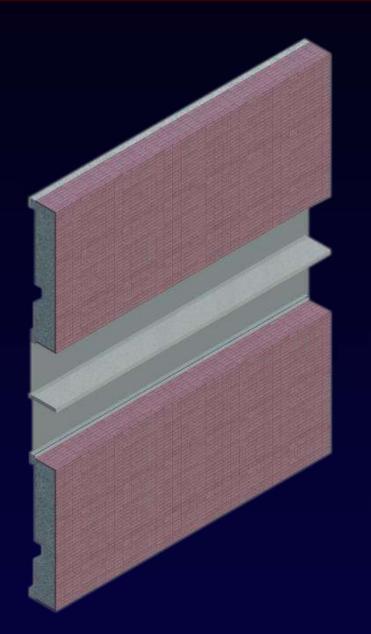
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

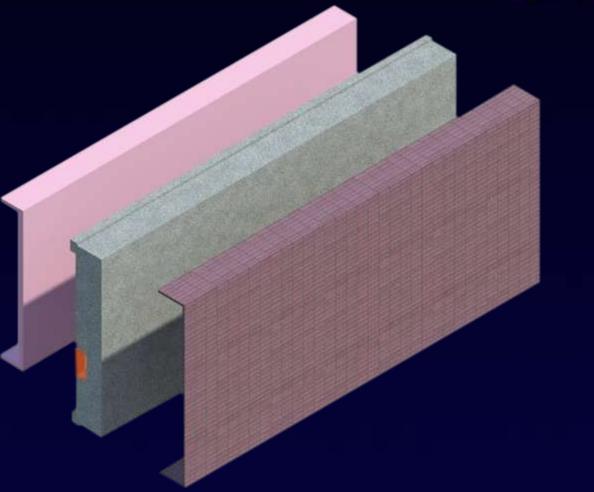
WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION


CANTILEVER PLAZA

IPD/BIM REFLECTION

EXISTING BUILDING ENCLOSURE

- DOUBLE PANE LOW-E GLAZING
- 24" OVERHANG AND SHELF
- 2" FACE BRICK
- 6" C-PANEL WITH SIDE RETURNS
- 3" RIGID INSULATION
- BEARING CONNECTIONS IN SIDE RETURNS

FUND

Russell

STOUGH

FAÇADE INVESTIGATION

OVERVIEW

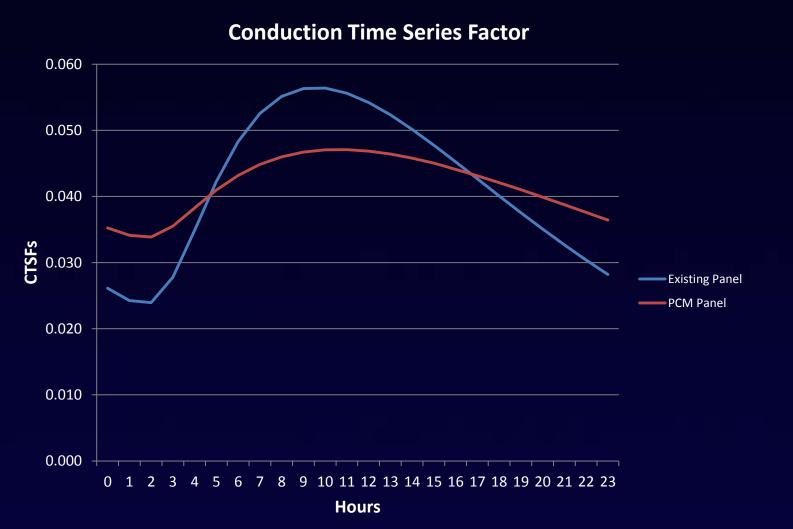
WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN

CONCLUSIONS


PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

PCM FAÇADE ASSEMBLY

- PHASE CHANGE MATERIAL
 - BASF MICRONAL PCM
- IMPROVE ENERGY PERFORMANCE
- IMPROVE THERMAL HEAT CAPACITY
- FLATTEN EXTERNAL BUILDING
 LOADS

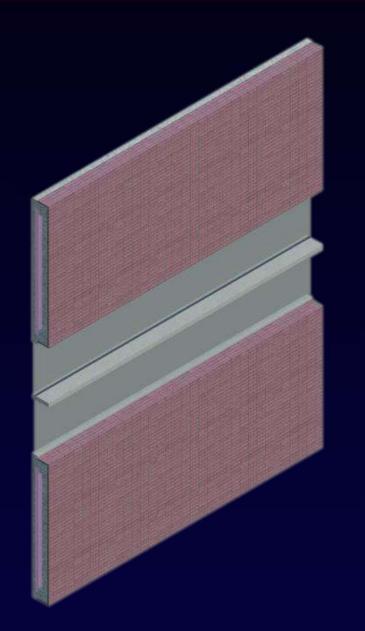
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

PCM FAÇADE ASSEMBLY

TRIPLE PANE LOW-E GLAZING

PFUND

Russell

STOUGH

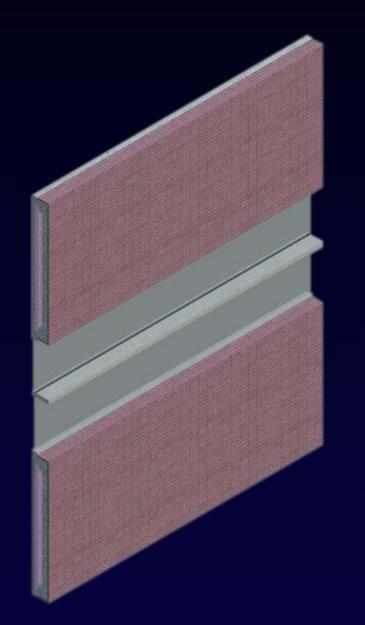
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

PCM FAÇADE ASSEMBLY

- TRIPLE PANE LOW-E GLAZING
- 16" OVERHANG AND SHELF

PFUND

RUSSELL

STOUGH

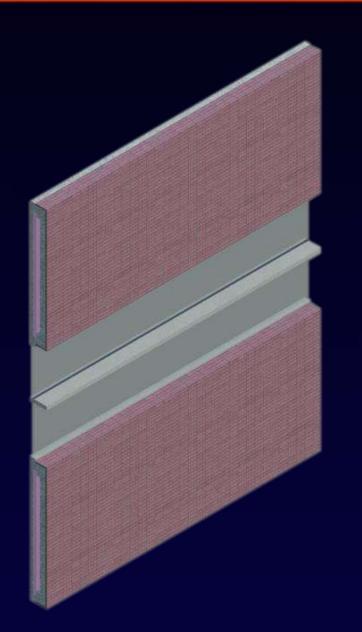
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

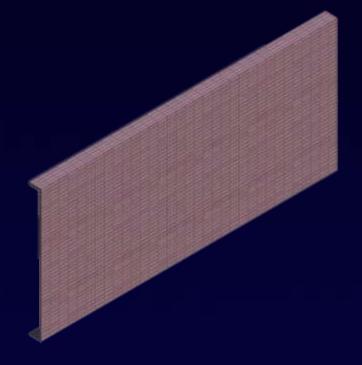
WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION


CANTILEVER PLAZA

IPD/BIM REFLECTION

PCM FAÇADE ASSEMBLY

- TRIPLE PANE LOW-E GLAZING
 - 16" OVERHANG AND SHELF
- 2" FACE BRICK

PFUND

Russell

STOUGH

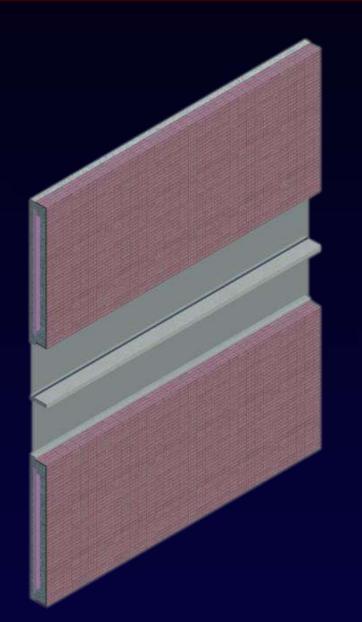
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

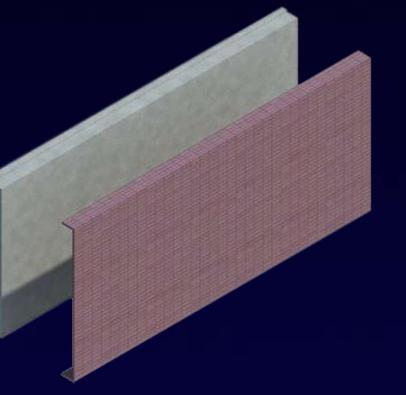
WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION


CANTILEVER PLAZA

IPD/BIM REFLECTION

PCM FAÇADE ASSEMBLY

- TRIPLE PANE LOW-E GLAZING
 - 16" OVERHANG AND SHELF
- 2" FACE BRICK
- 3" CONCRETE PANEL

PFUND

Russell

STOUGH

FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

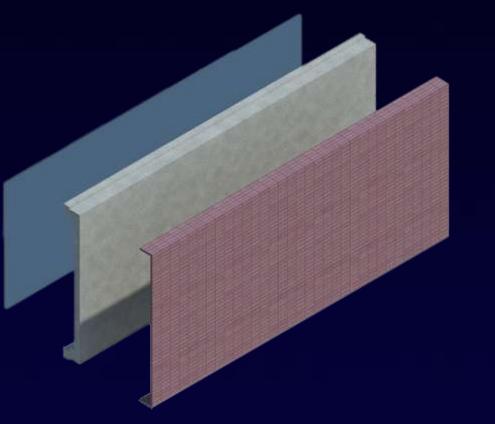
WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION


CANTILEVER PLAZA

IPD/BIM REFLECTION

PCM FAÇADE ASSEMBLY

- TRIPLE PANE LOW-E GLAZING
 - 16" OVERHANG AND SHELF
- 2" FACE BRICK
- 3" CONCRETE PANEL
- 3.5" AIR SPACE

PFUND

RUSSELL

STOUGH

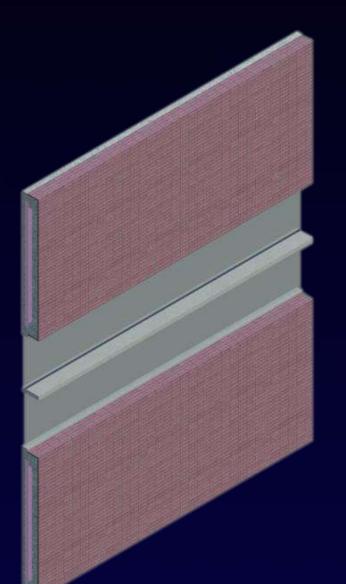
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

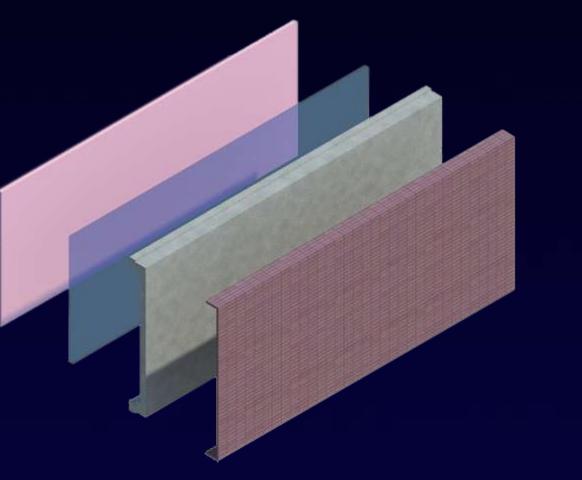
WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION


CANTILEVER PLAZA

IPD/BIM REFLECTION

PCM FAÇADE ASSEMBLY

- TRIPLE PANE LOW-E GLAZING
 - 16" OVERHANG AND SHELF
- 2" FACE BRICK
- 3" CONCRETE PANEL
- 3.5" AIR SPACE
- 3" RIGID INSULATION

PFUND

RUSSELL

STOUGH

VILLAGAMPA

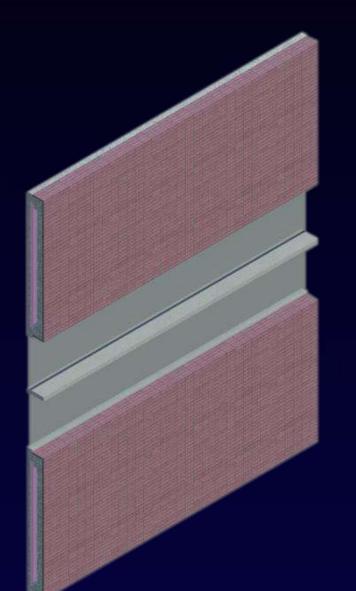
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

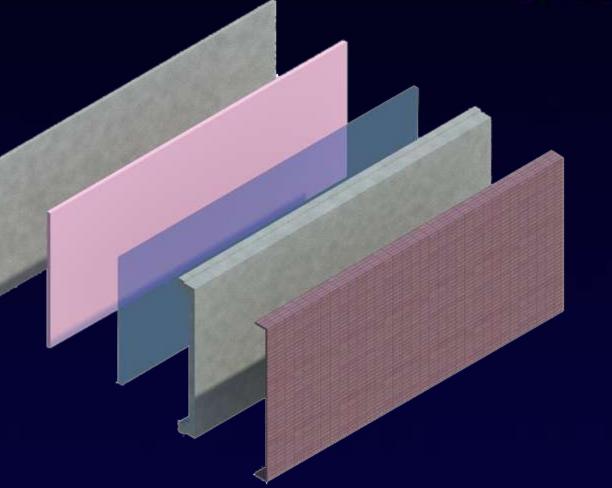
WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION


CANTILEVER PLAZA

IPD/BIM REFLECTION

PCM FAÇADE ASSEMBLY

- TRIPLE PANE LOW-E GLAZING
 - 16" OVERHANG AND SHELF
- 2" FACE BRICK
- 3" CONCRETE PANEL
- 3.5" AIR SPACE
- 3" RIGID INSULATION
- 3" PCM PANEL

PFUND

Russell

STOUGH

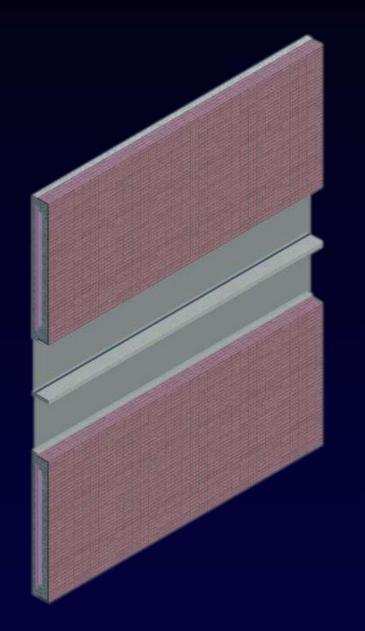
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

FAÇADE ENERGY ANALYSIS

PFUND

RUSSELL

STOUGH

VILLAGAMPA

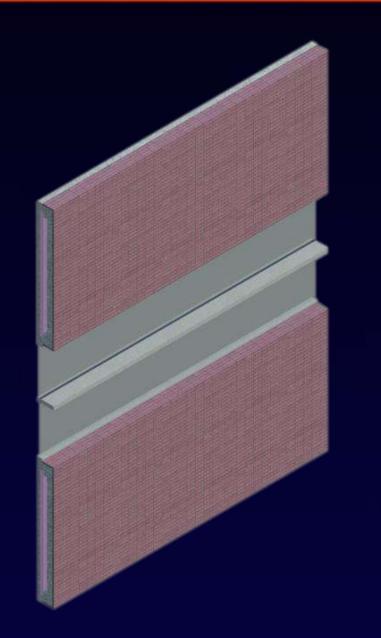
FAÇADE INVESTIGATION

UVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS


PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

FAÇADE ENERGY ANALYSIS

PFUND

RUSSELL

STOUGH

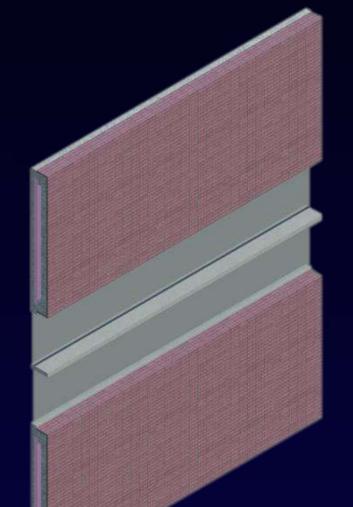
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

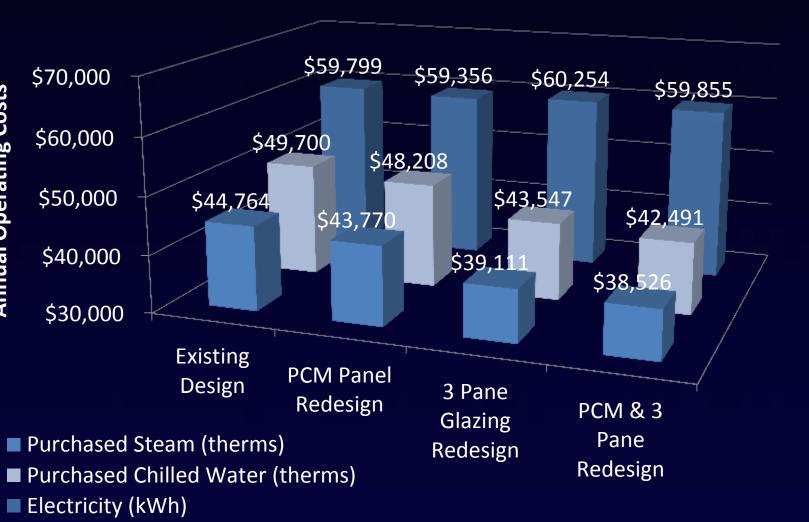
SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA


IPD/BIM REFLECTION

PCM FAÇADE REJECTION

- MINIMAL ENERGY SAVINGS
- TRANSPORTATION/ ERECTION
- STRUCTURAL THICKNESS
 LIMITATIONS
- COST OF ADDITIONAL MATERIALS

Annual Operating Costs

PFUND

RUSSELL

STOUGH

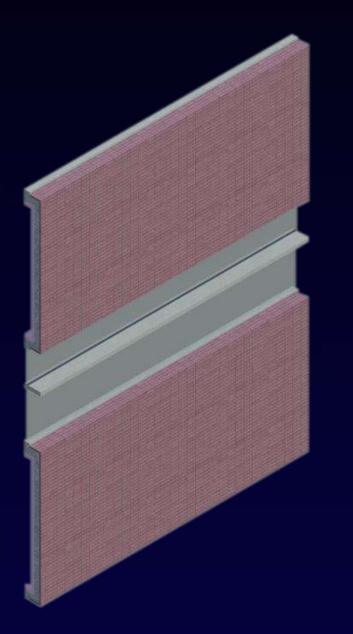
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

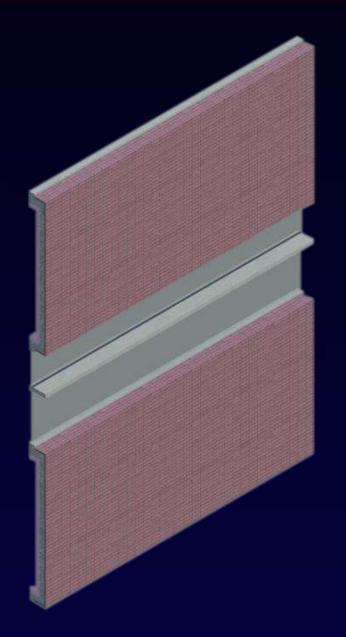
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

FINAL ASSEMBLY SELECTION

TRIPLE PANE LOW-E GLAZING

PFUND

Russell

STOUGH

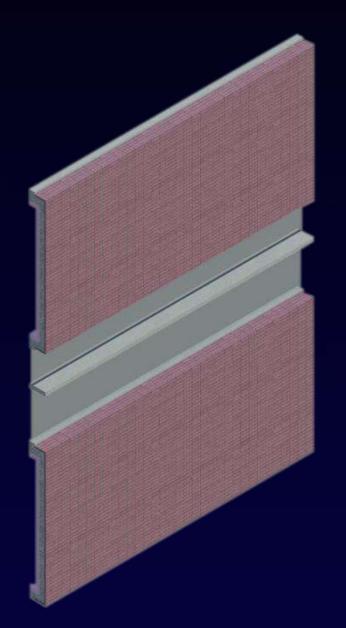
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

FINAL ASSEMBLY SELECTION

- TRIPLE PANE LOW-E GLAZING
- 16" OVERHANG AND SHELF

PFUND

Russell

STOUGH

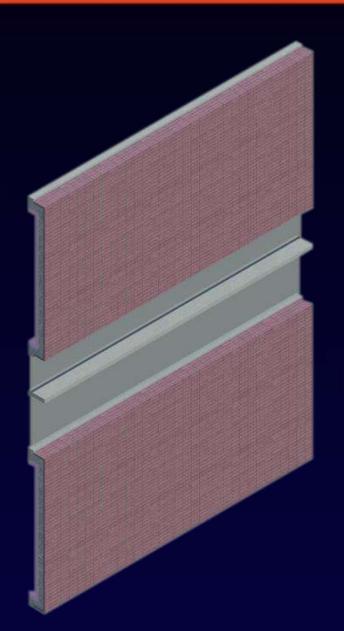
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

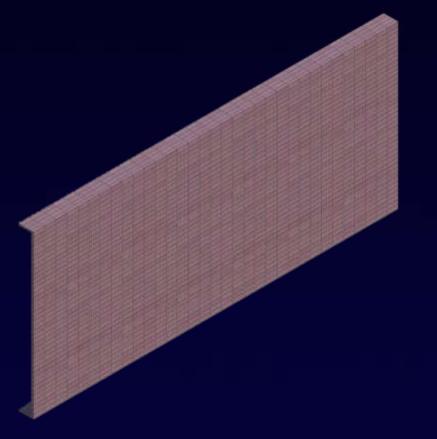
WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION


CANTILEVER PLAZA

IPD/BIM REFLECTION

FINAL ASSEMBLY SELECTION

- TRIPLE PANE LOW-E GLAZING
 - 16" OVERHANG AND SHELF
- 2" FACE BRICK

FUND

RUSSELL

STOUGH

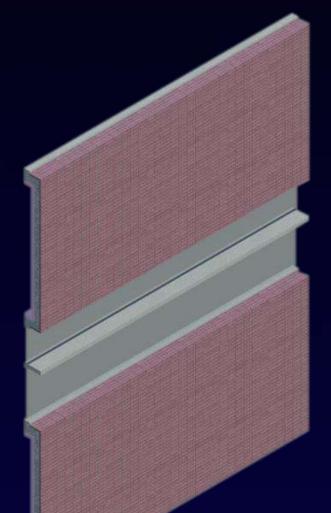
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

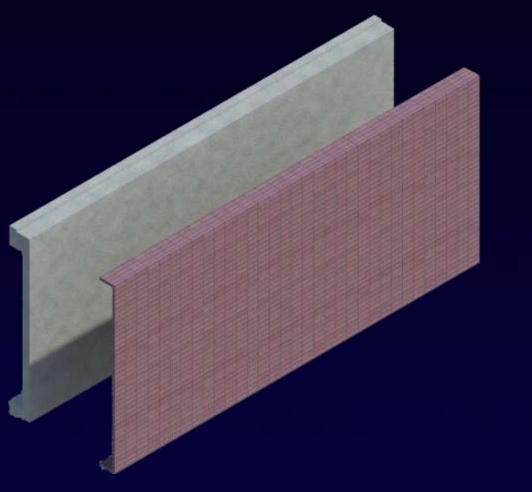
WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION


CANTILEVER PLAZA

IPD/BIM REFLECTION

FINAL ASSEMBLY SELECTION

- TRIPLE PANE LOW-E GLAZING
 - 16" OVERHANG AND SHELF
- 2" FACE BRICK
- 6" C-PANEL

PFUND

RUSSELL

STOUGH

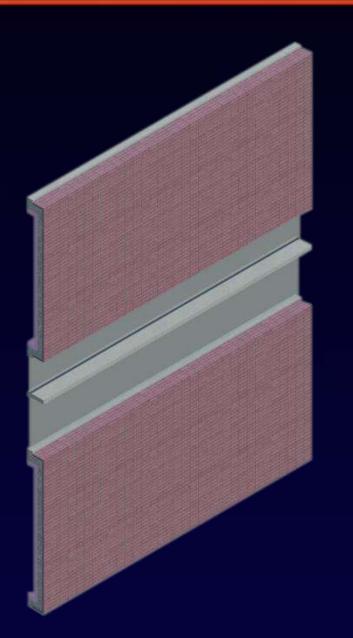
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

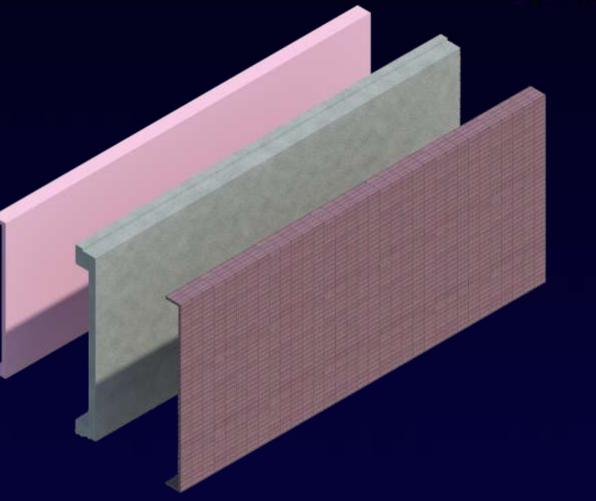
WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION


CANTILEVER PLAZA

IPD/BIM REFLECTION

FINAL ASSEMBLY SELECTION

- TRIPLE PANE LOW-E GLAZING
 - 16" OVERHANG AND SHELF
- 2" FACE BRICK
- 6" C-PANEL
- 3" RIGID INSULATION

FUND

RUSSELL

STOUGH

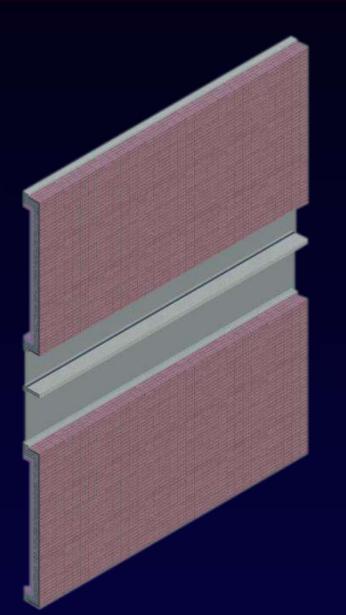
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

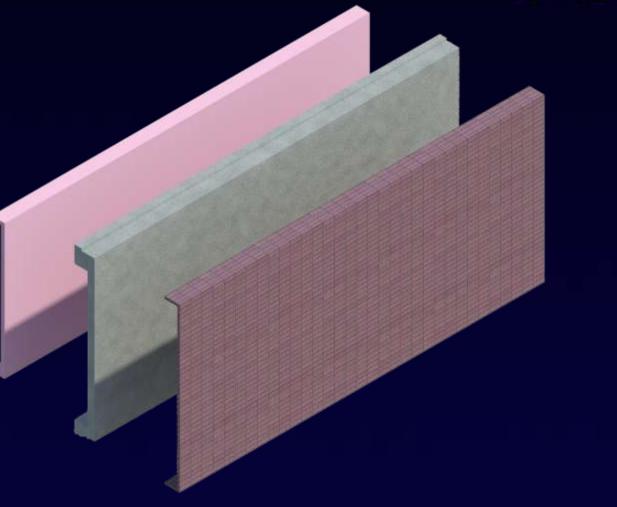
WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION


CANTILEVER PLAZA

IPD/BIM REFLECTION

FINAL ASSEMBLY SELECTION

- TRIPLE PANE LOW-E GLAZING
 - 16" OVERHANG AND SHELF
- 2" FACE BRICK
- 6" C-PANEL
- 3" RIGID INSULATION
- BEARING CONNECTIONS RELOCATED
 TO TOP RETURN

FUND

RUSSELL

STOUGH

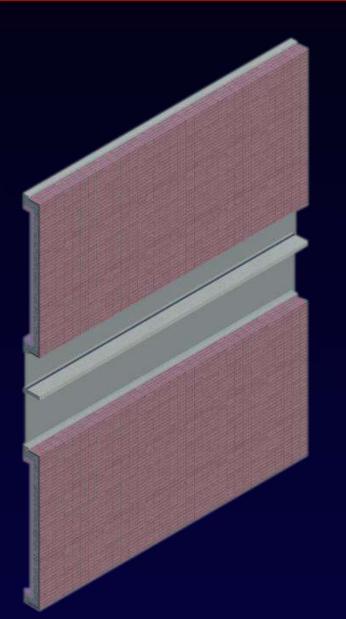
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

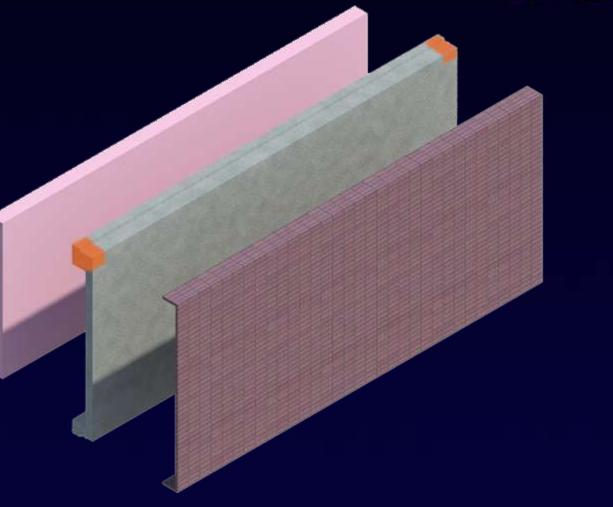
WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION


CANTILEVER PLAZA

IPD/BIM REFLECTION

FINAL ASSEMBLY SELECTION

- TRIPLE PANE LOW-E GLAZING
- 16" OVERHANG AND SHELF
- 2" FACE BRICK
- 6" C-PANEL
- 3" RIGID INSULATION
- BEARING CONNECTIONS RELOCATED
 TO TOP RETURN

FUND

Russell

STOUGH

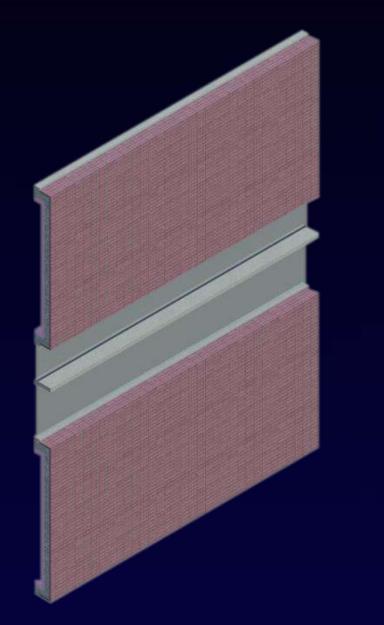
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

LIFE CYCLE COST

Third Floor, Existing Panels			
Length of Panel	2-Pane Glass Assembly	3-Pane Glass Assembly	
22ft	\$1,496,443	\$1,587,963	
14ft	\$41,091	\$43,331	
31ft	\$78,510	\$83,470	
Total	\$1,616,044	\$1,714,764	
Increased Cost of 3-Pane	\$98,720		

\$98,720 MORE FOR 3-PANE GLAZING

PFUND

Russell

STOUGH

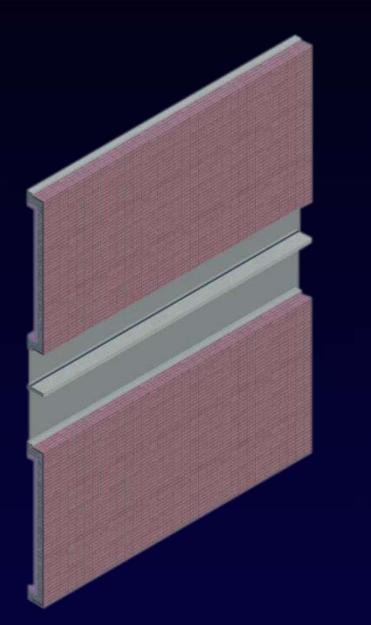
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

LIFE CYCLE COST

	Existing	Triple Pane Glazing	Savings
Total Yearly Operating Costs	\$154,262	\$142,912	\$11,350
Installation Costs	\$1,616,044	\$1,714,764	\$-98,720
30 yr Life Cycle Cost	\$5,591,498	\$5,397,713	\$193,785

INCLUDES FUEL ESCALATION AND INFLATION

Third Floor, Existing Panels			
Length of Panel	2-Pane Glass Assembly	3-Pane Glass Assembly	
22ft	\$1,496,443	\$1,587,963	
14ft	\$41,091	\$43,331	
31ft	\$78,510	\$83,470	
Total	\$1,616,044	\$1,714,764	
creased Cost of 3-Pane	\$98,720		

\$98,720 MORE FOR 3-PANE GLAZING

PFUND

RUSSELL

STOUGH

FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

LIFE CYCLE COST

	Existing	Triple Pane Glazing	Savings
Total Yearly Operating Costs	\$154,262	\$142,912	\$11,350
Installation Costs	\$1,616,044	\$1,714,764	\$-98,720
30 yr Life Cycle Cost	\$5,591,498	\$5,397,713	\$193,785

8.7 YEAR SIMPLE PAYBACK

INCLUDES FUEL ESCALATION AND INFLATION

Third Floor, Existing Panels			
Length of Panel	2-Pane Glass Assembly	3-Pane Glass Assembly	
22ft	\$1,496,443	\$1,587,963	
14ft	\$41,091	\$43,331	
31ft	\$78,510	\$83,470	
Total	\$1,616,044	\$1,714,764	
Increased Cost of 3-Pane	\$98,720		

\$98,720 MORE FOR 3-PANE GLAZING

PFUND

Russell

STOUGH

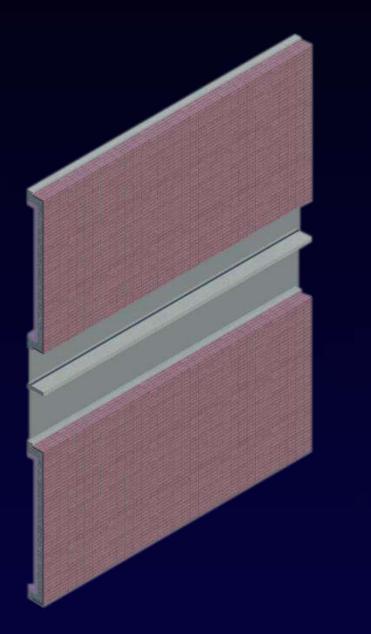
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

EXISTING CONDITIONS

- WWR =70%
 - TRANSMITTANCE = 72%
- U-VALUE = □.41
- SHGC = 0.37

PFUND

Russell

STOUGH

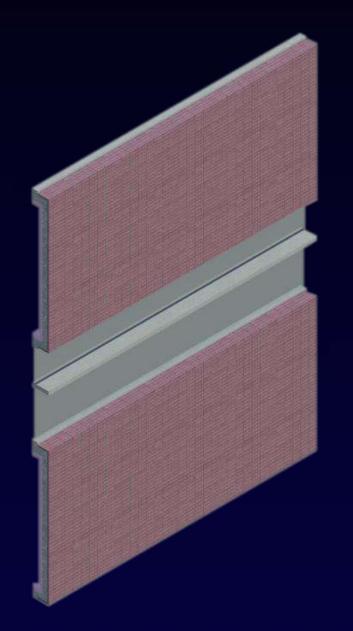
FAÇADE INVESTIGATION

OVERVIEW

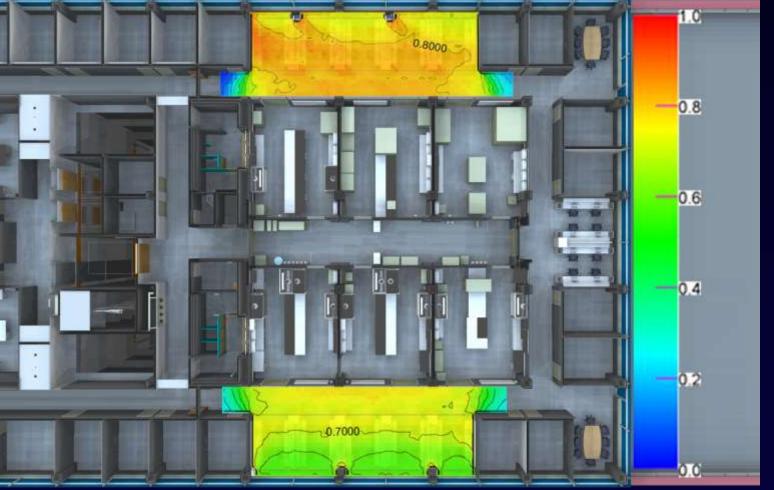
WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS


PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

USEFUL ILLUMINANCE

EXISTING CONDITIONS

PFUND

Russell

STOUGH

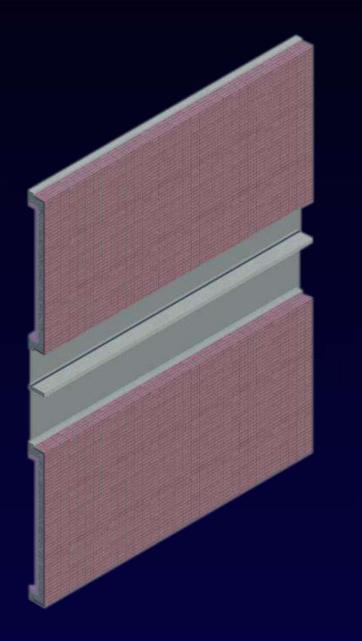
FAÇADE INVESTIGATION

OVERVIEW

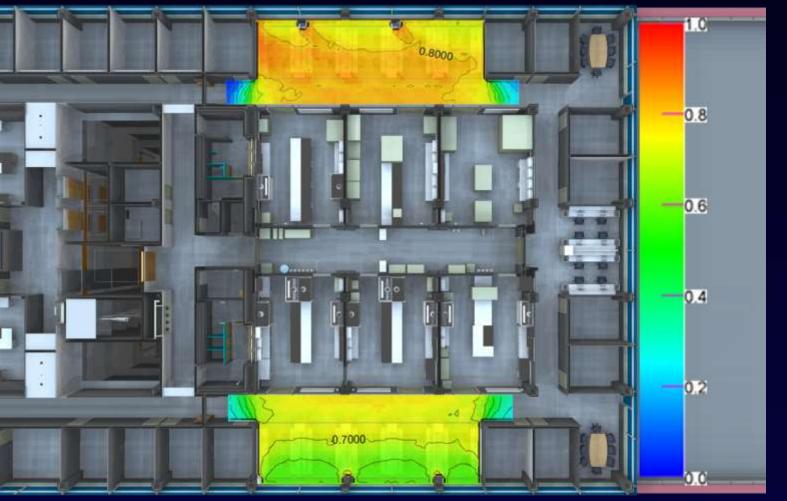
WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

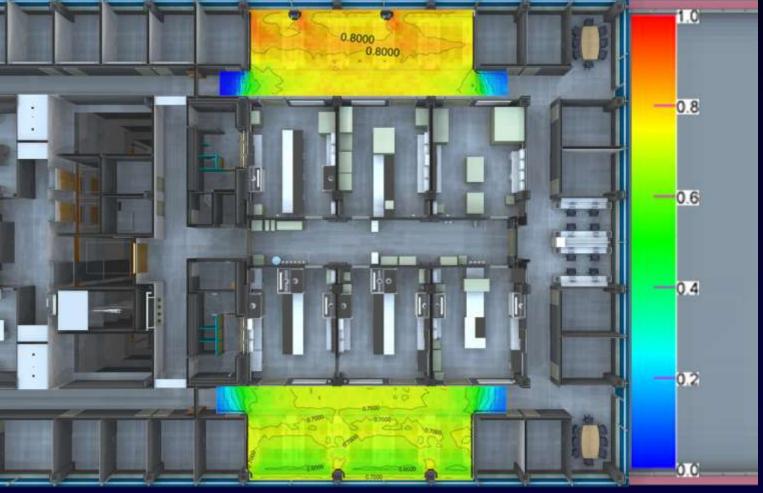
CONCLUSIONS


PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

USEFUL ILLUMINANCE


EXISTING CONDITIONS

PFUND

Russell

STOUGH

VILLACAMPA

60% WWR

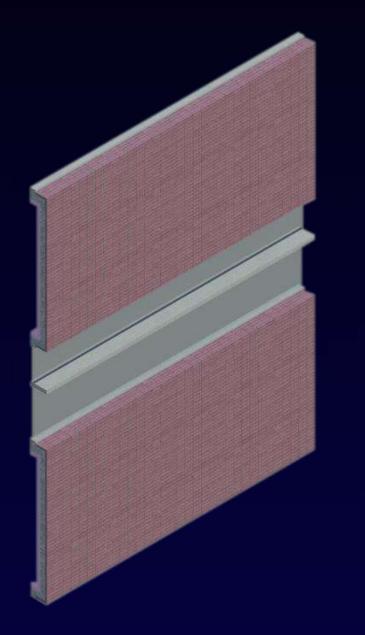
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

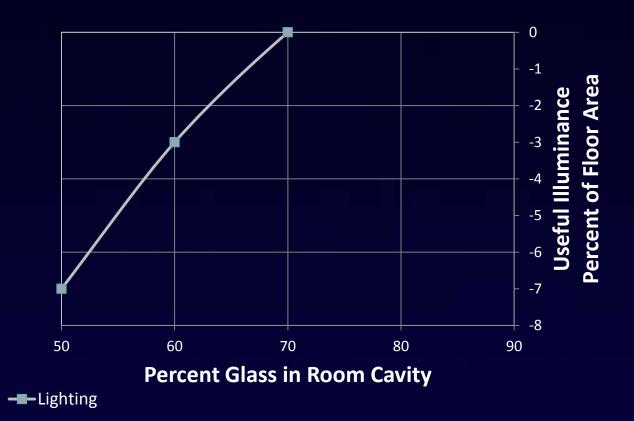
WINDOW TO WALL RATIO

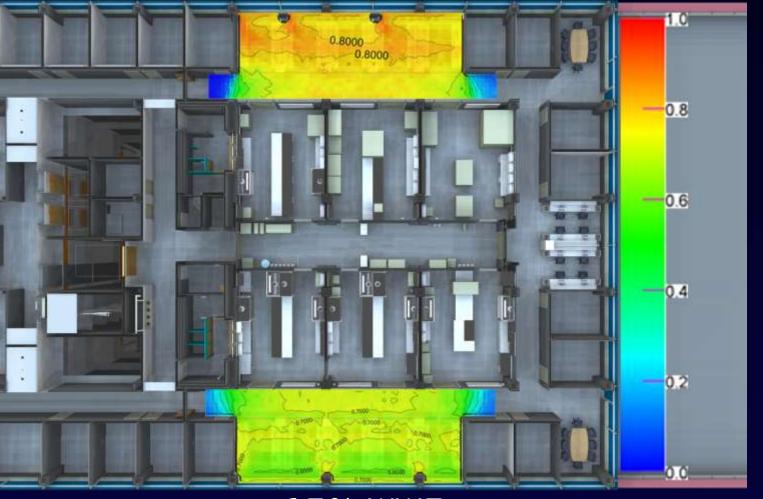
SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION


CANTILEVER PLAZA


IPD/BIM REFLECTION

USEFUL ILLUMINANCE

Window to Wall Ratio Selection

60% WWR

PFUND

Russell

STOUGH

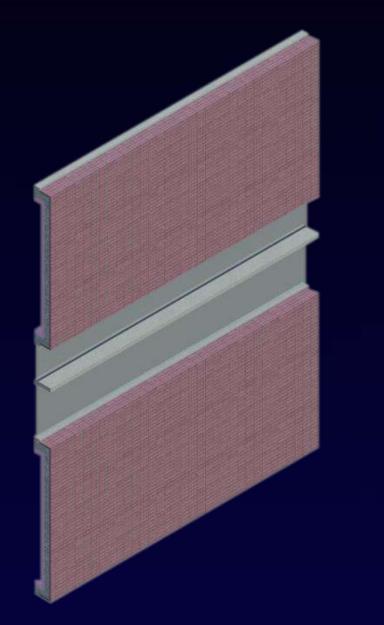
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

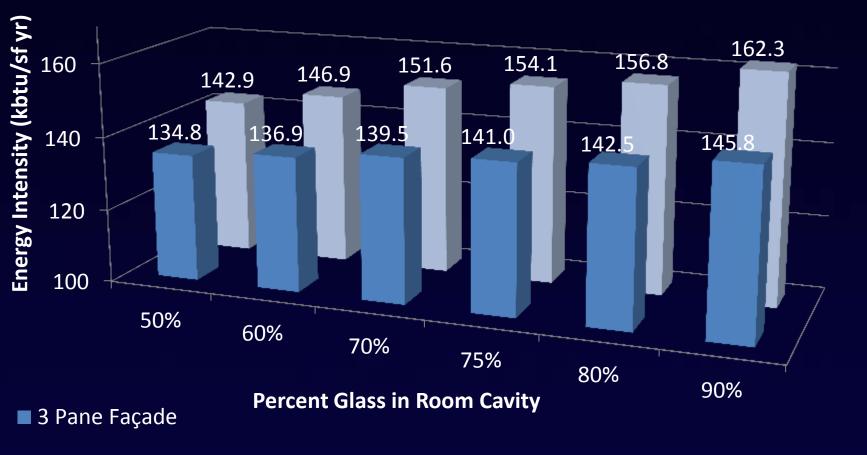

LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION



PFUND

RUSSELL

PERCENT ENERGY SAVINGS

■ Existing Façade

STOUGH VILLACAMPA

BIMCEption

BUILDING INFO

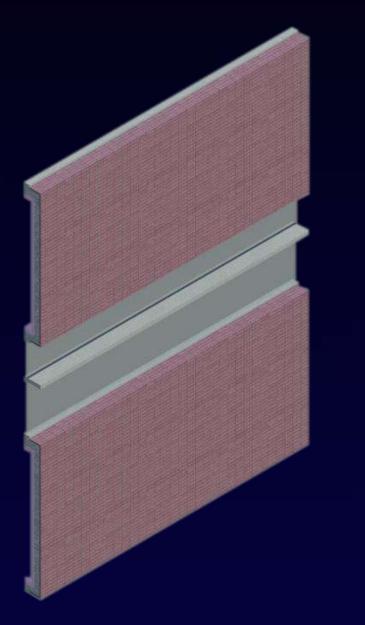
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

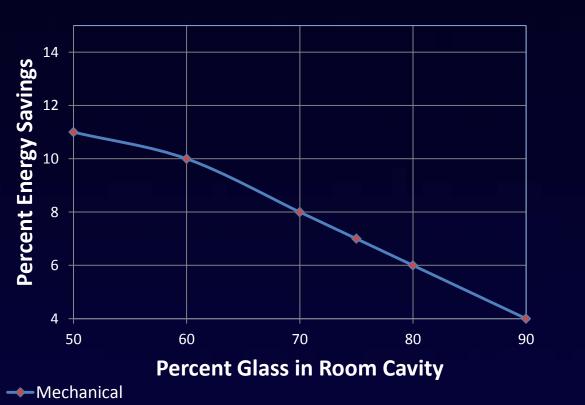
WINDOW TO WALL RATIO

SHADE ANALYSIS

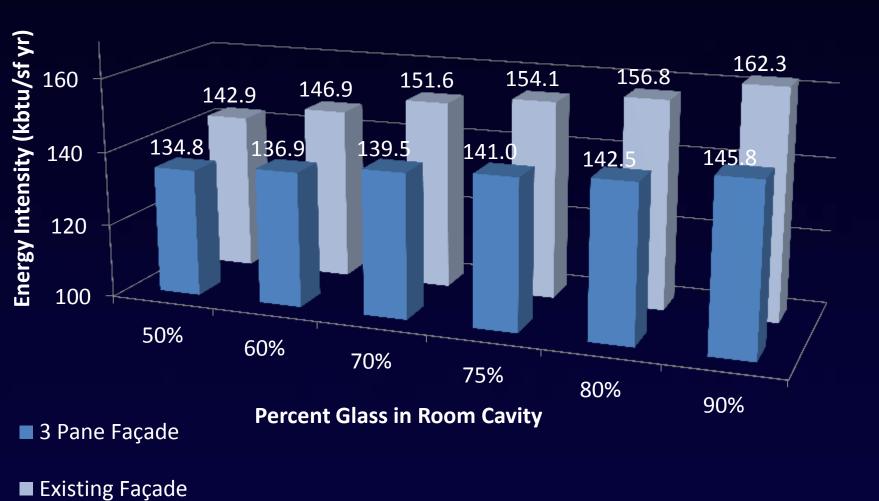

LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION


CANTILEVER PLAZA

IPD/BIM REFLECTION



PERCENT ENERGY SAVINGS

Window to Wall Ratio Selection

Energy Intensity (kbtu/sf yr)

FAÇADE INVESTIGATION

OVERVIEW

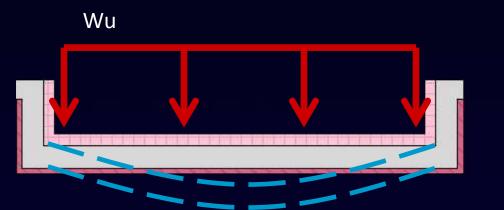
WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN

CONCLUSIONS


PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

- FLEXURE SELF WEIGHT
- 6" PRACTICAL FOR REINFORCING CONDITIONS

Ratio (%)	Minimum Thickness (in)	M _{cap} (lb- ft)	M _{sw} (lb-ft)	M _{wind} (lb-ft)
50	6	2864	2819	1081
60	5.5	2406	2152	883
70	4.5	1611	1477	706
80	4	1273	1058	550

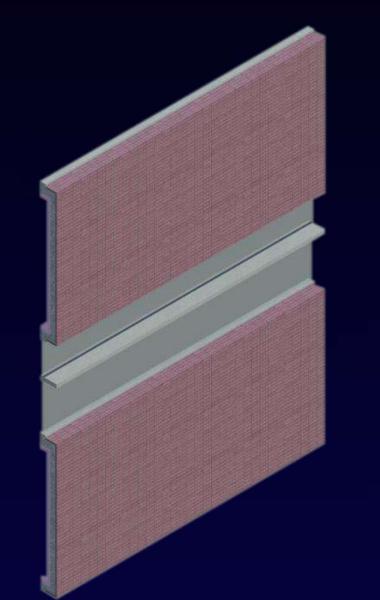
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

CONSTRUCTION COST

Third Floor, Redesigned Panel			
Length of Panel	70%	60%	
22 ft	\$1,530,763	\$1,539,322	
14ft	\$41,131	\$41,331	
31ft	\$81,270	\$81,733	
Total	\$1,653,164	\$1,662,387	
Increased Cost of 60%	\$9,223		

\$9,223 MORE FOR 60% GLASS RATIO

PFUND

Russell

STOUGH

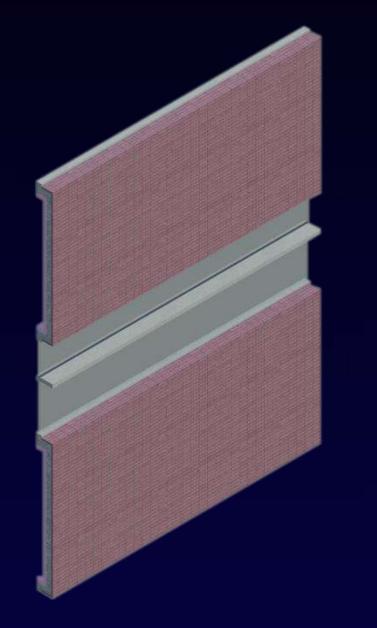
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

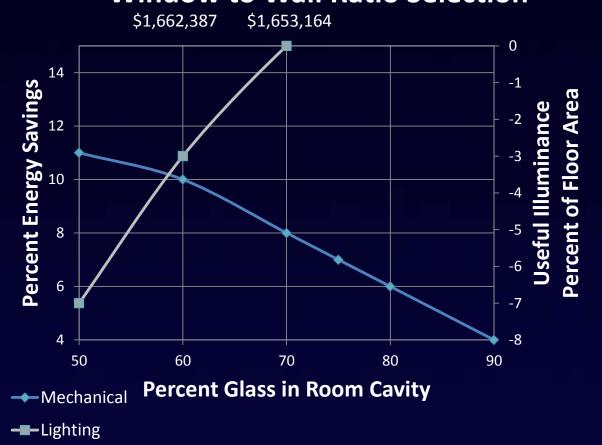
WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION


CANTILEVER PLAZA

IPD/BIM REFLECTION

WINDOW TO WALL RATIO SELECTION

Window to Wall Ratio Selection

Third Floor, Redesigned Panel				
Length of Panel	70%	60%		
22 ft	\$1,530,763	\$1,539,322		
14ft	\$41,131	\$41,331		
31ft	\$81,270	\$81,733		
Total \$1,653,164 \$1,662,387				
Increased Cost of 60%	Increased Cost of 60% \$9,223			

\$9,223 MORE FOR 60% GLASS RATIO

PFUND

RUSSELL

STOUGH

FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

LIFE CYCLE COST

	70 % Glass	60 % Glass	Savings
Total Yearly Operating Costs	\$142,912	\$139,338	\$3,574
Installation Costs	\$1,653,164	\$1,662,387	\$-9,223
30 yr Life Cycle Cost	\$5,336,113	\$5,253,245	\$82,868

Third Floor, Redesigned Panel			
Length of Panel	70%	60%	
22 ft	\$1,530,763	\$1,539,322	
14ft	\$41,131	\$41,331	
31ft	\$81,270	\$81,733	
Total \$1,653,164 \$1,662,387			
Increased Cost of 60%	\$9,223		

\$9,223 MORE FOR 60% GLASS RATIO

PFUND RUSSELL STOUGH

dugh Villai

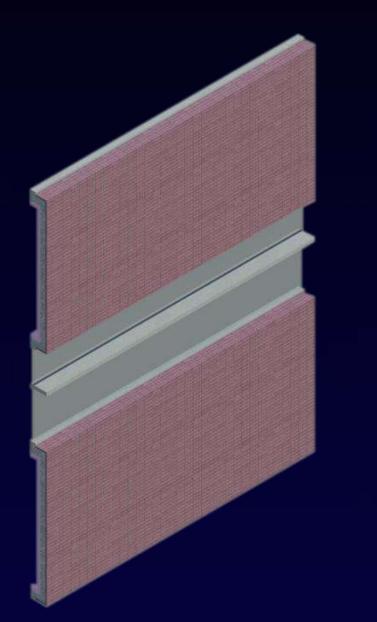
FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS


LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

LIFE CYCLE COST

	70 % Glass	60 % Glass	Savings
Total Yearly Operating Costs	\$142,912	\$139,338	\$3,574
Installation Costs	\$1,653,164	\$1,662,387	\$-9,223
30 yr Life Cycle Cost	\$5,336,113	\$5,253,245	\$82,868

2.6 YEAR SIMPLE PAYBACK

Third Floor, Redesigned Panel			
Length of Panel	70% 60%		
22ft	\$1,530,763	\$1,539,322	
14ft	\$41,131	\$41,331	
31ft	\$81,270	\$81,733	
Total	\$1,653,164	\$1,662,387	
Increased Cost of 60%	\$9,223		

\$9,223 MORE FOR 60% GLASS RATIO

PFUND

RUSSELL

STOUGH

FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

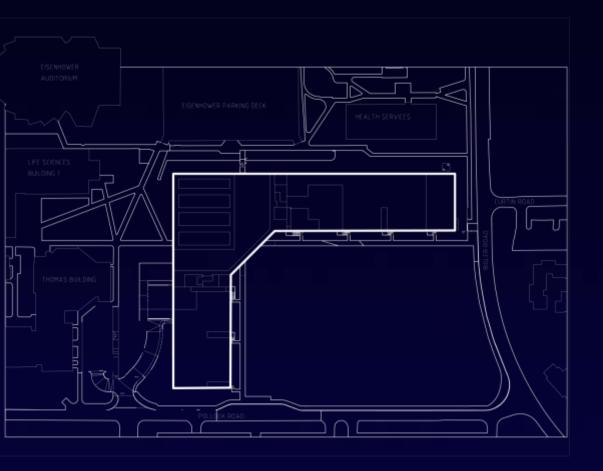
WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION
CANTILEVER PLAZA


IPD/BIM REFLECTION

PRECAST PANEL ERECTION

- EXISTING SCHEDULE
 - START: NOVEMBER 16, 2009
- FINISH: MAY 17, 2010

- NEW SCHEDULE
 - START: DECEMBER 7, 2009
 - FINISH: MARCH 4, 2010

PRECAST ERECTION PLAN

FUND

USSELL

STOUGH

FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

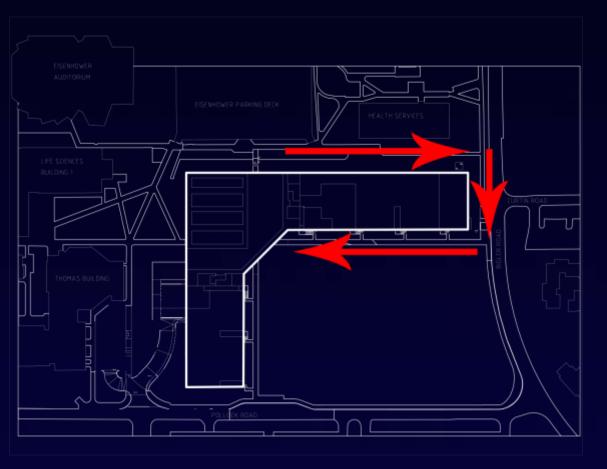
SHADE ANALYSIS

LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA


IPD/BIM REFLECTION

PRECAST PANEL ERECTION

- EXISTING SCHEDULE
 - START: NOVEMBER 16, 2009
- FINISH: MAY 17, 2010

- NEW SCHEDULE
 - START: DECEMBER 7, 2009
 - FINISH: MARCH 4, 2010

PRECAST ERECTION PLAN

FUND

FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

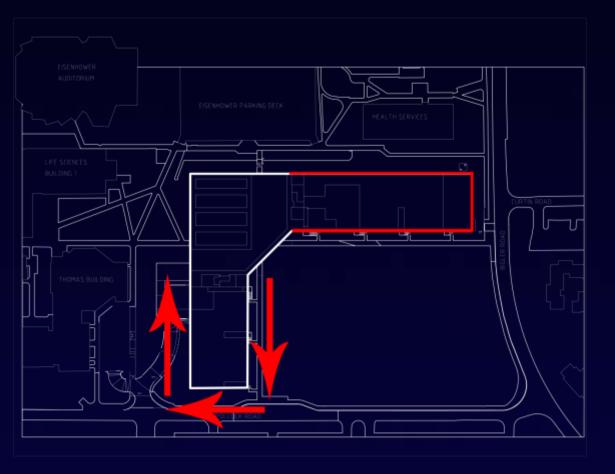
SHADE ANALYSIS

LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA


IPD/BIM REFLECTION

PRECAST PANEL ERECTION

- EXISTING SCHEDULE
 - START: NOVEMBER 16, 2009
- FINISH: MAY 17, 2010

- NEW SCHEDULE
 - START: DECEMBER 7, 2009
 - FINISH: MARCH 4, 2010

PRECAST ERECTION PLAN

FUND

FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

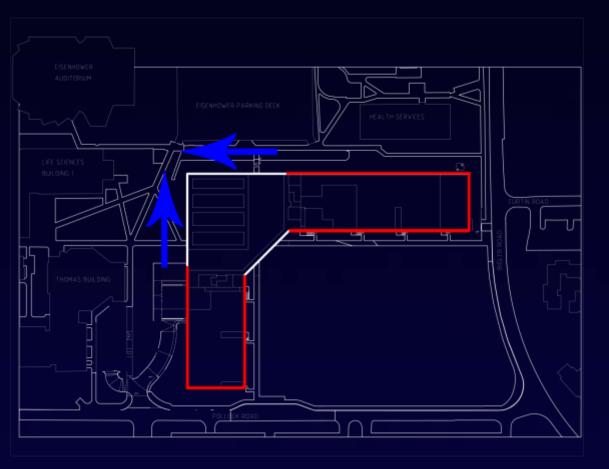
SHADE ANALYSIS

LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA


IPD/BIM REFLECTION

PRECAST PANEL ERECTION

- EXISTING SCHEDULE
 - START: NOVEMBER 16, 2009
- FINISH: MAY 17, 2010

- NEW SCHEDULE
 - START: DECEMBER 7, 2009
 - FINISH: MARCH 4, 2010

PRECAST ERECTION PLAN

FUND

RUSSE

STOUGH

FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

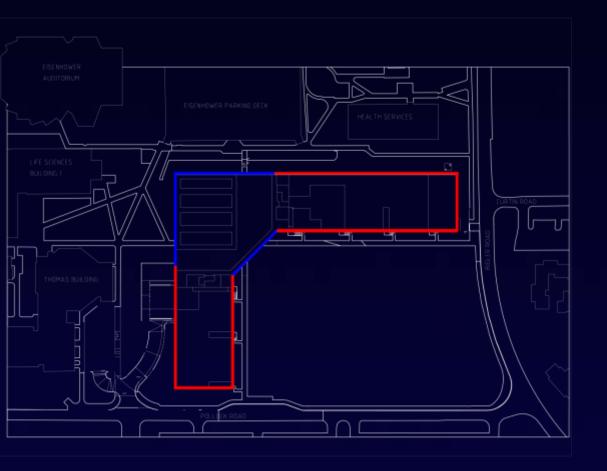
SHADE ANALYSIS

LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA


IPD/BIM REFLECTION

PRECAST PANEL ERECTION

- EXISTING SCHEDULE
 - START: NOVEMBER 16, 2009
- FINISH: MAY 17, 2010

- NEW SCHEDULE
 - START: DECEMBER 7, 2009
 - FINISH: MARCH 4, 2010

PRECAST ERECTION PLAN

FUND

RUSSELL

STOUGH

FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

SHADE ANALYSIS

FAÇADE INVESTIGATION

OVERVIEW

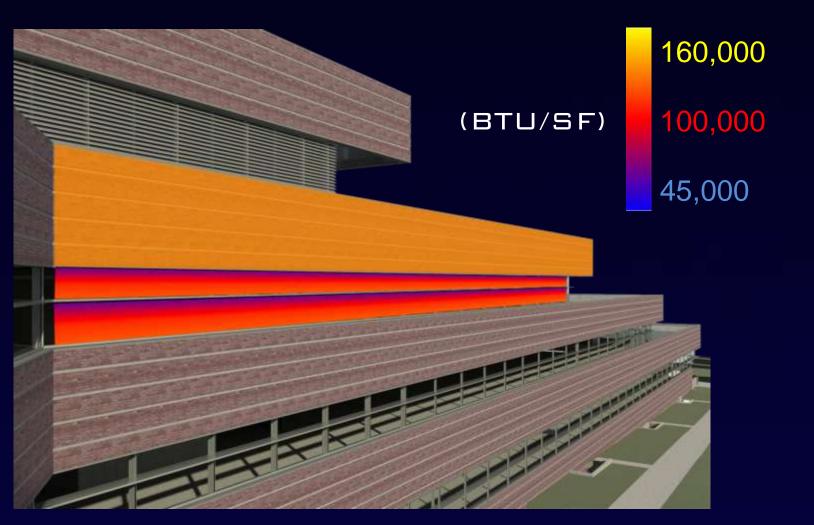
WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN

CONCLUSIONS


PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

CUMULATIVE YEARLY INCIDENT
SOLAR RADIATION (BTU/SF)

EXTERIOR SHADE ANALYSIS

STOUGH

PFUND

- ANALYZE EFFECTS OF SOLAR RADIATION
- REDUCE EXTERNAL BUILDING LOADING

FAÇADE INVESTIGATION

OVERVIEW

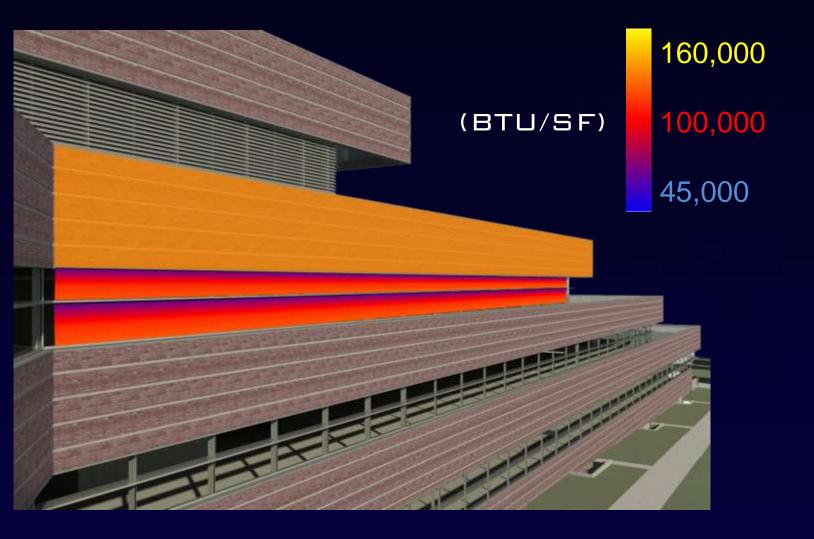
WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN

CONCLUSIONS

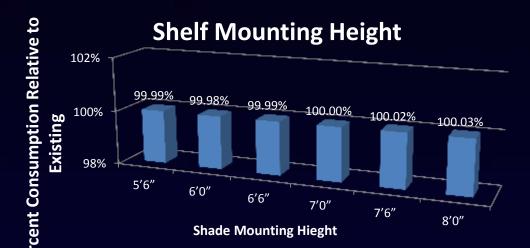

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

CUMULATIVE YEARLY INCIDENT
SOLAR RADIATION (BTU/SF)

EXTERIOR SHADE ANALYSIS



USSELL

STOUGH

FAÇADE INVESTIGATION

OVERVIEW

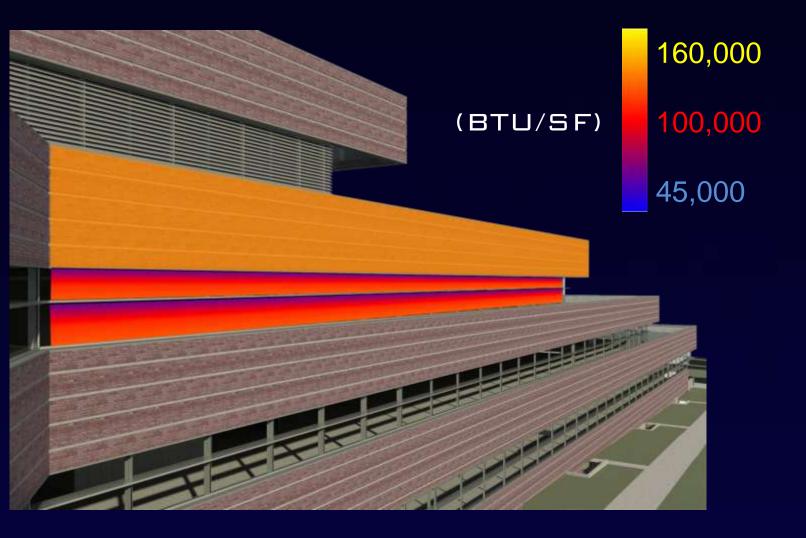
WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN

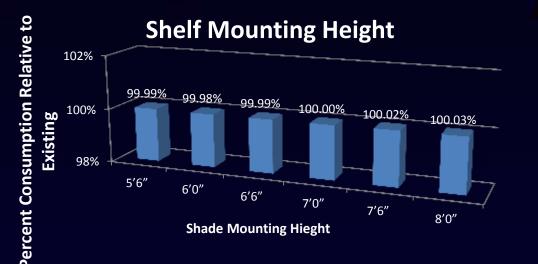
CONCLUSIONS


PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

CUMULATIVE YEARLY INCIDENT
SOLAR RADIATION (BTU/SF)


EXTERIOR SHADE ANALYSIS


STOUGH

VILLACAMPA

PFUND

FAÇADE INVESTIGATION

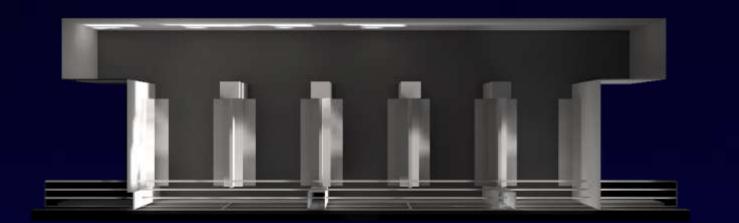
OVERVIEW

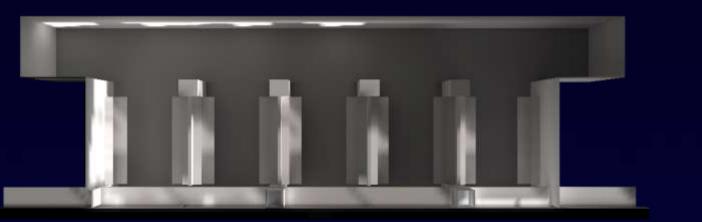
WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN


CONCLUSIONS


PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

SHADE ANALYSIS

PFUND

Russell

STOUGH

FAÇADE INVESTIGATION

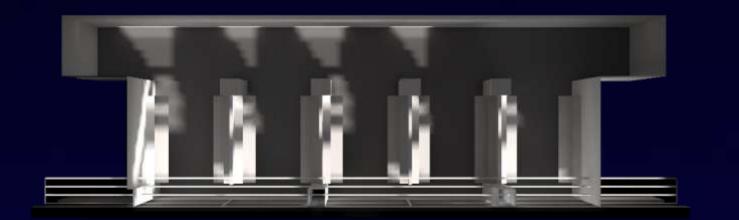
OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN


CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

SHADE ANALYSIS

PFUND

RUSSELL

STOUGH

FAÇADE INVESTIGATION

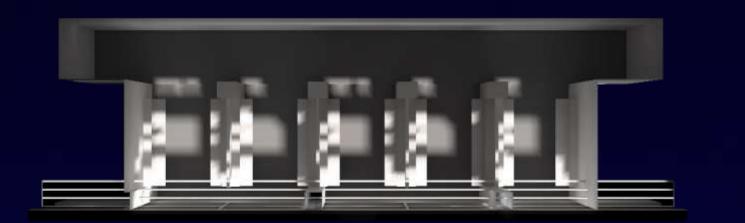
OVERVIEW

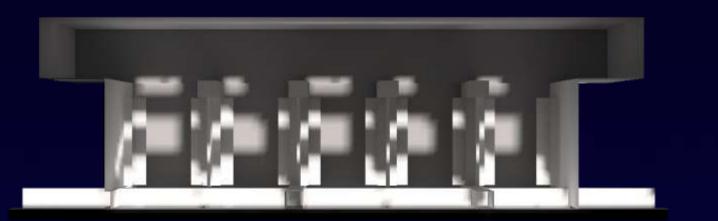
WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN


CONCLUSIONS


PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

SHADE ANALYSIS

PFUND

Russell

STOUGH

FAÇADE INVESTIGATION

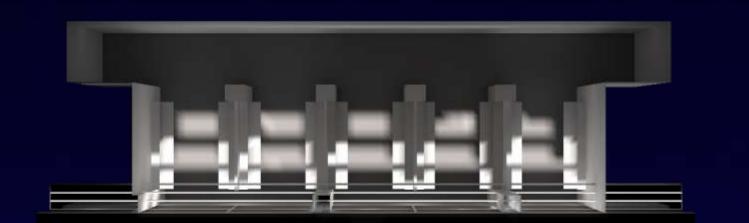
OVERVIEW

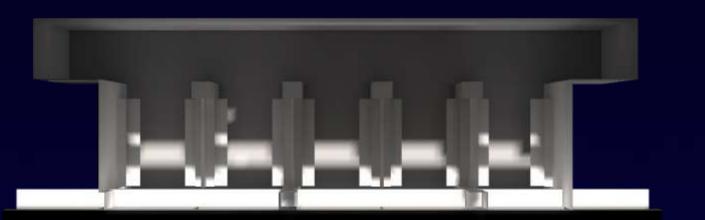
WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN


CONCLUSIONS


PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

SHADE ANALYSIS

PFUND

Russell

STOUGH

FAÇADE INVESTIGATION

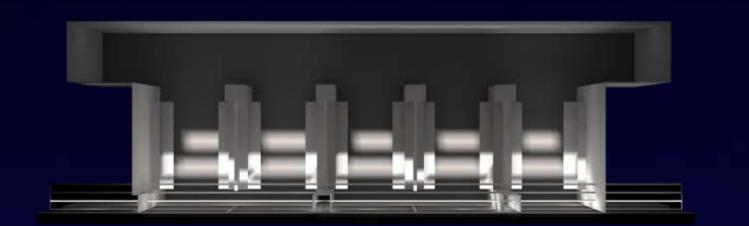
OVERVIEW

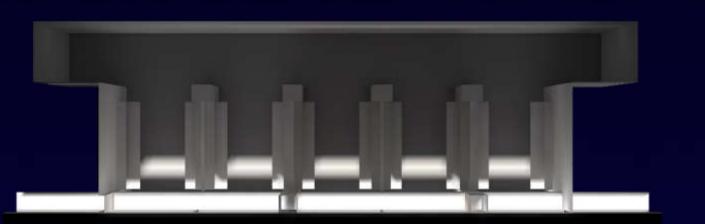
WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN


CONCLUSIONS


PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

SHADE ANALYSIS

PFUND

Russell

STOUGH

FAÇADE INVESTIGATION

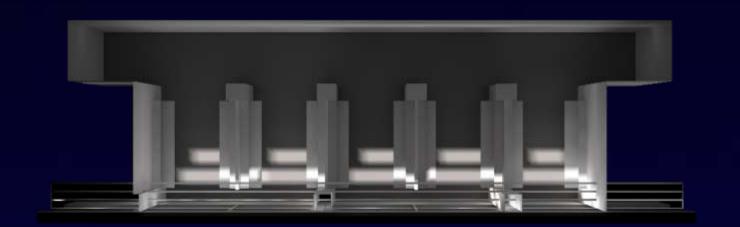
OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN


CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

SHADE ANALYSIS

PFUND

RUSSELL

STOUGH

FAÇADE INVESTIGATION

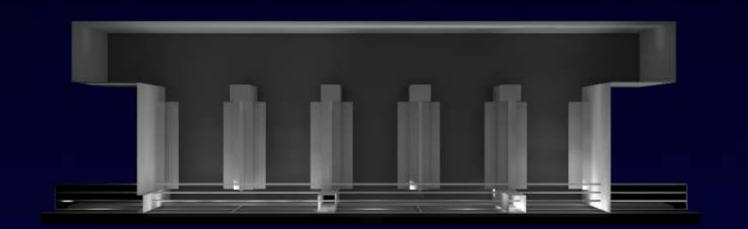
OVERVIEW

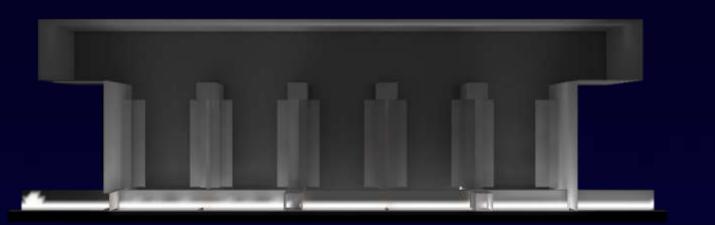
WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN


CONCLUSIONS


PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

SHADE ANALYSIS

PFUND

Russell

STOUGH

FAÇADE INVESTIGATION

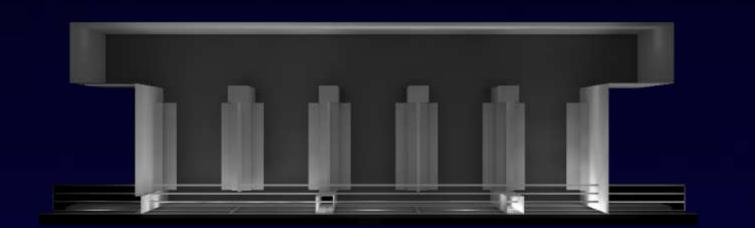
OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN


CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

SHADE ANALYSIS

PFUND

RUSSELL

STOUGH

FAÇADE INVESTIGATION

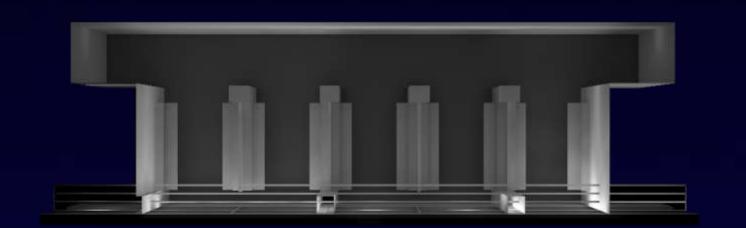
OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN


CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

SHADE ANALYSIS

PFUND

RUSSELL

STOUGH

FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

LIGHTING DESIGN

FAÇADE INVESTIGATION

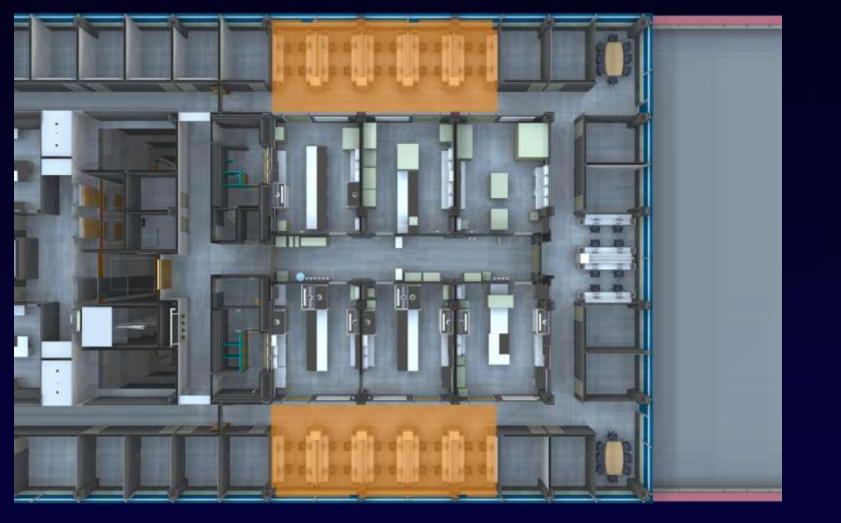
OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN


CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

LIGHTING DESIGN

FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

LIGHTING DESIGN

PFUND

Russell

STOUGH

FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

LIGHTING DESIGN

PFUND

Russell

STOUGH

FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

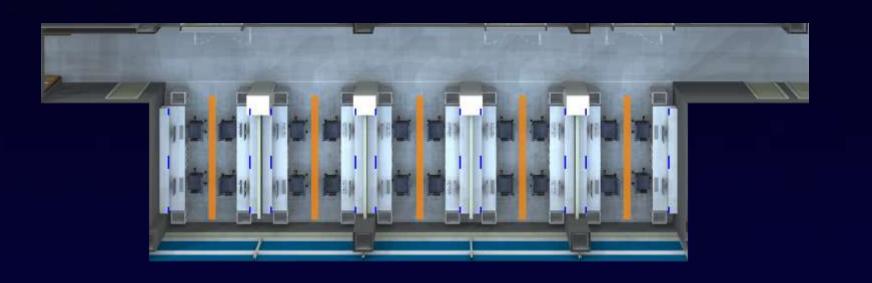
WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION


CANTILEVER PLAZA

IPD/BIM REFLECTION

LIGHTING DESIGN

PFUND

Russell

STOUGH

FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

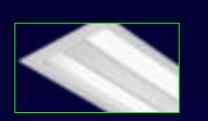
WINDOW TO WALL RATIO

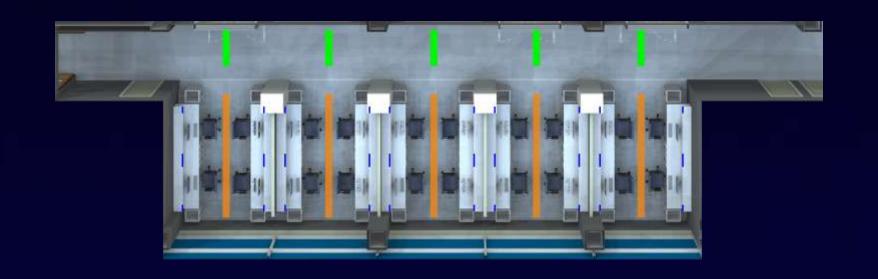
SHADE ANALYSIS

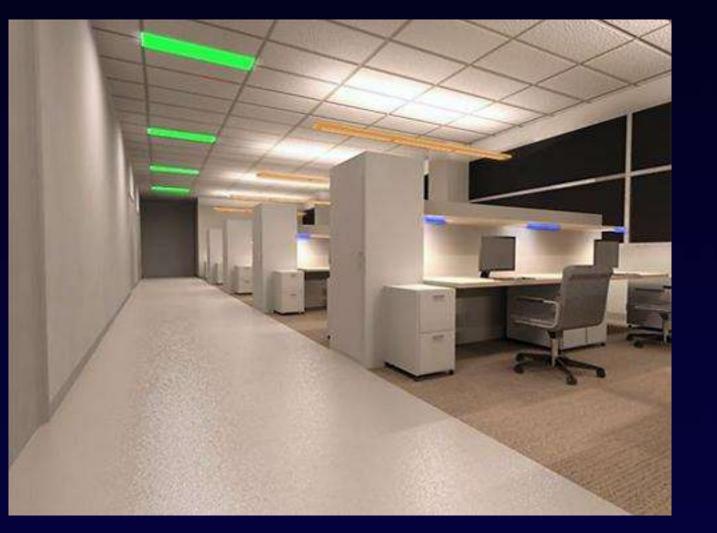
LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION


CANTILEVER PLAZA


IPD/BIM REFLECTION


LIGHTING DESIGN

FAÇADE INVESTIGATION

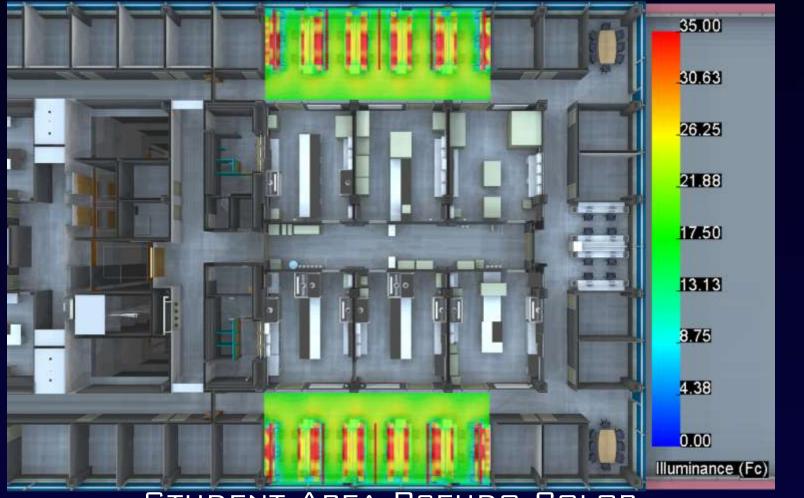
OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

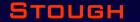
LIGHTING DESIGN


CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION


LIGHTING DESIGN

FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

LIGHTING DESIGN

IESNA Illumination Recommendations for Student Area					
Area	Avg. Horizontal Illuminance				
Aled	Target	Design			
Student Area Desk	30 fc	34 fc			
Corridor	5 fc	21.7 fc			

ASHRAE Power Density Requirements						
Area Allowable Design						
Student Area	1.2 W / SF	0.86 W / SF				
Corridor	0.5 W / SF	0.40 W / SF				

PFUND

Russell

STOUGH

FAÇADE INVESTIGATION

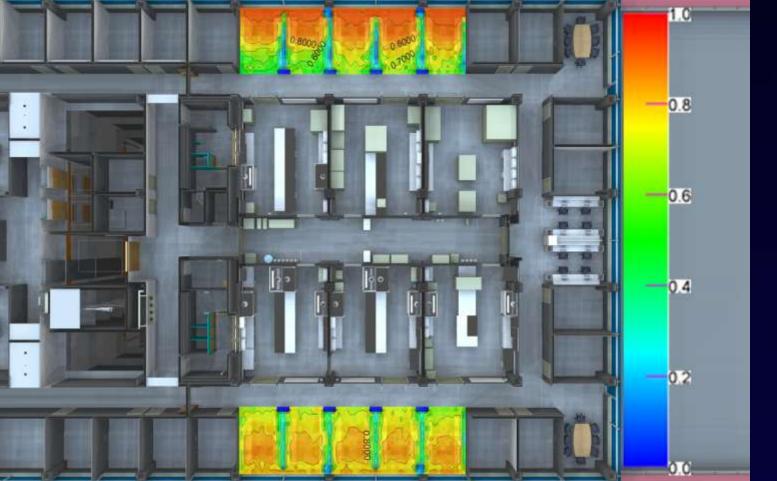
OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN


CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

DAYSIM CONTROL STUDY

STUDENT AREA DA_{CON} 322.8 LUX

PFUND

Russell

STOUGH

FAÇADE INVESTIGATION

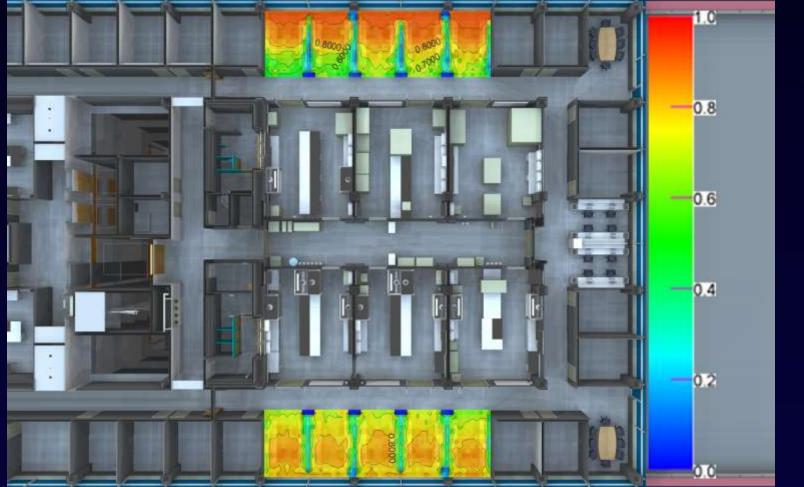
OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN


CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

DAYSIM CONTROL STUDY


PFUND

Russell

STOUGH

VILLACAMPA

Percent of Yearly Peak Lighting Load

■ South Student Area

FAÇADE INVESTIGATION

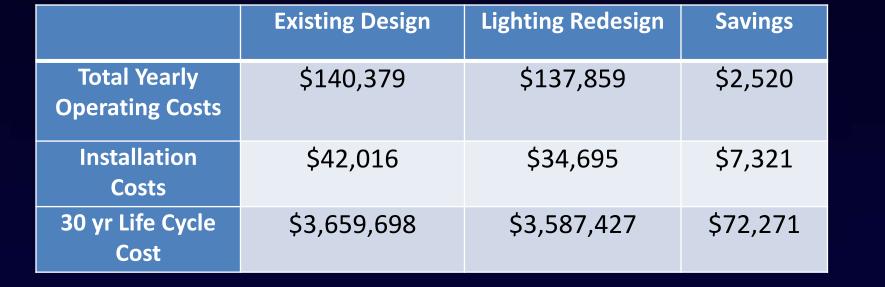
OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN


CONCLUSIONS

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

LIGHTING ENERGY ANALYSIS

Percent of Yearly Peak Lighting Load

PFUND

RUSSELL

STOUGH

FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

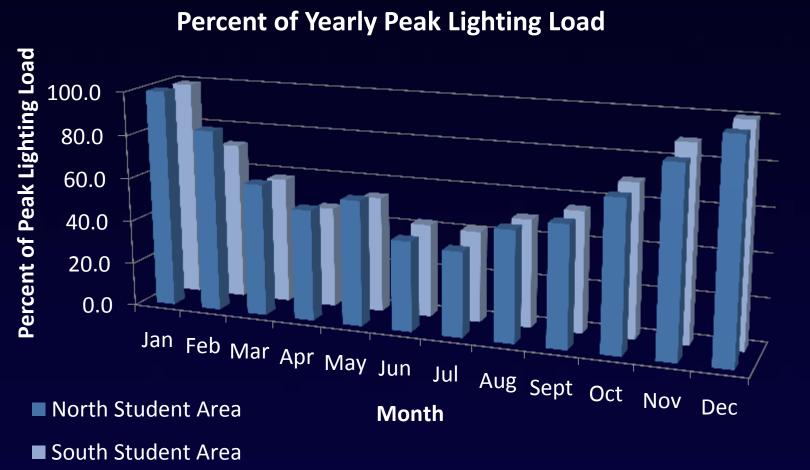
WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN

CONCLUSIONS

PLENUM INVESTIGATION


CANTILEVER PLAZA

IPD/BIM REFLECTION

LIGHTING ENERGY ANALYSIS

	Existing Design	Lighting Redesign	Savings
Total Yearly Operating Costs	\$140,379	\$137,859	\$2,520
Installation Costs	\$42,016	\$34,695	\$7,321
30 yr Life Cycle Cost	\$3,659,698	\$3,587,427	\$72,271

IMMEDIATE RETURN ON INVESTMENT

PFUND

Russell

STOUGH

FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

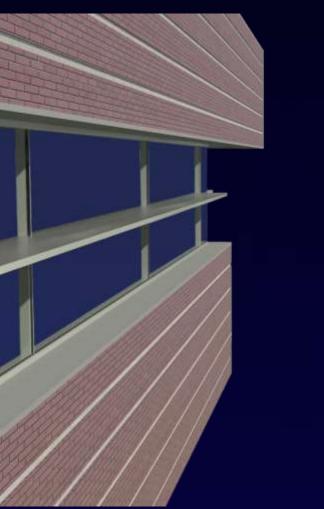
WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN

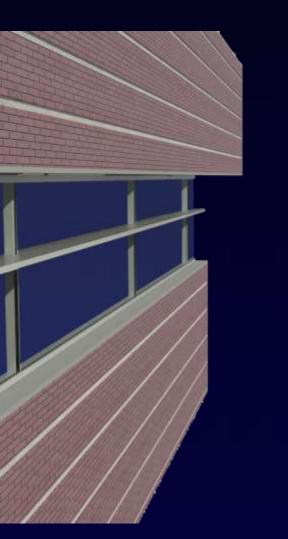
Conclusions

PLENUM INVESTIGATION


CANTILEVER PLAZA

IPD/BIM REFLECTION

FAÇADE CONCLUSIONS


EXISTING

FAÇADE

FAÇADE

REDESIGN

PFUND

Russell

STOUGH

FAÇADE INVESTIGATION

OVERVIEW

WALL COMPOSITION

WINDOW TO WALL RATIO

SHADE ANALYSIS

LIGHTING DESIGN

Conclusions

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

FAÇADE CONCLUSIONS

EXISTING DESIGN

FAÇADE REDESIGN

PFUND

USSELL

STOUGH

FAÇADE INVESTIGATION

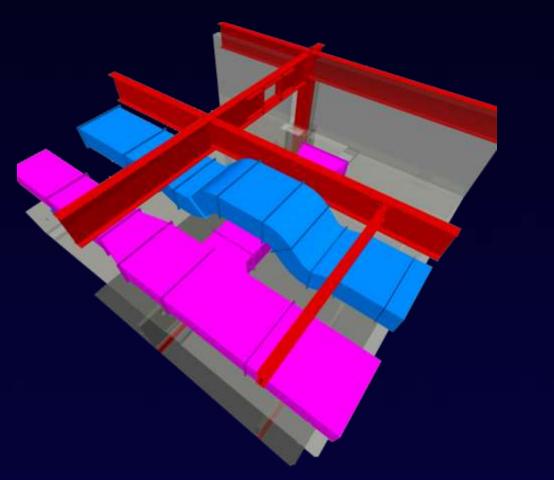
PLENUM INVESTIGATION

OVERVIEW

FLOOR SYSTEM

DUCT SYSTEM

COORDINATION


LOGISTICS/SCHEDULE

4D MODELING

CANTILEVER PLAZA

IPD/BIM REFLECTION

PLENUM INVESTIGATION

PFUND

Russell

STOUGH

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

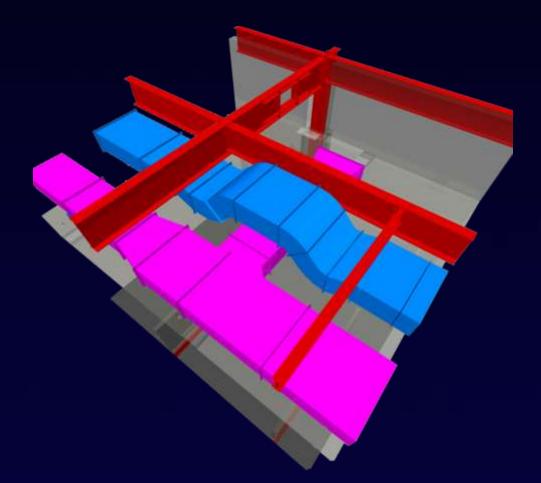
OVERVIEW

FLOOR SYSTEM

DUCT SYSTEM

COORDINATION

LOGISTICS/SCHEDULE


4D MODELING

CANTILEVER PLAZA

IPD/BIM REFLECTION

PLENUM ANALYSES

FLOOR SYSTEM REDESIGN/ VIBRATION
ANALYSIS

PFUND

Russell

STOUGH

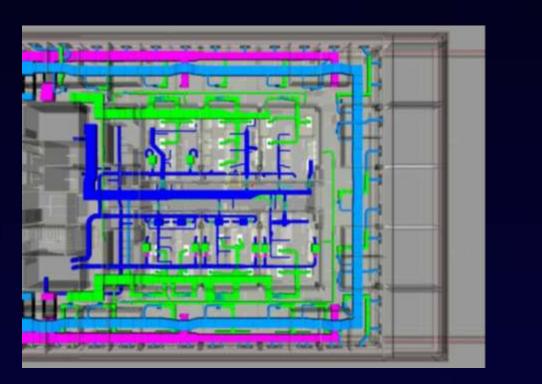
FAÇADE INVESTIGATION

PLENUM INVESTIGATION

OVERVIEW

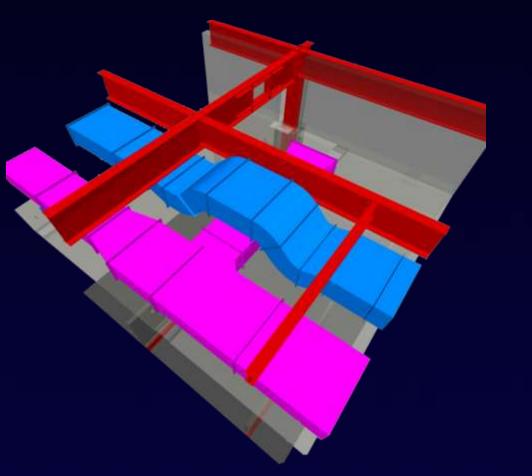
FLOOR SYSTEM

DUCT SYSTEM


COORDINATION

Logistics/Schedule

4D MODELING


CANTILEVER PLAZA

IPD/BIM REFLECTION

PLENUM ANALYSES

- FLOOR SYSTEM REDESIGN/ VIBRATION
 ANALYSIS
- DUCT SYSTEM REDESIGN

PFUND

USSELL

STOUGH

Building Info

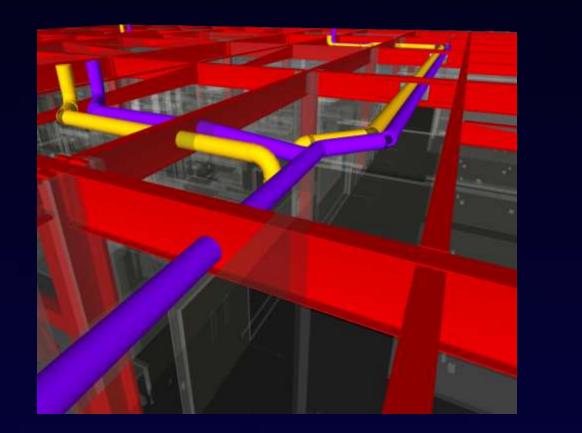
FAÇADE INVESTIGATION

PLENUM INVESTIGATION

OVERVIEW

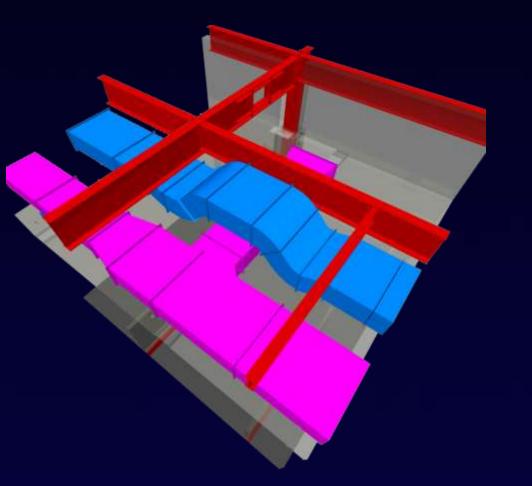
FLOOR SYSTEM

DUCT SYSTEM


COORDINATION

Logistics/Schedule

4D MODELING


CANTILEVER PLAZA

IPD/BIM REFLECTION

PLENUM ANALYSES

- FLOOR SYSTEM REDESIGN/ VIBRATION
 ANALYSIS
- DUCT SYSTEM REDESIGN
- STRUCTURAL/MECHANICAL COORDINATION

PFUND

USSELL

STOUGH

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

OVERVIEW

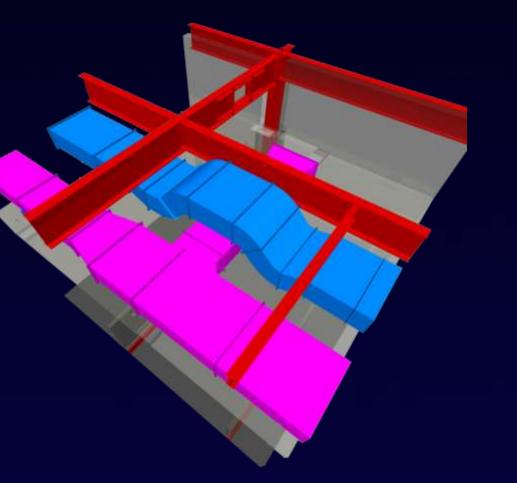
FLOOR SYSTEM

DUCT SYSTEM

COORDINATION

LOGISTICS/SCHEDULE

4D MODELING


CANTILEVER PLAZA

IPD/BIM REFLECTION

PLENUM ANALYSES

- FLOOR SYSTEM REDESIGN/ VIBRATION
 ANALYSIS
- DUCT SYSTEM REDESIGN
- STRUCTURAL/MECHANICAL COORDINATION
- 4D Modeling

PFUND

USSELL

STOUGH

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

OVERVIEW

FLOOR SYSTEM

DUCT SYSTEM

COORDINATION

LOGISTICS/SCHEDULE

4D MODELING

CANTILEVER PLAZA

IPD/BIM REFLECTION

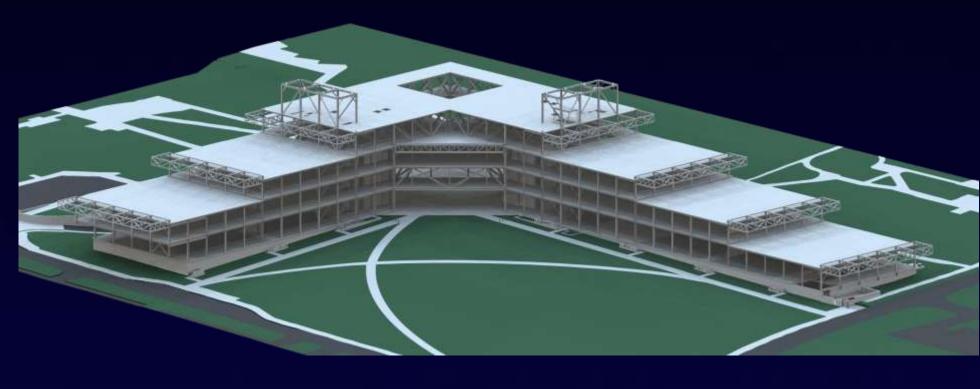
EXISTING FLOOR SYSTEM

- ONE-WAY COMPOSITE STEEL BEAMS
- 22FT SQUARE BAYS
- 11FT BEAM SPACING
- 6.25" LWC SLAB, 3" 18GA DECK

PFUND

Russell

STOUGH


FAÇADE INVESTIGATION

PLENUM INVESTIGATION

EXISTING FLOOR SYSTEM

- ONE-WAY COMPOSITE STEEL BEAMS
- 22FT SQUARE BAYS
- 11FT BEAM SPACING
- 6.25" LWC SLAB, 3" 18GA DECK

PFUND

STOUGH

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

OVERVIEW

FLOOR SYSTEM

DUCT SYSTEM

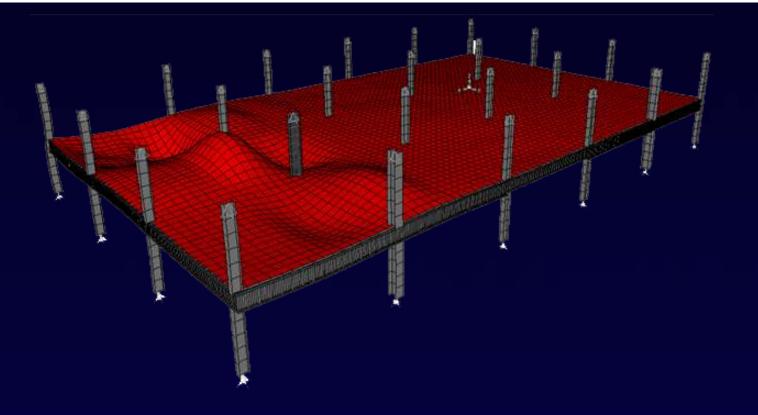
COORDINATION

Logistics/Schedule

4D MODELING

CANTILEVER PLAZA

IPD/BIM REFLECTION



EXISTING VIBRATION ANALYSIS

- AISC DESIGN GUIDE 11- FLOOR
 VIBRATION DUE TO HUMAN ACTIVITY
- SAP2000 MODEL AE597A
- Point Load Deflection Analysis
- PERIOD OF VIBRATION CALCULATION USING
 RAYLEIGH METHOD
- LIFE SCIENCE WING 4000UI/S

Span/Location	Weight	Uv(lb/sec2)	Δ_p (in/100kip)	T(sec)	Velocity(ui/sec)
Α	27.7	5500	1.115	0.0639	3916
В	27.2	5500	1.004	0.0601	3317
С	26.8	5500	1.138	0.0649	4063

PFUND

RUSSELL

STOUGH

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

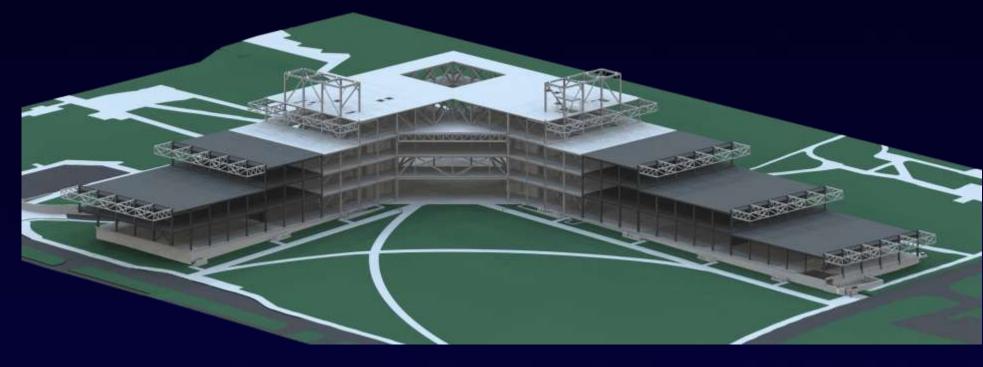
OVERVIEW

FLOOR SYSTEM

DUCT SYSTEM

COORDINATION

LOGISTICS/SCHEDULE


4D MODELING

CANTILEVER PLAZA

IPD/BIM REFLECTION

FLOOR SYSTEM ALTERNATIVES

- TYPICAL GRAVITY SYSTEM WITHIN WINGS
- SAVE VERTICAL PLENUM SPACE
- CONCRETE TYPICALLY THINNER PROFILE

PFUND

RUSSELL

STOUGH

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

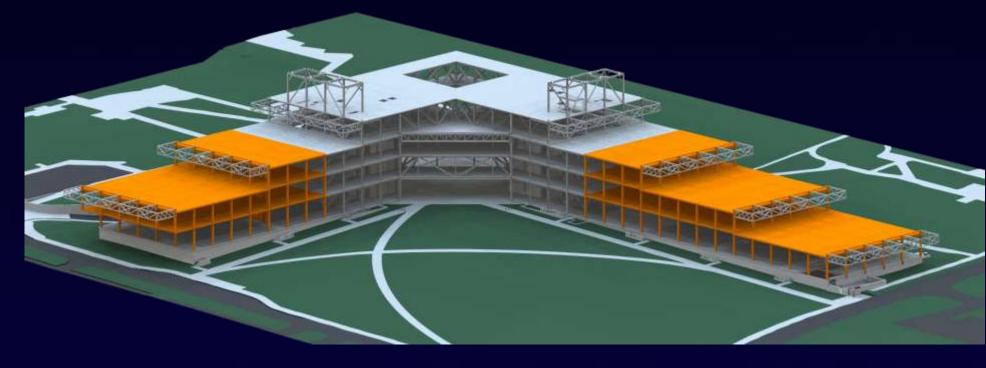
OVERVIEW

FLOOR SYSTEM

DUCT SYSTEM

COORDINATION

LOGISTICS/SCHEDULE


4D MODELING

CANTILEVER PLAZA

IPD/BIM REFLECTION

THREE BUILDING MIXED SYSTEM

- SEAMLESS INTEGRATION AT INTERSECTION
- WAFFLE SLAB/ ONE-WAY PAN JOIST
- VIBRATIONS WILL DETERMINE REQUIRED STIFFNESS

PFUND

RUSSELL

STOUGH

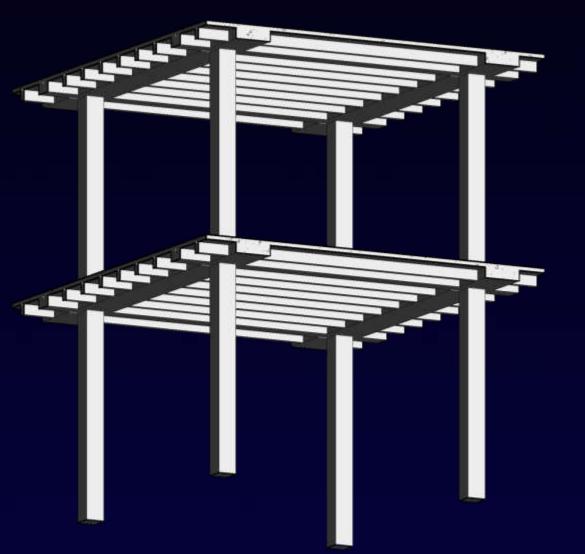
FAÇADE INVESTIGATION

PLENUM INVESTIGATION

OVERVIEW

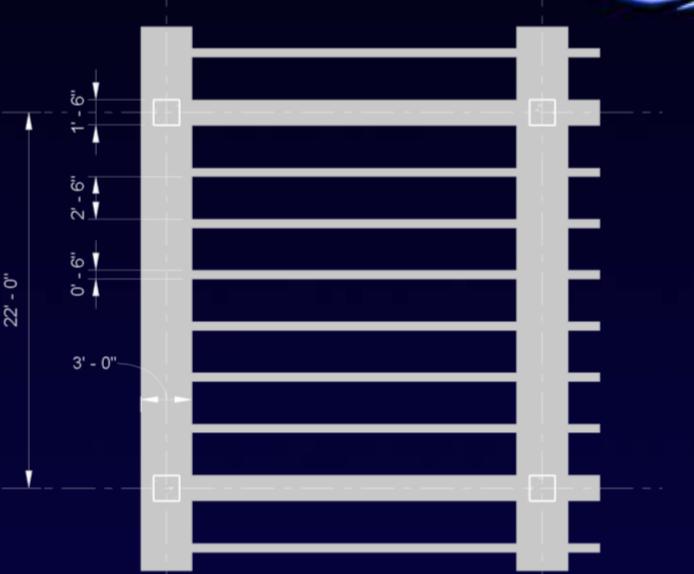
FLOOR SYSTEM

DUCT SYSTEM


COORDINATION

LOGISTICS/SCHEDULE

4D Modeling


CANTILEVER PLAZA

IPD/BIM REFLECTION

DNE-WAY PAN-JOIST DESIGN

- DESIGNED FOR STRENGTH
- ACI318-08, FLEXURAL/ SHEAR DESIGN
- 3FT MODULE: 30"PANS, 6" RIBS
- 10" DEEP PANS TABLE 9.5A
- 18" INTERIOR BEAMS ON COLUMN LINES
- 36" WIDE GIRDERS
- 18" SQUARE COLUMNS

FUND

RUSSELL

STOUGH

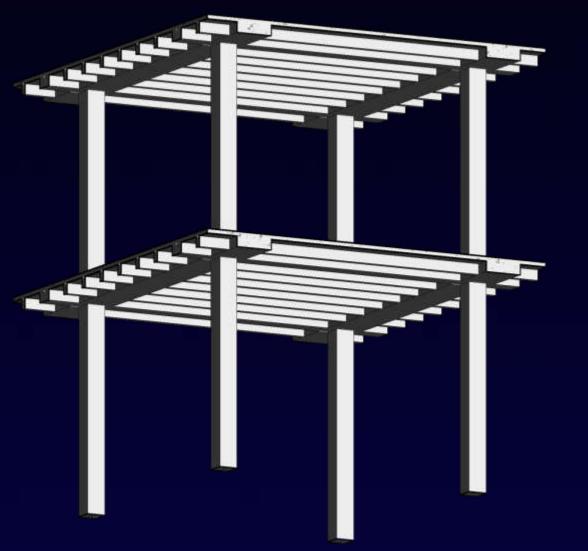
FAÇADE INVESTIGATION

PLENUM INVESTIGATION

OVERVIEW

FLOOR SYSTEM

DUCT SYSTEM

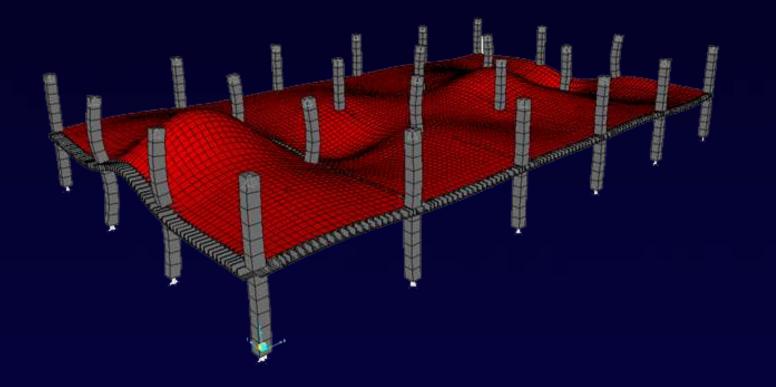

COORDINATION

LOGISTICS/SCHEDULE

4D MODELING

CANTILEVER PLAZA

IPD/BIM REFLECTION



PAN-JOIST VIBRATION ANALYSIS

- AISC DESIGN GUIDE 11- FLOOR
 VIBRATION DUE TO HUMAN ACTIVITY
- SAP2000 MODEL AE597A
- Point Load Deflection Analysis
- PERIOD OF VIBRATION CALCULATION USING RAYLEIGH METHOD
- LIFE SCIENCE WING 4000ul/s
- More efficient than Waffle Slab

Span/Location	Weight (kip)	Uv (lb/sec2)	Δ _p (in/100kip)	T (sec)	Velocity(ui/sec)
Α	41.7	5500	0.584	0.0637	2048
В	41.7	5500	0.541	0.0597	1776
С	41.7	5500	0.541	0.0596	1774

FUND

Russell

STOUGH

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

OVERVIEW

FLOOR SYSTEM

DUCT SYSTEM

COORDINATION

LOGISTICS/SCHEDULE

4D Modeling

CANTILEVER PLAZA

IPD/BIM REFLECTION

STRUCTURAL COST COMPARISON

	Material	Labor		
Concrete	\$ 403,758	\$ 110,791		
Rebar	\$ 277,595	\$ 187,798		
Formwork	\$ 1,286,819	\$ 1,787,383		
Finishing	\$ 24,606	\$ 49,213		
Shoring	\$ 296,521	\$ 6,477.86		
Total	\$ 2,289,301	\$ 2,141,664		
Cranes	\$ 402,802			
Overall Total	\$4,833,768			

REDESIGN STRUCTURAL COST

	Material Cost	Labor Cost		
Steel Framing	\$1,722,507	\$341,182		
Metal Deck	\$408,606	\$46,170		
Concrete	\$421,088	\$163,810		
Total	\$2,552,202	\$551,163		
Cranes	\$362,500			
Overall Total	\$3,465,865			

EXISTING STRUCTURAL COST

PFUND

RUSSELL

STOUGH

FAÇADE INVESTIGATION

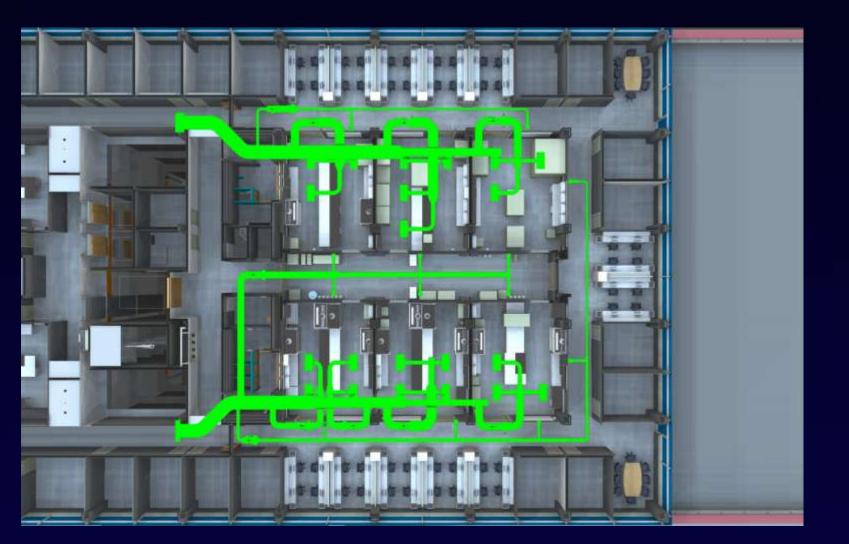
PLENUM INVESTIGATION

OVERVIEW

FLOOR SYSTEM

DUCT SYSTEM

COORDINATION


LOGISTICS/SCHEDULE

4D MODELING

CANTILEVER PLAZA

IPD/BIM REFLECTION

DUCT SYSTEM ANALYSIS

- THIRD FLOOR MATERIAL SCIENCE WING
 - LABORATORY SUPPLY DUCT RUNS
 - USE AVAILABLE PLENUM SPACE
 - INCREASE DUCT SIZE
 - REDUCE STATIC PRESSURE
 - SAVE FAN ENERGY

PFUND

USSELL

STOUGH

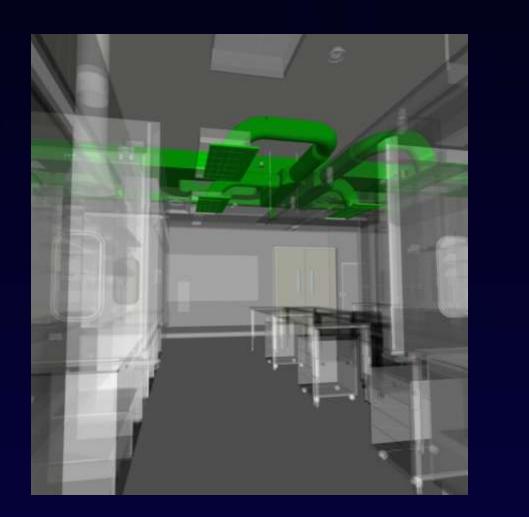
FAÇADE INVESTIGATION

PLENUM INVESTIGATION

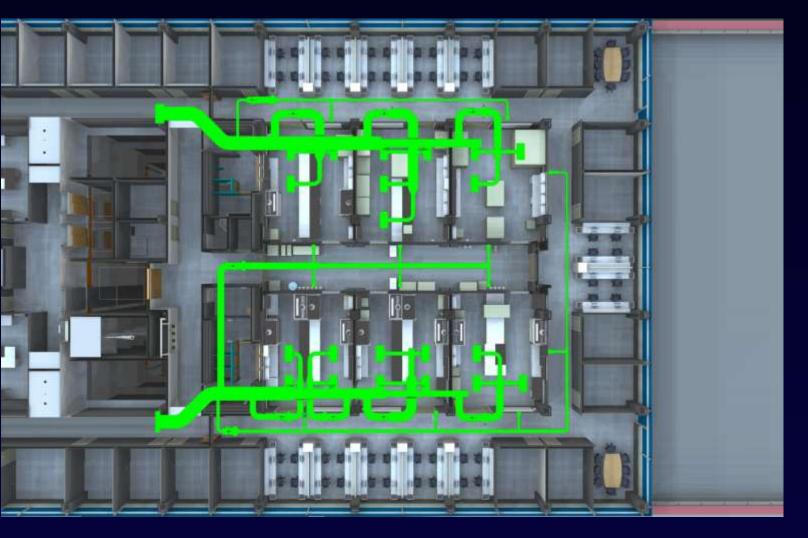
OVERVIEW

FLOOR SYSTEM

DUCT SYSTEM


COORDINATION

Logistics/Schedule


4D MODELING

CANTILEVER PLAZA

IPD/BIM REFLECTION

DUCT SYSTEM ANALYSIS

FIIND

- USSELL
- STOUGH
- VILLAGAMPA

- THIRD FLOOR MATERIAL SCIENCE WING
- LABORATORY SUPPLY DUCT RUNS
- USE AVAILABLE PLENUM SPACE
 - INCREASE DUCT SIZE
 - REDUCE STATIC PRESSURE
- SAVE FAN ENERGY

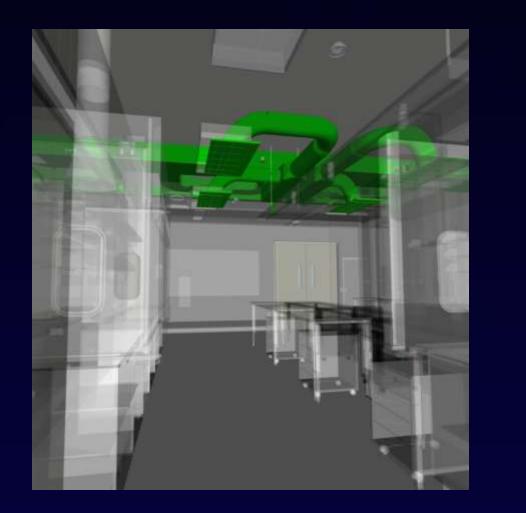
FAÇADE INVESTIGATION

PLENUM INVESTIGATION

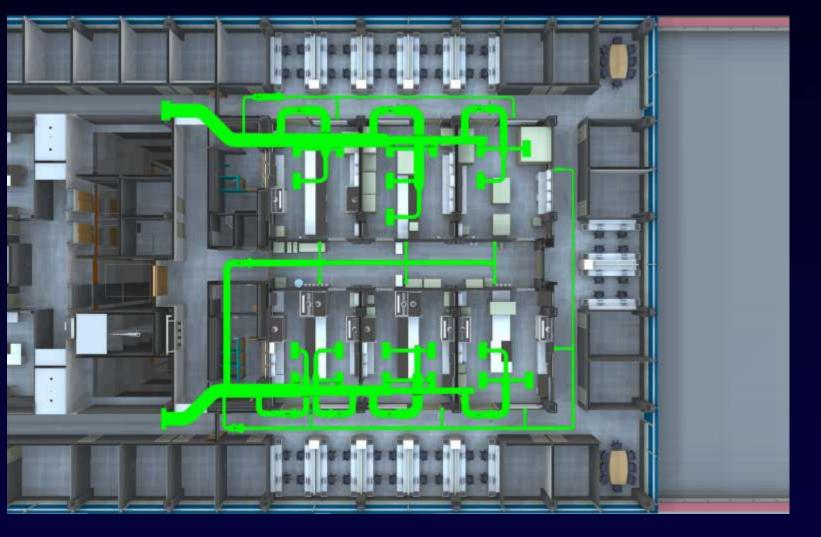
OVERVIEW

FLOOR SYSTEM

DUCT SYSTEM


COORDINATION

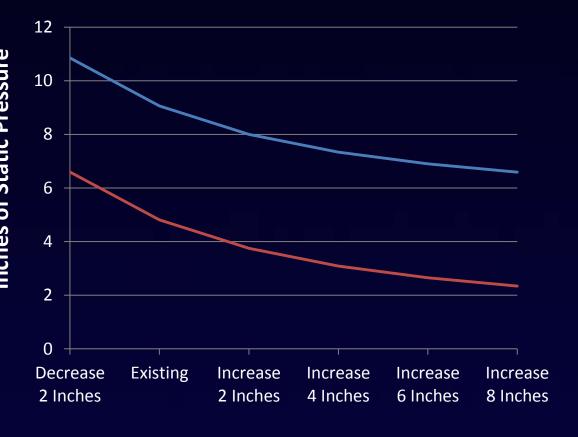
LOGISTICS/SCHEDULE


4D MODELING

CANTILEVER PLAZA

IPD/BIM REFLECTION

DUCT SYSTEM ANALYSIS


PFUND

Russell

STOUGH

VILLACAMPA

Duct Size vs. Static Pressure

—Total Static Pressure

—External Static Pressure

Building Info

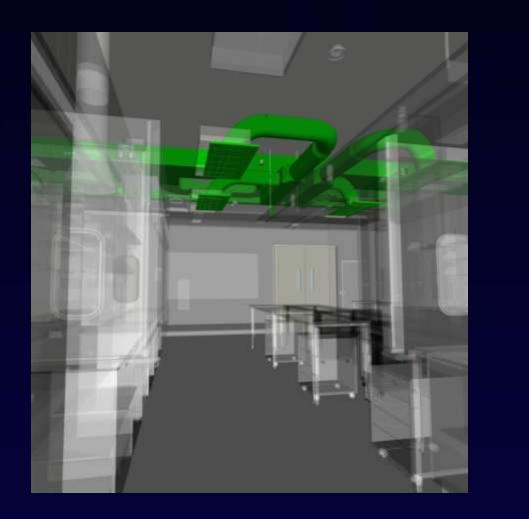
FAÇADE INVESTIGATION

PLENUM INVESTIGATION

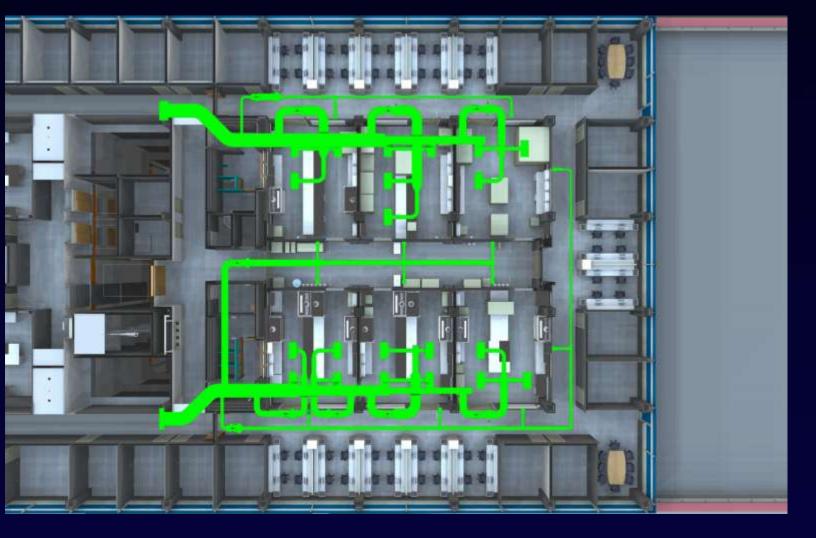
OVERVIEW

FLOOR SYSTEM

DUCT SYSTEM


COORDINATION

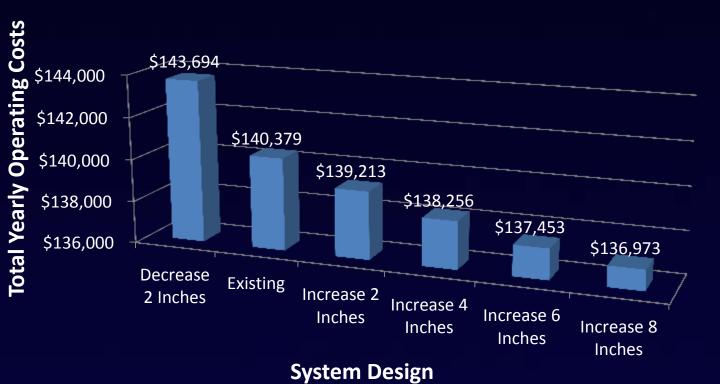
LOGISTICS/SCHEDULE


4D MODELING

CANTILEVER PLAZA

IPD/BIM REFLECTION

DUCT SYSTEM ANALYSIS


PFUND

Russell

STOUGH

VILLACAMPA

Total Yearly Operating Costs

Building Info

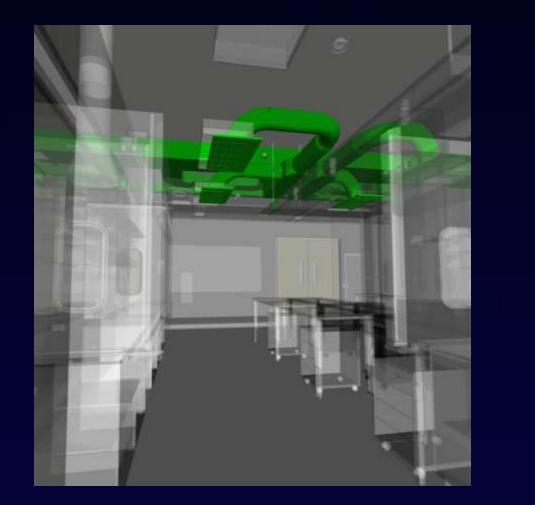
FAÇADE INVESTIGATION

PLENUM INVESTIGATION

OVERVIEW

FLOOR SYSTEM

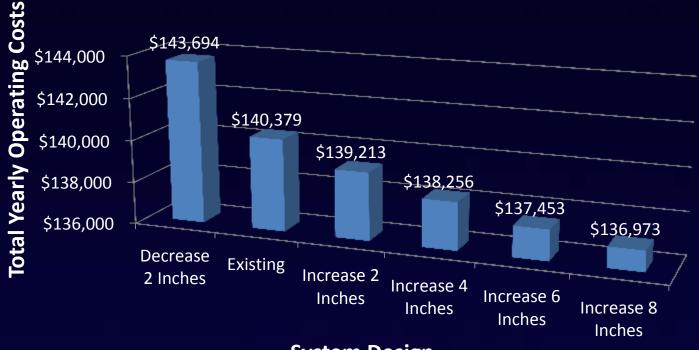
DUCT SYSTEM


COORDINATION

LOGISTICS/SCHEDULE

4D MODELING

CANTILEVER PLAZA


IPD/BIM REFLECTION

DUCT SYSTEM ANALYSIS

	Decrease 2 Inches	Existing	Increase 2 Inches	Increase 4 Inches	Increase 6 Inches	Increase 8 Inches
Total Yearly Operating Costs	\$143,694	\$140,379	\$139,213	\$138,256	\$137,453	\$136,973
Installed Cost	\$28,911	\$29,966	\$31,021	\$32,076	\$33,131	\$34,161
30 yr Life Cycle Cost	\$3,732,024	\$3,647,648	\$3,618,659	\$3,595,055	\$3,575,409	\$3,564,062

Total Yearly Operating Costs

System Design

PFUND

Russell

STOUGH

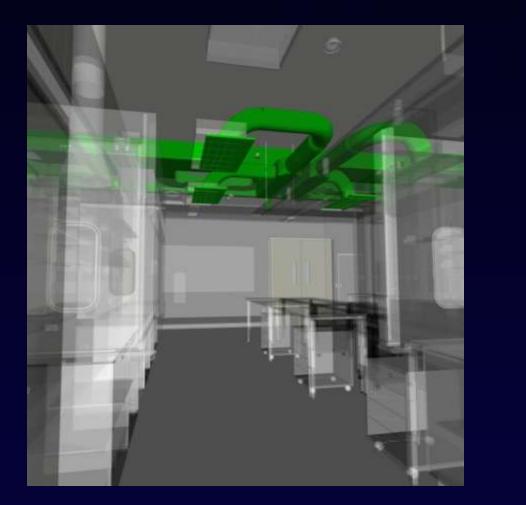
FAÇADE INVESTIGATION

PLENUM INVESTIGATION

OVERVIEW

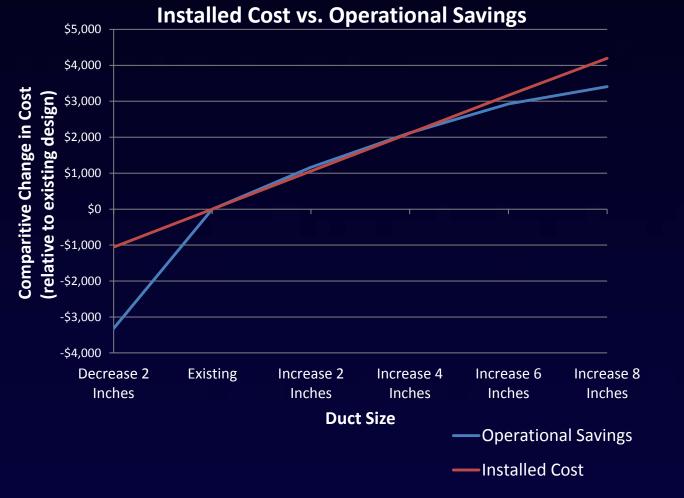
FLOOR SYSTEM

DUCT SYSTEM


COORDINATION

LOGISTICS/SCHEDULE

4D Modeling


CANTILEVER PLAZA

IPD/BIM REFLECTION

DUCT SYSTEM ANALYSIS

	Decrease 2 Inches	Existing	Increase 2 Inches	Increase 4 Inches	Increase 6 Inches	Increase 8 Inches
Total Yearly Operating Costs	\$143,694	\$140,379	\$139,213	\$138,256	\$137,453	\$136,973
Installed Cost	\$28,911	\$29,966	\$31,021	\$32,076	\$33,131	\$34,161
30 yr Life Cycle Cost	\$3,732,024	\$3,647,648	\$3,618,659	\$3,595,055	\$3,575,409	\$3,564,062

PFUND

Russell

STOUGH

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

OVERVIEW

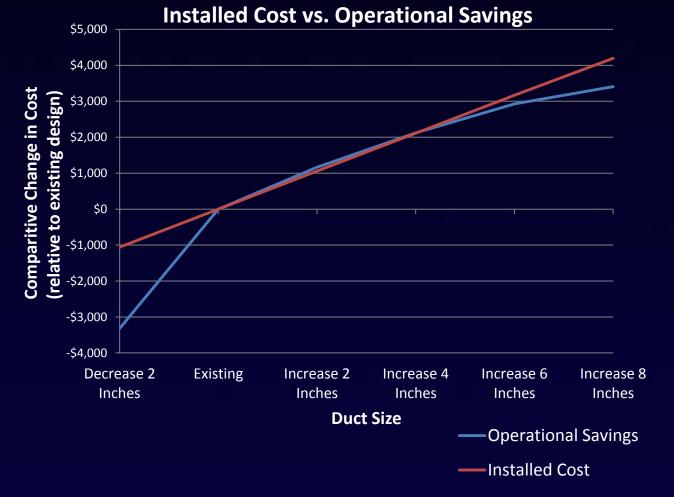
FLOOR SYSTEM

DUCT SYSTEM

COORDINATION

LOGISTICS/SCHEDULE

4D Modeling


CANTILEVER PLAZA

IPD/BIM REFLECTION

DUCT SYSTEM ANALYSIS

	Existing Design	Increase Duct 6" Design	Savings
Total Yearly Operating Costs	\$140,379	\$137,453	\$2,926
Installation Costs	\$29,966	\$33,131	\$-3,165
30 yr Life Cycle Cost	\$3,647,648	\$3,575,409	\$72,239

1.1 YEAR SIMPLE PAYBACK

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

OVERVIEW

FLOOR SYSTEM

DUCT SYSTEM

COORDINATION

LOGISTICS/SCHEDULE

4D MODELING

CANTILEVER PLAZA

IPD/BIM REFLECTION

PFUND

Russell

STOUGH

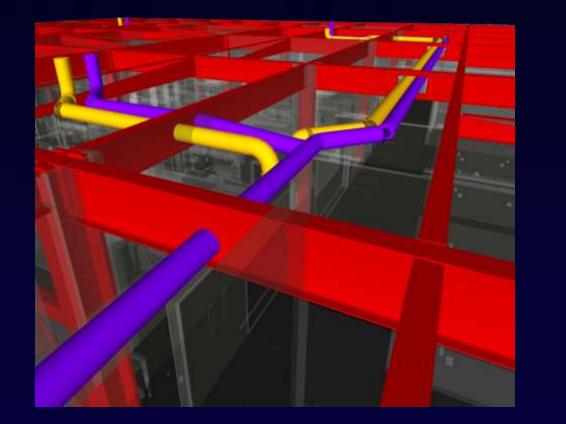
FAÇADE INVESTIGATION

PLENUM INVESTIGATION

OVERVIEW

FLOOR SYSTEM

DUCT SYSTEM


COORDINATION

LOGISTICS/SCHEDULE

4D MODELING

CANTILEVER PLAZA

IPD/BIM REFLECTION

DRAINAGE PIPE COLLISIONS

PFUND

Russell

STOUGH

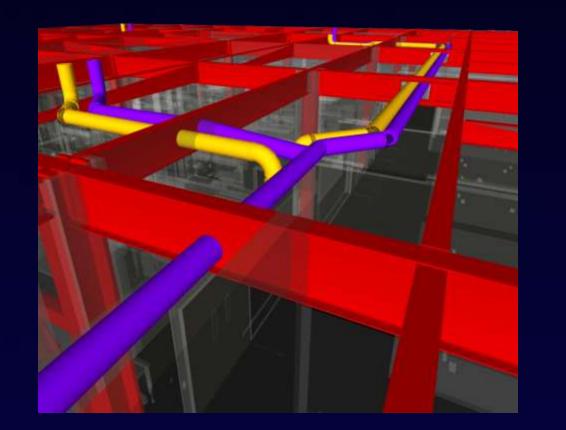
FAÇADE INVESTIGATION

PLENUM INVESTIGATION

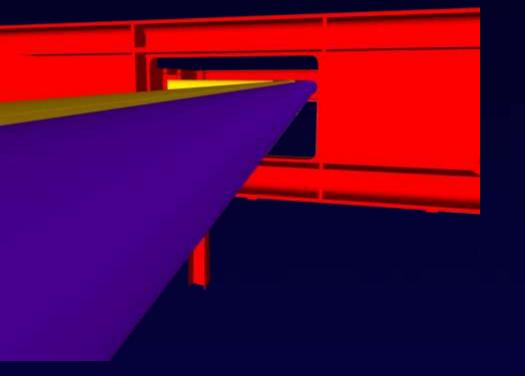
OVERVIEW

FLOOR SYSTEM

DUCT SYSTEM


COORDINATION

LOGISTICS/SCHEDULE


4D MODELING

CANTILEVER PLAZA

IPD/BIM REFLECTION

DRAINAGE PIPE COLLISIONS

PFUND

RUSSELL

STOUGH

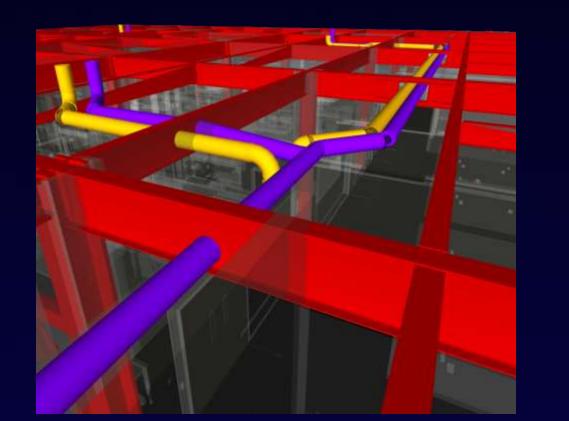
FAÇADE INVESTIGATION

PLENUM INVESTIGATION

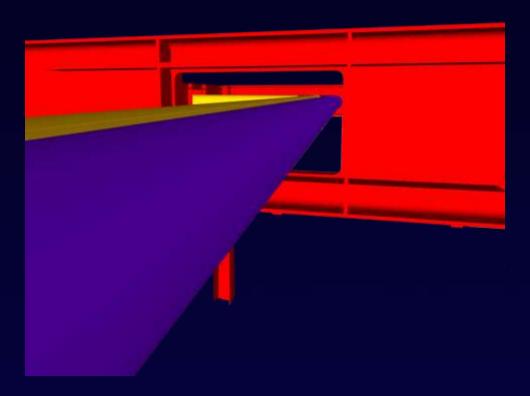
OVERVIEW

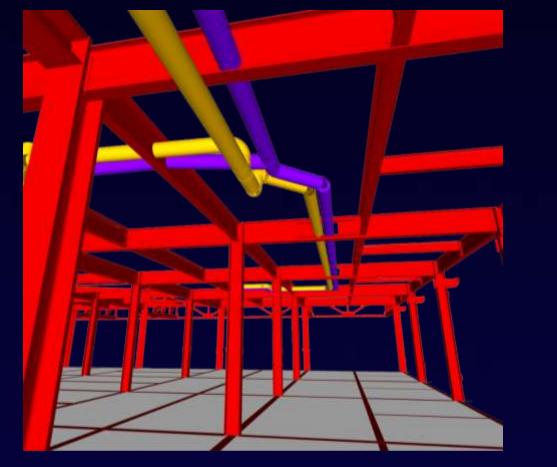
FLOOR SYSTEM

DUCT SYSTEM


COORDINATION

LOGISTICS/SCHEDULE


4D MODELING


CANTILEVER PLAZA

IPD/BIM REFLECTION

DRAINAGE PIPE COLLISIONS

PFUND

Russell

STOUGH

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

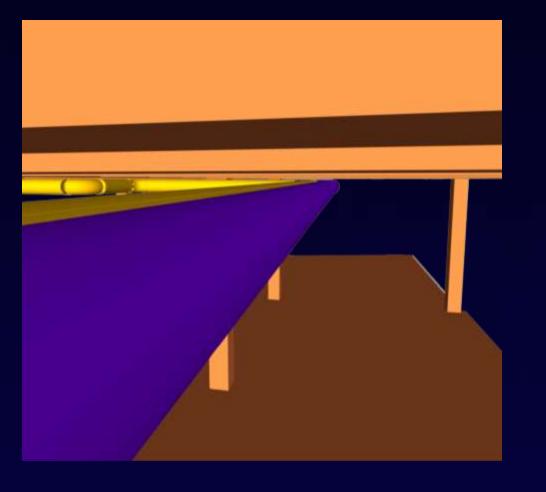
OVERVIEW

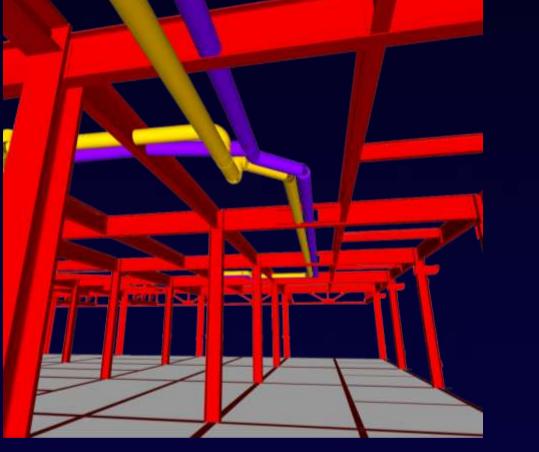
FLOOR SYSTEM

DUCT SYSTEM

COORDINATION

LOGISTICS/SCHEDULE


4D MODELING


CANTILEVER PLAZA

IPD/BIM REFLECTION

DRAINAGE PIPE COLLISIONS

PFUND

RUSSELL

STOUGH

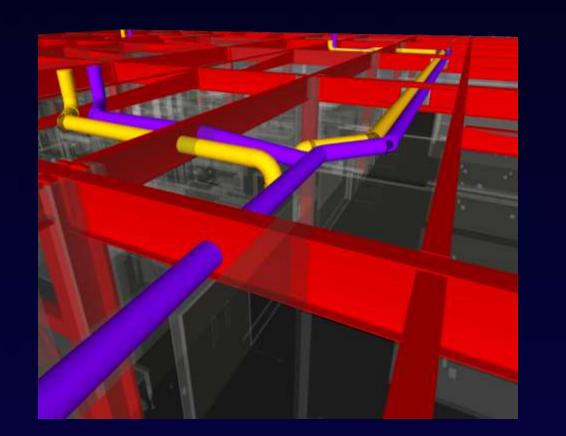
FAÇADE INVESTIGATION

PLENUM INVESTIGATION

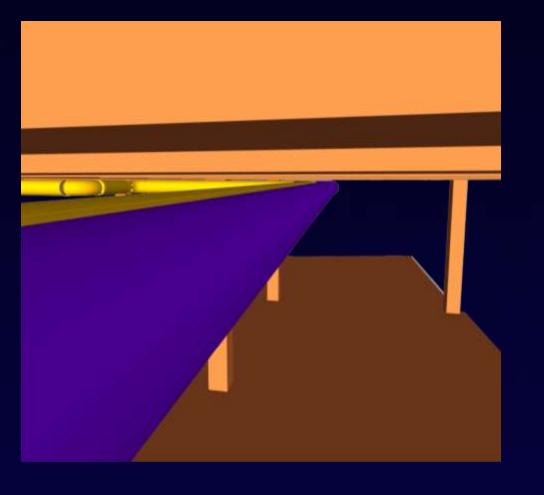
OVERVIEW

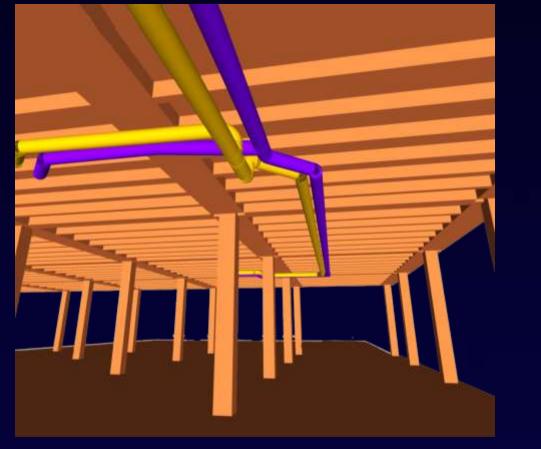
FLOOR SYSTEM

DUCT SYSTEM


COORDINATION

LOGISTICS/SCHEDULE


4D MODELING


CANTILEVER PLAZA

IPD/BIM REFLECTION

DRAINAGE PIPE COLLISIONS

PFUND

Russell

STOUGH

JGH VILLACAMPA

FAÇADE INVESTIGATION

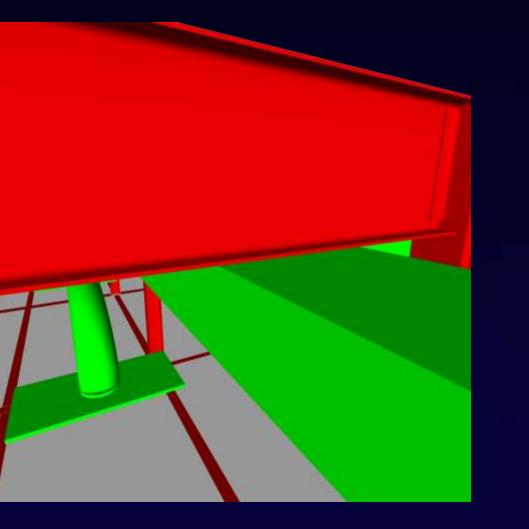
PLENUM INVESTIGATION

OVERVIEW

FLOOR SYSTEM

DUCT SYSTEM

COORDINATION


LOGISTICS/SCHEDULE

4D MODELING

CANTILEVER PLAZA

IPD/BIM REFLECTION

EXISTING STRUCTURE COORDINATION

FAÇADE INVESTIGATION

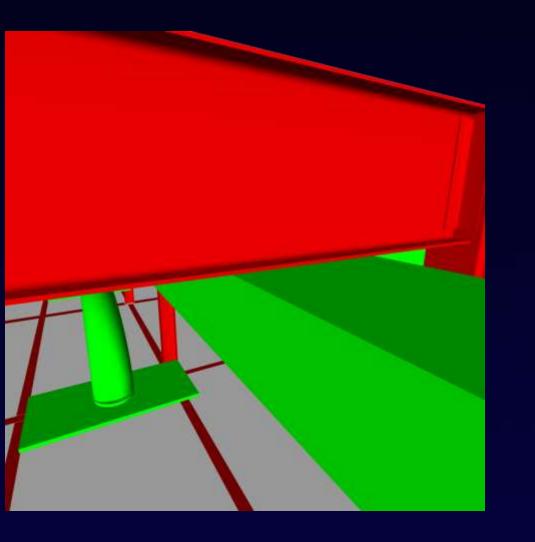
PLENUM INVESTIGATION

OVERVIEW

FLOOR SYSTEM

DUCT SYSTEM

COORDINATION


LOGISTICS/SCHEDULE

4D MODELING

CANTILEVER PLAZA


IPD/BIM REFLECTION

EXISTING STRUCTURE COORDINATION

RUSSELL

FAÇADE INVESTIGATION

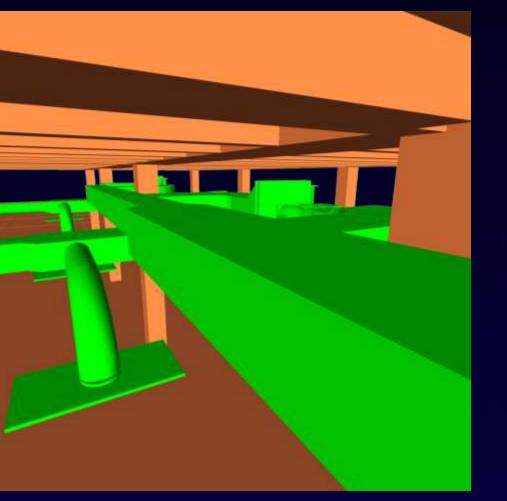
PLENUM INVESTIGATION

OVERVIEW

FLOOR SYSTEM

DUCT SYSTEM

COORDINATION


LOGISTICS/SCHEDULE

4D MODELING

CANTILEVER PLAZA

IPD/BIM REFLECTION

ALTERNATIVE COORDINATION

FAÇADE INVESTIGATION

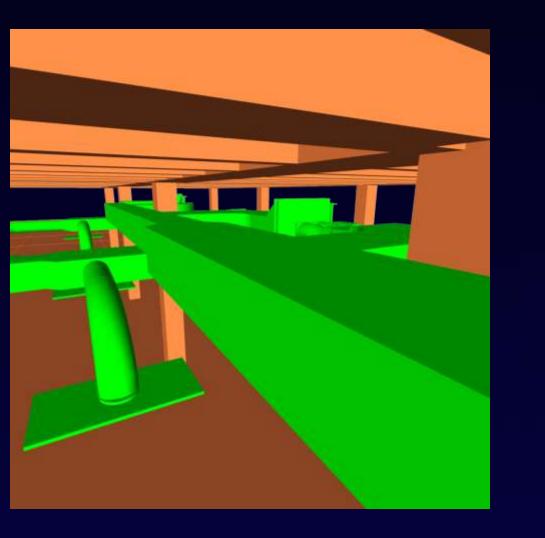
PLENUM INVESTIGATION

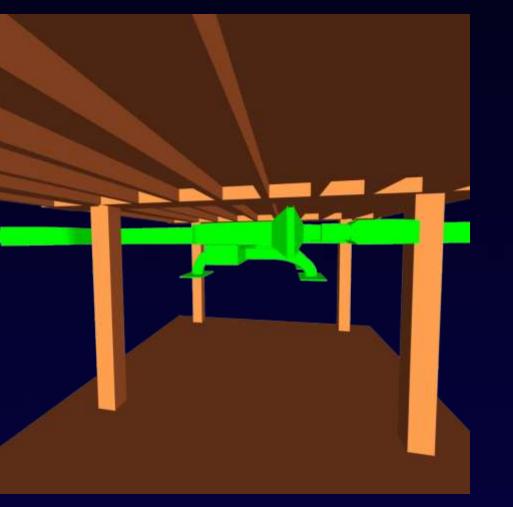
OVERVIEW

FLOOR SYSTEM

DUCT SYSTEM

COORDINATION


LOGISTICS/SCHEDULE


4D MODELING

CANTILEVER PLAZA

IPD/BIM REFLECTION

ALTERNATIVE COORDINATION

PFUND

RUSSELL

STOUGH

FAÇADE INVESTIGATION

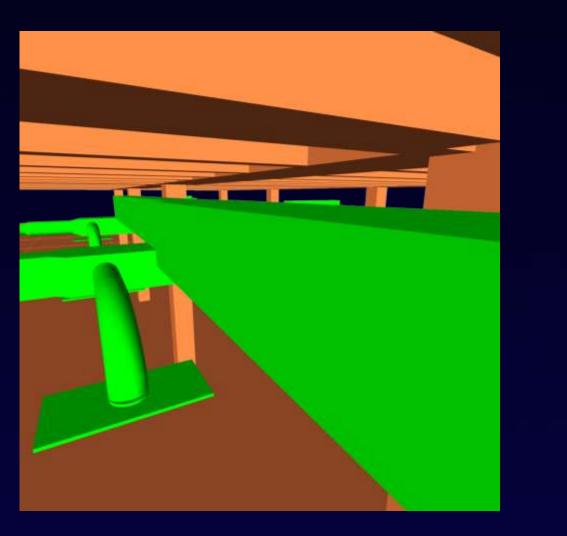
PLENUM INVESTIGATION

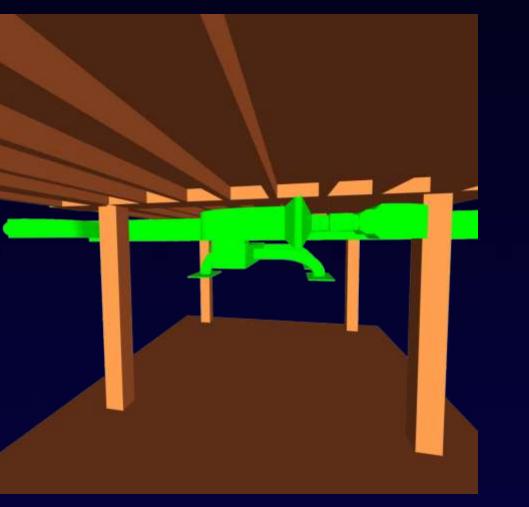
OVERVIEW

FLOOR SYSTEM

DUCT SYSTEM

COORDINATION


LOGISTICS/SCHEDULE


4D MODELING

CANTILEVER PLAZA

IPD/BIM REFLECTION

DUCT SIZE INCREASE

PFUND

Russell

STOUGH

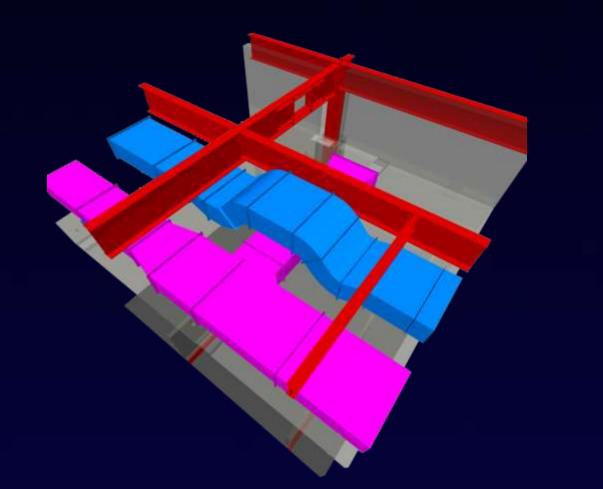
FAÇADE INVESTIGATION

PLENUM INVESTIGATION

OVERVIEW

FLOOR SYSTEM

DUCT SYSTEM


Coordination

LOGISTICS/SCHEDULE

4D MODELING

CANTILEVER PLAZA

IPD/BIM REFLECTION

PLENUM UTILIZATION

PFUND RUSSELL

STOUGH

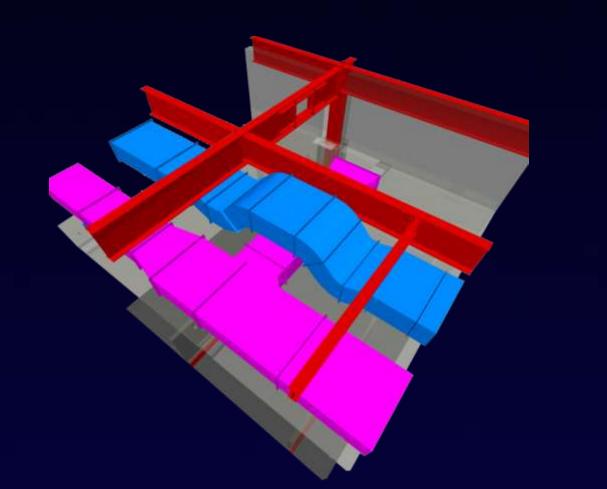
FAÇADE INVESTIGATION

PLENUM INVESTIGATION

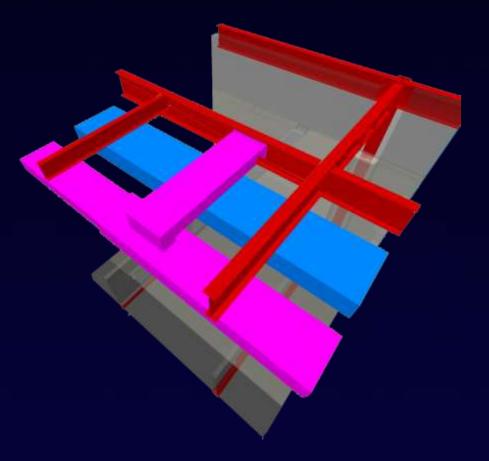
OVERVIEW

FLOOR SYSTEM

DUCT SYSTEM


Coordination

LOGISTICS/SCHEDULE


4D MODELING

CANTILEVER PLAZA

IPD/BIM REFLECTION

PLENUM UTILIZATION

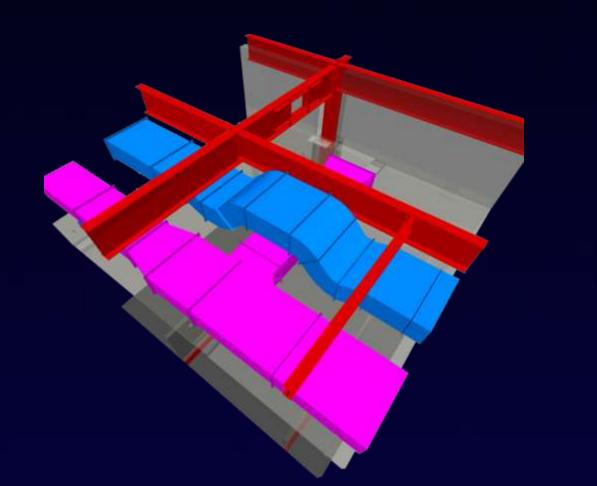
FAÇADE INVESTIGATION

PLENUM INVESTIGATION

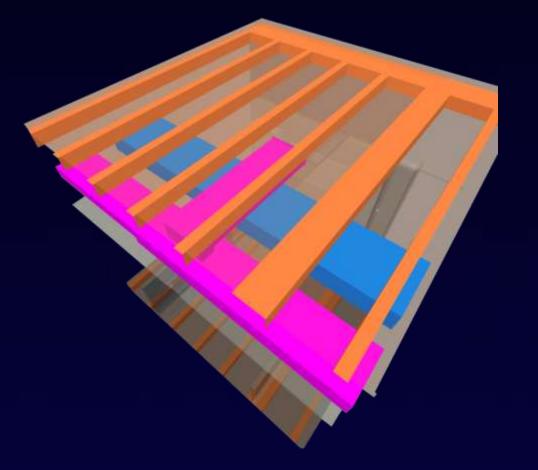
OVERVIEW

FLOOR SYSTEM

DUCT SYSTEM


Coordination

LOGISTICS/SCHEDULE


4D MODELING

CANTILEVER PLAZA

IPD/BIM REFLECTION

PLENUM UTILIZATION

PFUND

Russell

STOUGH

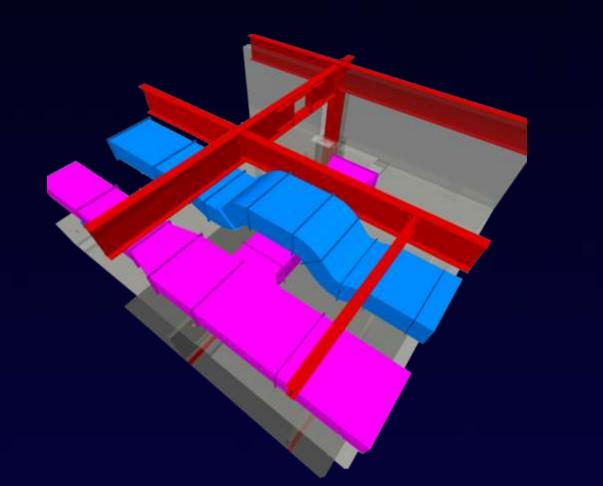
FAÇADE INVESTIGATION

PLENUM INVESTIGATION

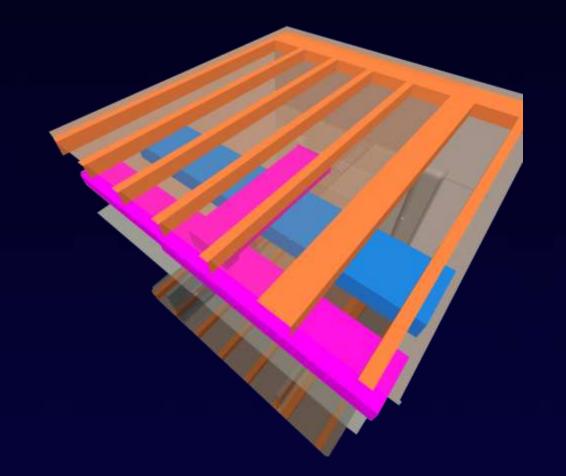
OVERVIEW

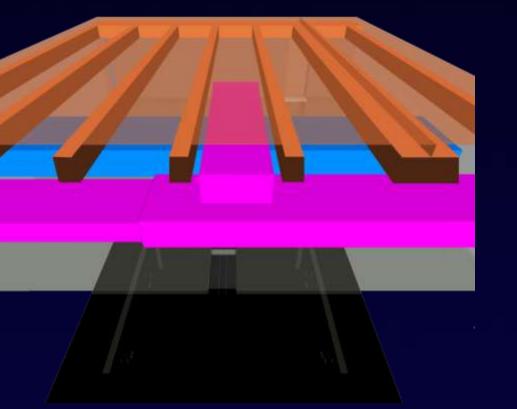
FLOOR SYSTEM

DUCT SYSTEM


Coordination

LOGISTICS/SCHEDULE


4D MODELING


CANTILEVER PLAZA

IPD/BIM REFLECTION

PLENUM UTILIZATION

PFUND

Russell

STOUGH

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

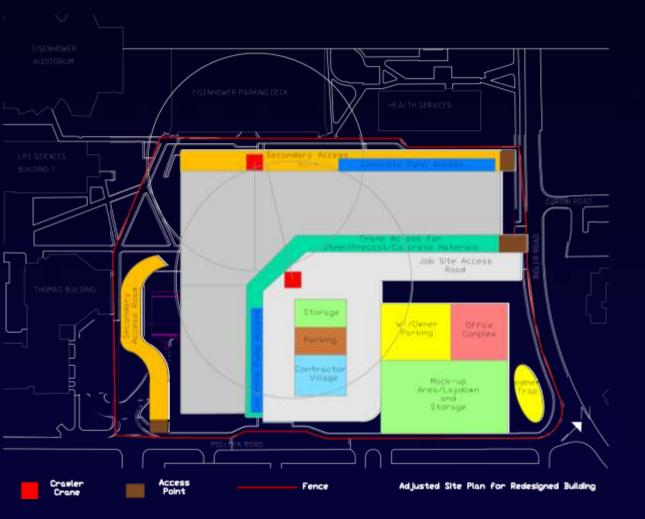
OVERVIEW

FLOOR SYSTEM

DUCT SYSTEM

COORDINATION

LOGISTICS/SCHEDULE


4D MODELING

CANTILEVER PLAZA

IPD/BIM REFLECTION

SITE LOGISTICS

- MINOR CHANGES TO EXISTING SITE PLAN
- INCORPORATION OF CONCRETE PUMP
 TRUCK LOCATIONS
- SAFETY IS A TOP PRIORITY

REDESIGN SITE PLAN

PFUND

RUSSELL

STOUGH

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

OVERVIEW

FLOOR SYSTEM

DUCT SYSTEM

COORDINATION

LOGISTICS/SCHEDULE

4D MODELING

CANTILEVER PLAZA

IPD/BIM REFLECTION

SCHEDULE IMPACTS

- RE-SEQUENCING OF FOUNDATION AND SUBSTRUCTURE FOR CONCRETE STRUCTURE
- SEQUENCING OF STEEL AND CONCRETE
 SIMULTANEOUSLY
- ACCELERATION OF SCHEDULE
- APPROXIMATELY TWO MONTH REDUCTION

Task	Duration (Days)	Start	Finish
Material Science Wing Concrete	98	7/29/09	12/11/09
Life Science Wing Concrete	63	8/11/09	11/12/09
Cantilever Steel/Shear Walls	114	8/10/09	1/14/10
Precast Panels	67	12/7/10	3/4/10

REDEVELOPED SCHEDULE

PFUND

Russell

STOUGH

FAÇADE INVESTIGATION

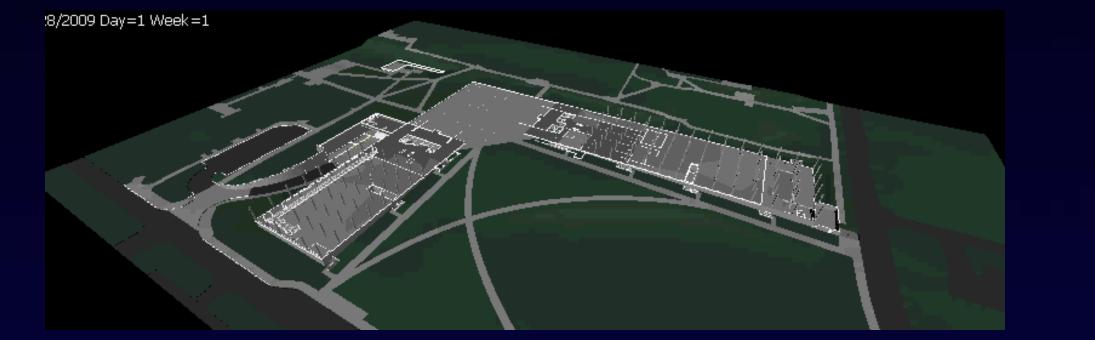
PLENUM INVESTIGATION

OVERVIEW

FLOOR SYSTEM

DUCT SYSTEM

COORDINATION


LOGISTICS/SCHEDULE

4D Modeling

CANTILEVER PLAZA

IPD/BIM REFLECTION

4D MODELING

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

CANTILEVER PLAZA

OVERVIEW

TRUSS SYSTEM

ARCHITECTURE

LIGHTING DESIGN

IPD/BIM REFLECTION

CANTILEVER PLAZA

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

CANTILEVER PLAZA

OVERVIEW

TRUSS SYSTEM

ARCHITECTURE

LIGHTING DESIGN

IPD/BIM REFLECTION

CANTILEVER OVERVIEW

- STRUCTURAL ANALYSIS/ REDESIGN
- STRUCTURAL IMPACTS ON ARCHITECTURE
- LIGHTING DESIGN

PFUND

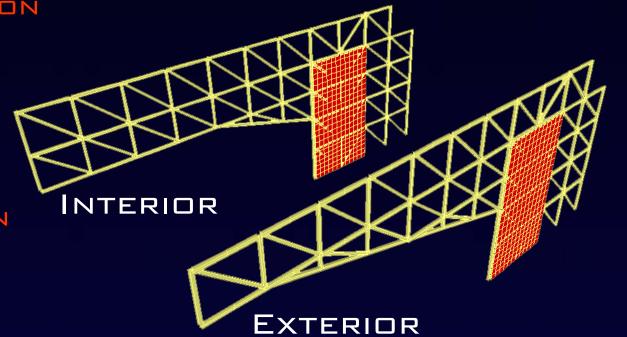
USSELL

STOUGH

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

CANTILEVER PLAZA


OVERVIEW

TRUSS SYSTEM

ARCHITECTURE

LIGHTING DESIGN

IPD/BIM REFLECTION

EXISTING TRUSS SYSTEM

- 155FT BUILDING CANTILEVER
- TWO INTERIOR TRUSSES- INTERSECT AT 66FT
- TWO EXTERIOR TRUSSES- INTERSECT AT 122FT
- ALL W14 WIDE FLANGE SECTIONS
- Moment Connections
- C-SHAPED SHEAR WALL

FUND

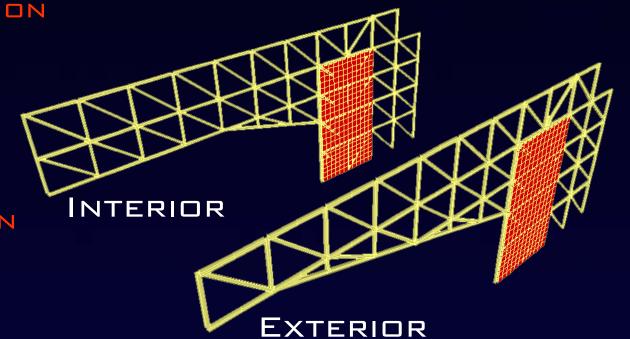
Russell

STOUGH

FAÇADE INVESTIGATION

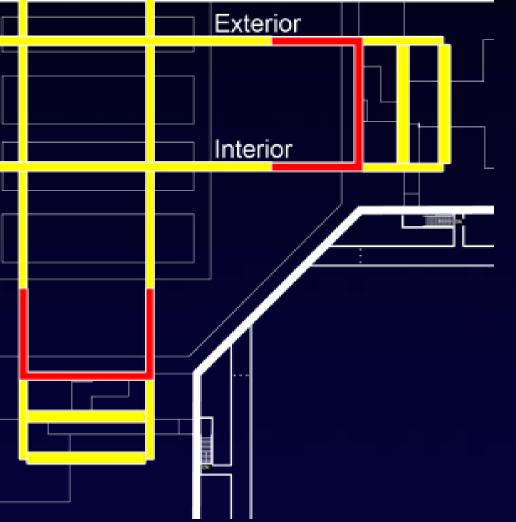
PLENUM INVESTIGATION

CANTILEVER PLAZA


OVERVIEW

TRUSS SYSTEM

ARCHITECTURE


LIGHTING DESIGN

IPD/BIM REFLECTION

EXISTING TRUSS SYSTEM

- 155FT BUILDING CANTILEVER
- TWO INTERIOR TRUSSES- INTERSECT AT 66FT
- TWO EXTERIOR TRUSSES- INTERSECT AT 122FT
- ALL W14 WIDE FLANGE SECTIONS
- Moment Connections
- C-SHAPED SHEAR WALL

PFUND

Russell

STOUGH

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

CANTILEVER PLAZA

OVERVIEW

TRUSS SYSTEM

ARCHITECTURE

LIGHTING DESIGN

IPD/BIM REFLECTION

- 155FT BUILDING CANTILEVER
- TWO INTERIOR TRUSSES- INTERSECT AT 66FT
- TWO EXTERIOR TRUSSES- INTERSECT AT 122FT
- ALL W14 WIDE FLANGE SECTIONS
- Moment Connections
- C-SHAPED SHEAR WALL

FUND

RUSSELL

STOUGH

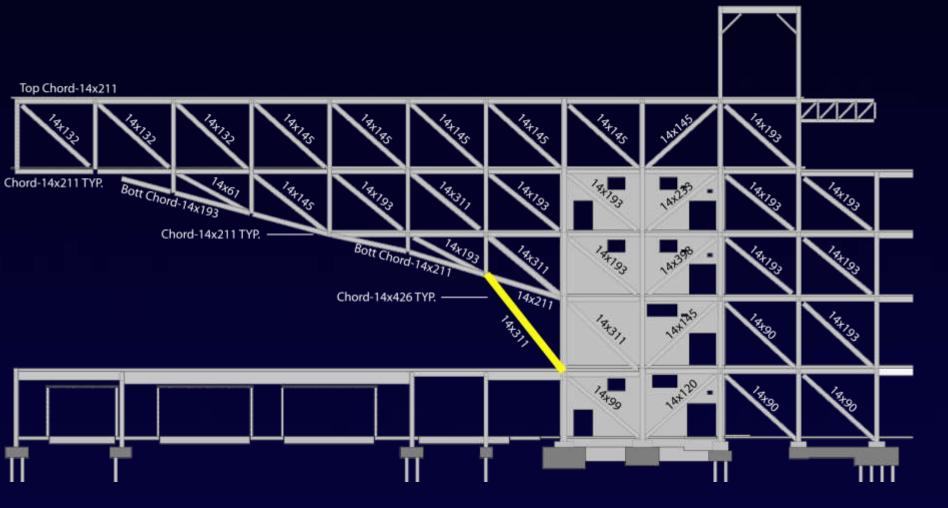
FAÇADE INVESTIGATION

PLENUM INVESTIGATION

CANTILEVER PLAZA

OVERVIEW

TRUSS SYSTEM


ARCHITECTURE

LIGHTING DESIGN

IPD/BIM REFLECTION

ADDITIONAL BRACE

- ADDITIONAL BRACE W14X311
- AISC STEEL MANUAL CHAPTER 6COMBINED LOADING
- ADDED DEPTH TO CRITICAL SECTION
- CONNECTED ADDITIONAL COMPRESSION PATH
- SAVED \$52,991 IN STEEL

PFUND

RUSSELL

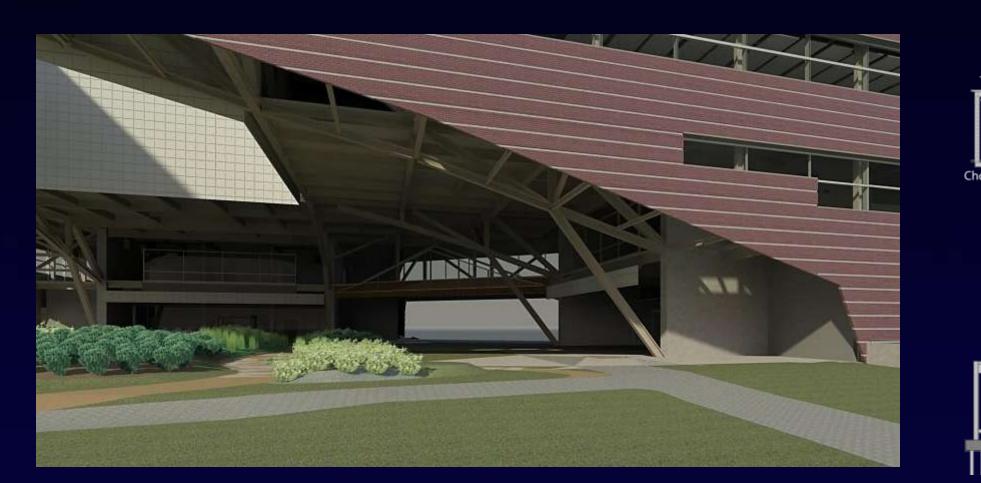
STOUGH

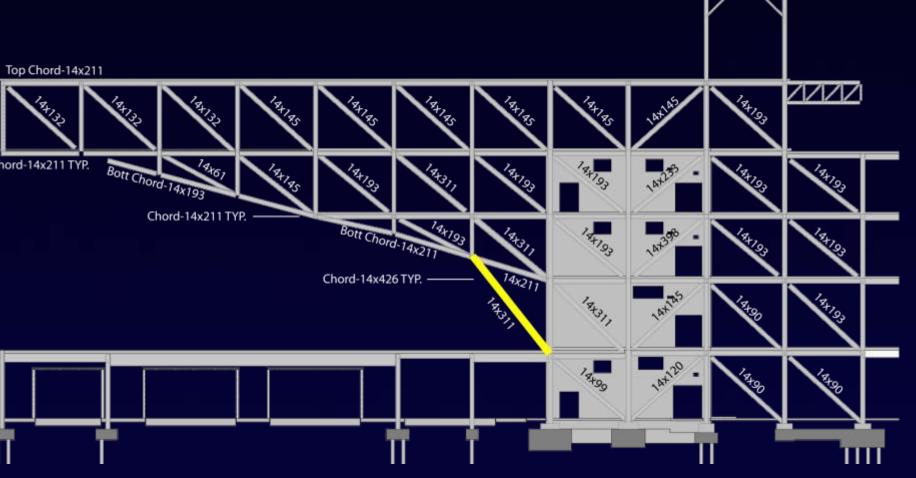
FAÇADE INVESTIGATION

PLENUM INVESTIGATION

CANTILEVER PLAZA

OVERVIEW


TRUSS SYSTEM


ARCHITECTURE

LIGHTING DESIGN

IPD/BIM REFLECTION

ARCHITECTURAL IMPACTS

PFUND

RUSSELL

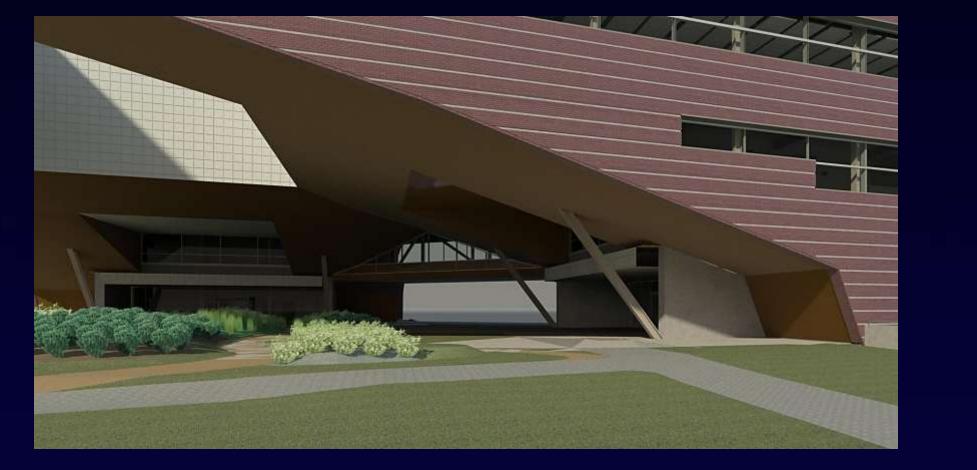
STOUGH

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

CANTILEVER PLAZA

OVERVIEW


TRUSS SYSTEM

ARCHITECTURE

LIGHTING DESIGN

IPD/BIM REFLECTION

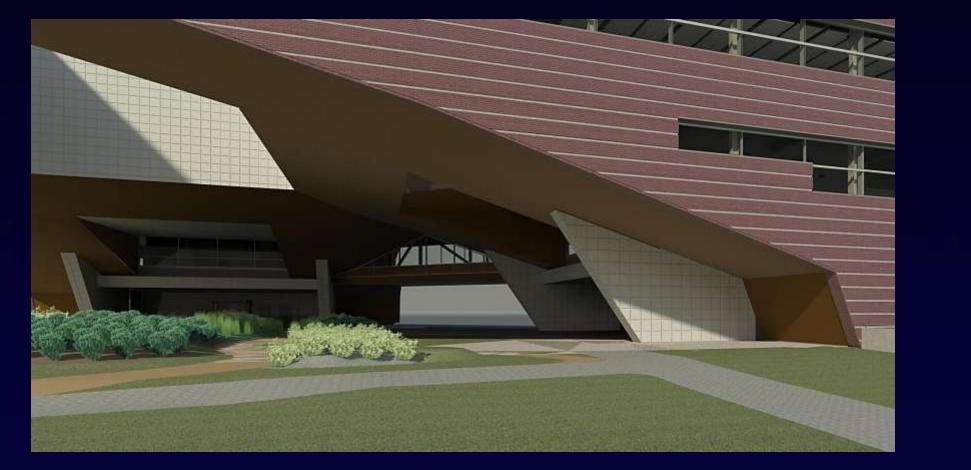
ARCHITECTURAL IMPACTS

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

CANTILEVER PLAZA

OVERVIEW


TRUSS SYSTEM

ARCHITECTURE

LIGHTING DESIGN

IPD/BIM REFLECTION

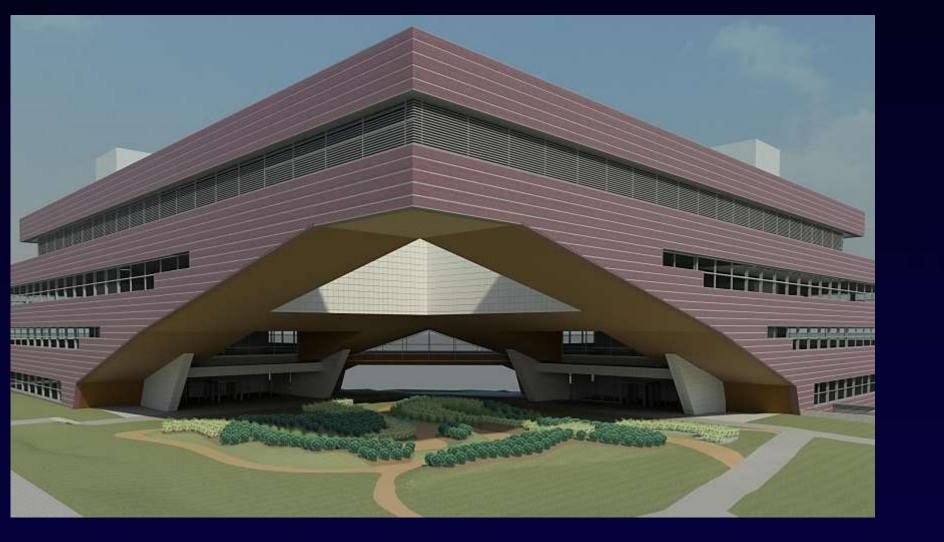
ARCHITECTURAL IMPACTS

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

CANTILEVER PLAZA

OVERVIEW


TRUSS SYSTEM

ARCHITECTURE

LIGHTING DESIGN

IPD/BIM REFLECTION

ARCHITECTURAL IMPACTS

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

CANTILEVER PLAZA

OVERVIEW

TRUSS SYSTEM

ARCHITECTURE

LIGHTING DESIGN

IPD/BIM REFLECTION

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

CANTILEVER PLAZA

OVERVIEW

TRUSS SYSTEM

ARCHITECTURE

LIGHTING DESIGN

IPD/BIM REFLECTION

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

CANTILEVER PLAZA

OVERVIEW

TRUSS SYSTEM

ARCHITECTURE

LIGHTING DESIGN

IPD/BIM REFLECTION

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

CANTILEVER PLAZA

OVERVIEW

TRUSS SYSTEM

ARCHITECTURE

LIGHTING DESIGN

IPD/BIM REFLECTION

LIGHTING DESIGN

PFUND

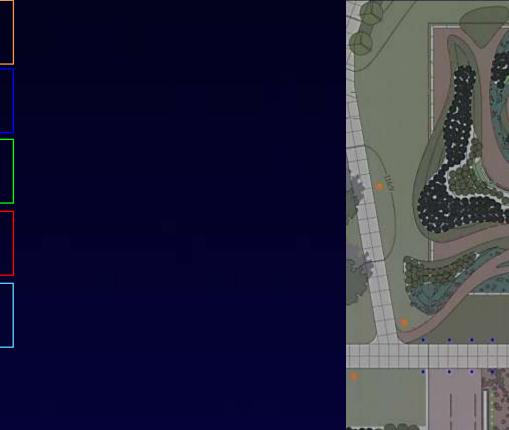
Russell

STOUGH

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

CANTILEVER PLAZA


OVERVIEW

TRUSS SYSTEM

ARCHITECTURE

LIGHTING DESIGN

IPD/BIM REFLECTION

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

CANTILEVER PLAZA

OVERVIEW

TRUSS SYSTEM

ARCHITECTURE

LIGHTING DESIGN

IPD/BIM REFLECTION

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

CANTILEVER PLAZA

OVERVIEW

TRUSS SYSTEM

ARCHITECTURE

LIGHTING DESIGN

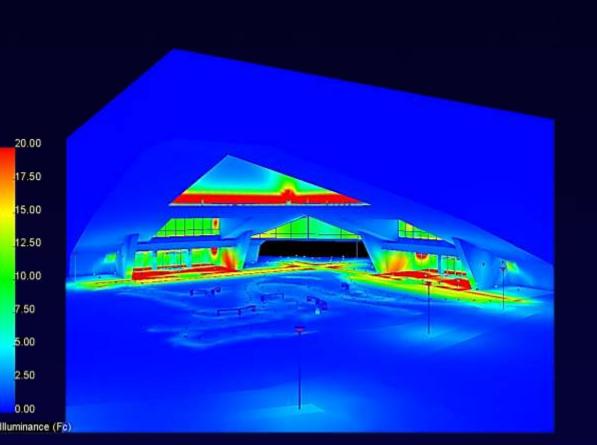
IPD/BIM REFLECTION

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

CANTILEVER PLAZA

OVERVIEW


TRUSS SYSTEM

ARCHITECTURE

LIGHTING DESIGN

IPD/BIM REFLECTION

LIGHTING DESIGN

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

CANTILEVER PLAZA

OVERVIEW

TRUSS SYSTEM

ARCHITECTURE

LIGHTING DESIGN

IPD/BIM REFLECTION

LIGHTING DESIGN

ESNA Illumination Recommendations for Cantilever Plaza								
Area	Avg. Horizontal Illuminance							
Alea	Target	Design						
Sidewalk	5 fc	12.4 fc						
Pathway	1 fc	2.3 fc						

ASHRAE Power Density Requirements								
Area Allowable Design								
Cantilever Plaza	1.25 W / SF	0.44 W / SF						

PFUND

Russell

STOUGH

Building Info

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

INTEGRATED DESIGN
BIM USES

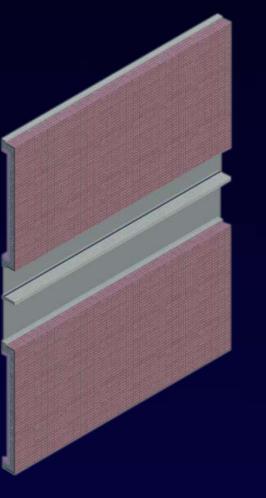
IPD/BIM REFLECTION

PFUND

Russell

STOUGH

FAÇADE INVESTIGATION


PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

INTEGRATED DESIGN
BIM USES

MULTI-DISCIPLINARY INPUT

PFUND

Russell

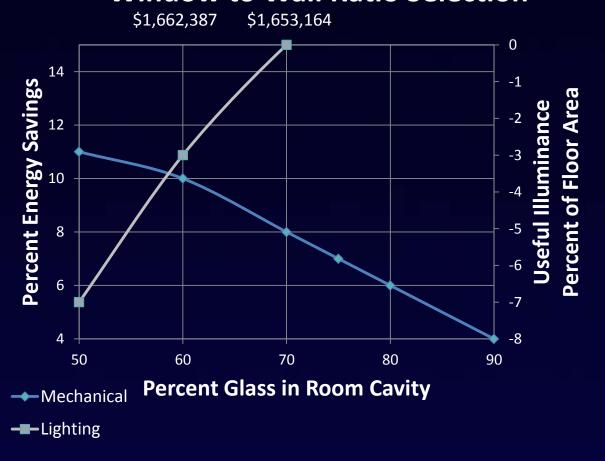
STOUGH

BIMception

Building Info

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

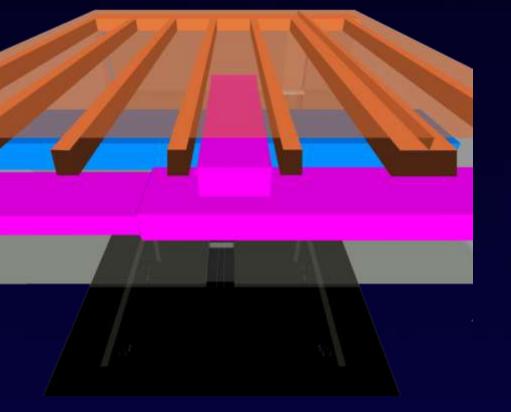

CANTILEVER PLAZA

IPD/BIM REFLECTION

INTEGRATED DESIGN
BIM USES

INTEGRATED SELECTION CRITERIA

Window to Wall Ratio Selection



Building Info COORDINATED MODELING

FAÇADE INVESTIGATION
PLENUM INVESTIGATION
CANTILEVER PLAZA
IPD/BIM REFLECTION
INTEGRATED DESIGN
BIM USES

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

INTEGRATED DESIGN
BIM USES

UNIQUE INTERACTION

BIMception

Building Info

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

INTEGRATED DESIGN
BIM USES

CUMULATIVE ENHANCEMENTS

SIMception

BIM GOALS AND USES

Priority (1-3)	Goal Description	Potential BIM Uses
1- Most Important	Value added objectives	
1	Life Cycle Cost / Value Engineer all design decisions	Cost Estimation, Engineering Analysis, Building System Analysis, Design Reviews, Existing Conditions Modeling
1	Optimize Building Performance	Engineering Analysis, Building System Analysis, Design Reviews, Existing Conditions Modeling, Site Analysis
1	Eliminate Field Conflicts	3D Coordination, Design Reviews, Existing Conditions, Modeling, Design Authoring
1	Improve Energy Efficiency	Engineering Analysis, Building System Analysis, Design Reviews, Site Analysis, Existing Conditions Modeling, Design Authoring
1	Improve Daylighting	Engineering Analysis, Building System Analysis, Design Reviews, Site Analysis, Existing Conditions Modeling, Design Authoring
1	Optimize Sequence and Schedule	4D Modeling

PFUND

BUILDING INFO

BIM Uses

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

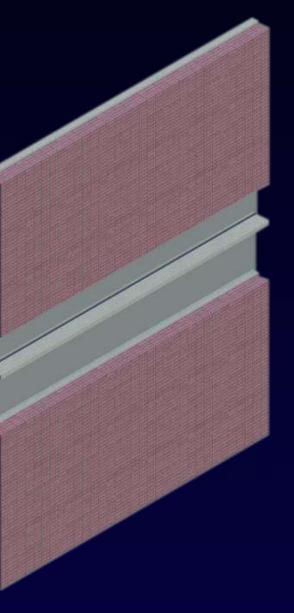
CANTILEVER PLAZA

IPD/BIM REFLECTION

INTEGRATED DESIGN

Russell

STOUGH


EIMception

BUILDING INFO FAÇADE INVESTIGATION PLENUM INVESTIGATION CANTILEVER PLAZA IPD/BIM REFLECTION INTEGRATED DESIGN

BIM Uses

VALUE ENGINEERING - LCC

Priority (1-3)	Goal Description	Potential BIM Uses
1- Most Important	Value added objectives	
1	Life Cycle Cost / Value Engineer all design decisions	Cost Estimation, Engineering Analysis, Building System Analysis, Design Reviews, Existing Conditions Modeling
1	Optimize Building Performance	Engineering Analysis, Building System Analysis, Design Reviews, Existing Conditions Modeling, Site Analysis
1	Eliminate Field Conflicts	3D Coordination, Design Reviews, Existing Conditions, Modeling, Design Authoring
1	Improve Energy Efficiency	Engineering Analysis, Building System Analysis, Design Reviews, Site Analysis, Existing Conditions Modeling, Design Authoring
1	Improve Daylighting	Engineering Analysis, Building System Analysis, Design Reviews, Site Analysis, Existing Conditions Modeling, Design Authoring
1	Optimize Sequence and Schedule	4D Modeling

PFUND

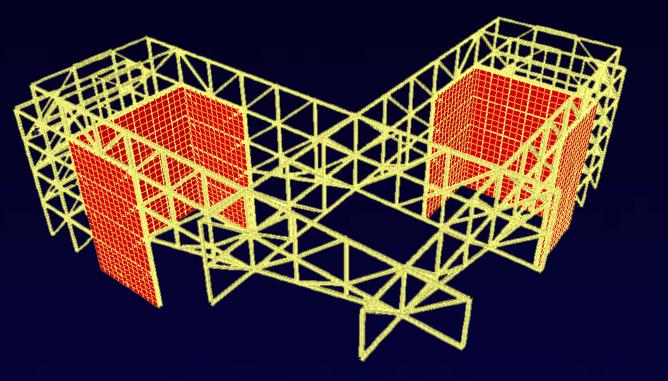
RUSSELL

STOUGH

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

CANTILEVER PLAZA


IPD/BIM REFLECTION

INTEGRATED DESIGN

BIM Uses

OPTIMIZE BUILDING PERFORMANCE

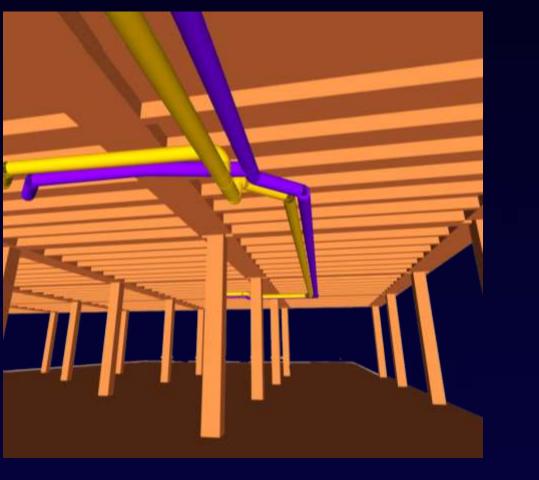
Priority (1-3)	Goal Description	Potential BIM Uses
1- Most Important	Value added objectives	
1	Life Cycle Cost / Value Engineer all design decisions	Cost Estimation, Engineering Analysis, Building System Analysis, Design Reviews, Existing Conditions Modeling
1	Optimize Building Performance	Engineering Analysis, Building System Analysis, Design Reviews, Existing Conditions Modeling, Site Analysis
1	Eliminate Field Conflicts	3D Coordination, Design Reviews, Existing Conditions, Modeling, Design Authoring
1	Improve Energy Efficiency	Engineering Analysis, Building System Analysis, Design Reviews, Site Analysis, Existing Conditions Modeling, Design Authoring
1	Improve Daylighting	Engineering Analysis, Building System Analysis, Design Reviews, Site Analysis, Existing Conditions Modeling, Design Authoring
1	Optimize Sequence and Schedule	4D Modeling

PFUND

USSELL

STOUGH

VILLAGAMPA



BUILDING INFO FAÇADE INVESTIGATION PLENUM INVESTIGATION CANTILEVER PLAZA IPD/BIM REFLECTION INTEGRATED DESIGN

BIM Uses

ELIMINATE FIELD CONFLICTS

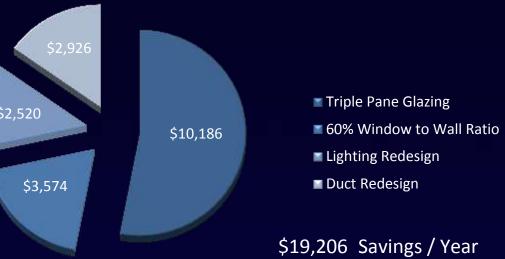
Priority (1-3)	Goal Description	Potential BIM Uses
1- Most Important	Value added objectives	
1	Life Cycle Cost / Value Engineer all design decisions	Cost Estimation, Engineering Analysis, Building System Analysis, Design Reviews, Existing Conditions Modeling
1	Optimize Building Performance	Engineering Analysis, Building System Analysis, Design Reviews, Existing Conditions Modeling, Site Analysis
1	Eliminate Field Conflicts	3D Coordination, Design Reviews, Existing Conditions, Modeling, Design Authoring
1	Improve Energy Efficiency	Engineering Analysis, Building System Analysis, Design Reviews, Site Analysis, Existing Conditions Modeling, Design Authoring
1	Improve Daylighting	Engineering Analysis, Building System Analysis, Design Reviews, Site Analysis, Existing Conditions Modeling, Design Authoring
1	Optimize Sequence and Schedule	4D Modeling

PFUND

Russell

STOUGH

Building Info FAÇADE INVESTIGATION PLENUM INVESTIGATION CANTILEVER PLAZA IPD/BIM REFLECTION


INTEGRATED DESIGN

BIM Uses

IMPROVE ENERGY EFFICIENCY

Priority (1-3)	Goal Description	Potential BIM Uses
- Most Important	Value added objectives	
1	Life Cycle Cost / Value Engineer all design decisions	Cost Estimation, Engineering Analysis, Building System Analysis, Design Reviews, Existing Conditions Modeling
1	Optimize Building Performance	Engineering Analysis, Building System Analysis, Design Reviews, Existing Conditions Modeling, Site Analysis
1	Eliminate Field Conflicts	3D Coordination, Design Reviews, Existing Conditions, Modeling, Design Authoring
1	Improve Energy Efficiency	Engineering Analysis, Building System Analysis, Design Reviews, Site Analysis, Existing Conditions Modeling, Design Authoring
1	Improve Daylighting	Engineering Analysis, Building System Analysis, Design Reviews, Site Analysis, Existing Conditions Modeling, Design Authoring
1	Optimize Sequence and Schedule	4D Modeling

PFUND

Russell

STOUGH

VILLAGAMPA

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

CANTILEVER PLAZA

IPD/BIM REFLECTION

INTEGRATED DESIGN

BIM Uses

IMPROVE DAYLIGHTING

Priority (1-3)	Goal Description	Potential BIM Uses
1- Most Important	Value added objectives	
1	Life Cycle Cost / Value Engineer all design decisions	Cost Estimation, Engineering Analysis, Building System Analysis, Design Reviews, Existing Conditions Modeling
1	Optimize Building Performance	Engineering Analysis, Building System Analysis, Design Reviews, Existing Conditions Modeling, Site Analysis
1	Eliminate Field Conflicts	3D Coordination, Design Reviews, Existing Conditions, Modeling, Design Authoring
1	Improve Energy Efficiency	Engineering Analysis, Building System Analysis, Design Reviews, Site Analysis, Existing Conditions Modeling, Design Authoring
1	Improve Daylighting	Engineering Analysis, Building System Analysis, Design Reviews, Site Analysis, Existing Conditions Modeling, Design Authoring
1	Optimize Sequence and Schedule	4D Modeling

PFUND

Russell

STOUGH

BUILDING INFO FAÇADE INVESTIGATION PLENUM INVESTIGATION CANTILEVER PLAZA IPD/BIM REFLECTION INTEGRATED DESIGN

BIM Uses

OPTIMIZE SEQUENCE / SCHEDULE

Priority (1-3)	Goal Description	Potential BIM Uses
1- Most Important	Value added objectives	
1	Life Cycle Cost / Value Engineer all design decisions	Cost Estimation, Engineering Analysis, Building System Analysis, Design Reviews, Existing Conditions Modeling
1	Optimize Building Performance	Engineering Analysis, Building System Analysis, Design Reviews, Existing Conditions Modeling, Site Analysis
1	Eliminate Field Conflicts	3D Coordination, Design Reviews, Existing Conditions, Modeling, Design Authoring
1	Improve Energy Efficiency	Engineering Analysis, Building System Analysis, Design Reviews, Site Analysis, Existing Conditions Modeling, Design Authoring
1	Improve Daylighting	Engineering Analysis, Building System Analysis, Design Reviews, Site Analysis, Existing Conditions Modeling, Design Authoring
1	Optimize Sequence and Schedule	4D Modeling

PFUND

Russell

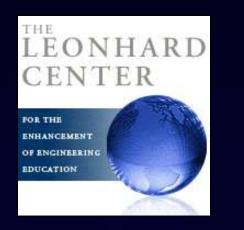
STOUGH

FAÇADE INVESTIGATION

PLENUM INVESTIGATION

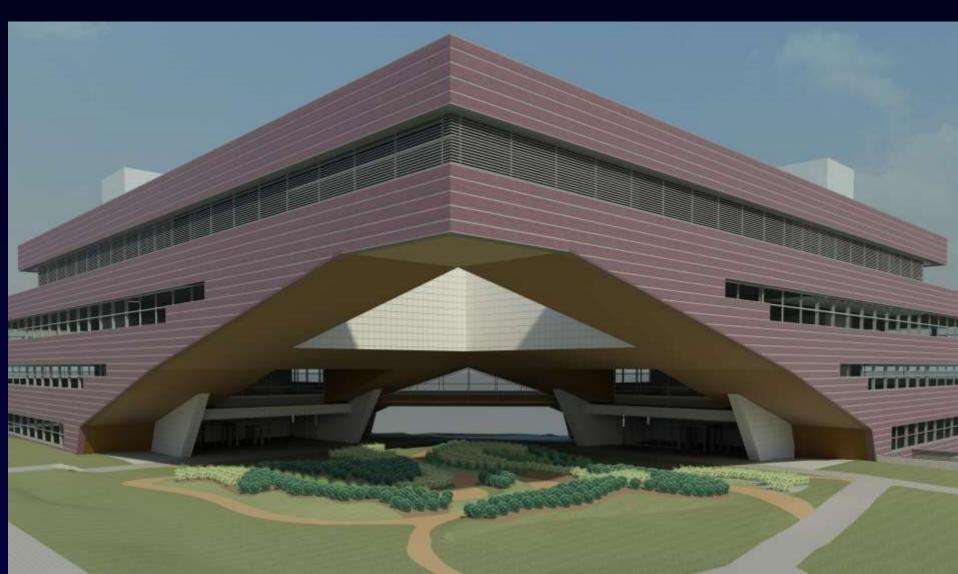
CANTILEVER PLAZA

IPD/BIM REFLECTION



ACKNOWLEDGMENTS

- PROFESSOR ROBERT HOLLAND
- PROFESSOR KEVIN PARFITT
- PROFESSOR THEODORE DANNERTH
- DR. ANDRES LEPAGE
- DR. RICHARD MISTRICK
- DR. JELENA SREBRIC
- DR. JOHN MESSNER
- DR. RICHARD BEHR
- DR. ROBERT LEICHT
- COREY WILKINSON
- JOHN BECHTEL



PFUND

STOUGH

PFUND RUSSELL STOUGH VILLACAMPA

Section Co	<u>omponent</u>		Length (ft)		Width (in)	Height (in)	Hydraulic Diameter (in)	Round Diamete (in)	Max Diameter (in)	<u>Area</u> (in^2)	Velocity (fpm)	Absolute Roughness (ft)	Relative Roughness (e/D)	KinematicViscosity (ft^2/s)	Density (lb/ft^3)	Reynolds Number (Re)	Friction Factor (f)	Pressure Drop Per 100ft (in wg per 100ft)	Velocity Pressure (in wg)	Loss Coefficient (Co)	<u>Pressure Drop</u> (in wg)
1 Diffuse 90 Div		SR4-1 SR5-11	4.00	600.00	1.00	1.00		1 12.0	00 12.00	113.10	7 63.9 7 63.9 7 63.9		0.0100000	0.0001580	0.0750000	80584.84938	0.0389291 7 6	0.141595	0.036384669 0.036384669		0.005 7 1.2 0.40 7 5 58 0.05 7 5
2 90 Rou	unded Elbow	CR3-1	5.00	600.00	14.00	10.00	11.6666666	7	11.67	106.90	80 8.2 80 8.2		0.0005143	0.0001580	0.0750000	82887.27365	0.020990578	0.08 7 896	0.040724546	0.	0.0044 19 0.00 77
3 Transi	tion	SR5-13	6.00	600.00	14.00	10.00	11.6666666	7	11.67	106.90	808.2 808.2		0.0005143	0.0001580	0.0750000	8288 7. 2 7 365	0.0209905 7 8	0.08 7 896	0.040724546	0.	0.0053 49 0.0200

PFUND RUSSELL STOUGH VILLACAMPA

Table 2.8b Summ	Annual Electricity Cost (\$/sf)	Annual	Annual Energy Cost (\$/sf)	% Reduction in Energy Costs	% Reduction per LEED
Base Case	\$3.90	\$2.60	\$6.50		
Flow Setback (CFM21)	\$3.80	\$2.60	\$6.40	2%	2%
VAV	\$3.60	\$2.00	\$5.60	14%	22%
Supply Static Pressure of 4 in. w.g. (SP4)	\$3.60	\$2.70	\$6.30	3%	4%
Supply Static Pressure of 3 in. w.g. (SP3)	\$3.40	\$2.70	\$6.10	5%	8%
Enthalpy Wheel (Wheel)	\$4.00	\$1.30	\$5.30	18%	28%
Enthalpy Wheel w/ VAV (VWheel)	\$3.70	\$1.00	\$4.70	28%	44%
Heat Pipe (HtPipe)	\$4.10	\$1.50	\$5.60	13%	21%
Run-Around Loop (Loop)	\$4.10	\$1.50	\$5.60	13%	21%
Chiller Energy Recovery (CWER)	\$3.90	\$2.50	\$6.40	1%	2%
Direct Evap. Cooling (Evap)	\$3.80	\$2.60	\$6.40	1%	2%
Water-side Economizer (Econ)	\$3.80	\$2.60	\$6.40	1%	1%
Humidity Controls: Max 60%RH, Min 20%RH (RH26)	\$3.90	\$2.40	\$6.20	4%	6%
Humidity Controls: Max 50%RH, Min 40%RH (RH45)	\$4.00	\$3.30	\$7.30	-12%	-20%
Humidity Controls: Max 50%RH, Min 40%RH w/ Enthalpy Wheel (RH45 Wheel)	\$4.10	\$1.90	\$5.90	8%	13%
Lab Plug Loads 8 W/sf(EPD8)	\$3.20	\$2.60	\$5.80	11%	
Lab Plug Loads 4 W/sf(EPD4)	\$2.50	\$2.70	\$5.20	19%	
Advanced w/Run-Around Loop (ALoop)	\$3.50	\$1.10	\$4.70	28%	44%
Advanced w/Enthalpy Wheel (AWheel)	\$3.50	\$1.00	\$4.50	31%	48%

PFUND

Russell Stough

Utility Charge Rates

Some Departments pay the cost of their utility usage to OPP. These are Departments such as Housing and Food Service and Athletics. The following chart shows the billable rates charged as well as our avoidable costs that are used for Energy Savings Projects for FY 09-10:

Avoided Costs	Billable Rate	Units	Comments
\$1.09	\$1.09	KW	5 sub-stations only, 1st half
\$0.07781	\$0.09648	KWH	5 sub-stations only, 1st half
\$1.09	\$1.09	KW	5 sub-stations only, 2 nd half
\$0.07517	\$0.09481	KWH	5 sub-stations only, 2 nd half
\$8.66	\$9.83	MCF	Blended Rate
\$9.85	\$21.65	1000 pounds	
\$3.32	\$8.39	1000 gallons	
\$0.22	\$0.22	Ton-Hour	Estimated Cost
	\$1.09 \$0.07781 \$1.09 \$0.07517 \$8.66 \$9.85 \$3.32	\$1.09 \$1.09 \$0.07781 \$0.09648 \$1.09 \$1.09 \$0.07517 \$0.09481 \$8.66 \$9.83 \$9.85 \$21.65 \$3.32 \$8.39	\$1.09 \$1.09 KW \$0.07781 \$0.09648 KWH \$1.09 \$1.09 KW \$0.07517 \$0.09481 KWH \$8.66 \$9.83 MCF \$9.85 \$21.65 1000 pounds \$3.32 \$8.39 1000 gallons

Table A-1. SPV factors for finding the present value of future single costs (non-fuel)

ears from Discount rate Short term ^b Long Term		Single Pres	ent Value (SPV) Factors
0.25 0.993 0.995 0.997 0.50 0.985 0.991 0.987 0.75 0.978 0.986 0.980 1 0.971 0.981 0.974 2 0.943 0.963 0.943 3 0.915 0.945 0.923 4 0.888 0.927 0.899 5 0.863 0.910 0.875 6 0.837 0.893 0.852 7 0.813 0.877 0.830 9 0.766 0.844 0.787 10 0.744 0.828 0.766 11 0.722 0.746 12 0.701 0.726 13 0.681 0.707 14 0.661 0.689 15 0.642 0.671 16 0.623 0.653 17 0.605 0.665 18 0.587 0.619 19 0.570 0.636<	base date	Discount rate 3.0 %	Short term ^b 1.9 %	
0.75 0.978 0.986 0.980 1 0.971 0.981 0.974 2 0.943 0.963 0.948 3 0.915 0.945 0.923 4 0.888 0.927 0.899 5 0.863 0.910 0.875 6 0.837 0.893 0.852 7 0.813 0.877 0.830 8 0.789 0.860 0.808 9 0.766 0.844 0.777 10 0.744 0.828 0.766 11 0.722 0.746 12 0.701 0.726 13 0.681 0.707 14 0.661 0.689 15 0.642 0.671 16 0.623 0.653 17 0.605 0.636 18 0.587 0.619 19 0.570 0.603 20 0.554 0.593				0.993
1 0.971 0.981 0.974 2 0.943 0.963 0.948 3 0.915 0.945 0.923 4 0.888 0.927 0.899 5 0.863 0.910 0.875 6 0.837 0.893 0.852 7 0.813 0.877 0.830 8 0.789 0.860 0.808 9 0.766 0.844 0.787 10 0.744 0.828 0.766 11 0.722 0.746 12 0.701 0.726 13 0.681 0.707 14 0.661 0.689 15 0.642 0.671 16 0.623 0.653 17 0.605 0.636 18 0.587 0.619 19 0.570 0.603 20 0.554 0.587 21 0.538 0.572 23 <	0.50	0.985	0.991	0.987
2 0.943 0.963 0.948 3 0.915 0.945 0.923 4 0.888 0.927 0.899 5 0.863 0.910 0.875 6 0.837 0.893 0.852 7 0.813 0.677 0.830 8 0.789 0.860 0.808 9 0.766 0.844 0.787 10 0.744 0.828 0.766 11 0.722 0.746 12 0.701 0.726 13 0.681 0.707 14 0.661 0.689 15 0.642 0.671 16 0.623 0.653 17 0.605 0.636 18 0.587 0.619 19 0.570 0.603 20 0.554 0.587 21 0.538 0.572 22 0.552 0.552 23 0.507 0.542 24 0.492 0.528 25 <td< td=""><td>0.75</td><td>0.978</td><td>0.986</td><td>0.980</td></td<>	0.75	0.978	0.986	0.980
3 0.915 0.945 0.923 4 0.888 0.927 0.899 5 0.863 0.910 0.875 6 0.837 0.893 0.852 7 0.813 0.877 0.830 8 0.789 0.860 0.808 9 0.766 0.844 0.787 10 0.744 0.828 0.766 11 0.722 0.746 12 0.701 0.726 13 0.681 0.707 14 0.661 0.689 15 0.642 0.671 16 0.623 0.653 17 0.605 0.636 18 0.587 0.619 19 0.570 0.603 20 0.554 0.587 21 0.538 0.572 22 0.522 0.554 23 0.507 0.542 24 0.492 0.528 <td></td> <td>0.971</td> <td>0.981</td> <td>0.974</td>		0.971	0.981	0.974
4 0.888 0.927 0.899 5 0.863 0.910 0.875 6 0.837 0.893 0.852 7 0.813 0.877 0.830 8 0.789 0.860 0.808 9 0.766 0.844 0.787 10 0.744 0.828 0.766 11 0.722 0.746 12 0.701 0.726 13 0.681 0.707 14 0.661 0.689 15 0.642 0.671 16 0.623 0.653 17 0.605 0.636 18 0.587 0.619 19 0.570 0.603 20 0.554 0.587 21 0.538 0.572 22 0.522 0.556 23 0.507 0.542 24 0.492 0.528 25 0.478 0.514 <t< td=""><td>2</td><td>0.943</td><td>0.963</td><td></td></t<>	2	0.943	0.963	
5 0.863 0.910 0.875 6 0.837 0.893 0.852 7 0.813 0.877 0.830 8 0.789 0.860 0.808 9 0.766 0.844 0.787 10 0.744 0.828 0.766 11 0.722 0.746 11 0.722 0.746 12 0.701 0.726 13 0.681 0.707 14 0.661 0.689 15 0.642 0.671 16 0.623 0.653 17 0.605 0.636 18 0.587 0.619 19 0.570 0.603 20 0.554 0.597 21 0.538 0.572 22 0.522 0.556 23 0.507 0.542 24 0.492 0.528 25 0.478 0.514 26	3	0.915	0.945	0.923
6 0.837 0.893 0.852 7 0.813 0.877 0.830 8 0.789 0.860 0.808 9 0.766 0.844 0.787 10 0.744 0.828 0.766 11 0.722 0.746 12 0.701 0.726 13 0.681 0.707 14 0.661 0.689 15 0.642 0.671 16 0.623 0.671 17 0.605 0.633 17 0.605 0.633 18 0.587 0.619 19 0.570 0.603 20 0.554 0.587 21 0.538 0.572 22 0.522 0.556 23 0.507 0.542 24 0.492 0.528 25 0.478 0.514 26 0.464 0.500 27 0.450 0.487 28 0.437 0.462		0.888	0.927	0.899
7 0.813 0.877 0.830 8 0.789 0.860 0.808 9 0.766 0.844 0.787 10 0.744 0.828 0.766 11 0.722 0.746 12 0.701 0.726 13 0.681 0.707 14 0.661 0.689 15 0.642 0.671 16 0.623 0.653 17 0.605 0.636 18 0.587 0.619 19 0.570 0.603 20 0.554 0.587 21 0.538 0.572 22 0.522 0.556 23 0.507 0.542 24 0.492 0.528 25 0.478 0.514 26 0.464 0.500 28 0.437 0.462 29 0.424 0.462		0.863	0.910	0.875
8 0.789 0.860 0.808 9 0.766 0.844 0.787 10 0.744 0.828 0.766 11 0.722 0.746 12 0.701 0.726 13 0.681 0.707 14 0.661 0.689 15 0.642 0.671 16 0.623 0.653 17 0.605 0.636 18 0.587 0.619 19 0.570 0.603 20 0.554 0.587 21 0.538 0.572 22 0.522 0.556 23 0.507 0.542 24 0.492 0.528 25 0.478 0.514 26 0.464 0.500 27 0.450 0.487 28 0.437 0.474 29 0.424 0.462		0.837	0.893	0.852
9 0.766 0.844 0.787 10 0.744 0.828 0.766 11 0.722 0.746 12 0.701 0.726 13 0.681 0.707 14 0.661 0.689 15 0.642 0.671 16 0.623 0.653 17 0.605 0.636 18 0.587 0.636 19 0.570 0.603 20 0.554 0.587 21 0.538 0.572 22 0.522 0.556 23 0.507 0.542 24 0.492 0.528 25 0.478 0.514 26 0.464 0.500 27 0.450 0.487 28 0.437 0.462	7	0.813	0.877	0.830
10 0.744 0.828 0.766 11 0.722 0.746 12 0.701 0.726 13 0.681 0.707 14 0.661 0.689 15 0.642 0.671 16 0.623 0.653 17 0.605 0.636 18 0.587 0.619 19 0.570 0.603 20 0.554 0.572 21 0.538 0.572 22 0.522 0.556 23 0.507 0.542 24 0.492 0.528 25 0.478 0.514 26 0.464 0.500 27 0.450 0.487 28 0.437 0.474 29 0.424 0.462	8		0.860	0.808
11 0.722 0.746 12 0.701 0.726 13 0.681 0.707 14 0.661 0.689 15 0.642 0.671 16 0.623 0.653 17 0.605 0.636 18 0.587 0.619 19 0.570 0.603 20 0.554 0.587 21 0.538 0.572 22 0.522 0.556 23 0.507 0.542 24 0.492 0.528 25 0.478 0.514 26 0.464 0.500 27 0.450 0.487 28 0.437 0.474 29 0.424 0.462	9	0.766	0.844	0.787
12 0.701 0.726 13 0.681 0.707 14 0.661 0.689 15 0.642 0.671 16 0.623 0.653 17 0.605 0.636 18 0.587 0.619 19 0.570 0.603 20 0.554 0.587 21 0.538 0.572 22 0.522 0.556 23 0.507 0.542 24 0.492 0.528 25 0.478 0.514 26 0.464 0.500 27 0.450 0.487 28 0.437 0.474 29 0.424 0.462	10	0.744	0.828	0.766
13 0.681 0.707 14 0.661 0.689 15 0.642 0.671 16 0.623 0.653 17 0.605 0.636 18 0.587 0.619 19 0.570 0.603 20 0.554 0.587 21 0.538 0.572 22 0.552 0.552 23 0.507 0.542 24 0.492 0.528 25 0.478 0.514 26 0.464 0.500 27 0.450 0.487 28 0.437 0.474 29 0.424 0.462	11	0.722		0.746
14 0.661 0.689 15 0.642 0.671 16 0.623 0.653 17 0.605 0.636 18 0.587 0.619 19 0.570 0.603 20 0.554 0.587 21 0.538 0.572 22 0.522 0.556 23 0.507 0.542 24 0.492 0.528 25 0.478 0.514 26 0.464 0.500 27 0.450 0.487 28 0.437 0.474 29 0.424 0.462	12	0.701		0.726
15 0.642 0.671 16 0.623 0.653 17 0.605 0.636 18 0.587 0.619 19 0.570 0.603 20 0.554 0.587 21 0.538 0.572 22 0.522 0.556 23 0.507 0.542 24 0.492 0.528 25 0.478 0.514 26 0.464 0.500 27 0.450 0.487 28 0.437 0.474 29 0.424 0.462	13	0.681		0.707
16 0.623 0.653 17 0.605 0.636 18 0.587 0.619 19 0.570 0.603 20 0.554 0.587 21 0.538 0.572 22 0.522 0.556 23 0.507 0.542 24 0.492 0.528 25 0.478 0.514 26 0.464 0.500 27 0.450 0.487 28 0.437 0.474 29 0.424 0.462	14	0.661		0.689
17 0.605 0.636 18 0.587 0.619 19 0.570 0.603 20 0.554 0.587 21 0.538 0.572 22 0.522 0.556 23 0.507 0.542 24 0.492 0.528 25 0.478 0.514 26 0.464 0.500 27 0.450 0.487 28 0.437 0.474 29 0.424 0.462	15	0.642		0.671
18 0.587 0.619 19 0.570 0.603 20 0.554 0.587 21 0.538 0.572 22 0.522 0.556 23 0.507 0.542 24 0.492 0.528 25 0.478 0.514 26 0.464 0.500 27 0.450 0.487 28 0.437 0.474 29 0.424 0.462	16	0.623		0.653
19 0.570 0.603 20 0.554 0.587 21 0.538 0.572 22 0.522 0.556 23 0.507 0.542 24 0.492 0.528 25 0.478 0.514 26 0.464 0.500 27 0.450 0.487 28 0.437 0.474 29 0.424 0.462	17	0.605		0.636
20 0.554 0.587 21 0.538 0.572 22 0.522 0.556 23 0.507 0.542 24 0.492 0.528 25 0.478 0.514 26 0.464 0.500 27 0.450 0.487 28 0.437 0.474 29 0.424 0.462	18	0.587		0.619
21 0.538 0.572 22 0.522 0.556 23 0.507 0.542 24 0.492 0.528 25 0.478 0.514 26 0.464 0.500 27 0.450 0.487 28 0.437 0.474 29 0.424 0.462	19	0.570		0.603
22 0.522 0.556 23 0.507 0.542 24 0.492 0.528 25 0.478 0.514 26 0.464 0.500 27 0.450 0.487 28 0.437 0.474 29 0.424 0.462	20	0.554		0.587
23 0.507 0.542 24 0.492 0.528 25 0.478 0.514 26 0.464 0.500 27 0.450 0.487 28 0.437 0.474 29 0.424 0.462		0.538		0.572
24 0.492 0.528 25 0.478 0.514 26 0.464 0.500 27 0.450 0.487 28 0.437 0.474 29 0.424 0.462	22	0.522		0.556
25 0.478 0.514 26 0.464 0.500 27 0.450 0.487 28 0.437 0.474 29 0.424 0.462	23	0.507		
25 0.478 0.514 26 0.464 0.500 27 0.450 0.487 28 0.437 0.474 29 0.424 0.462	24	0.492		0.528
27 0.450 0.487 28 0.437 0.474 29 0.424 0.462				0.514
28 0.437 0.474 29 0.424 0.462	26	0.464		0.500
29 0.424 0.462		0.450		0.487
	28	0.437		0.474
30 0.412 0.450				
	30	0.412		0.450

*OMB discount rates as of February 2010.

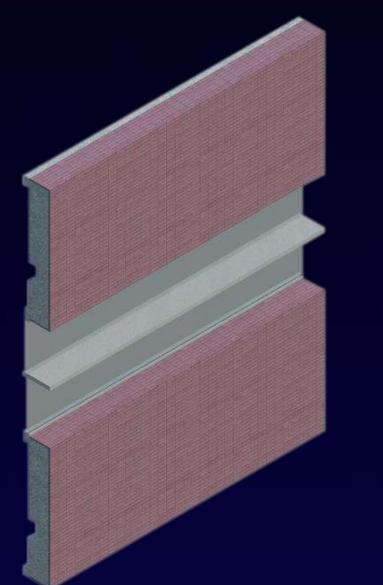
^bShort-term discount rate based on OMB discount rate for 7-year study period.
^cLong-term discount rate based on OMB discount rate for 30-year study period.

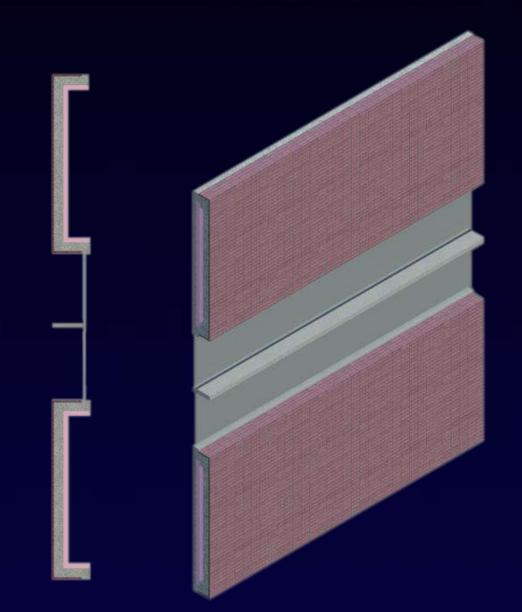
RUSSELL STOUGH VILLACAMPA

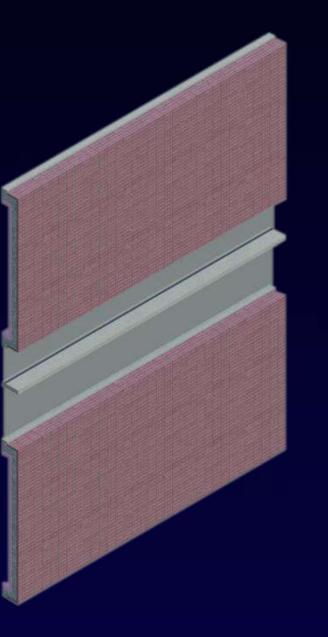
Table Ca-1. Projected fuel price indices (excluding general inflation), by end-use sector and fuel type.

Census Region 1 (Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont)

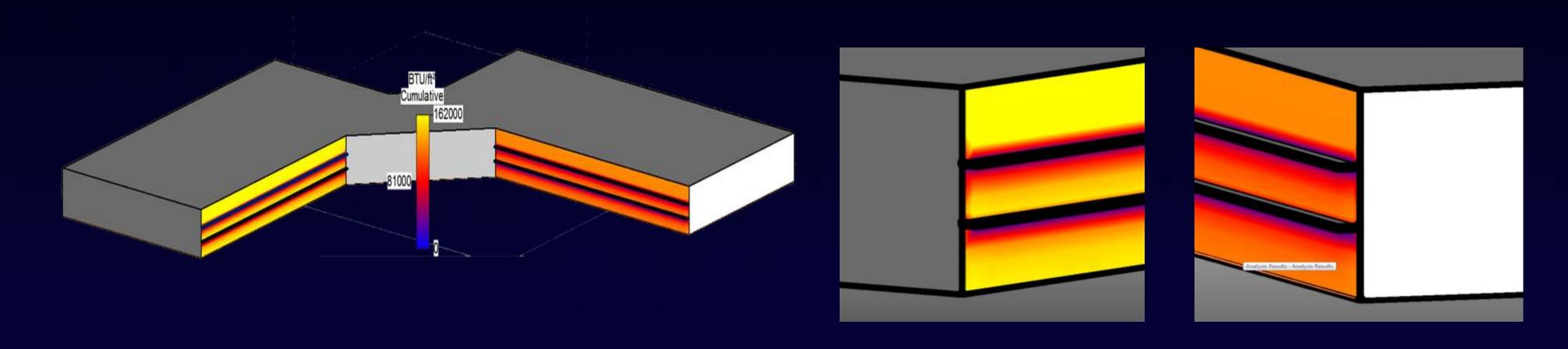
Sector and Fuel	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	202
Residential															
Electricity	0.04	0.08	1 01	1 01	1 01	1 02	1 02	1 02	1.02	1 04	1 05	1 05	1.06	1.06	1.0
Distillate Oil		1 05					1 27			1.36		1 38			
LPG	0.99	1.02	1.06	1.10	1.12	1.15	1.17	1.19	1.20	1.21	1.22		1.24		1
Natural Gas														1.09	
Commercial															
Electricity	0.00	0.02	0.04	0.02	0.02	0.00	0.95	0.05	0.06	0.07	0.00	0.00	1 00	1.01	1
Distillate Oil		1.07										1.46			1
Residual Oil	1.00	1.10	1 23	1.32	1.23	1.43	1.49	1.54	1.60	1.64		1.68			1
Natural Gas	1.07	1.13	1.13	1.11	1.11	1.12	1.12		1.12	1.12	1.14		1.17	1.73	1.
														1.17	
Coal	0.98	0.98	0.98	0.98	0.98	0.97	0.97	0.96	0.95	0.95	0.94	0.95	0.95	0.95	0.
Industrial															
Electricity	0.85	0.88	0.90	0.87	0.87	0.88	0.90	0.91	0.91	0.92	0.93	0.94	0.96	0.97	0.
Distillate Oil	1.03	1.10	1.16	1.22	1.26	1.32	1.36	1.41	1.44	1.47	1.48	1.50	1.52	1.53	1.
Residual Oil	1.01	1.10	1.22	1.31	1.36	1.41	1.46	1.51	1.57	1.60	1.62	1.64	1.66	1.69	1.
Natural Gas	1.16	1.27	1.28	1.26	1.26	1.26	1.26	1.26	1.26	1.27	1.29	1.31	1.33	1.33	1.
Coal	0.99	0.99	0.98	0.98	0.97	0.97	0.97	0.96	0.96	0.95	0.95	0.95	0.95	0.95	0.
Transportation															
Motor Gasoline	1.04	1.09	1.17	1.23	1.25	1.28	1.31	1.33	1.35	1.37	1.38	1.40	1.41	1.42	1.


Table Ca-1, continued. Projected fuel price indices (excluding general inflation), by end-use sector and fuel type.


Census Region 1 (Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont)


		New Je: roject	-			-									
Sector and Fuel	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035		2037	2038	2039	2040
Residential															
Electricity	1.06	1.06	1.07	1.09	1.10	1.11	1.12	1.12	1.13	1.13	1.14	1.15	1.15	1.16	1.17
Distillate Oil															
LPG	1.26	1.27	1.28	1.29	1.30	1.31	1.33	1.34	1.35	1.37	1.38	1.39	1.40	1.41	1.43
Natural Gas	1.11	1.12	1.14	1.16	1.19	1.21	1.23	1.24	1.25	1.26	1.27	1.29	1.30	1.31	1.32
Commercial															
Electricity	1.01	1.02	1.03	1.05	1.06	1.08	1.10	1.12	1.13	1.14	1.15	1.15	1.16	1.17	1.17
Distillate Oil	1.52	1.54	1.56	1.58	1.59	1.62	1.64	1.67	1.69	1.72	1.74	1.76	1.79	1.81	1.83
Residual Oil	1.77	1.78	1.81	1.83	1.86	1.89	1.92	1.94	1.98	2.00	2.03	2.06	2.10	2.14	2.17
Natural Gas	1.19	1.20	1.22	1.25	1.28	1.31	1.33	1.33	1.35	1.36	1.38	1.39	1.41	1.43	1.44
Coal	0.95	0.95	0.95	0.96	0.97	0.97	0.97	0.97	0.97	0.98	0.98	0.98	0.98	0.99	0.99
Industrial															
Electricity	0.97	0.98	1.00	1.02	1.04	1.06	1.09	1.10	1.11	1.13	1.13	1.14	1.15	1.15	1.16
Distillate Oil	1.56	1.58	1.60	1.62	1.64	1.66	1.69	1.71	1.74	1.77	1.79	1.81	1.83	1.85	1.87
Residual Oil	1.72	1.73	1.76	1.78	1.80	1.84	1.86	1.88	1.91	1.93	1.96	1.99	2.03	2.06	2.10
Natural Gas	1.36										1.64				
Coal	0.95	0.95	0.95	0.96	0.96	0.96	0.96	0.97	0.97	0.97	0.98	0.98	0.98	0.98	0.98
Transportation															
	1.45	1.46	1.48	1.50	1.51	1.52	1.54	1.56	1.58	1.60	1.62	1.63	1.65	1.66	1.68

	Conductivity (W/m2 K)	Density (kg/m3)	Specific Heat (kj/kg K)	Specific Heat (kj/m3 K)
Insulation	.03	42.4	1.214	51.5
Concrete	1.73	2200	.841	1,850.2
Phase Change Material	.15	900	12.143	10,928.7
15% PCM Concrete	1.49	2005	2.536	5,084.7



PFUND

Russell

Stough

PFUND

Russell

STOUGH

VILLAGAMPA

CLOTH SHADE SELECTION

ThermoVeil™	TOTAL SOLAR / VISIBLE										
SHADECLOTH	20	W—G	75708	_va	69_81	50.53					
3	$T_{\mathtt{S}}$	Rs	$\mathbf{A}_{\mathtt{S}}$	Tv	T_{UV}	OF					
Open Vertical Weave											
1801 White	0.22	0.63	0.15	0.18	0.13	0.11					
1802 Beige	0.14	0.44	0.42	0.12	0.10	0.09					
1803 Grey	0.13	0.26	0.61	0.15	0.13	0.12					
1804 Blk/Brown	0.15	0.04	0.81	0.17	0.15	0.14					
1810 Grey	0.10	0.36	0.54	0.11	0.09	0.09					

PFUND

RUSSELL

STOUGH

ELECTRICAL DEPTH

Panel	Run Length	Phase Conductor	#	Material Cost (If)	· ·	abor st (If)	Neutral	#	Material Cost (If)	Labor Cost (If)	Isolated Ground	#	1	aterial st (If)	ibor st (If)	Conduit Size (in)	aterial st (If)	abor Cost	To	otal Cost
LB-0C1	150	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$	0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$	5,901.00
LB-0C3	190	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$	0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$	7,474.60
LB-0C5	170	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$	0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$	6,687.80
LB-0C7	190	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$	0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$	7,474.60
LB-0C9	215	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$	0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$	8,458.10
LB-0C11	330	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$	0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$:	12,982.20
LB-OC13	230	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$	0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$	9,048.20
LB-0C17	120	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$	0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$	4,720.80
LB-1D1	170	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$	0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$	6,687.80
LB-1E5	360	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$	0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$:	14,162.40
LBS-1E3	210	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$	0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$	8,261.40
LB-2D1	140	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$	0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$	5,507.60
LB-2D3	140	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$	0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$	5,507.60
LB-2D5	60	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$	0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$	2,360.40
LB-2D6	60	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$	0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$	2,360.40
LB-2D9	160	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$	0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$	6,294.40
LBR-0C11	260	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$	0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$:	10,228.40
LB-3D1	70	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$	0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$	2,753.80
LB-3D5	70	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$	0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$	2,753.80
				_													 		\$1	29,625.30

Equipment	#	Cost/per	Total
Eaton 9390-50 208V IN & Out UPS w/out Battery	19	\$ 35,000.00	\$665,000.00

Equipment	#	Cost/per	Total
Eaton Sag Ride Through SRT21000208AB	1	\$250,000.00	\$250,000.00
Pow-R-Line 4 Panelboard (1200A, 120/208V, 65KAIC)	1	\$ 5,000.00	\$ 5,000.00

Panel	Run Length	Phase Conductor	#	Materia Cost (If)		Labor ost (If)	Neutral	#	Material Cost (If)		Isolated Ground	#	aterial st (If)	Labor Cost (If)	Conduit Size (in)	Material Cost (If)	Labor Cost	Total Cost
LB-0C1	540	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 21,243.60
LB-0C3	510	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 20,063.40
LB-0C5	420	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 16,522.80
LB-0C7	450	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 17,703.00
LB-0C9	470	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 18,489.80
LB-0C11	360	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 14,162.40
LB-OC13	430	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 16,916.20
LB-0C17	580	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 22,817.20
LB-1D1	160	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 6,294.40
LB-1E5	120	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 4,720.80
LBS-1E3	90	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 3,540.60
LB-2D1	200	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 7,868.00
LB-2D3	210	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 8,261.40
LB-2D5	280	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 11,015.20
LB-2D6	290	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 11,408.60
LB-2D9	190	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 7,474.60
BR-0C11	380	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 14,949.20
LB-3D1	260	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 10,228.40
LB-3D5	270	#2/0	3	\$ 2.71	\$	1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 10,621.80
NEW DP	710	#600	6	\$ 15.00	Ç	3.10	#600	2	\$ 15.00	\$ 3.10	#1/0	2	\$ 3.65	\$ 1.22	3.5	\$ 21.50	\$ 18.30	\$166,239.40
																		\$ 410 540 80

PFUND

USSELL

STOUG

Luminaire Schedule												
Fixture Type	Image	Description	Mounting	Lamp	Voltage	Ballast	Wattage	Notes				
A2		Linear Lighting Ellipse 27. 1'x4' Indirect/Direct Pendant Fixture, Extruded Aluminum Housing, Baked White finish. Concave louver blades with clear convex insert Catalog #: EL27-B-1-ET5-277-PVI_IC	Pendant 9'-0" A.F.F.	(1) 54W T5 CCT 4100K CRI 85	277V	Electronic Advanced Transformer	63W					
А3		Linear Lighting Ellipse 27. 1'x4' Indirect/Direct Pendant Fixture, Extruded Aluminum Housing, Baked White finish. Concave louver blades with clear convex insert Catalog #: EL27-B-1-ET5-277-PVI_IC-LS	Pendant 9'-0" A.F.F.	(1) 28W T5 CCT 4100K CRI 85	277V	Electronic Dimming Advanced Transformer	32W					
В		Ledalite Voice. Recessed 1'x4' Fixture, Die-Formed Cold Rolled Steel Housing, Flat Acrylic Panels Connected to Prismatic Acrylic Diffuser Catalog #: 9814D1-ST-F128-S-1-2-E	Recessed	(1) 28W T5 4100K CRI 85	277V	Electronic Advanced Transformer	31W					
C1		Philips Alkco Aris Series. 11" Low Profile LED Fixture, Extruded Aluminum Housing, Pearl Finish, Extruded Clear Polycarbonate Lens. Integrated On/Off Swtich Catalog # ARIS-11-40-120-PRL-DWC	Surface	(5) 1W LEDs CCT 4000K CRI 71-73	120V	Integrated Driver	5W	Surface mounted to bottom of shelf at 4'-3" A.F.F.				
C2		Philips Alkco Aris Series. 21" Low Profile LED Fixture, Extruded Aluminum Housing, Pearl Finish, Extruded Clear Polycarbonate Lens, Integrated On/Off Switch Catalog # ARIS-21-40-120-PRL-DWC	Surface	(10) 1W LEDs CCT 4000K CRI 71-73	120V	Integrated Driver	10W	Surface mounted to bottom of shelf at 4'-3" A.F.F.				
X1	Y	Louis Poulsen Kipp Post Cutoff. Pole Mounted Fixture, White Spun Aluminum Diffuser, Black Injection Molded ASA Top Shade, Clear Polycarbonate Enclosure, Black Die Cast Aluminum Frame Catalog #: KIP-1-70W-CMH-T6 G12	Pole Mounted 27'-0"	(1) 70W CMH CCT 3000K CRI 90	277V	Electronic Advanced Transformer	79W					
X2	Y	Louis Poulsen Kipp Bollard. Pole Mounted Fixture, Injection Molded White Opal Acrylic Diffuser, Injection Molded Clear Polycarbonate Enclosure, Black Die Cast Aluminum Frame. Catalog #: KIB-1-39W-CMH-T6 G12	Pole Mounted 4'-3"	(1) 39W CMH CCT 3000K CRI 90	277V	Electronic Advanced Transformer	45W					

ХЗ	T	Winona Lighting Spirit. Black Painted Aluminum, 18" Stem, Area Light. Catalog #: SP-0-12V-BKS-18-SM-STD	Surface 18" Stem	(1) 35W MR8 CCT 3000K CRI 100	12V	1	35W	Provide Series TMI 600 Ingrade Transformer
X4		Invue Entri LED Triangle Reveals. Black One Piece Die-Cast Aluminum, Injection Molded AccuLED Optical System. Catalog #: ENT-A01-E1-BL4-BK	Wall Mount	(1) LED Bar 4000K CRI >70	277V	Integrated Driver	26W	Wall mounted at 10'- 0"
X5	WIAS .	Lightolier Calculite 6" Recessed Downlight. Array of High Brightness Royal Blue LED's, Phosphoy Lens Assembly Converts Blue Light to White. Catalog #: C6L20-DL-30-M-CL-P	Recessed	LED CCT 3000K CRI	277V	Integrated Driver	39W	
X6	EFE D	Lightolier Calculite 6" Recessed Wallwasher. Array of High Brightness Royal Blue LED's, Phosphoy Lens Assembly Converts Blue Light to White. Catalog #: C6L20-WW-30-M-CL-P	Recessed	LED CCT 3000K CRI	277V	Integrated Driver	39W	
Х7		Bega Floodlight. 3"x4' Floodlight. Black Die-Cast Aluminum Extruded Housing. Catalog #: 7593P.537BLK-28	Wall Mount	(1) 28W T5HO CCT 3000K CRI 85	277V	Electronic Advanced Transformer	31W	Mount Parallel to underside of cantiliver void.
Х8	1	MP Lighting. Black Anodized Aluminum Housing, Polycarbonate Lens. Catalog #: L36-3.5W-W30S-BA	Surface	LED CCT 3000K CRI	12V	Remote Driver	3.5W	Provide Remote TLDDLV60W5000 Driver

LXISTING	FACADE	STRU	CTURE	
	5			

Self Weight Calculation							
	width(in)	thickness(in)	length(in)	Vol(cf)	pcf	Weight	
Top Return	22.75	6	264	20.9	150	3.13	
Bott Return	22.75	6	264	20.9	150	3.13	
Front Panel	5	125.25	264	95.7	150	14.35	
Side Returns	16.75	125.25	8	9.7	150	1.46	
Brick	141.75	2	264	43.3	120	5.20	
			Totals	7.1	CY	27.26	K

Allowable Thickne							
Thickness (in)	I (in4)	C (in)	Fr (psi)	ØM _{cap} (lb-ft)	Mu(SW)	Mu(wind)	
2	8	1	530	318	858	694	
3	27	1.5	530	716	1096	694	
4	64	2	530	1273	1335	694	
4.25	77	2.125	530	1437	1394	694	
5	125	2.5	530	1989	1573	694	
6	216	3	530	2864	1811	694	
*Note: Moment due to wind and self-weight are separate cases							

Minimum Reinforcing: ACI 318-08, 10.5.1							
As _{min} =	0.0018*bwd						
Thickness (in)	As _{min} (in2)	Reinforcing					
2	0.037	6x6 W2.1/2.1					
3	0.056	6x6 W2.9/2.9					
4	0.074	6x6 W4.0/4.0					
5	0.108	6x6 W6.3/6.3					
6	0.130	6x6 W7.4/7.4					

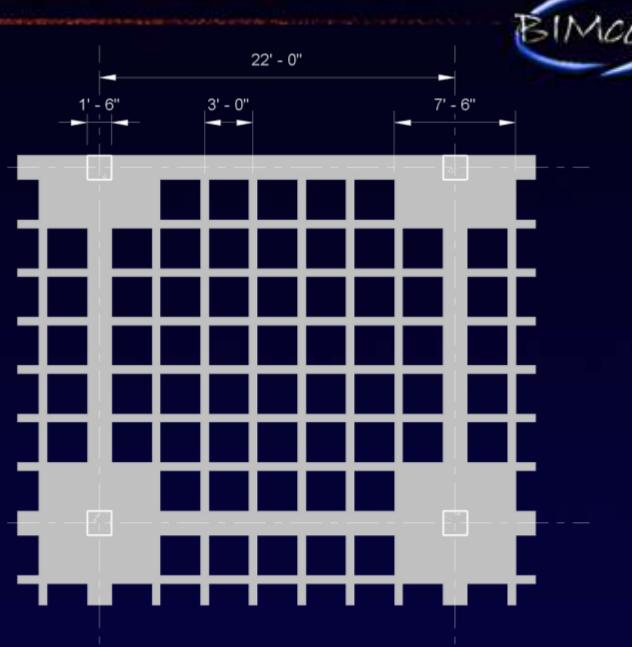
Self Weight Calculation- 60%								
		width(in)	thickness(in)	length(in)	Vol(cf)	pcf	Weight	
Top Return		14	6	264	12.8	150	1.93	
Bott Return		14	5	264	11.8	150	1.76	
Front Panel		6	141.25	264	129.5	150	19.42	
Brick		157.25	2	264	48.0	120	5.77	
				Totals	7.5	CY	28.88	K
				%increase	6.15%			

Allowable thickn						
Thickness (in)	l (in 4)	C	Fr (psi)	N4 (lb f+)	N.A(C\A/\	Mu(wi
Thickness (in)	I (in4)	(in)	Fr (psi)	M _{cap} (lb-ft)	Mu(SW)	nd)
2	8	1	530.33	318.2	1091.101	883.1
3	27	1.5	530.33	715.9	1394.185	883.1
4	64	2	530.33	1272.8	1697.268	883.1
5	125	2.5	530.33	1988.7	2000.352	883.1
5.5	166.375	2.75	530.33	2406.4	2151.894	883.1
6	216	3	530.33	2863.8	2303.436	883.1


STOUGH

VILLACAMPA

RUSSELL


PFUND

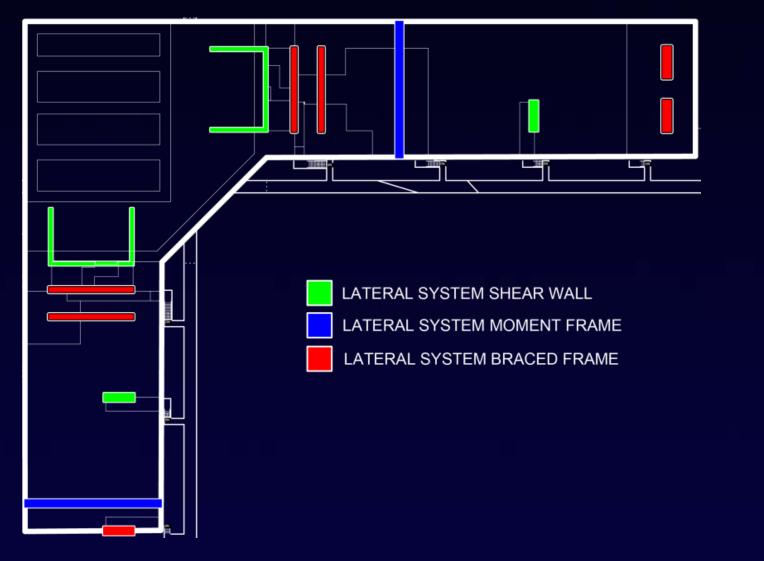
WAFFLE SLAB DESIGN

- DESIGNED FOR STRENGTH
- ACI318-08 DIRECT DESIGN METHOD
- 3FT MODULE: 30"PANS, 6" RIBS
- 8" DEEP PANS TABLE 9.5C
- 18" INTERIOR BEAMS
- 90" SQUARE DROP PANELS

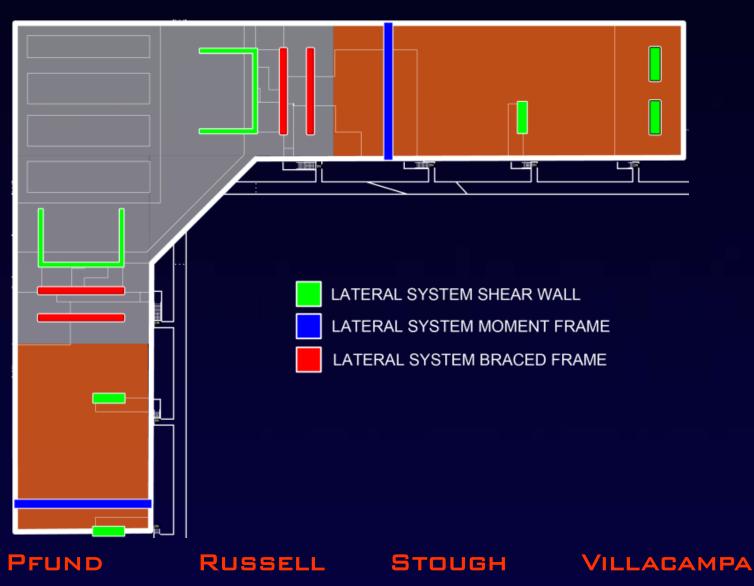


- AISC DESIGN GUIDE 11- FLOOR
 VIBRATION DUE TO HUMAN ACTIVITY
- SAP2000 MODEL AE597A
- Point Load Deflection Analysis
- PERIOD OF VIBRATION CALCULATION USING RAYLEIGH METHOD
- LIFE SCIENCE WING 4000UI/S
- WAFFLE SLAB IS TOO STIFF

Span/Location	Weight(kip)	Uv(lb/sec2)	$\Delta_{\rm p}$ (in/100kip)	T(sec)	Velocity(ui/sec)
Α	46.3	5500	0.500	0.0695	1910
В	46.3	5500	0.463	0.0647	1647
С	46.3	5500	0.462	0.0690	1755

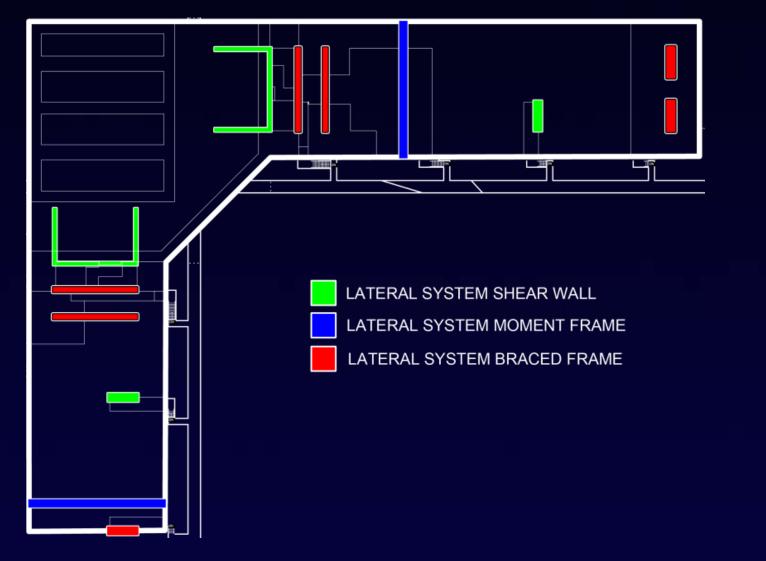


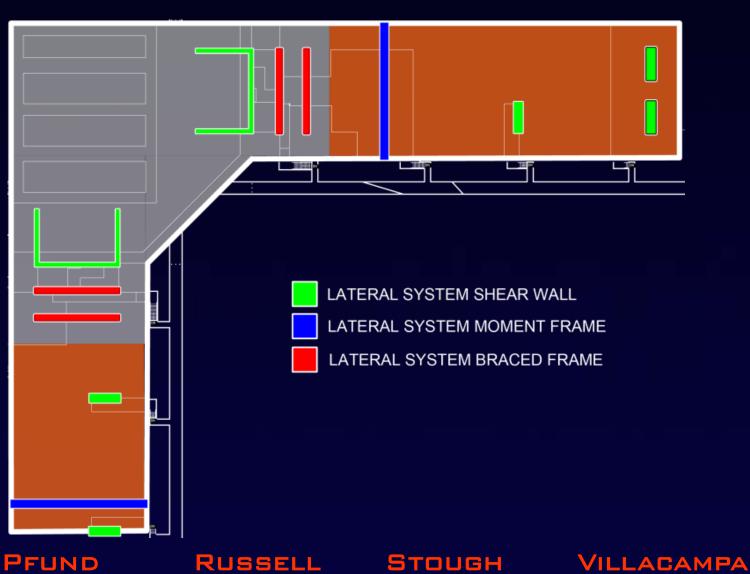
FUND


JSSELL

STOUGH

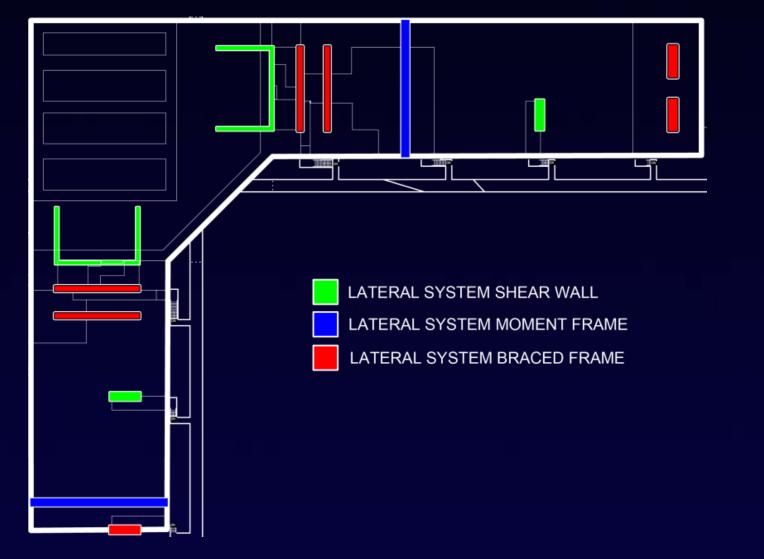
EXISTING LATERAL SYSTEM

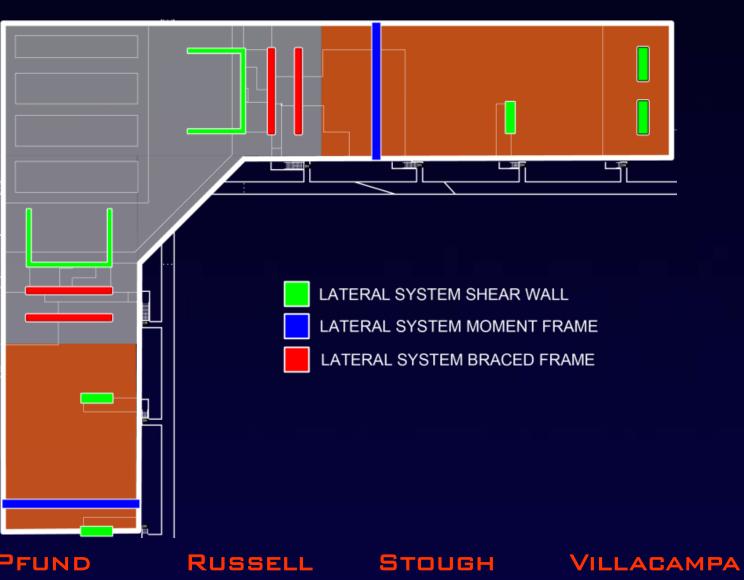

NEW LATERAL SYSTEM


WIND EXISTING SUMMARY

- V = 90MPH
- EXPOSURE B: URBAN/SUBURBAN
- CONSTRUCTION TYPE IIIB, OCC. CAT: B

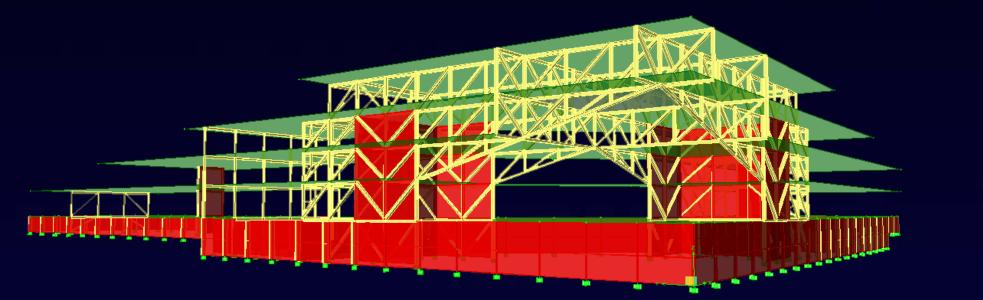
EXISTING LATERAL SYSTEM

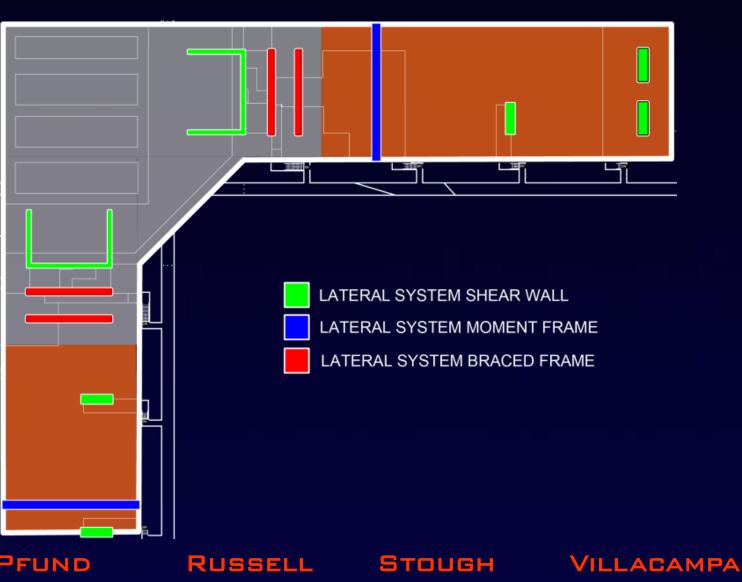

NEW LATERAL SYSTEM


SEISMIC EXISTING SUMMARY

- TORSIONAL IRREGULARITY TYPE 1A
- SDC: B
- R= 3.25, I= 1.25
- TA = 0.512s, CU = 1.7
- CU*TA = 0.871s
- TB = 0.2625
- CD = 3.25
- NEW TB = 0.264s
- SEISMIC BASE SHEARS 1581K

EXISTING LATERAL SYSTEM


NEW LATERAL SYSTEM


SEISMIC REDESIGN SUMMARY

- EXISTING BRACED FRAMES IN WINGS
 REDESIGNED AS SHEAR WALLS
- 16" OR 18" DEPENDING ON EXISTING
- R = 3.25, I= 1.25
- TB = 0.264
- CD = 3.25
- SEISMIC BASE SHEAR- 1676K

ETABS Model

NEW LATERAL SYSTEM

REDESIGN SUMMARY

- EXISTING BRACED FRAMES IN WINGS
 REDESIGNED AS SHEAR WALLS
- 16" OR 18" DEPENDING ON EXISTING

Building Info

FAÇADE INVESTIGATION

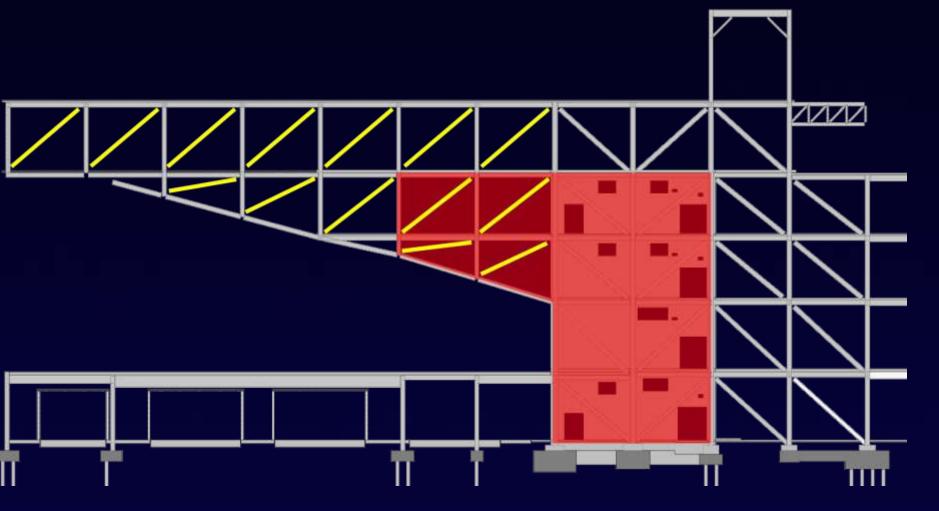
PLENUM INVESTIGATION

CANTILEVER PLAZA

OVERVIEW

TRUSS SYSTEM

ARCHITECTURE


LIGHTING DESIGN

CONCLUSIONS

IPD/BIM REFLECTION

TENSION MEMBERS

- SWITCH MEMBER ORIENTATION
- ADDITIONAL CONCRETE SHEAR WALL
 EXTENSION FOR ADDED STIFFNESS
- STIFFNESS/ GRAVITY ANALYSIS

