

The Millennium Science Complex

The Pennsylvania State University

Stephen Pfund Christopher Russell Alexander Stough Thomas Villacampa

IPD / BIM Thesis 2010-11

Final Report April 7, 2011

Advisors:

Prof. Robert Holland

Dr. Andres Lepage

Dr. Richard Mistrick

Prof. Kevin Parfitt

Dr. Jelena Srebric

Dr. John Messner

Prof. Ted Dannerth

Executive Summary

The following report provides an overview of the proposed redesigns and analyses that BIMception, composed of Stephen Pfund, Christopher Russell, Alexander Stough, and Thomas Villacampa, researched and produced in the spring of 2011 for the Millennium Science Complex. BIMception is dedicated to improving design through innovation and coordination. The purpose of this report is to generate redesigns for the existing building that are more energy-efficient, cost-effective, and of higher value to the building. An integrated approach was taken to determine designs that were executed for this project. Integrated Project Delivery conceives design as a team product, allowing each member to incorporate their expertise early in the design phase adding value to the building project. Building Information Modeling will become the tool that allows BIMception to quickly and effectively validate and communicate our design concepts.

Within this report, three main areas of focus have been evaluated. These interests were chosen as they provide opportunities for input from multiple disciplines, furthering the need for an integrated approach. These areas include the following:

- 1. Analysis of the building envelope with the intent to design a façade that is more efficient for the mechanical, lighting, and structural systems.
- 2. Investigation into the ceiling plenum space with the intent to examine the value of reducing structural depth through a redesign and reducing operational energy consumption
- 3. Redesign of the cantilever's structural framing and exterior plaza lighting system enhancing the architectural aesthetics with engineering solutions.

BIMception investigated the use of alternative system designs to modify the components of the Millennium Science Complex's building enclosure with the intent to engineer more efficient systems. Based on this, an analysis of the precast panel's composition, the window to wall ratio, and shading devices were conducted to improve optimal performance. While improving performance, the architectural aesthetics of the MSC remain unchanged, preserving Raphael Vinoly's vision. Each design alternative was selected based on criteria developed for energy performance, daylighting comfort, structural integrity, and life cycle cost.

The core investigation of the plenum space is a structural redesign entailing a change from the existing structural framing to a "three-building" design. This design is focused on redesigning the structural gravity system by maintaining the steel framing of the cantilever while using a concrete system for the wings. This design alternative investigated potential reductions of the structural depth within the plenum space. Based on the space gained through this redesign, the mechanical system investigated the opportunity to save fan energy by increasing duct size. The benefits of adjusting duct size are determined through energy consumption and life cycle cost. The coordination of the alternative structural and mechanical systems validates the opportunity to reduce system collisions and improve system integration. The concrete redesign of the wings also prompted a full redesign of the lateral resisting elements.

The cantilever of the Millennium Science Complex is the key architectural focal point of the building. An openair plaza has been designed for below the cantilever, including an exterior lighting system. A redesign of the cantilever truss system produced a system that is efficient and reduces steel material costs. The structural truss modifications prompted an architectural change within the cantilever plaza. Subtle in nature, the new architecture of the plaza incorporates a progression of angles drawing the eye gradually from the ground to the tip of the cantilever revealing the massiveness and magnitude of this architectural statement. The redesigned cantilever plaza fully integrates structural efficiency, architectural masterpiece, and expressive lighting design.

Cost, schedule, and site logistic implications were assessed for all design decisions, adding additional measures to determine the benefits of alternative redesigns. Integration of all design decisions requires the input and selection criteria from each member of BIMception. The final products of each analysis represent the coordination of each system's design implications on each other, producing the most beneficial improvements for the entire building solution.

Table of Contents

Executive Summary	1
Acknowledgments	7
Project Background	8
ARCHITECTURE	8
BUILDING ENCLOSURE	9
CONSTRUCTION MANAGEMENT	9
EXISTING STRUCTURE	10
EXISTING MECHANICAL	12
EXISTING LIGHTING	13
EXISTING ELECTRICAL	13
ABSTRACT	14
Project Construction Overview	15
PROJECT SITE LOGISTICS	15
SCHEDULE NARRATIVE	17
PROJECT COST EVALUATION	18
PROJECT STAFFING	19
PROJECT DELIVERY METHOD	20
Façade Redesign	21
DESIGN APPROACH	21
WALL COMPOSITION ANALYSIS	22
Design Approach	22
Thermal and Moisture Performance of Existing Facade	23
Structural Analysis of Existing Façade	29
Thermal and Moisture Performance of PCM Panel Alternate Facade	31
Structural Performance of PCM Panel Redesigned Facade	35
Glazing Property Comparison – Existing and Redesign	37
Energy Analysis of Design Options	38
Yearly Operating Costs of Design Options	39
Case Study Evaluation of Model Accuracy	39
Construction Cost of Façade Assemblies	40
Life Cycle Cost of Triple Pane Assembly	
Final Selection of Wall Composition	

WINE	DOW TO WALL RATIO ANALYSIS	. 43
Des	sign Approach	43
Day	ylight Analysis	44
Ene	ergy Analysis Results	46
Sch	edule and Logistic Impacts of Final Selection	47
Crit	teria for Integrated Window to Wall Ratio Selection	49
Fine	al Selection of Window to Wall Ratio	56
SHAD	DING ANALYSIS	.58
Des	sign Approach	58
Inte	erior Shelf Analysis	59
Pro	ject Vasari Analysis	61
Fine	al Shade Selection	64
LIGH	TING REDESIGNS	. 65
Des	sign Approach	65
Stu	dent Areas	65
Priv	vate Offices	73
Cos	t Analysis of Lighting Redesigns	79
Day	ylight Integration Control Study	80
Ene	ergy Analysis of Lighting Redesigns	83
Sch	edule Implications of Lighting Redesigns	84
Ligi	hting Redesign Conclusion	85
FAÇA	DE CONCLUSION	.86
Plenum	Investigation	87
DESIG	GN APPROACH	. 87
STRU	ICTURAL FLOOR SYSTEM ALTERNATIVES	.88
Wa	rffle Slab Design	88
Vib	ration Analysis/ SAP Modeling	90
One	e-Way Concrete Pan Joist/Girder Redesign	97
Imp	pacts of Gravity System Redesign on Lateral Resisting System	101
Str	uctural Cost Analysis	105
MECI	HANICAL SYSTEM ANALYSIS	107
Des	sign Approach	107
Exis	sting Mechanical System	108

Duct Sizing	109
Fan Selection	109
Hand Calculations – Static Pressure Loss	110
Existing — Static Pressure Loss	110
Duct Sizing Effects – Static Pressure Loss Alternatives	111
Energy Modeling – Static Pressure Loss Alternatives	112
Construction/Installation Costs of Alternate Duct Systems	113
Life Cycle Cost Analysis	114
CONSTRUCTION SCHEDULE AND LOGISTIC IMPACTS OF FINAL SELECTION	115
Site Logistics and Planning	115
Schedule Analysis	116
Concrete Pours	117
Crane Analysis	118
4D Modeling	118
COORDINATION AND MODELING OF SYSTEMS	119
Revit Modeling of Duct Systems	119
Building Information in Duct Systems	120
Revit Modeling of Structural Systems	122
Building Information in Structural Systems	123
Coordination of Mechanical Supply Duct and Structure 1	125
Coordination of Mechanical Supply Duct and Structure 2	127
Coordination of Mechanical Supply Duct and Structure 3	129
Coordination of Mechanical Drainage Pipe and Structure	132
PLENUM CONCLUSION	135
Cantilever Plaza Redesign	136
DESIGN APPROACH	136
STRUCUTRAL TRUSS ALTERNATIVE	137
Existing Truss Designs	137
Truss Alternatives	141
Cost Analysis	150
Schedule Analysis	150
ARCHITECTURAL	151

BIM <i>ception</i> – IPD/BIM Thesi	Sis
------------------------------------	-----

Cost Analysis	160
Schedule Analysis	160
CANTILEVER CONCLUSION	161
Electrical Work	162
LIGHTING CIRCUIT REDESIGN	162
Affected Panelboards	162
Student Area	162
Private Office	170
Cantilever Plaza	172
SHORT CIRCUIT CALCULATION	179
DEVICE COORDINATION STUDY	181
ELECTRICAL DEPTH TOPIC 1: SKM ANALYSIS	182
ELECTRICAL DEPTH TOPIC 2: UPS VS. POWER CONDITIONER	196
IPD / BIM Lessons Learned	199
INTEGRATED PROJECT DELIVERY EVALUATION	199
BIM EX PLAN	200
BUILDING INFORMATION MODELING EVALUATION	200
Final THESIS Conclusion	202
APPENDIX A: MAE/BAE Requirements	205
MECHANICAL MAE	205
STRUCTURAL MAE	205
APPENDIX B: List of Tables and Figures	206
APPENDIX C: Citations	212
APPENDIX D: Construction Management	214
Project Staff	214
Project Delivery Method	215
Site Logistics	216
Project Schedule	220
Project Estimates	233
APPENDIX E: Lighting/Electrical	264
Window to Wall Ratio Results	264
Interior Shelf	274
Lighting Plans	287
Luminaires	29∠

BIMception -	IPD/BIM	Thesis
--------------	---------	--------

Electrical	332
APPENDIX F: Mechanical	364
Thermal and Moisture Performance	364
Energy Analysis of Alternative Façade Compositions	367
Operating and Life Cycle Cost Analysis	375
Energy Analysis of Window to Wall Ratio Alternatives	384
Project Vasari Shading Analysis	396
Energy Analysis of Lighting Redesigns	401
Energy Analysis of Alternative Duct Systems	402
Modeling of Duct Systems	410
Complete Energy Analysis of All Design Alternatives	411
APPENDIX G: Structural	413
Façade Redesigns	413
Plenum Investigation	417
One Way Concrete Pan-Joist Designs	425
Pan-Joist Vibration Model	449
Lateral System Redesigns	450
Cantilever Redesigns	465
APPENDIX H: BIM Execution Planning	469
BIM Goals	469
BIM Software	469
BIM Uses	470

Acknowledgments

BIMception would like to thank all of our advisors and industry support for encouraging and helping us develop and execute our vision for IPD/BIM Thesis.

Thank You:

- Thorton Thomasetti Foundation
- Leonhard Center for the Enhancement of Engineering Education
- Professor Robert Holland
- Professor Kevin Parfitt
- Professor Theodore Dannerth
- Dr. Andres Lepage
- Dr. Richard Mistrick
- Dr. Jelena Srebrich
- Dr. John Messner
- Dr. Richard Behr
- Dr. Rober Leicht
- Corey Wilkinson
- Thorton Thomasetti
- Raphael Vinoly Architects
- Whiting Turner
 - o Chris Dolan
- Flack and Kurtz
 - o Eric Mitchell
- HOK Building Enclosures
 - Jack Johnson
- Lutron Professional Panel
 - o Lee Brand, Luke Tigue, Michael Barber
- Members of K.G.B. Maser
- Members of Building Stimulus
- Friends and Family

Project Background

The Millennium Science Complex is a 275,600 square foot, four-level research facility that will combine both the Huck Institute of Life Sciences and Material Sciences in one location. The project is owned by The Pennsylvania State University, located on the University Park campus at the intersection of Pollack and Bigler Roads, as seen in Figure 1. The building's signature feature is a 150-foot cantilever extending over an open air public plaza from the connection of the two wings at the main entrance. The project is targeted to achieve a LEED certification upon completion of construction. This project contains several unique features in addition to the cantilever. These include 20,000 square feet of vivarium space, 40,000 square feet of quiet laboratories, and 9,500 square feet of nano-clean rooms. Fully isolated labs are located below the exterior public plaza, and have extreme sensitivity and vibration adherence requirements.

There are four occupiable floors, including a basement and mechanical penthouse. The basement, accessed directly by the loading dock, contains three, fully isolated research labs. The first through third floors have a typical floor plan. Each wing has a central hallway surrounded by laboratories and student offices at the perimeter. Green roofs are located on the floors two, three, and four. The third floor of the Millennium Complex, roughly 45,000 SF, was selected as the focus of the building for this analysis and will be more strictly studied throughout the progression of our research. This floor provides a unique opportunity to study both life and material science laboratories, while incorporating common offices and conference rooms. The third floor is within the scope of a detailed analysis while providing complex interactions between all disciplines. While the whole building will be considered on a holistic level, actual calculations, coordination, and analyses in this report focus solely on the third floor.

ARCHITECTURE

The design intent of Rafael Viñoly Architects was to make an architectural statement. The building, which is an "L" shape, incorporates two separate wings combined at the intersection by a 150-foot cantilever protruding towards the Life Sciences Building. In addition to this cantilever, the building contains cantilevered portions at the end of each week, and was designed to step down from the top mechanical level to the bottom level at the end of each wing. Combine this design with the prominent horizontal lines portrayed by the striations of glass and brick, the image of a building floating above the landscape is created. Incorporated into the steps of the roof of the building are five green roofs, which help push this project towards obtaining a LEED certification.

Figure 1: View of Millennium Science Complex from corner of Pollack and Bigler Roads courtesy of the Huck Institute at Penn State

BUILDING ENCLOSURE

A complex pre-cast panel system comprises the majority of the Complex's building enclosure. Figure 2 shows a mockup of this system. Each of the 338 precast pieces were fabricated in York, PA and trucked to the site. The exterior is clad in "Penn State" brick with bands of recessed dark-fired brick adhered to 6" of concrete. This panel is backed by 3" of rigid insulation and a vapor Each 22' panel is supported against vertical loads by a bearing connection and lateral loads by a lateral connection. The bearing connection of each panel consists of a steel plate cast in the interior face of the precast panel resting on a steel gusset plate bolted to a steel column. The lateral connection consists of a threaded rod cast in the lower horizontal lip of each precast panel and then bolted to a steel member. Between each precast section, two lites of glass are broken by an exterior shading device, meant to help control solar heat gain and glare, while adding a valuable aesthetic feature. The lower vision lite wraps around the entire building providing views to the exterior, while the

Figure 2: Mockup of building enclosure, including precast panels courtesy of Rvan Solnosky

upper lite is fritted and meant to improve daylighting. A system of metal panels and storefront glazing encloses the building around the landscaped exterior atrium.

The roofing system, once designed to be the largest green roof in the United States, will span 60,000 sq. ft. This extensive sedum green roof will require a shallow depth of soil and drainage, and will be waterproofed from the concrete structure below. The mechanical penthouse will not have a green roof, rather it will be built of rigid insulation covered by a black EPDM waterproofing membrane.

The vibration isolated laboratories located under the exterior plaza will be enclosed in a unique vibration control system. As these labs are located underground, they will be surrounded by 24" of concrete and neoprene isolators to mitigate sound and vibration transmittance, while providing moisture protection and thermal resistance.

CONSTRUCTION MANAGEMENT

Preconstruction activities for the Millennium Science Complex began in March 2008, with construction beginning in June 2008. With an expected completion date of June 31, 2011, the project will have a construction duration of just less than three calendar years. The approximate total cost of the project has been reported as \$215 million, with construction costs totaling approximately \$140 million. The project is being produced with a Design-Bid-Build delivery system, but with the Construction Manager, The Whiting-Turner Company, acting as both a CM Agent and a CM-at-risk. This setup is due to the fact that The Pennsylvania State University is receiving Department of General Services (DGS) funding for a large percentage of the project. Due to this funding, the owner must hold contracts with all contractors under public funding, which Whiting-Turner then oversees and manages as a CM Agency. The remaining contracts are held by Whiting-Turner, which they oversee as a CM-at-risk.

The construction team has faced many challenges during the construction of the Millennium Science Complex. Due to the location of the project in the heart of The Pennsylvania State University main campus in University Park, PA, student safety and pedestrian traffic was an immediate concern. In addition, the constraints of the site posed concerns for the transportation of materials to the site, as well as storage of materials and placement of such equipment of cranes. The construction of the 150-foot cantilever also provided many challenges to the team, including the constructability magnitude, deflection concerns, and welding of connections during the winter months.

Further details on the construction management overview can be found in the Project Construction Overview section.

EXISTING STRUCTURE

The foundation of the Millennium Science Complex utilizes a system of pile caps, micropiles and grade beams. Each column ends at a pile cap on grid lines spaced twenty two feet apart in a square pattern. Groups of micropiles continue from the pile caps and make their descent through the soil allowing friction to carry the load of the building. Each of these pile caps are connected by grade beams helping to prevent differential settlement and to stiffen the foundation, a crucial design consideration for a laboratory building.

Forming the floor of the basement are four different slabs on grade in the occupiable area of the basement. The basement, extending 20 feet to the first floor of the building, covers only a portion of the entire footprint of the building. From approximately the halfway point of each wing (column lines R and 13) begins a compacted fill extending to the ends of each wing and to the first floor slab on grade. Columns and piers extend from the pile caps at the basement level up through the compacted fill, to the first floor. This was presumably designed in the event that the University would want to expand the basement level under each wing. Further evidence of this assumption can be found in the foundation walls, which enclose the compacted fill, and are in line with the exterior walls of the building. The accessible areas of the basement lie directly under the cantilever and extend to the edge of the compacted fill (column lines R and 13). Four isolation labs were placed at the basement level, designed to be completely disparate of the structural elements that make up the rest of the building. Slabs on grade, foundation walls, footings and piers use 4000 psi concrete; the pile caps are the only concrete items that use 6000 psi concrete. Reinforcement in the foundation and throughout the building is grade 60.

A one way composite steel beam system with typical 22 foot square bays forms the floor system for the Millennium Science Building, as shown in the simplified model of Figure 3. A typical floor layout for the wings contains a centralized corridor surrounded by rooms on either side. Those perimeter spaces are generally divided into either laboratories or offices. The floor loads are handled by three types of composite steel beams and metal decking used throughout the building, the most common of which is a 3 inch 18 gage deck with 3½ inch light weight concrete topping. The concrete decking is supported by W21 beams and W24 girders which frame into W14 columns at the intersection of each grid line. Beyond the typical dead and live loads, there are specialty loads from the green roof, mechanical equipment, and the pedestrian traffic at the entrance which call for increased slab strengths. A 3 inch metal deck

Figure 3: Model of typical steel framing layout

is used with a 7 inch normal weight concrete topping immediately below the cantilever where pedestrian traffic is heaviest as people enter and exit the building, and a 4½ inch normal weight topping is used to support each green roof. These hallways call for a slightly higher ceiling so W18 beams are used in the center bay of each frame.

Two moment frames, several bays of braced frames, and two shear walls located at the stairwells make up the dedicated lateral system for the building. The moment frames are located at grid lines Q and 19, which are midway and at the end of their respective wings. The location of these moment frames correspond with shear walls placed in either wing several bays away. Figure 4 shows a layout of these frames and shear walls on the first floor. The objective of these staggered frames and walls is to distribute the lateral forces over the entire floor, preventing excessive localized stresses in the floor diaphragms. State College itself does not suffer from large wind or seismic loads given building height restrictions and geographical location. Along with the large span trusses and C-shaped shear walls that support the cantilever, the dedicated lateral system more than suffices in resisting the maximum lateral loads State College demands.

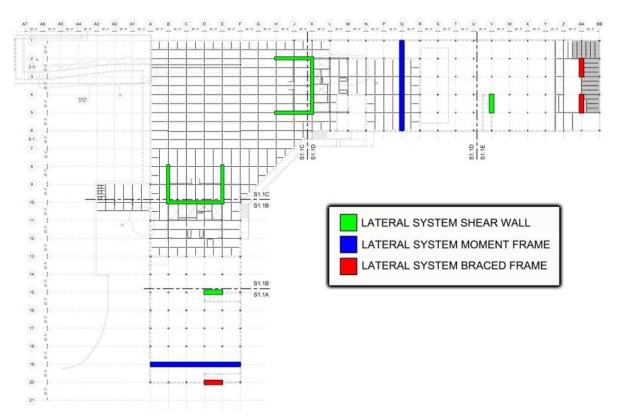


Figure 4: Layout of existing lateral system elements on first floor

To cope with the massive stresses induced by the 150 foot overhanging cantilever, a truss design was used to handle the gravity forces. Gravity loads start from the tip of the cantilever and are transferred into the diagonal compression members. Continuing on the load path, the truss feeds into a 30" shear wall integral with the truss frame. The loads from the diagonal compression members get carried into the shear wall and transfer into the foundation. The load is handled by 10 points in the foundation. These enlarged pile caps and grade beams act in compression and tension on the soil, using the micropiles as anchors. An image simulating the distribution of these forces is highlighted in Figure 5.

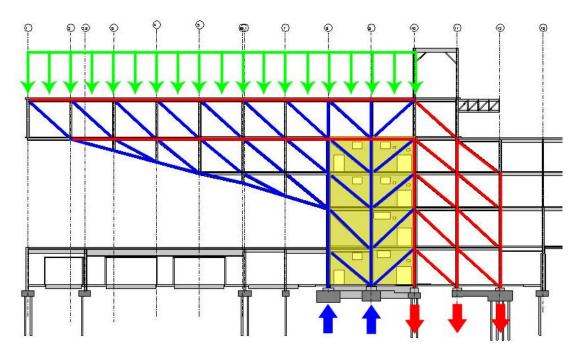


Figure 5: Gravity load simulation in cantilever truss along Frame B. Red and blue denote tension and compression respectively.

EXISTING MECHANICAL

The Millennium Science Complex connects into the existing campus steam and chilled water lines. Steam enters the building at high pressure, 140 psi, but requires two pressure reducing stations to reduce the pressure to medium and low pressures of 60 psi and 15 psi respectively. Medium pressure steam is utilized for sterilization, heat exchangers, and other equipment loads. Low pressure steam is used for steam coils within the AHUs and in heat exchangers, producing hot water for reheat-coils at terminal devices.

Chilled water is pumped throughout the building using three (3) variable speed split case pumps, with one reserved as a standby. An auxiliary low flow pump is utilized for part load conditions. The AHUs serving the animal care facility and main laboratories are connected to standby power allowing for the cooling of these spaces during power loss.

The laboratory areas of the building are served by five (5) manifolded 50,000 CFM VAV AHUs. Each of these AHUs contains a supply fan, cooling coil, heating coil, humidification equipment, and MERV-14 filters. All laboratory AHUs deliver 100% outside air. In an effort to save operating energy and cost, the general laboratory exhaust air enters an enthalpy wheel exchanging energy with the incoming supply air. The laboratory fume hood exhaust is not included in the enthalpy wheel due to the potential contaminants within the exhausted fume hood air.

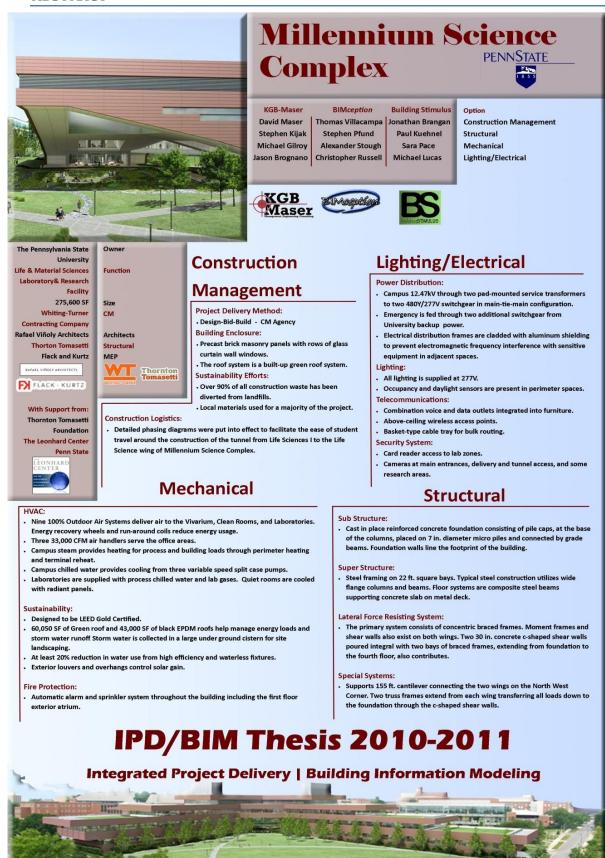
The office, lobbies, and common areas are served by three (3) 40,000 CFM VAV AHUs. These AHUs do not provide 100% outdoor air and instead contain a mixing box with CO_2 sensors in the outdoor air, return air, and all conference rooms. This ensures that the CO_2 concentrations in these areas are maintained at appropriate levels by supplying enough outdoor air.

The animal care facility is served by two (2) 25,000 CFM 100% outdoor air units. Each unit is sized to handle the full load of the space. Redundancy is needed to allow for continual service of the animal holding rooms and the rest of the animal facility should one unit fail. The clean room also has its own AHU designed to maintain the room's humidity levels at 45% RH. The animal care facility AHUs, quiet lab AHU, and clean room AHU all utilize run around heat recovery coils in an effort to reduce energy usage.

In addition to the main AHUs, cabinet unit heaters, electric heaters, fan coil units, supplemental air conditioning units, and other local equipment are used to address areas of the building where the main HVAC equipment cannot feasibly serve the area. It is necessary to have all of the previously mentioned components in order to effectively keep the building operating under optimum conditions for the various building occupants.

The Millennium Complex will be protected on all floors by an automatic fire alarm notification system. Manual pull stations will not be required where the alarm notification appliances activate upon sprinkler water flow in this fully sprinklered building. The first floor outdoor plaza must also be fully sprinklered as there is potential for combustible materials to be handled under the canopy. The laboratories will be designed to meet Ordinary Hazard Group 1 or 2, while storage rooms with dispensing capabilities must be designed to Extra Hazard Group 2.

An automatic standpipe system will be required throughout the building, and hose connections will be required on each floor at an intermediate landing level in stairways. A minimal residual pressure of 100 psi is required at the outlet of the hydraulically most remote 2 ½ inch hose connection.


EXISTING LIGHTING

All lighting is on 277V service. All building perimeter offices and laboratories are controlled by both occupancy and daylighting sensors with appropriate dimming ballasts. Typical internal laboratory and office rooms are controlled by the occupancy sensor. Three general types of ballasts are used. Class B quiet dimming ballasts are used in the quiet labs. Lutron's Hilume dimming ballasts are installed for rooms requiring less than 10% dimming from full power. Advance Mark7 dimming ballast is used in rooms with regular dimming conditions. A system of addressable ballasts is used in accordance with Lutron's GRAFIK Eye system.

EXISTING ELECTRICAL

The electrical system for the Millennium Science Complex is a 12.47kV service feeding a set of dual 4000A, 480Y/277V switchgears (main-tie-main) through two pad mounted transformers. Distribution begins with 480Y/277V for lighting and other systems, then stepped down at further locations to 208Y/120V for receptacle and equipment power. Emergency power is fed from two separate switchgears which feed multiple ATS's with both normal and emergency power. To limit the EMF from interfering with sensitive equipment, electrical closets are encased with aluminum shielding and in certain areas rigid conduit is used in place of standard conduit.

ABSTRACT

Project Construction Overview

PROJECT SITE LOGISTICS

The project site is located on The Pennsylvania State University campus at the corner of Bigler Road and Pollock Road, directly across from the Pollock Commons. Figure 6 shows the site for Millennium Science Complex and some of the surrounding buildings. To the North of the project site is the Eisenhower Parking Deck; to the East are the Nittany Apartments; to the South is the Pollock Commons; and to the West is the existing Life Sciences Building.

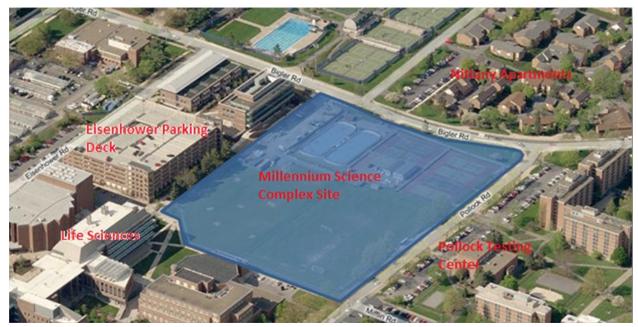


Figure 6: Bing Map of Millennium Science Complex Site

The site was originally occupied by two roller hockey rinks, tennis courts, and intramural sports fields. The site for Millennium Science Complex is also surrounded by a variety of different building types, and vast amounts of student and vehicular traffic. Coming from the east, students living in the Nittany Apartments must be able to easily travel through this location of campus for class and various activities. To the North of the site, along adjacent to the Eisenhower Parking Deck, is a main walking path of student travel. Safety is of the utmost concern in this location for students traveling to and from the northeast part of campus. On the South edge of the Life Sciences Wing, the building cantilevers over the pedestrian walkway. Once again, safety is a main concern. Temporary structures were erected to protect pedestrians walking through this area, and proper coordination needed to happen during the construction of this location of the building.

Another main concern during the construction of Millennium Science Complex is the amount of vehicle traffic that is on Bigler Road and Pollock Road. Catabus Community Service Lines use both Bigler Road and Pollock Road as part of their routes. The Blue Loop also travels on these roads as part of its campus loop. Both vehicle and pedestrian traffic play a role in another issue faced by the construction team, which was how to bring materials and equipment into the site. Because the site is located in the middle of the Penn State University campus, available space is at a premium. The site did not offer much space for material storage, so materials were typically scheduled to be brought in the day it was needed. It was required that trucks were not driven through campus, so it was planned that the trucks

would be brought in from University Avenue onto Hastings Road, which connects to Bigler Road and the construction site. This path can be seen in Figure 7 below. As can be seen, vehicle and pedestrian traffic were a main consideration in the site logistics planning for the Millennium Science Complex.

Aside from the complexities that Whiting-Turner had to deal with outside of the site, creating a site logistics plan for the building has also proved to be cumbersome. Whiting-Turner first began with a two phase site logistics plan. The first plan covers from site preparation through the foundation being complete. The second phase site logistics plan covers from steel erection to interior finishes. Whiting-Turner's site logistics plans can be found in Appendix D.

Figure 7: Map of Material Delivery Route

SCHEDULE NARRATIVE

The Millennium Science Complex project summary schedule encompasses a selection of key activities, starting with the design, bidding and awarding of the project through building turnover to The Pennsylvania State University. The full summary schedule can be found in Appendix D. In Table 1 is a short summary made of several key construction activities and their durations and dates.

Construction Phase	Duration (Days)	Start	Finish
Notice to Proceed	-	3-24-08	-
Foundation/Substructure	270	2-16-09	2-26-10
Superstructure	274	7-7-09	7-23-10
Enclosure	303	11-9-09	1-5-11
Building Systems/Finishes	345	12-14-09	4-8-11
Substantial Completion	-	5-12-11	-
Construction Duration	758	8-12-08	7-7-11

Table 1: Schedule Summary of Key Tasks

Preconstruction for this project began in March 2008 and included the design, bidding and awarding of the different project components and packages. Department of General Services (DGS) project packages were decided, which are the publicly funded portions of the project. These packages consisted of primarily upfront construction activities (information on this can be found later in the report.) In addition, the qualification and evaluation of designers and contractors for the clean rooms was also decided during this time.

Primary coordination meetings and reviews began in May 2009. Per the contract, all main building system trades, such as structural steel, mechanical, electrical and plumbing, were required to model their systems using programs compatible with a 3D DWG file format. Because of the complexity of this project, the use of building information modeling and the coordination that comes from this was of the utmost importance.

The structural steel erection began in July 2009, lasting just under seven months, and was done in gradual stages. Erection began at the ends of the Material and Life Sciences wings, and progressed towards the perpendicular interception of the two wings. All levels of the structural steel for each wing were complete before the erection of the cantilever began.

Commissioning will begin in November 2010, and lasts until building turnover to The Pennsylvania State University in July 2011. Initial inspections are done after all major systems are completed, and final inspections, completion of the punchlist and closeout are set to take place starting in January 2011.

PROJECT COST EVALUATION

Considering the sheer magnitude of this project, in combination with the complexities contained within the building systems and finishes, it was assumed early on that the cost of this project would ultimately be high. While the exact total cost of the project is not known, an approximate total cost of \$215 million has been obtain, and will be assumed as the total cost of the project. In addition, all construction and systems costs were obtained based on budgets provided by Whiting-Turner (dated July 3, 2008), and may not be up-to-date.

Total Cost	Total Cost Per Square Foot	
\$215,000,000	\$788/SF	

Table 2: Total Cost of Building

Construction Cost*	Construction Cost Per Square Foot		
\$139,176,843	\$510/SF		

^{*}Construction Cost does not include contingency, general conditions, insurance and fees.

Table 3: Construction Cost of Building

Building System	Percentage of Project Cost	Cost	Cost Per Square Foot
Structure	17.6%	\$24,559,974	\$90.06/SF
Plumbing	4.8%	\$6,731,107	\$24.68/SF
Fire Protection	1.0%	\$1,362,000	\$4.99/SF
HVAC	18.1%	\$25,159,105	\$92.26/SF
Electrical	8.9%	\$12,313,658	\$45.15/SF

Table 4: Building System Costs

PROJECT STAFFING

Whiting-Turner is staffing the project based on the project size and complexity. A simplified staffing plan is shown below (Figure 8), and a full staffing plan is attached in Appendix D. This project has two Senior Project Managers, four Project Managers, a Senior Superintendent, two Superintendents, and five Project Engineers.

Dick Tennant, a Construction Manager owner's representative from the Office of Physical Plant, oversees the project. Both the project management and field supervision staff are placed on site in the trailer complex. Typically, the management staff holds weekly subcontractor coordination meetings.

The project management staff handles all project submittals, most of the RFI's, and reviews the payment requisitions from the subcontractors. Superintendents and their assistants handle all field installations using approved submittal and shop drawings. Superintendents also supervise the subcontractor's daily activities. Whiting-Turner's safety efforts are in the mind of everyone on the staff; however Cesar Sastoque, a Safety Specialist Superintendent, is responsible to help create a safe environment by preventing dangerous practices on site. He is accountable for being aware of proper procedures and safe construction methods during the hours of construction.

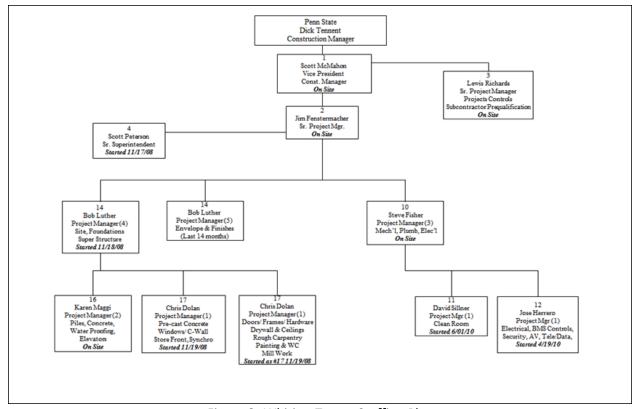


Figure 8: Whiting-Turner Staffing Plan

04/07/2011

PROJECT DELIVERY METHOD

The Millennium Science Complex is primarily a Design-Bid-Build delivery system, with a form of Construction Management Agency and Fee in place with Whiting-Turner Contracting. Because this project does have Department General Services (DGS) funding, Penn State University is required to hold the contracts which are publicly funded directly. These contracts and packages, which primarily consist of activities which are upfront in the construction of the building, can be seen in Appendix D. This project encompasses an interesting set up in that the owner, Penn State University, holds contracts with both a construction manager, as well as subcontractors. Whiting-Turner, in effect, acts as a construction management agent to Penn State University, and is held responsible for overseeing, managing and coordinating the trades with which Penn State University holds contracts directly. At the same time, Whiting-Turning maintains contracts will all other subcontractors on site, and must maintain their responsibilities to manage their own subcontractors. Through their contract with Penn State University, Whiting-Turner performs their work for a fee, and because they are not self-performing any work, they are not at risk with Penn State University for the work performed by their subcontractors.

One unique aspect of this project was in the bid and award process used for the clean rooms within the basement of the building. Because of their complexity and importance to the facility, these were not bid out as the rest of the building was done. Instead, these rooms were done with a Design-Build method, selecting contractors and designers who would be given permission to submit proposals for the design and construction of these laboratories. This process was much more tedious than the selection of the remaining bids for the building in that each proposal was scored and ranked based on specific technical and design criteria before the cost of the proposal was made public and evaluated. For this evaluation process, the scientists who would be using these spaces were brought in to place opinions and input on the proposals based on their wants and needs, which would ultimately result in laboratory space customized to what was required by them. This ensured initial rankings based on quality rather than cost. However, it was not confirmed whether Penn State University ultimately chose the designer and contractor based on the input of the scientists or the lowest cost.

Façade Redesign

DESIGN APPROACH

BIMception's redesign of the Millennium Science Complex's façade will retain the integrity and symbology of the architect's, Raphael Viñoly's, vision. This vision is created by the horizontality of the façade's panel and strip window construction, creating the illusion of a building floating in the landscape. To do this, the façade is uniform and consistent in its expression and construction, disregarding solar orientation and building structure. It is BIMception's plan to respect the architect's vision by not altering the cohesiveness of the façade elements.

The redesign of the façade system will focus on deconstructing elements of the exterior wall and analyzing their performance in isolation. BIMception will investigate three specific focus areas that will be evaluated for improvement – Wall Composition Analysis, Window to Wall Ratio Analysis, and Shading Analysis.

The façade of the Millennium Science Complex is composed of approximately 25,000 pound prefabricated concrete panels used uniformly on all building surfaces. While a defining architectural feature, they can be improved to reduce all forms of building loading. By redesigning the panel's composition to reduce its self-weight exterior structural loads can be reduced. The use of phase change materials will be used to reduce the volume of concrete needed for thermal storage and performance. This savings in weight will decrease the deflections in the cantilever and decrease the bending stresses on exterior connections and columns. The façade will be visually unchanged, but the material and structure behind the veneer will be engineered to increase structural and mechanical performance.

Reevaluating the wall to glass ratio will select a façade that balances external thermal loads with improved daylighting opportunities and life cycle costs. The proper selection of glazing area will improve the value of the façade assembly. Selection criteria were developed by each member of BIMception and the selection of window to wall ratio is the optimum compromise of integrated design. The selection of the final wall to glass ratio will be an interdisciplinary effort synergizing the energy savings, daylighting improvement opportunities, and construction value.

The Millennium Science Complex's façade does not address the changes in solar orientation, as it retains its uniformity throughout all building faces. This creates unique problems for the selection of components designed to control daylighting and solar heat gain, as they are unable to react to differentiations in varying solar intensity around the building. In keeping with the architect's vision, this uniformity will not be altered, but elements will be redesigned to improve the façade's performance. Reevaluating the wall to glass ratio will allow BIMception to select a ratio that provides opportunities for more comfortable daylighting and for better control of thermal loads. These two opportunities can also be realized by reengineering the interior and exterior shading devices. By optimizing the current design, BIMception can respect the architectural features while providing improvements in the façade's performance.

WALL COMPOSITION ANALYSIS

Design Approach

The façade of the Millennium Science complex will be reevaluated to investigate the potential to better control exterior thermal loads. By retaining the exterior brick veneer, the architectural aesthetics of the building will be unchanged, while the internal components of the façade are allowed to evolve. The redesigned façade will appear identical to the existing, but incorporate new engineering solutions.

To improve thermal performance, the existing façade will be analyzed for its heat and moisture transfer properties. This will provide a basis of comparison for future redesigns. The inclusion of phase change materials in concrete has been selected to improve the wall's thermal capacitance and improve building loading. The existing mass wall has been decomposed into a cavity wall with a specified drainage plane to mitigate moisture condensation.

The pcm cavity wall redesign allows the mass of concrete to be split into two sections, an exterior layer to provide structure for the brick veneer, and an interior layer to improve thermal performance. The insulation and air gap between the two panels was engineered to ensure the pcm concrete panel remains in the pcm's operating range of 55-85 degrees.

Redesigning the composition of the façade panel required structural analysis to confirm the panel's integrity. Evaluation of existing in place loads, wind analysis, and gravity loads revealed potential to reduce concrete volume by removing the side returns. The reduction in panel thickness from the thermal redesign supports the effort to reduce each panel's self-weight.

In addition to the static in place loading conditions, constructability and serviceability analyses introduced new loading cases for consideration. The inclusion of transportation and installation requirements increased the panel's loads effectively increasing concrete volume and eliminating the pcm redesign.

The final redesign wall composition remains identical to the existing's, but alterations to the head, sill, and side returns are incorporated to reduce concrete volume. To support this effort, the panel depth has been reduced to 16" and thermal performance benefits are realized with the use of triple pane glazing.

Thermal and Moisture Performance of Existing Facade

Mechanical Design Criteria

The design criterion was selected from OPP's interior design conditions and ASHRAE's 0.4% and 99.6% external conditions as seen in the tables below.

ASHRAE Altoona, PA	Summer Design Condition: Cooling 0.4%	Winter Design Condition: Heating 99.6%
Outside Air Dry Bulb (°F)	4.7	88.5
Outside Air Wet Bulb (°F)	-	72.0

Table 5: ASHRAE Weather Data for University Park, PA

Area	Season	Indoor	Outdoor
Comfort Areas	Summer	75°F DB, 50% RH	90°F DB, 74°F WB
	Winter	75°F DB, 50% RH	0°F DB
Labs	Summer Winter	Lab specific	92°F DB, 74°F WB 0°F DB
Animal Holding	Summer	64-79°F DB ¹ ,	95°F DB, 75°F WB
	Winter	30-70% RH ¹	-10°F DB

Table 6: OPP Interior Design Conditions

R-Value H.A.M. Analysis of Existing Facade

The performance of the existing wall design was modeled in The Heat, Air, and Moisture (HAM) analysis software made by the Building Science Toolbox V.1B.

The existing façade panel consists of 2" face brick, 6" concrete, and 3" polyisocyanurate rigid insulation with an integral vapor barrier seen in Figure 9. A half wall composed of 2 5/8" gypsum boards and 3 ½" batt insulation filled metal stud separates a large plenum space from the conditioned room.

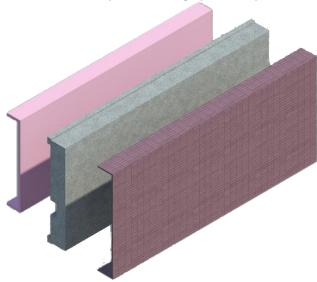


Figure 9: Exploded View of Existing Façade Panel Composition

Assumed that the large space between the exterior panel and interior wall was only 5 ½", because the added effects of extra air space are lost due to convection currents. Due to limitations in the HAM program, the brick thickness is modeled as 4 inches, rather than 2, while the concrete is modeled as 4 inches, rather than 6. This retains the combined total 8 inch thickness of the brick and concrete layers.

The analysis, found in Appendix F, reveals the total R value of the wall assembly, Figure 10, to be about 26.45, because of variances in thicknesses and properties another iteration of R-value analysis will be performed later to verify HAM's accuracy.

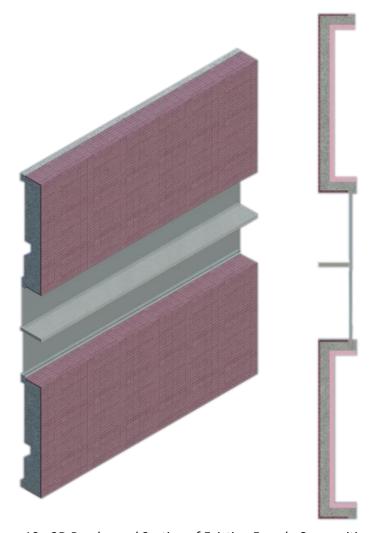


Figure 10: 3D Render and Section of Existing Façade Composition

Condensation H.A.M. Analysis of Existing Facade

A second analysis in HAM was performed to evaluate condensation potential. No condensation was found to occur in any of the summertime conditions Appendix F, but in winter design conditions, Figure 11, .08 fluid ounces per square foot per day was found to saturate the exterior portion of insulation, concrete and brick. This condition neglected to incorporate the integral vapor membrane of the insulation and a follow up analysis was done to prove the effectiveness and integrity of the assembly. As shown in Figure 12, if installed properly the vapor barrier effectively prevents vapor condensation in the wall assembly.

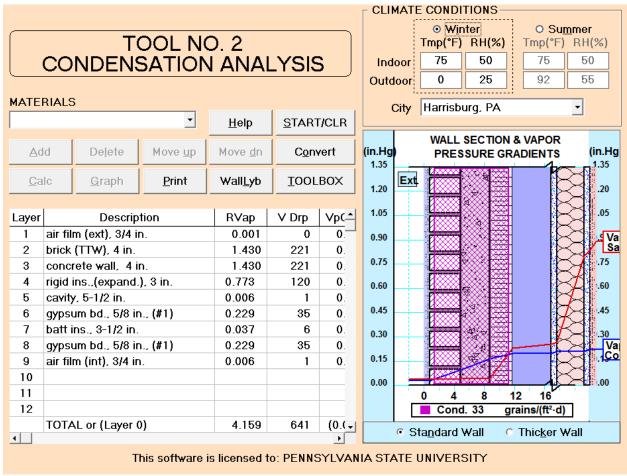


Figure 11: HAM Condensation Analysis of Existing Wall - Winter Condition - No Vapor Barrier

04/07/2011

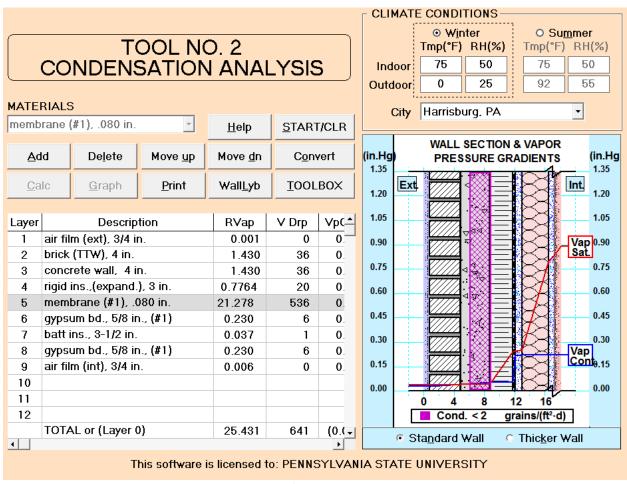


Figure 12: HAM Condensation Analysis of Existing Wall – Winter Condition – Vapor Barrier

Condensation Hand Calculations of Existing Facade

Hand calculations were done to ensure the validity of HAM's analysis (Table 7). The hand calculations confirm potential condensation problems if the wall were to be installed without the integral vapor barrier (Figure 13).

Values for R-values and Permeance were found according to ASHRAE 2009 Fundamentals Table 4 Typical Thermal Properties of Common Building and Insulating Materials: Design Values and Table 7 Typical Water Vapor Permeance and Permeability for Common Building Materials.

	Temperature	R-value	Saturated Humidity Ratio	Humidity Ratio	PERM
Outside Air – Brick Interface	4.7	0	0.004	0.002	0
Brick – Concrete Interface	5.8	0.33	0.004	0.006	1.5
Concrete – Polysisocynaurate Interface	8.2	0.4	0.004	0.008	0.15
Polyisocyanurate – Interior Air Interface	75	20	0.019	0.009	1.03
Interior Air	75	0	0.019	0.009	0

Table 7: Hand Calculation Condensation Analysis of Existing Wall – Winter Condition – No Vapor Barrier

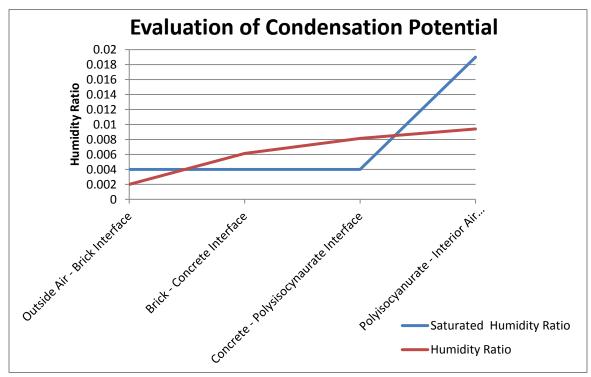


Figure 13: Evaluation of Condensation Potential of Existing Wall – Winter Condition – No Vapor Barrier

CTSF Analysis of Existing Facade

To more accurately analyze the performance of the existing assembly a Conduction Time Series Factor Analysis was performed through ASHRAE distributed Load Calculation Software. The assembly was recreated with the thermal properties of conductivity, density, specific heat, and resistance as given per ASHRAE Fundamentals. Accurate thicknesses were used, and the assembly received an R value of 29.7. In addition the wall produced a CTSF that represents a relatively flat loading profile, as seen by Figure 14.

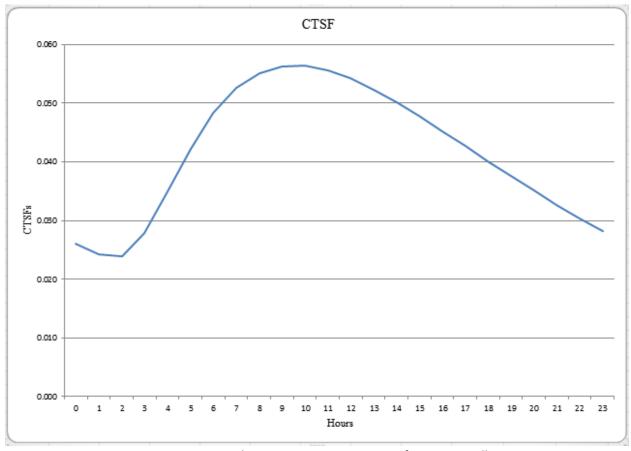


Figure 14: Conduction Time Series Factor of Existing Wall

Structural Analysis of Existing Façade

Structural composition of the existing panel consists of a 6in exterior panel with 5 ¾" top and bottom returns and 9in side returns. The largest typical panel spans an entire 22ft bay horizontally and 11'-9 ¾" span vertically. Due to the large ratio in length-to-width it can conservatively be assumed that the vertical section of the precast concrete panel spans vertically between the top and bottom return and the top and bottom return span between the two end returns.

In order to properly redesign the wall composition incorporating high performance elements including phase change materials and an air gap it benefits the design team to understand the structural implications of changing concrete thicknesses, adding concrete, and structural connections that hold the panel together and in place. To gain this knowledge base structural analysis of the existing panel including critical load cases and design loads need to be considered. Critical stresses must be calculated in the structural materials and monitored as changes are made to the façade panel composition.

Design Load Cases

The initial loads cases considered were obvious for an architectural façade panel supported on the exterior of a building structure. The two load cases considered were in place loads due to localized wind pressures and self-weight of the panel itself. Localized wind pressures were calculated per ASCE7-05 chapter 6. The most critical wind load was used to analyze the panel. Wind pressures on a building increase as we move upward across the building height. Therefore the maximum wind pressures occur at the maximum vertical height of the building. ASCE7-05 defines specific localized pressures for components and cladding specifically. Although the Main Wind-Force Resisting System wind loads had already been calculated and used in the lateral analysis of MSC additional calculations were necessary to calculate the critical localized pressure on the façade panels. These calculations are available in Appendix-G. The critical localized design pressure was calculated as 31.87psf.

This localized pressure was used to calculate the maximum stresses in the existing panel, with 6in of effective concrete, due to flexural tension. This was directly compared to alternative thicknesses for future use in designing alternative panel compositions. It was found from this analysis that the existing 6in of concrete was more than adequate to take the design loads due to wind. In fact for wind alone, even a thickness as small as 3in could be used safely, in ideal conditions, to adequately resist the design wind loads. This assumption was used initially in designing the PCM wall composition. Tables 8 and 9 summarize the results from this analysis.

The analysis for self-weight for in-place loads, by inspection, can be essentially disregarded as a critical load case. The effective depth for bending in flexure due to dead loads is the entire width of the panel, so the tensile stress in the concrete at the base of the panel is very low. In fact the panel only needs to be 2in to stay uncracked due to this load case alone. Figure 15 shows the design theory behind the two load cases considered for the existing panel analysis.

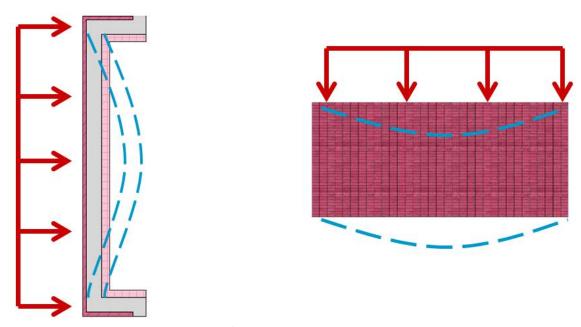


Figure 15: Structural Load Cases: Left- Flexure Due to Wind, Right- Flexure Due to Dead Loads

Thickness (in)	I (in4)	C (in)	Fr (psi)	ØM _{cap} (lb- ft)	Mu(wind)
2	8	1	530	318	694
3	27	1.5	530	716	694
4	64	2	530	1273	694
5	125	2.5	530	1989	694
6	216	3	530	2864	694

Table 8: Thickness Analysis Due to In Place Wind Loads For Existing Façade Panel

Thickness (in)	I (in4)	C (in)	Fr (psi)	Mcap (k- ft)	Mu(sw)
2	341352	68.1	530	222	>128
3	502652	68.1	530	326	>128
4	663952	68.1	530	431	>128
5	825252	68.1	530	536	>128
6	986552	68.1	530	641	>128

Table 9: Thickness Analysis Due to In Place Dead Loads For Existing Façade Panel

Thermal and Moisture Performance of PCM Panel Alternate Facade

A proposed redesign of the façade panel aims to improve thermal performance while reducing panel weight.

The composition of the redesigned panel, Figure 16, will be 2" face brick, 3" concrete, 3" airspace, 3" polyisocyanurate rigid insulation, 3" PCM impregnated concrete, and 5/8" gypsum board. This composition will create a plane designed to wick and weep water to the exterior, preventing condensation problems. It will also reduce panel depth, effectively reducing concrete weight, while improving thermal performance.

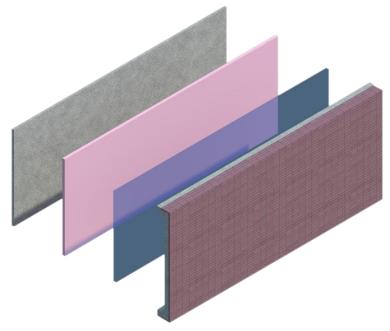


Figure 16: Exploded View of Alternate PCM Façade Panel Composition

A phase change material (PCM) will be impregnated into the concrete to enhance the CTSF of the wall. The specific material to be evaluated is BASF's Micronal PCM. This powder is able to be dispersed in cement mortar (concrete) easily incorporating it into the precast assembly. They are no associated workability or longevity issues with the Micronal product. The PCM material has a high overall storage capacity, 135 kj/kg. The density of the material is about 900 kg/m³ with about 100 kj/kg of latent storage.

To confirm the attributes of the Micronal product, research was done to compare its properties to other established materials. The Micronal product appears to be similar to Parafin Wax C18, given by the article "Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Application" by Zalba. Through the research in "Potential Applications of Phase Change Materials in Concrete Technology" by Bentz, a 15 percent by weight mixture could effectively use the PCM material to replace sand in the concrete mix. The combined properties of the PCM and PCM concrete can be compared in the Table 10 below.

	Conductivity (W/m2 K)	Density (kg/m3)	Specific Heat (kj/kg K)	Specific Heat (kj/m3 K)
Insulation	.03	42.4	1.214	51.5
Concrete	1.73	2200	0.841	1,850.2
Phase Change Material	.15	900	12.143	10,928.7
15% PCM Concrete	1.49	2005	2.536	5,084.7

Table 10: Comparison of Thermal Properties

R-Value H.A.M. Analysis of Redesigned Façade

To ensure the PCM material will operate to its maximum potential, the wall composition will be designed to retain the PCM concrete section within a 55-85 degree range. A HAM analysis, (Appendix F), was done to evaluate the required thickness of insulation to retain the PCM in its operative range. The 3" existing insulation thickness will be retained. The total thickness of the redesigned panel will be 16", seen in Figure 17.

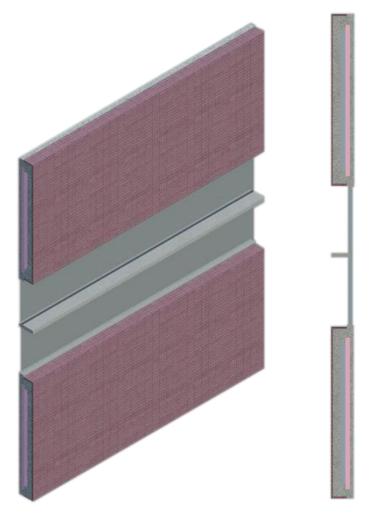


Figure 17: 3D Render and Section of Alternate PCM Façade Panel Design

Condensation H.A.M. Analysis of Alternate PCM Façade Design

To evaluate condensation potential, a HAM analysis was performed on the redesigned assembly. The summer conditions show no condensation (Appendix F), but the winter conditions show condensation within the air gap, Figure 18. The redesigned assembly is designed like a cavity wall. It will allow for condensation to form on the exterior side of the insulation where it will follow a drainage plane down the wall to be wicked and weeped out of the cavity, effectively negating any potential condensation issues. According to Lstiburek's article, "Confusion About Diffusion", moisture in an assembly will migrate and condense on the coldest surface, rather than within the insulation. To help prevent detrimental effects of moisture, the insulation board should be specified for exterior use and construction practices should ensure proper weeping out of the cavity.

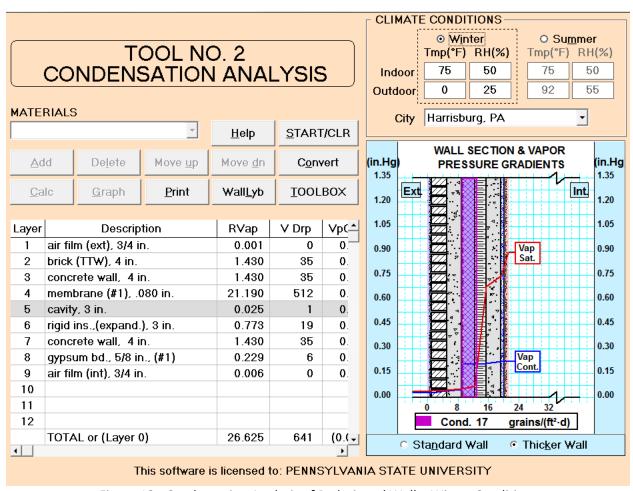


Figure 18: Condensation Analysis of Redesigned Wall – Winter Conditions

CTSF Analysis of Redesigned Façade

To evaluate the thermal performance of the redesigned assembly a Conduction Time Series Factor analysis was performed. The redesigned façade, incorporating the pcm concrete, has a lower R-value of 18.3, but it has a significantly flatter load profile Figure 19. This flattered load profile allows for the potential to reduce mechanical equipment size and off set peak loads. The lower R-value is mainly due to the removal of the existing half-wall separating the plenum and conditioned room. This removal has potential to increase floor area around the exterior perimeter of all spaces.

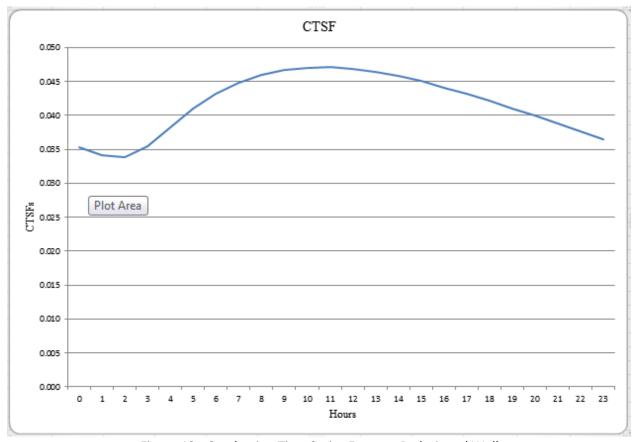


Figure 19: Conduction Time Series Factor - Redesigned Wall

Structural Performance of PCM Panel Redesigned Facade

Structural

During the conceptual and performance based design of the new PCM panel and wall composition analysis secondary considerations arose that affected the structural integrity of the proposed PCM façade panel composition. Issues were discovered during structural and construction management coordination discussions. In place wind and dead loads were adequate considerations for the analysis of the existing panels, however, other loads cases became more critical when considering the entire precast panel process from the precast plant and fabrication process, through the act of transportation, lifting on site, as well as the in place loads.

The most critical load case determined from a constructability analysis of the precast panel life cycle was realized when looking at images of the fabrication at the precast plant. The panels were cast with the front panel face down and all returns projecting upward. When the formwork was to be removed and the panel stood up it would have to be picked up from one side or the other to stand it up. During this process the panel is essentially bending out of plane, similar to the wind load case, under its own dead weight. When this load case was analyzed with respect to minimum permissible thickness of the front panel it was determined that the minimum thickness was 4.5in instead of the original minimum of 3in. Figure 20 shows the load theory behind this load case. Table 11 summarizes the results of this study.

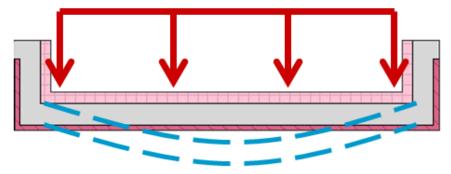


Figure 20: Structural Load Case: Bending Due to Self-Weight During Precast Fabrication.

Thickness (in)	I (in4)	C (in)	Fr (psi)	ØM _{cap} (lb- ft)	Mu(SW)	Mu(wind)
2	8	1	530	318	858	694
3	27	1.5	530	716	1096	694
4	64	2	530	1273	1335	694
4.25	77	2.125	530	1437	1394	694
5	125	2.5	530	1989	1573	694
6	216	3	530	2864	1811	694

Table 11: Thickness Analysis Due to Self-Weight Flexure During Precast Fabrication

04/07/2011

Constructability Design Review

The key concerns for the design of the precast panel were the ability to transport and erect it. A panel which was too thin would have a higher chance of cracking during transportation due to movement on the trucks. This would also hold true during the fabrication of the panel. In order to lift the panels with a crane during erection, hooks needed to be anchored into the panels. Without the proper thickness, the reinforcing required would not be able to be placed within the panel. This also holds true for the reinforcing required for the panel itself. The concrete sections needed to have enough concrete to cover the reinforcing required for the panel.

Glazing Property Comparison – Existing and Redesign

Analysis on the thermal performance of the glazing assembly will also be analyzed. The current assembly consists of Viracon's VE1-2M double pane low-e glazing assembly. A proposed redesign would utilize a similar glass, but in a three pane configuration with two low-e surface coatings on surfaces 2 and 4. The U values and SHGC factors of the glass are converted to overall values incorporating the framing assembly through ASHRAE 2009 Fundamentals Table 4 U-Factors for Various Fenestration Products in Btu/hft²F and Table 10 Visible Transmittance, Solar Heat Gain Coefficient, Solar Transmittance, Front Reflectance, Back Reflectance, and Layer Absorptances for Glazing and Window Systems . Using just the glass factors would generate inaccurate results, as they do not account for the highly conductive aluminum framing system. The framing system was selected to be a thermally broke aluminum frame. Table 12 shows the glazing properties and the adjusted glazing assembly properties.

	Low-e value	U-value	SHGC	Tv	Cost/SF
Double Pane Glazing	0.05	0.28	.38	0.72	\$13
Double Pane w/ Aluminum Frame	0.05	0.41	0.37	0.72	Installed \$55
Triple Pane Glazing	0.10	0.18	.27	0.55	\$21
Triple Pane w/ Aluminum Frame	0.10	0.27	0.26	0.55	Installed \$65

Table 12: Comparison of Thermal Properties

Energy Analysis of Design Options

To evaluate the inclusion of the façade redesigns, both the wall and glazing options, a Trane Trace model will perform an energy analysis comparing the performance of iterative design options. The base model from Technical Assignment 1 will be used. The most accurate façade thermal properties will be used as calculated in preceding sections. To best take advantage of the load flattening ability of PCM, Trace will use the RST cooling and CEC-DOE2 heating methods. These methods most accurately model the radiant time series factor and include thermal capacity calculations. Using a Trace model will enable the depiction of total energy savings throughout the year, incorporating the many interdependencies of systems that are often difficult to accurately track.

The complete Trace Outputs can be found in Appendix F.

Graphical break downs of this information can also be found in Appendix F.

Table 13 below reveals only modest savings of the PCM Panel design, and negligible decreases in peak loads. Due to this modest savings, the PCM Panel Redesign does not appear to be a feasible solution as the existing system currently performs well and will no longer be included in future design options. Table 13 below does, however, show promising opportunity in energy savings for the Triple Pane Glazing Assembly.

	Existing	PCM Panel Redesign	3 Pane Glazing Redesign	PCM and 3 Pane System
Building Energy Consumption (kbtu/ft2-yr)	154.1	150.9	141.0	138.8
Source Energy Consumption (kbtu/ft2-yr)	247.8	243.9	235.2	232.4
Electricity (kWh)	597,990	593,556	602,542	598,554
Purchased Steam (therms)	20,676	20,217	18,065	17,795
Purchased Chilled Water (therms)	27,109	26,295	23,753	23,177
Electricity On- Peak Consumption (kWh)	56,350	55,822	57,301	56,825
Purchased Steam On- Peak Consumption (therms)	3,000	2,999	2,688	2,698
Purchased Chilled Water On- Peak Consumption (therms)	5,888	5,801	5,351	5,297

Table 13: Total Energy Consumption of Design Options

Yearly Operating Costs of Design Options

Applying the total energy consumption to the Penn State Utility Fact Sheet, found in Appendix F, allows for calculation of yearly operating costs Table 14. It is assumed that all utilities will be purchased from Penn State at the given rates. No adjustments have been included for peak demand charges.

	Existing	PCM Panel Redesign	3 Pane Glazing Redesign	Redesigned Façade System
Electricity Costs	\$59,799.00	\$59,355.60	\$60,254.20	\$59,855.40
Purchased Steam Costs	\$44,763.54	\$43,769.81	\$39,110.73	\$38,526.18
Purchased Chilled Water Costs	\$49,699.83	\$48,207.50	\$43,547.17	\$42,491.17
Total Yearly Costs	\$154,262.37	\$151,332.91	\$142,912.09	\$140,872.74

Table 14: Yearly Operating Cost Breakdown

Case Study Evaluation of Model Accuracy

The estimated operating cost is about \$3.50 / SF. In order to put this value into perspective, the Millennium Science Complex was compared to a base case established by the Department of Energy's "Laboratories for the 21st Century - Energy Analysis". The study "analyzes the effects of energy efficiency measures in a simplified laboratory model". An example for the case study in Seattle can be found in Appendix F. The Seattle case incorporating an enthalpy wheel with a VAV system, similar to the MSC system, consumes the least amount of energy at \$4.70 / SF. Compared to the MSC design, the Seattle case consumes a significantly increased amount of energy. Despite the large difference, the MSC energy model appears to be accurate. The high performing façade, district utility costs, demand control ventilation, newer more efficient systems, and a high proportion of office to laboratory space could account for the energy savings in the MSC model compared to the DOE model. This comparison establishes credibility of the modeling accuracy of the MSC energy model.

Construction Cost of Façade Assemblies

In order to fully evaluate the benefits or disadvantages of changing the existing glass assembly from double pane glazing to triple pane glazing, a cost must be determined for each. As referenced in a previous section, costs were obtained from a Viracon representative for each of the two types of glazing. Based on cost estimates provided by Whiting-Turner in a 2008 bid estimate, a cost per façade section was determined. Each façade section consists of the following:

- Precast Panel (of specified size)
- Structural Steel Connections
- Light Shelf
- Insulation
- Window Assembly/Glazing

In order to provide an accurate comparison of the cost of the existing double pane glazing assembly to the same assembly with triple pane glazing, Whiting-Turner's estimates were adjusted to account for the change. Using the given cost of \$55/SF of window, the cost of the existing glazing was subtracted out, and the cost of the triple pane glazing was added in. This resulted in a gain of approximately \$10 in the material cost, which left a new overall cost at \$65/SF. Using this cost, in conjunction with the costs of the remaining components of each façade section, the cost per façade section could be determined. Keeping in mind that the focus of this analysis is on the third floor, the façade sections were broken into three differing units, based on the three precast panel lengths on the floor. These consisted of the typical 22-foot panel length, as well as a 14-foot and 31-foot panel length. The following table shows the total costs of the façade sections for the third floor using the existing panel, broken down by panel length and double/triple-pane glazing. As can be seen in the table below, the change to a 3-pane glazing assembly increased the cost of the façade enclosure on the third floor by \$98,720. In order to determine whether this increase in material cost is justified, it must be compared to the life cycle cost of the third floor with the new glazing system. For a more detailed breakdown of the costs in the table below, please see Appendix D.

Third Floor, Existing Panels					
Length of Panel	2-Pane Glass Assembly 3-Pane Glass Assembly				
22 ft	\$1,496,443	\$1,587,963			
14ft	\$41,091	\$43,331			
31ft	\$78,510	\$83,470			
Total	\$1,616,044 \$1,714,764				
Increased Cost of 3-Pane	\$98,720				

Table 15: Construction Costs of Existing Panels on Third Floor with 2 & 3-Pane Glass

Life Cycle Cost of Triple Pane Assembly

A life cycle cost analysis was performed to evaluate the energy savings potential of incorporating triple paned glass. A full break down of calculations can be found in Appendix F. The calculations for the existing design will be incorporated, but for future life cycle costs only the final values will be tabulated and included.

From the energy analysis, total values for electricity, steam, and chilled water were used to calculate a 30 year life cycle cost. From the construction manager, installed costs of each system were tabulated. Adjustment factors including discount rates with inflation were found from the Energy Price Indices and Discount Factors for Life Cycle Cost Analysis 2010, US Department of Commerce. A discount rate of 2.7% was found from Table A-1 for Office of Management and Budget 30 Year Discount Rate, found in Appendix F. The corresponding correction factor was applied to each year's energy cost. Table Ca-1 allows for the escalation in fuel prices, found in Appendix F. Given the current market conditions and the future of Pennsylvania's energy sources, natural gas is assumed to be the future producer of all electricity, steam, and chilled water. A 5% fluctuation in energy costs helps account for market volatility and encourages the investment in energy savings.

By summing the aggregate present values of the 30 year energy costs, energy can be compared to installed costs. In final comparison, the option with the lowest present value cost is the most economical design. Care must be taken in choosing an option with only marginal benefits, because of the inaccuracies in predicting energy costs.

By selecting the triple pane glazing assembly, there is potential to save \$11,350 a year on operating costs, creating a simple payback of about 9 years. Real payback will be slightly longer, but a total Life Cycle Cost savings potential of \$194,000 justifies the increase in initial investment shown in Table 16.

Life Cycle Cost Assessment 30 Year	Existing Design	3 Pane Glazing Redesign
Installation Cost	\$1,912,205	\$2,010,925
Electricity Cost	\$1,541,063.92	\$1,552,794.75
Chilled Water Cost	\$1,280,801.01	\$1,122,242.30
Steam Cost	\$1,153,589.13	\$1,007,911.96
Present Value Total Life Cycle Cost	\$5,887,659	\$5,693,874

Table 16: 30 Year Life Cycle Cost Assessment

Final Selection of Wall Composition

The redesigned alternative façade composition will retain the existing façade's panel construction consisting of 2" face brick, 6" concrete, and 3" insulation. Evaluation of the PCM alternative will be dropped from further analyses as it failed to prove significant energy savings and reliable structural integrity. Inclusion of triple pane glazing will be integral to all future analyses as it produces a simple payback period of just less than nine years, with significant energy savings seen in Table 17.

	Existing	Triple Pane Glazing	Savings
Total Yearly Operating Costs	\$154,262	\$142,912	\$11,350
Installation Costs	\$1,616,044	\$1,714,764	\$-98,720
30 yr Life Cycle Cost	\$5,591,498	\$5,397,713	\$193,785

Table 17: Wall Composition Life Cycle Cost Analysis Summary

WINDOW TO WALL RATIO ANALYSIS

Design Approach

Reevaluating the wall to glass ratio will select a façade that reduces building energy with improved daylighting opportunities. The ratios of wall to glass will be determined within the room cavity, so that 50% glass will, in reality, refer to a whole building 30.6% glazing, as 90% glass will refer to a whole building 55% glazing. The total floor to floor height is 18' and the room cavity is 11'. The ratios evaluated were 50%, 60%, 70%, 80%, and 90% with base case is represented by the 70% glazing Existing Façade. All façade orientation naming (North, South, East, West) in this report refer to project North, South, East and West. The final reports reflect the analysis and inclusion of the improved triple pane glazing option. The proper selection of WWR will reduce the yearly building energy while improving daylighting performance.

Mechanical performance will be evaluated by a reduction in yearly energy consumption. Whole building energy consumption will be used to evaluate the benefits of changing wall to glass ratios. This whole building energy analysis, performed in Trane Trace, will account for both increases and decreases in heating and cooling loads as window to wall ratios change. Performance will be measured in total energy savings relative to the existing designs 70% WWR. The whole building approach will also account for varying performance throughout all orientations and seasons

In order to optimize the façade the lighting/electrical window to wall ratio analysis was conducted utilizing Daysim, and its ability to evaluate daylight performance metrics. The performance of the new WWR ratios was evaluated with respect to useful illuminance and daylight autonomy values, 100-3000 lux, and 322.8 lux respectively. The architecture of the Millennium Science Complex contains relatively shallow perimeter spaces, the majority being 15' deep. The study started by looking at the third floor as a whole. The analysis was used to show that daylight was a viable option for the perimeter spaces in the MSC. From there the perimeter Student Study Areas were evaluated using more detail in the model, including all mullions and higher simulation settings. The new window to wall ratios will then be compared with the existing façade.

The Window to Wall Ratio results were plotted and overlaid with the mechanical team member's results to select a final WWR. The selection of the final window to wall ratio will be done in coordination with the Mechanical team member. This report will create criteria in tandem with the L/E's daylighting report to help select an optimum glazing percentage.

Daylight Analysis

Daysim provides important information regarding the performance of a buildings daylight delivery system. Those metrics are daylight autonomy, continuous daylight autonomy, and useful illuminance. Daylight autonomy (DA) provides the percentage of the year when a specified illuminance level is reached through daylight during a given operating period. This metric is useful in analyzing a system where the electric lighting will be controlled using a switching system. Continuous daylight autonomy (DA $_{con}$) operates on the same principle as DA with an adjustment and partial percentage given to times when the illuminance level is partially met. This metric is useful in analyzing an electric lighting system integrated with daylight through a dimming system. Useful Illuminance is a daylight performance metric that determines the percentage when a point is within a specified illuminance range. This metric is helpful to determine times when excessive daylight is present. Decreasing these times helps reduce the cooling loads, and discomfort glare.

The daylight study of the third floor was the conducted to determine the feasibility of changing the Window to Wall Ratio for the Millennium Science Complex façade. The model excluded mullions, and the Daysim settings (see table 18) were run at lower settings do to the size of the model. The calculation grid was placed at a typical work plane height of 2'-6". The Daylight Autonomy calculations for the whole third floor can be found in Appendix E, while a sample DA calculation can be found in Figure 21. The outcome of this portion of the study was that the reduction of the WWR still provided useful daylight performance.

Daysim Input Settings					
Ambient Bounces	3				
Ambient Divisions	300				
Ambient Resolution	100				

Table 18: Third Floor Daysim Settings

Figure 21: Millennium Science Complex Third Floor Daylight Autonomy 322.8 lux

After the feasibility study was conducted a more detailed analysis was conducted on the Millennium Science Complex Student Area. The study included the new dimensions from the Mechanical team member's wall composition analysis. The wall composition analysis resulted in a panel with a thickness of 16". The student area was evaluated with each of the four building façade orientations with mullions. This portion of the study also used increased Daysim settings (see Table 19). The initial study was conducted without an exterior shade. When evaluating the façade performance it was decided that the exterior shade needed to be included due to increased percentages with excessive daylight.

Daysim Input Settings					
Ambient Bounces	5				
Ambient Divisions	1000				
Ambient Resolution	300				

Table 19: Student Area Daysim Settings

Energy Analysis Results

Evaluation of both the existing façade and 3 pane glazing façade design options were modeled in Trane Trace. This model is the same model used in previous analyses, ensuring the continuity of data. The only variables changed were the percentage of glass in rooms affected by such a design change. Table 20 below shows the comparative energy consumptions of switching to 3 Pane glazing and altering the percentage of glass. Complete detailed Trace results can be found in Appendix F.

	50% Glass	60% Glass	70% Glass	75% Glass	80% Glass	90% Glass
3 Pane Façade Energy Consumption (kbtu/ft2yr)	134.8	136.9	139.5	141.0	142.5	145.8
Existing Façade Energy Consumption (kbtu/ft2yr)	142.9	146.9	151.6	154.1	156.8	162.3

Table 20: Room Cavity Glass to Wall Ratio Energy Analysis

Schedule and Logistic Impacts of Final Selection

The erection of the precast panels of the façade required much coordination in order to maintain the schedule. Precast deliveries needed to be coordinated with the erection of the precast as to ensure that panels did not arrive early or late. In addition, the erection of the precast needed to be coordinated with the erection of the steel framing. The goal was to have the precast erection occurring as early as possible based on the steel erection in order to enclose the building as early as possible. Erection of the precast began on November 16, 2009 on the Material Science Wing, and was completed at the cantilever on May 19, 2010. The breakdown of the schedule dates for the precast can be seen in the table below. The precast panels were erected in a typical sequence, starting at the north side of the Material Science Wing, and circling the building until the cantilever. The precast panels at the cantilever were erected on both sides of the cantilever simultaneously. This was done to balance the weight on the cantilever, and to prevent uneven loading and deflection on the steel. A site plan with the erection sequence can be found in Appendix D. One of the challenges faced by Whiting-Turner during the erection of the steel and precast panels was weather. The majority of the erection occurred during the winter months, which turned out to be a harsher winter in terms of snow that most predicted. Even considering any potential setbacks that may have occurred due to weather, Whiting-Turner did a great job in maintaining the schedule.

Task	Start	Finish
MS North Elevation PC Panels	11/16/09	12/11/09
MS East Elevation PC Panels	11/23/09	11/27/09
MS South Elevation PC Panels	12/7/09	3/31/10
LS East Elevation PC Panels	3/24/10	3/30/10
LS South Elevation PC Panels	3/22/10	3/26/10
LS West Elevation PC Panels	3/15/10	5/7/10
Areaway (MS) North PC Panels	5/14/10	5/19/10
Areaway (LS) West PC Panels	5/10/10	5/17/10

Table 21: Original Erection Dates for the Precast Panels.

Even though the precast panels were redesigned with a slightly different composition, this should not affect the speed at which the precast panels can be erected. The increase in size of the panel adds weight, but the removal of the side returns, as well as the decrease in the size of the top and bottom return, helps to balance the increase. Because of this, the mobile cranes used will be able to handle the redesigned panel. One of the concerns with a panel of increased height is transportation. The transportation route must be taken into account, especially when the route brings the trucks under bridges or overpasses. The height of the panel on the flatbed truck must not exceed the maximum height to go under any overpasses or bridges. It is assumed that with the increase in height, the flatbeds used for delivery could be engineered to carry the redesigned panels in order to keep them to a height acceptable for the delivery route.

Although the expectation is that the redesigned panel will not have any significant effects on the erection of the precast panels, it must still be coordinated with the construction of the structure. As will be seen later in this report, the structure is changed to concrete, which changes when the precast panels can be erected onto the building. Below is a summary table of the new erection dates and durations. These durations are based on the expected durations provided in Whiting-Turner's schedule. It is important to keep in mind that these durations are based off the erection of the precast panels under an ideal situation, without interruptions due to weather. As can be seen, the new schedule for the precast, based around the redesigned structure (seen later in the Plenum Investigation section of the report), finishes approximately two months earlier than the original schedule. The erection sequence of the precast panels was not changed due to the expected efficiency of erection is already presented. A full schedule

Task Name	Duration	Start	Finish
MS North Elevation PC Panels	10 days	Mon 12/7/09	Fri 12/18/09
MS East Elevation PC Panels	5 days	Mon 12/21/09	Fri 12/25/09
MS South Elevation PC Panels	13 days	Mon 12/28/09	Wed 1/13/10
LS West Elevation PC Panels	7 days	Thu 1/14/10	Fri 1/22/10
LS South Elevation PC Panels	5 days	Mon 1/25/10	Fri 1/29/10
LS East Elevation PC Panels	11 days	Mon 2/1/10	Mon 2/15/10
Areaway LS West Elevation PC Panels	7 days	Tue 2/16/10	Wed 2/24/10
Areaway MS North Elevation PC Panels	9 days	Mon 2/22/10	Thu 3/4/10

Table 22: New Erection Dates for the Precast Panels.

Criteria for Integrated Window to Wall Ratio Selection

After a group discussion it was decided that the WWR should not be above 70% because it would increase building loads, and not aid in the daylight delivery since the glazing would be below the work plane. The new ratios for consideration were 50%, 60%, and 70%

Lighting Electrical Criteria

For the daylight analysis the new ratios were analyzed with the exterior shade using Daysim and evaluated with respect to the existing façade, 70% WWR, performance (see Appendix E), using the Useful Illuminance metric. These values for the existing façade can be seen in Table 23, and the new ratios in Table 24. A sample comparison can be seen in (Figures 22-23). The remaining useful illuminance analysis can be found in Appendix E. Figure 24 shows the Lighting/Electrical graph that will be utilized to determine the final window to wall ratio against the other team member's graphs.

		Existing F	açade		
WWR	North	South	East	West	Average
Existing	0.78	0.69	0.82	0.67	74%

Table 23: Existing Façade Useful Illuminance Values by Orientation

Façade Orientation with Shelf												
WWR	North	South	East	West	Average							
50	0.73	0.61	0.74	0.66	69%							
60	0.76	0.68	0.78	0.67	72%							
70	0.77	0.70	0.79	0.68	74%							

Table 24: Useful Illuminance for tested Window to Wall Ratios

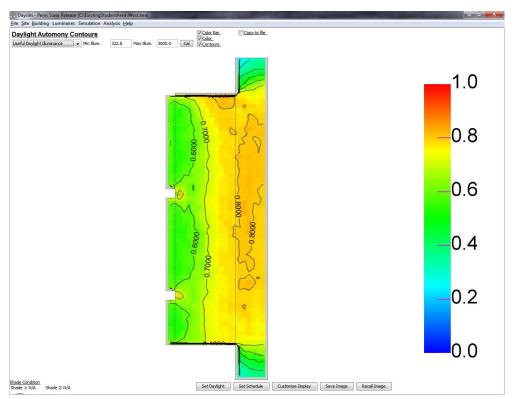


Figure 22: West Façade Existing Useful Illuminance

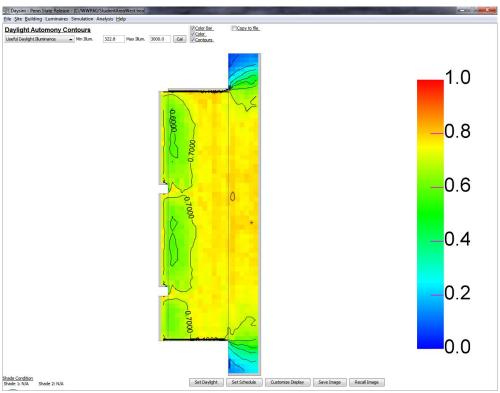


Figure 23: West Façade 60% WWR Useful Illuminance

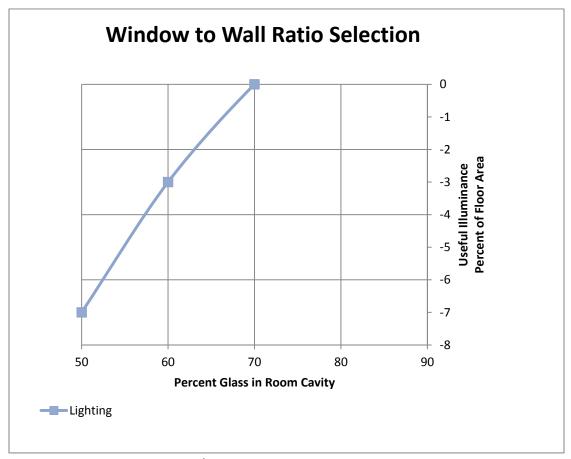


Figure 24: Lighting/Electrical Window to Wall Ratio Analysis Graph.

Mechanical Criteria

In order to select an optimum glazing ratio, mechanical energy results must be easily and coherently communicated to other team members. As it has already been determined economically feasible to use the redesigned 3 Pane Façade Assembly, mechanical input will refer the new design options back to the existing design. Below Table 25 represents the percent energy savings that each iteration will achieve compared to the base case, Existing Façade 70% Glass. This data was then plotted in Figure 25. The same chart will incorporate data from each other discipline selecting the final glazing percentage.

	50% Glass	60% Glass	70% Glass	75% Glass	80% Glass	90% Glass
Percent Savings Compared to Existing Design	11%	10%	8%	7%	6%	4%

Table 25: Mechanical Window to Wall Ratio Analysis

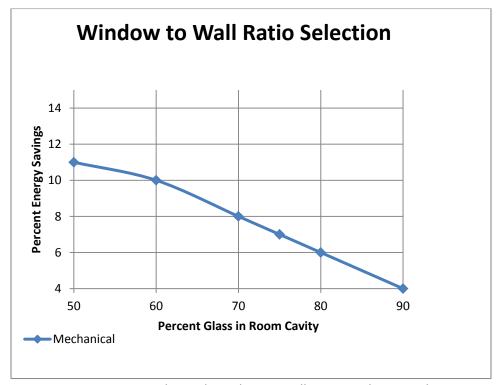


Figure 25: Mechanical Window to Wall Ratio Analysis Graph

Structural Criteria

A window to wall ratio was created considering the minimum thickness of the front panel of the façade. As the ratio decreases, the panel width increases which cause the dead load to increase and the span of the front panel to increase due to the top and bottom returns moving apart. As noted in Table 26 the largest minimum thickness requirement was due to the 50% window to wall ratio, which happens to be 6in. Structural and construction management collaboration hinted at reasons for the use of the existing 6in of concrete when observing details of reinforcement required for the front panel, top and bottom returns, and for the corbel style bearing connections. It turned out that the existing 6in of panel thickness was necessary simply to practically fit the required layers of reinforcement. Minimum reinforcing requirements and reinforcing required for shear and the corbel design are reported in Appendix-G.

Ratio (%)	Minimum Thickness (in)	M _{cap} (lb-ft)	M _{sw} (lb-ft)	M _{wind} (lb-ft)
50	6	2864	2819	1081
60	5.5	2406	2152	883
70	4.5	1611	1477	706
80	4	1273	1058	550

Table 26: Window to Wall Ratio Based on Minimum Thicknesses of Façade Panel

Construction Cost Criteria

Similar to the glazing analysis, a cost must be determined for the full redesigned panel and façade section to compare back to the existing facade. Through previous analysis, it was determined that the two most optimal window-to-wall ratios are the existing, 70%, and 60%. Based on cost estimates provided by Whiting-Turner in a 2008 bid estimate, as well as the costs for glazing provided in a previous section, a cost per façade section was determined for the existing and redesigned façade. As a reference, each façade section consists of the following:

- Precast Panel (of specified size)
- Structural Steel Connections
- Light Shelf
- Insulation
- Window Assembly/Glazing

With the existing dimensions for a ratio of 70% already determined, the cost of the redesigned features of the façade was created. Square foot numbers were determined for the precast panel and insulation, as well as the glass assemblies, based on their respective dimensions in the existing façade. The calculation of the light shelf was produced through several assumptions. By reducing the panel depth, and corresponding overhang, from 24" to 16", this forces the exterior light shelf to match the new depth. The original cost of this light shelf was provided as a cost per linear foot, which assumed a 24" light shelf depth. With the new depth of the light shelf changing to 16", which is two-thirds of the original, an assumption was made that the cost would be proportional to the depth. As such, two-thirds of the original cost per linear foot was used as the cost of the redesigned light shelf.

Using the same numbers provided by Whiting-Turner, a cost for the redesigned panel and glass was extrapolated for the façade at a ratio of 60%. On the third floor, the height of the precast panels were a typical height of 9'- 9 ¾". Using a window-to-wall ratio of 60% of the room cavity, it was determined that the precast panel would need to increase in height by 1'-1 1/5". With the precast panels being made of several courses of brick separated by a single course of blackened brick, it works out that if one course of brick is added per section, the panel would extend to the approximate height required by the 60% window-to-wall ratio. The ultimate height of this panel would be approximately 10'-11". Using this new height in combination with the panel lengths, new square foot numbers were produced for the precast panels. This change in size also affects the square footage of the insulation in the panels, which was adjusted based on the new height. In addition to the panel changing size, the glazing also changes in height. Using the ratio of 60%, the new height of the window assembly was determined, and a square foot number was produced for the redesign. The final change to the façade unit comes from the adjustment of the light shelf. As referenced above, the light shelf cost was determined to be two-thirds of the existing cost provided by Whiting-Turner.

With all these changes in mind, total costs for the third floor were produced for the redesigned façade components, based on the ratios of 70% and 60%. These numbers can be seen in the table below. The difference between the costs of these two different designs resulted in the 60% design costing \$9222 more than the design at a ratio of 70%. A more detailed breakdown of these costs can be found in Appendix D.

Third Floor, Redesigned Panel									
Length of Panel	70%	60%							
22ft	\$1,530,763	\$1,539,322							
14ft	\$41,131	\$41,331							
31ft	\$81,270	\$81,733							
Total	Total \$1,653,164 \$1,662,387								
Increased Cost of 60% \$9,222.715									

Table 27: Construction Costs of Redesigned Panel on Third Floor at 70% and 60% ratio.

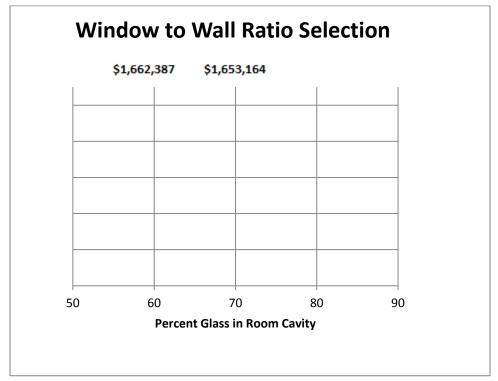


Figure 26: Construction Management Window to Wall Analysis

Final Selection of Window to Wall Ratio

The integrated selection of window to wall ratio, seen in Figure 27, decreases the percent glazing of the existing design from 70 to 60 percent. Sixty percent glazing reduces energy costs, decreases construction costs, and minimally affects useful illuminance. The change to 60% glazing produces a simple payback of 2.6 years, validating its life cycle cost in Table 28. To ensure this change does not adversely affect the architectural aesthetics, a new building rendering is compared to an existing render in Figures 28-29.

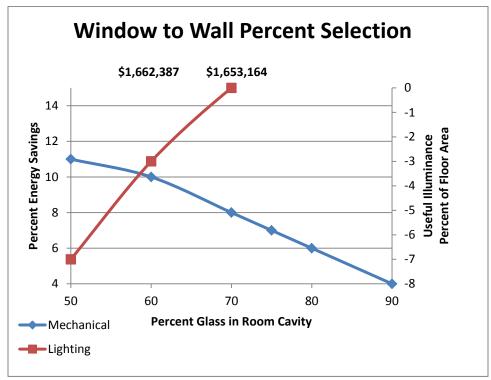


Figure 27: Integrated Window to Wall Analysis Graph

	70 % Glass	60 % Glass	Savings
Total Yearly Operating Costs	\$142,912	\$139,338	\$3,574
Installation Costs	\$1,653,164	\$1,662,387	\$-9,223
30 yr Life Cycle Cost	\$5,336,113	\$5,253,245	\$82,868

Table 28: Window to Wall Ratio Life Cycle Cost Analysis Summary

Figure 28: Existing Building Rendering

Figure 29: Building Rendering With 60% Final Selection WWR

SHADING ANALYSIS

Design Approach

Evaluating the performance of the Millennium Science Complex's shading devices will enhance daylighting while controlling excessive solar heat gain. Effective exterior and interior shading alternatives will reduce energy consumption and improve occupant comfort.

AGI32 daylight studies will analyze problematic hours where daylighting produces uncomfortable occupant conditions. Tables will be created targeting these problematic and interior shading options will be evaluated to control them. Project Vasari will analyze the effects of varying the length and mounting height of exterior shading devices. This will produce energy data that will help to schematically justify the inclusion and benefits of such design decisions.

The final selections for interior and exterior shading devices will be modeled and compared to the existing conditions performance. Inclusion of interior shading devices, depth of exterior shading devices, and mounting height of exterior shading devices will selected after comparison to the existing façade's performance.

Interior Shelf Analysis

The interior shelf analysis daylight penetration study for the Millennium Science Complex was conducted utilizing AGi32 daylight studies. The study was performed from sunrise to sunset on the equinox and summer and winter solstices see table 29 for study times, and evaluated for the student study areas located on the building perimeter. The study started with a baseline using a trellis interior shelf with one foot increments into the space. The problematic times (see table 30) were then studied, and due to architectural constraints a two foot interior shelf was implemented for testing. The AGi32 daylight studies were then conducted with the two foot interior shelf and compared side by side with the baseline case (see figure 30 for example, and Appendix E for other daylight study results). The addition of the shelf resulted in the reduction of problematic times as seen in table 31.

	Study Times	
Equinox	Summer	Winter
7:00:00 AM	6:00:00 AM	8:00:00 AM
8:00:00 AM	7:00:00 AM	9:00:00 AM
9:00:00 AM	8:00:00 AM	10:00:00 AM
10:00:00 AM	9:00:00 AM	11:00:00 AM
11:00:00 AM	10:00:00 AM	12:00:00 PM
12:00:00 PM	11:00:00 AM	1:00:00 PM
1:00:00 PM	12:00:00 PM	2:00:00 PM
2:00:00 PM	1:00:00 PM	3:00:00 PM
3:00:00 PM	2:00:00 PM	4:00:00 PM
4:00:00 PM	3:00:00 PM	
5:00:00 PM	4:00:00 PM	
6:00:00 PM	5:00:00 PM	
	6:00:00 PM	
	7:00:00 PM	
	8:00:00 PM	

Table 29: Interior Shelf Analysis Study Times

					Problematic Tir	nes No Shelf					
East Equinox	North Equinox	South Equinox	West Equinox	East Summer	North Summer	South Summer	West Summer	East Winter	North Winter	South Winter	West Winter
7:00:00 AM	5:00:00 PM	7:00:00 AM	1:00:00 PM	7:00:00 AM	6:00:00 PM	7:00:00 AM	4:00:00 PM	8:00:00 AM	8:00:00 AM	8:00:00 AM	11:00:00 AM
8:00:00 AM	6:00:00 PM	8:00:00 AM	2:00:00 PM	8:00:00 AM	7:00:00 PM	8:00:00 AM	5:00:00 PM			9:00:00 AM	12:00:00 PM
		9:00:00 AM	3:00:00 PM	9:00:00 AM	8:00:00 PM	9:00:00 AM	6:00:00 PM			10:00:00 AM	1:00:00 PM
		10:00:00 AM	4:00:00 PM	10:00:00 AM		10:00:00 AM	7:00:00 PM			11:00:00 AM	2:00:00 PM
		11:00:00 AM	5:00:00 PM				8:00:00 PM			12:00:00 PM	3:00:00 PM
		12:00:00 PM								1:00:00 PM	4:00:00 PM
										2:00:00 PM	
										3:00:00 PM	

Table 30: No Shelf Problematic Times

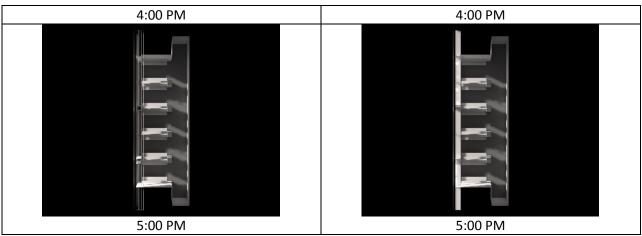


Figure 30: Equinox Direct Sunlight Penetration Comparison for West Façade

	Problematic Times With Shelf											
East Equinox	North Equinox	South Equinox	West Equinox	East Summer	North Summer	South Summer	West Summer	East Winter North Winter	South Winter	West Winter		
7:00:00 AM	5:00:00 PM	7:00:00 AM	3:00:00 PM	7:00:00 AM	6:00:00 PM	7:00:00 AM	6:00:00 PM		9:00:00 AM	12:00:00 PM		
8:00:00 AM		8:00:00 AM	4:00:00 PM	8:00:00 AM	7:00:00 PM	8:00:00 AM	7:00:00 PM		10:00:00 AM	1:00:00 PM		
		9:00:00 AM	5:00:00 PM	9:00:00 AM	8:00:00 PM		8:00:00 PM		11:00:00 AM	2:00:00 PM		
		10:00:00 AM							12:00:00 PM	3:00:00 PM		
		11:00:00 AM							1:00:00 PM			
									2:00:00 PM			

Table 31: Interior Shelf Problematic Times

The interior shelf daylight penetration study showed that the addition of an interior shelf would be beneficial to the daylight delivery system of the Millennium Science Complex. Consultation with the construction management team member presented obstacles in constructability of the interior shelf. A main issue was the location of the perimeter structural columns. The interior shelf would need to be pieced together on each side of the column, or framed around adding difficulty in the construction. In addition the interior shelf would present additional cost at approximately \$150/lf. This cost increase and constructability challenges outweigh the benefit of the interior shelf. Further investigation revealed the majority of the problematic times the sun penetration came when the solar angle was below the shelf. This resulted in the decision to use bottom up shades that would allow daylight to enter the space, while still blocking the majority of the problematic times.

Project Vasari Analysis

Project Vasari is a new program introduced by Autodesk with a similar modeling interface as Revit. It has inherent schematic energy modeling capabilities that will be tested in this section of design. A quick reliable ability to evaluate solar loading conditions on multiple facades will enable designers with data to assist them in making schematic design decisions.

Vasari will be used to look at schematic level additions of shading devices and their effect on building loads. The heights and lengths of the shades will be manipulated to create a better understanding of how solar radiation affects building loads. This important schematic data can then be given to the lighting engineer to provide integrated data for solar shade selection.

Limitations

Due to its simplicity, Vasari will be unable to accurately model building energy use. A Trane Trace model has been created to provide accurate detailed data about building energy performance. Vasari will however be a valuable tool in evaluating schematic changes and their effects. Iterations of conceptual and schematic design options can quickly be analyzed to compare savings. These savings may not represent precise numbers, but their implications on scale and potential percent savings may be valuable.

Existing Conditions

The Millennium Science Complex's existing design includes a shade mounted at the midpoint of glazing at approximately 7' from floor. The façade panel effectively acts like an overhang as it protrudes 2' away from the glass at the 11' ceiling. For consideration in Project Vasari, both these elements will be modeled as 2' shades to analyze their effectiveness in controlling solar radiation.

Project Vasari Outputs

Project Vasari is capable of calculating energy reports, but as described above they are too unreliable to be effectively used for this study. The calculations will provide metrics of comparison between design options. Most importantly Vasari provides visual data for solar loading conditions that can be effectively understood and communicated through the team. Figure 31 shows a typical schematic level solar radiation analysis. It depicts yearly cumulative incident energy in btu/ft² on the 3rd floor façade and the effects of modeled shades.

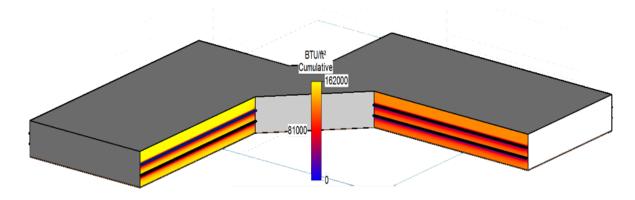


Figure 31: Typical Vasari Visualization of Solar Loading with Shades Included

Shade Height Analysis

Using the existing design, the shade located at the midpoint of the glass was evaluated at varying mounting heights. The purpose of this analysis was to see if mounting height has any effect on the solar control performance of the shade.

Adjusting the mounting height has negligible effects on the annual energy costs of the modeled 3rd floor as seen in Table 32. It seems that due to the shade's short length the total shaded area of the window remains unaffected. In proceeding forward, mechanical analysis will remain unaffected by a change in shade height. Additional graph can be found in Appendix F.

	5'6" Height	6'0" Height	6'6" Height	7'0" Height (Existing)	7'6" Height	8'0" Height
Percent Energy Consumption	99.99%	99.98%	99.99%	100.00%	100.02%	100.03%

Table 32: Analysis of Shade Mounting Height

Shade Length Analysis

Using the existing design, varying the lengths of the shade and overhang were analyzed. The purpose of this analysis was to understand the effects shade length have on thermal loading.

Adjusting the lengths of both sunshades proves to have potential in reducing building energy loading as seen in Table 33. Assuming a base condition with no sunshade, potential energy savings over a no shade condition can be easily understood. For each additional foot of shading device, there is an opportunity to reduce building loads by 1%. While the annual energy cost data is not accurate, this percent savings could be used to establish a cost savings scale for the design options. Additional graph can be found in Appendix F.

	0" Length	12" Length	18" Length	24" Length	36" Length
Potential % Savings	-	1.5%	2%	2.5%	3.5%

Table 33: Analysis of Shade Mounting Height

Visualizations

The complete set of Vasari visualizations can be found in Appendix F. There are examples of the whole building effects, and details of each façade orientation.

Final Shade Selection

Due to limited improvements from alternatives, the existing shading system will be kept with minor changes. The interior shade selected was a motorized, bottom-up, grey, MechoShade open vertical weave series 1810 (Figure 32). The bottom up configuration was selected from the daylight penetration study, which showed the majority of the problematic daylight entered below the exterior shade. The bottom-up configuration provides the ability to block the problematic times, and still provide additional diffuse ambient light to enter above the exterior shade. As the total structural panel depth was reduced to 16" through the Wall Composition Analysis, the overhang and exterior shade will mimic this depth.

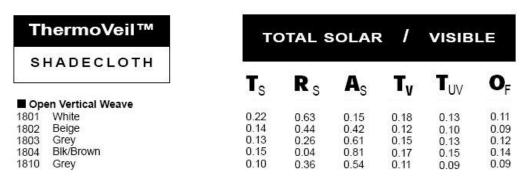


Figure 32: MechoShade Material Properties

LIGHTING REDESIGNS

Design Approach

The lighting design approach for the Millennium Science Complex is intended to reinforce the overall architectural theme of a floating horizontal building. The MSC is a LEED building so it's important to utilize energy efficient fixtures while still creating a comfortable environment for occupants. The interior space redesigns are located on the perimeter of the building so it's essential to integrate the lighting design with Bimception's daylight delivery system redesign. Energy and life cycle cost analyses will provide additional feedback.

Student Areas

Space Description

The student areas are located on the perimeter of the Millennium Science Complex. These spaces interact with an adjacent corridor. The close proximity of the two spaces presents a situation where spill light from each area contributes to the illuminance of one another. For this reason they two areas were grouped together for the redesign. These areas also contain partitioned workstations that use computer screens. The perimeter location for the student area allows for integration with the Millennium Science daylight delivery system.

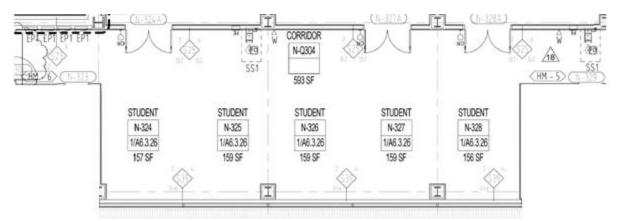


Figure 33: Student Area/Corridor Floor Plan

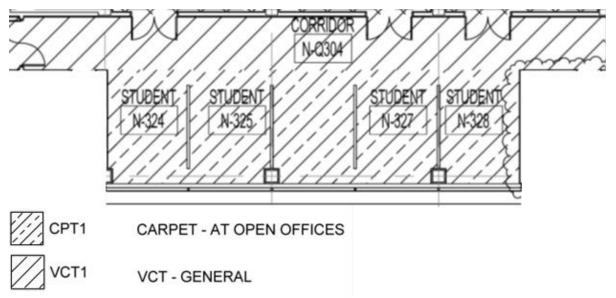


Figure 34: Student Area/Corridor Materials

Materials – Student Area/Corridor		
Surface	Reflectance Value	Transmittance Value
ACT Ceiling	0.76	
Carpet	0.13	
Cubicles**	0.22	
Door**	0.5	
Exterior Glazing		0.59
Shade		0.07
VCT Floor**	0.88	
Walls	0.76	
**Values from AGi32 swatches for similar materials		

Table 34: Student Area/Corridor Material Properties

Figure 35: Student Area Furniture Plan

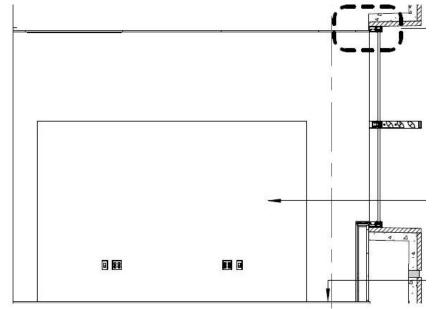


Figure 36: *Partition elevation*

04/07/2011

Design Criteria

IESNA Illuminance Recommendations

Illuminance

Corridors 5 fc Horizontal

Illuminance

Study Areas (Reading Tasks) 30 fc Horizontal

Illuminance

VDT Screens 3 fc Horizontal

3 fc Vertical

ASHRAE 90.1 Lighting Power Density

Corridors 0.5 W/ft²

Study Areas 1.2 W/ft²

Design Considerations

Very Important

Avoid Direct Glare (IESNA)

In order for students to efficiently utilize this space it's important to avoid direct glare conditions. Direct glare can cause discomfort for the occupants of a space. This can be addressed in fixture selection.

Avoid Reflected Glare (IESNA)

The student area contains computer screens so it's important to minimize reflected glare. This can be achieved with proper location of fixtures, and by orienting the screens perpendicular to exterior windows.

Luminance of Room Surfaces (IESNA)

Luminance of Room Surfaces is important can be addressed by utilizing appropriate contrast ratios. Creating uniformly illuminated surfaces with a 10:1 luminance ratio between surrounding surfaces can help prevent occupant discomfort.

Source/Task/Eye Geometry (IESNA)

In order for students to efficiently use this space it's important to implement the above considerations regarding glare and luminance ratios. This will allow for occupants to easily transition between the computer screen and work surface.

Daylight Integration and control (IESNA)

The student study areas are located on the perimeter of the Millennium Science Complex so it's important to consider the interaction between the space and windows. It's important to implement the proper use of shading devices and luminaire control.

Luminaires

	Luminaire Schedule								
Fixture Type	Image	Description	Mounting	Lamp	Voltage	Ballast	Wattage	Notes	
А3	Million	Linear Lighting Ellipse 27. 1'x4' Indirect/Direct Pendant Fixture, Extruded Aluminum Housing, Baked White finish. Concave louver blades with clear convex insert Catalog #: EL27-B-1-ET5-277-PVI_IC-LS	Pendant 9'-0" A.F.F.	(1) 28W T5 CCT 4100K CRI 85	277V	Electronic Dimming Advanced Transformer	32W		
В		Ledalite Voice. Recessed 1'x4' Fixture, Die-Formed Cold Rolled Steel Housing, Flat Acrylic Panels Connected to Prismatic Acrylic Diffuser Catalog #: 9814D1-ST-F128-S-1-2-E	Recessed	(1) 28W T5 4100K CRI 85	277V	Electronic Advanced Transformer	31W		
C1		Philips Alkco Aris Series. 11" Low Profile LED Fixture, Extruded Aluminum Housing, Pearl Finish, Extruded Clear Polycarbonate Lens. Integrated On/Off Swtich Catalog # ARIS-11-40-120-PRL-DWC	Surface	(5) 1W LEDs CCT 4000K CRI 71-73	120V	Integrated Driver	5W	Surface mounted to bottom of shelf at 4'-3" A.F.F.	
C2		Philips Alkco Aris Series. 21" Low Profile LED Fixture, Extruded Aluminum Housing, Pearl Finish, Extruded Clear Polycarbonate Lens, Integrated On/Off Switch Catalog # ARIS-21-40-120-PRL-DWC	Surface	(10) 1W LEDs CCT 4000K CRI 71-73	120V	Integrated Driver	10W	Surface mounted to bottom of shelf at 4'-3" A.F.F.	

Table 35: Student Area Luminaire Schedule

Light Loss Factors

Light Loss Factors – Student Area/Corridor						
Fixture Type	LDD	LLD	BF	Total LLF		
A3	0.93	0.92	1.00	0.85		
В	0.93	0.92	1.05	0.90		
C1	0.75	0.92	1.00	0.69		
C2	0.75	0.92	1.00	0.69		
*Using new IESNA guidelines for Clean Environment based on 12 month cleaning interval						

Table 36: Student Area/Corridor Light Loss Factors

Control Scheme

The dimmable pendant fixtures will be controlled by ceiling mounted occupancy and photosensors. The task lights are plug loads with individual integrated on/off switches. A Daysim control study of the pendant fixtures was conducted for the student area for each of the four façade orientations (found in Daylight Integration Control Study section) to evaluate the energy savings for this control scheme. Wiring diagram for the control scheme can be found in the Electrical Work Section.

Lighting Plan

Lighting plans found in Appendix E.

Renderings

Figure 37: Student Area Perspective Rendering

Figure 38: Student Area Perspective Rendering

Design Performance

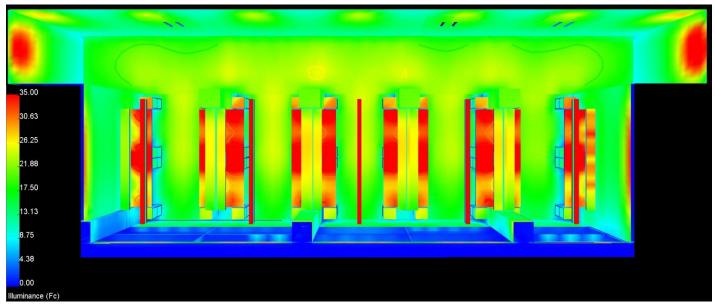


Figure 39: Student Area Pseudo Color

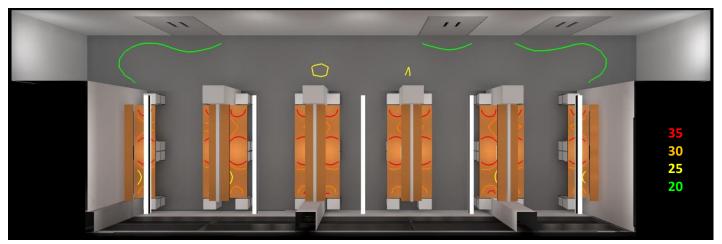


Figure 40: Student Area Contour Lines

Student Area Illuminance (FC)					
E _{average}	34.01				
E _{Maximum}	60.3				
E _{Minimim}	21.7				

Table 37: Student Area Illuminance Values

Corridor Illuminance (FC)					
E _{average}	21.7				
E _{Maximum}	25.6				
E _{Minimim}	15.5				

Table 38: Corridor Illuminance Values

04/07/2011

Lighting Power Density

Student Area 32W * 15 Fixtures = 480 W 5W * 20 Fixture = 100 W 10W * 10 Fixtures = 100 W 680W/866SF = 0.78 W/SF Corridor 31W*7 Fixtures = 217 W 217W/537SF = 0.40 W/SF

Performance Summary

The student study areas of the Millennium Science Complex lighting design uses indirect/direct pendants to provide the ambient light. Task lighting provides flexibility for individual students to increase the illuminance levels in their work area. The task lights are located on the sides of the computer screens to avoid uncomfortable luminance ratios between the screen and the background partition. The lighting design adequately meets illuminance and energy criteria while reinforcing the architectural floating theme. The space successfully integrates with the daylight delivery system and a different control study (see Daylight Integration Control Study section) for each façade provided accurate energy savings for Bimception's mechanical team member's energy model.

Private Offices

Space Description

The faculty offices are located on the perimeter of the Millennium Science Complex. The faculty offices contain a computer and an L shaped workstation for the faculty member. The perimeter location for the student area allows for integration with the Millennium Science daylight delivery system.

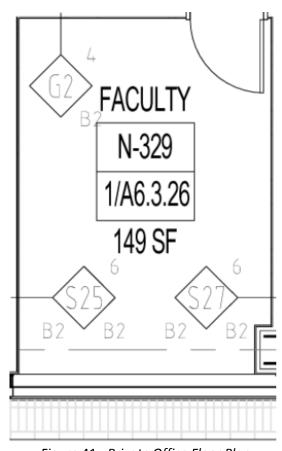
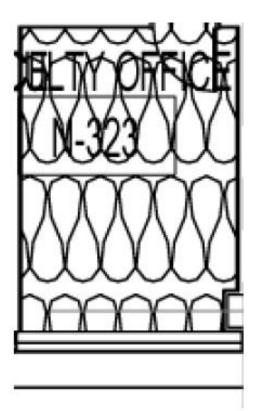



Figure 41: Private Office Floor Plan

CARPET - AT PRIVATE OFFICES

Figure 42: Private Office Material Plan

Materials – Office							
Surface	Reflectance Value	Transmittance Value					
ACT Ceiling	0.76						
Door	0.5						
Door Trim	0.5						
Exterior Glazing	-	0.59					
Floor	0.13						
Mullions	0.55						
Shade		0.07					
Walls	0.76						
**Values from A	Gi32 swatches for sim	ilar materials					

Table 39: Private Office Material Properties

04/07/2011

Design Criteria

IESNA Illuminance Recommendations

Illuminance

Offices 30 fc Horizontal

Illuminance

VDT Screens 3 fc Vertical

3 fc Horizontal

ASHRAE 90.1 Lighting Power Density

Corridors 0.5 W/ft²

Design Considerations

Very Important

Avoid Direct Glare (IESNA)

In order for faculty members to efficiently utilize this space it's important to avoid direct glare conditions. Direct glare can cause discomfort for the occupants of a space. This can be addressed in fixture selection.

Avoid Reflected Glare (IESNA)

The private offices contain computer screens so it's important to minimize reflected glare. This can be achieved with proper location of fixtures, and by orienting the screens perpendicular to exterior windows.

Luminance of Room Surfaces (IESNA)

Luminance of Room Surfaces is important can be addressed by utilizing appropriate contrast ratios. Creating uniformly illuminated surfaces with a 10:1 luminance ratio between surrounding surfaces can help prevent occupant discomfort.

Source/Task/Eye Geometry (IESNA)

In order for faculty members to efficiently use this space it's important to implement the above considerations regarding glare and luminance ratios. This will allow for occupants to easily transition between the computer screen and work surface.

Daylight Integration and control (IESNA)

The private offices are located on the perimeter of the Millennium Science Complex so it's important to consider the interaction between the space and windows. It's important to implement the proper use of shading devices and luminaire control.

Luminaires

	Luminaire Schedule							
Fixture Type	Image	Description	Mounting	Lamp	Voltage	Ballast	Wattage	Notes
A2	IIIII	Linear Lighting Ellipse 27. 1'x4' Indirect/Direct Pendant Fixture, Extruded Aluminum Housing, Baked White finish. Concave louver blades with clear convex insert Catalog #: EL27-B-1-ET5-277-PVI_IC	Pendant 9'-0" A.F.F.	(1) 54W T5 CCT 4100K CRI 85	277V	Electronic Advanced Transformer	63W	

Table 40: Private Office Luminaire Schedule

Light Loss Factors

Light Loss Factors – Private Office						
Fixture Type	LDD	LLD	BF	Total LLF		
A2	0.93	0.95	1.02	0.90		
*Using new IESNA guidelines for Clean Environment based on 12 month cleaning interval						

Table 41: Private Office Light Loss Factors

Control Scheme

The switching pendant fixtures in the private office will be controlled by a wall mounted occupancy and ceiling mounted photosensor. The switching control scheme was selected based on the Daysim control study done in the student areas. The study Daylight Autonomy values proved a switching system would provide energy savings in this space. Wiring diagram for the control scheme can be found in Electrical Work Section.

Lighting Plan

Lighting plans found in Appendix E.

Renderings

Figure 43: Private Office Perspective Rendering

Figure 44: Private Office Perspective Rendering

Design Performance

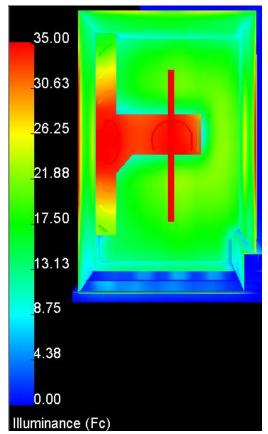


Figure 46: Private Office Perspective Rendering

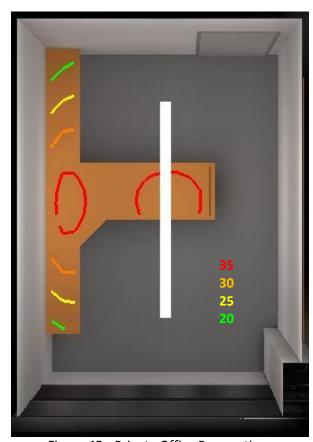


Figure 45: Private Office Perspective

Private Office Illuminance (FC)				
E _{average}	31			
E _{Maximum}	36.4			
E _{Minimim}	15.7			

Table 42: Private Office Illuminance Values

Lighting Power Density

63W*2Fixtures = 126W 126W/150SF = 0.84 W/SF

Performance Summary

The private offices of the Millennium Science Complex lighting design use indirect/direct pendants to provide the ambient light. The lighting design adequately meets illuminance and energy criteria while reinforcing the architectural floating theme. While a comprehensive daylight integration study was not conducted. The control study (see Daylight Integration Control Study section) shows there is potential for energy savings with a switching system, thus allowing the private offices to successfully integrate with the Millennium Science Complex daylight delivery system.

Cost Analysis of Lighting Redesigns

In order to properly justify the redesign of the lighting system in the student area, offices and main corridors on the third floor, a cost must be determined for the change. The existing lighting in these areas used a typical recessed 1x4 fixture. The offices and corridors used non-dimming ballasts, whereas the student area used an intricate system for controls, the Lutron EcoSystem with a Grafik Eye. Based on take-offs of the third floor for these areas in combination with supplier data, the costs in the following table were determined.

Fixtures	Number of Fixtures	Notes				
	Cost per Unit	Total # of Units	Total Cost			
EL27-B-1-ET5-277-PVI_IC-ED-12	15	Linear Lighting Ellipse EL27 *28WT5*	4100K	\$92	30	\$2,760
ARIS-11-40-120-PRL-DWC	20	Phillips ALKCO ARIS 11"		\$114	40	\$4,570
ARIS-21-40-120-PRL-DWC	10	Phillips ALKCO ARIS 21"		\$174	20	\$3,485
	Office Fixture	s, Redesign				
EL27-B-1-ET5-277-PVI_IC-ED-8'	2	Linear Lighting Ellipse EL27 *54W T5	* 4100K	\$92	72	\$6,624
	Corridor Fixtur	es, Redesign				
9814-D1-ST-F128-S-1-2-E	-	Changing out (2) 32WT8 to (1) 28WT5	1x4	\$246	70	\$17,220
					Total	\$34 650

Table 43: Cost of Existing Lighting, Third Floor

The lighting redesign of these locations entailed the replacement of all existing fixtures. Based on take-offs in combination with supplier data, the costs in the following table were determined for the redesigned lighting systems. Due to the similar ballast choices for the offices and corridors when compared to the existing, the cost difference was not investigated. However, the existing controls in the student area were a Lutron EcoSystem, which is a considerable cost in comparison to alternatives. A cost was not obtained for this system, but it is assumed that there would be a savings when changing from this system to a more typical dimming ballast arrangement.

Fixtures	Number of Fixtures	Notes			
	Student Area Fix	tures, Existing	Cost per Unit	Total # of Units	Total Cost
9814-D1-ST-T232-S-1-2-E	15	-	\$202	30	\$6,060
	Office Fixture	es, Existing			
9814-D1-ST-T232-S-1-2-E	3	-	\$202	108	\$21,816
	Corridor Fixtu	es, Existing			
9814-D1-ST-T232-S-1-2-E	-	(2) 32W T8	\$202	70	\$14,140
				Total	\$42.016

Difference \$7,357

Table 44: Cost of Redesigned Lighting, Third Floor

As can be seen in the two tables above, the redesigned lighting presented a savings of \$7,357 when compared to the existing lighting. Labor was not investigated in this analysis. Based on inspection of the existing systems and their replacements, it was determined that the labor difference in changing lighting fixtures would not provide a significant change.

Daylight Integration Control Study

In order to integrate the perimeter lighting designs with the BIMception's Millennium Science Complex façade redesign a Daysim control study was conducted. The study assessed the feasibility and energy savings associated with an automated dimming system. The area studied was the student areas since the MSC contains a student area on each of the four dominant building facades. The analyzed lighting design only included the pendant fixtures due to occupant control over the individual task lights. The results from this study mainly the daylight autonomy values were used in determining the feasibility of the switching system in the private offices. The energy savings results were then coordinated with the mechanical engineer for incorporation into an energy model.

The lighting design above and selected shading devices were used to evaluate the overall perimeter lighting design's ability to integrate with the Millennium Science Complex daylight delivery system. The system was analyzed using Daysim based on an hourly annual simulation with hours of operation being 8:00AM to 6:00PM. Four separate models were built containing the entire shell of the building and surrounding buildings (see Appendix E). All of the pendant fixtures were controlled in the same zone due to the perpendicular orientation to the windows. The simulation was run with a work plane height of 2'-6" with one foot grid spacing. The shades for this simulation were the lower portion of the bottom up shades. This was selected based on the interior shelf analysis above. The shade system is a manually operated motorized shade system that depends on user preferences. This was simulated using a signal value of 6000 lux to represent when the occupant would close the shade due to direct sunlight penetration on the work surface. The sensor was located in the central aisle way at the work plane. The following is the system results for the south façade orientation the other orientation results are located in Appendix E.

Once the shades were implemented and working properly daylight autonomy and continuous daylight autonomy (Figures 47-48) were studied to determine if the lighting system should be controlled by dimming or switching. These figures show that both systems would be effective, but a dimming system would provide additional energy savings. For this reason a dimming system was chosen.

After the control scheme was selected illuminance contours were evaluated to find the critical point, location where the highest amount of light is needed to reach the target illuminance value, in this study 322.8 lux (see Figure 49). Once the Critical point was selected the photosensor control algorithms were processed using a closed loop sliding set point. A plot of the critical point signal vs. the system dimming level can be seen in Figure 50. This plot is used to determine if the dimming system is working effectively. The plot of the south façade has a strong distinction to the left of the graph, but as the signal increases there are some problems with the system. The higher signal at times doesn't result in the optimal dimming level. The system appears to be under dimming which reduces the potential energy savings. The energy savings for the south façade system can be seen in table 45.

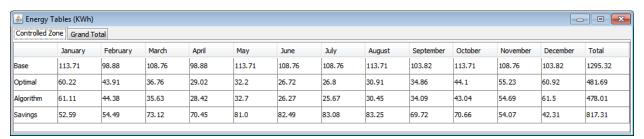


Table 45: South Façade Dimmed Zone Energy Savings

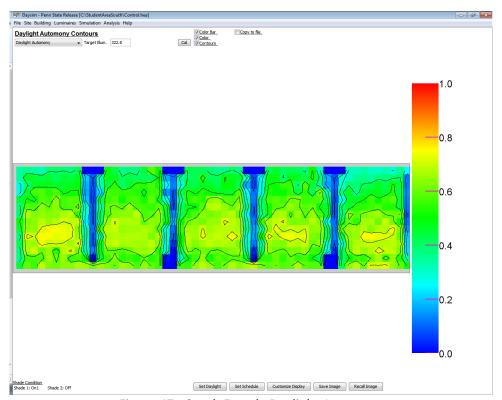


Figure 47: South Façade Daylight Autonomy



Figure 48: South Façade Continuous Daylight Autonomy

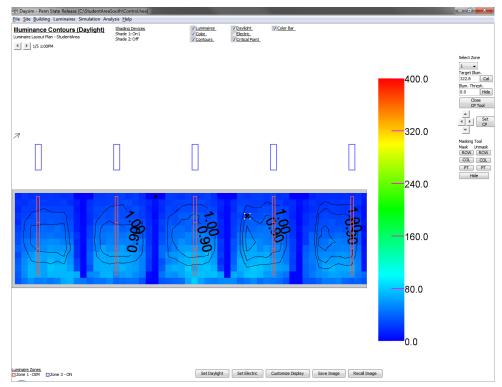


Figure 49: South Façade Critical Point Selection

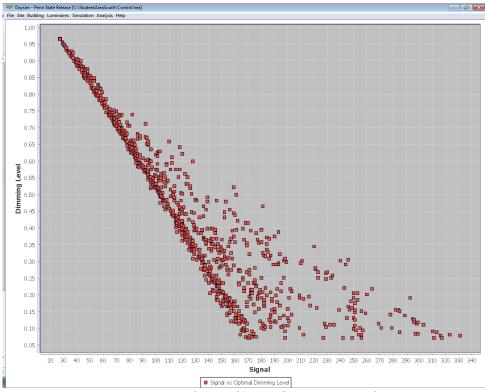


Figure 50: South Façade Signal vs. Dimming Plot

Energy Analysis of Lighting Redesigns

The redesign of lighting systems by the electrical engineer allowed for a more accurate update of lighting power density and lighting energy schedule. The current energy model uses ASHRAE Standard lighting power densities per given space.

The redesigned student area spaces were reduced from a maximum of 1.1 W/SF to 0.78 W/SF on the north side and 0.78 W/SF on the south side. In addition a more accurate schedule was created to take advantage of dimming opportunities per month. The lighting engineer provided his dimming schedule taking advantage of natural daylight. The dimming setbacks can be seen in Figure 51 for the North and Student Areas. The graphs show the percentage of peak yearly lighting load experienced each month. The month of January requires the most lighting energy with each corresponding month only using a fraction of this peak.

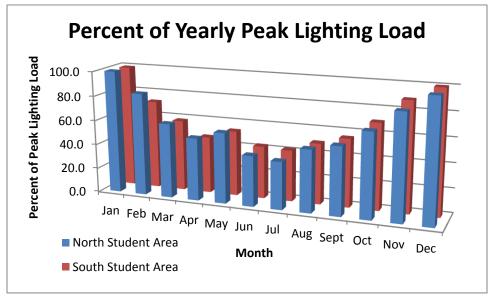


Figure 51: Schedule of Lighting Power Density Monthly Setbacks -Student Areas

The redesign of the corridors and offices allowed for a reduction from ASHRAE standard lighting power densities. Corridors will consume 0.4 W/SF, down from 0.5 W/SF, while the offices will consume 0.84 W/SF compared to 1.1 W/SF. These spaces were not studied for dimming, so they will have no advantage of incorporating a more accurate schedule. All laboratory spaces went unchanged.

An updated Trane Trace energy model reflecting the lighting redesign can be found in Appendix F. Electrical loads dropped significantly, while heating and cooling loads saw small changes. Due to lost space heat gain from the lighting fixtures, heating loads increased while cooling loads decreased.

An updated economic analysis, Figure 40, realizes \$2,520 in total yearly building energy savings from ASHRAE standard values to the new lighting redesign.

	Existing Design	Lighting Redesign	Savings
Total Yearly Operating Costs	\$140,379.51	\$137,859.20	\$2,520.31
Installation Costs	\$42,016	\$34,695	\$7,321
30 yr Life Cycle Cost	\$3,659,698	\$3,587,427	\$72,271

Table 46: Yearly Operating Costs – Lighting Redesign

Schedule Implications of Lighting Redesigns

The schedule implications of redesigning the lighting system were part of the original analysis. This included a look into the change in lead times in comparison to the existing lighting systems. Based on the redesigned lighting fixtures used, it was determined that the impact of the new lighting system would be minimal, and therefore, it was worth producing a full analysis for the lighting system. The primary differences between the existing lighting and the redesigned lighting include the following:

- Changing T8's to T5's
- Replacing recessed fixtures with pendent fixtures
- Adding task lighting to the casework in the student area

Lighting Redesign Conclusion

The Millennium Science Complex perimeter space lighting redesign incorporates energy efficient fixtures. The designs were integrated with the MSC daylight delivery system to maximize energy savings. Linear pendant fixtures were selected to enforce the architectural themes of floating horizontality. The same pendants were used in both the student area and private offices to maintain uniformity from the exterior. The fixtures selected lead to a \$7,357 savings in upfront cost, with a yearly energy savings of \$2,520. The lighting redesign of the Millennium Science Complex perimeter spaces creates a pleasant work environment, while maintaining BIMception's hierarchy to maintain the overall architecture.

Energy analysis of the lighting alternative redesign realizes instant yearly operating cost savings, as well as a reduction in construction cost, seen in Table 47.

	Existing Design	Lighting Redesign	Savings
Total Yearly Operating Costs	\$140,379	\$137,859	\$2,520
Installation Costs	\$42,016	\$34,695	\$7,357
30 yr Life Cycle Cost	\$3,659,698	\$3,587,427	\$72,271

Table 47: Lighting Redesign Life Cycle Cost Analysis

FAÇADE CONCLUSION

The final redesigned façade panel retains the existing layer composition of 2 " face brick, 6" concrete, and 3" polyisocyanurate rigid insulation wrapped in a vapor barrier. The reduction in panel depth to 16" and the redesigned head, sill, and side returns creates the opportunity to decrease the panel's concrete volume. High performing triple pane glazing will replace the existing double pane assembly. A reduction of window area to 60% glazing will also help to reduce yearly energy costs. The depth of exterior shading devices will be reduced to the redesigned panel depth of 16" to mimic the current architectural aesthetics. Interior shades will be switched to bottom-up automatic shades to improve occupant comfort, while dimming and switching lighting controls help reduce energy consumption. The summary energy analysis, incorporating all the alternative design options above, produces a yearly operating savings of \$16,403 and a simple payback of about 2.4 years, Table 48.

	Existing Design	Alternative Façade Designs	Savings
Total Yearly Operating Costs	\$154,262	\$137,859	\$16,403
Installation Costs	\$1,658,060	\$1,697,082	\$-39,022
30 yr Life Cycle Cost	\$5,633,514	\$5,249,814	\$383,700

Table 48: Facade Redesign Life Cycle Cost Analysis

Plenum Investigation

DESIGN APPROACH

Reevaluating the structural design of the Millennium Science Complex allows for the integration and coordination of structural and mechanical systems. A full redesign of the structural system is proposed as a three building mixed system solution. This design consists of typical concrete floor system and frame within the North and West wings connected by a steel framed section forming the corner of the L-shape. The steel section includes the cantilever truss system, connecting the corner between the two wings. The three building sections will be connected with a seamless yet abrupt transition from concrete to steel framing, thus no expansion joints will be designed. A reduced structural depth could increase the usable space for long duct runs, which are governed by the lowest structural plane, allowing supply ducts to be increased in size, decreasing static pressure losses and potentially leading to energy savings.

Based on previous strength designs performed with multiple concrete systems, specifically a flat plate, flat slab, and one-way joist system, it was determined that concrete in general offers a much smaller vertical dimension of structure within the ceiling plenum, as compared to a steel structure. An alternative structure comprised of a one way pan joist concrete system is incorporated in all wings and floors. The central cantilever system will remain steel, while the wings become concrete. The concrete one way pan system will be controlled by the vibrational criteria for the laboratories, exceeding general strength requirements. The columns and lateral systems have been redesigned as they adjust to the redesigned concrete system.

A smaller structural profile creates the opportunity for an increased volume of useful space in the plenum. Existing collisions have been highlighted as issues that could have been addressed differently given a concrete design. An alternative mechanical duct system reacts to the redesigned concrete structure. The increased available plenum depth eliminates drainage pipe collisions, creates alternative duct routing solutions, and increases duct height. These reactions use modeling to propose integrated solutions to reduce field conflicts and improve energy use.

STRUCTURAL FLOOR SYSTEM ALTERNATIVES

Waffle Slab Design

As proposed a waffle slab was designed with the intention of redesigning the existing steel composite beam system with an efficient concrete system that would offer added stiffness yet reduced weight due to the dome pan formwork. The process included a design based on strength with a vibrational analysis following to determine the adequacy of the floor system within the lab areas with respect to the maximum velocity design criteria as noted before.

Waffle slab construction is a two-way concrete system consisting of a joist system run in two orthogonal directions creating multiple intersections of ribs within each bay, essentially mimicking a waffle shape. The spacing between the domes defines the rib width. The reinforcement is located within the rib space and suspended at the proper depths

ACI 318-08 was consulted for design procedures. It was determined that the floor system layout meets all requirements for Direct Design Method for designing two-way concrete slabs, therefore this method was used to design a waffle slab. Table 9.5c was consulted for minimum thicknesses based on span length. Minimum thickness of slab for the 22ft bays with 18in square columns and no edge beams is 6.83in. Researching typical dome pan sizes showed no pan sizes smaller than 8in. Therefore calculations were done with a minimum rib depth of 8in. and minimum pan size of 30in. 4000psi concrete will be used with a 4.5in slab topping to achieve the mandatory two hour fire rating between floors. Design loads were obtained from the structural drawings and confirmed by ASCE7-05 minimum design loads. The waffle slab was designed for the worst case scenario gravity loads as summarized in Table 49 below. All Calculations are reported in Appendix-G.

Floor Loading					
SW (PSF) SDL (PSF) LL (PSF)					
118.8 30		150			

Table 49: Worst Case Floor Loading

Column and middle strip moments were calculated as per Direct Design Method for a flat slab design. These calculations were based off a flat slab design because due to the 3ft module being used, 30in pans with 6in ribs, the ribs do not line up with the column lines. Therefore interior beams on the column lines were needed to account for extra dimension differentials between bays and the four pans surrounding the columns would need to be cast to the full depth creating drop panels as they are more than one sixth the span length in both directions. Figure 52 below shows a typical bay layout of the 3ft module. A 3D view of a typical interior bay is shown in Figure 53.

Reinforcement was design based on column and middle strip moments. Minimum required steel area was distributed as one bar per rib for those ribs who lie either within either column or middle strip. The 18in wide beams on the column grid lines assumes the rest of the column strip reinforcing that does not fit in the ribs. Typical reinforcement is summarized in Table 50 below.

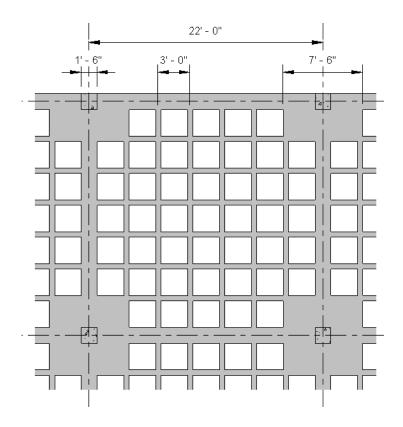


Figure 52: Plan View: Typical Exterior Bay Layout of Waffle Slab With 3ft Module

Figure 53: 3D View: Typical Interior Bay Waffle Slab Construction

Span	Column Strip			Middle Strip		
	Ext. Supp.	Positive	Int. Supp.	Positive	Int. Supp.	
Exterior	(4) #8	(5) #8	(8) #8	(4) #7	(4) #7	
Interior		(3) #8	(8) #8	(4) #7	(4) #7	

Table 50: Typical Reinforcement for Waffle Slab Design

Vibration Analysis/ SAP Modeling

Although the waffle slab design, as summarized above, proves efficient and low profile based on strength design it must be analyzed for vibrations and compared to the existing to prove adequate for use as a floor system within the lab areas. Floor vibrations within a laboratory building are an issue for sensitive equipment and microscope that are required to be accurate with high sensitivities. MSC was reported to be rated for 4000ui/s, 2000ui/s, and 130ui/s in the LS wing, MS wing, and basement isolations labs respectively.

AISC Design Guide 11- Floor Vibration Due to Human Activity defines the process of analyzing a floor system and calculating maximum floor velocities. Equations and Methods were referenced from Chapter 6- Design for sensitive equipment. Figure 54 states the basic equation for calculating maximum floor velocity in micro-inches per second (ui/s).

$$V = \frac{Uv \cdot \Delta p}{fn} = Uv \cdot \Delta p \cdot T$$

Figure 54: Reference Velocity Equation from AISC Design Guide 11

Uv is a contant based on a typical person walking at a defined rate of walking. For MSC a value of 5500(lb-HZ²) was used for Uv, based on a 185lb person walking at a moderate pace of 75 steps per minute. Δp is the flexibility constant defined in units of in/Kip. This value is determined either by hand or computer analysis. The designer must calculate the maximum deflection within the bay of interest based on the application of one kip of load, thus mimicking an impulse foot load from someone walking. fn is the natural frequency of the bay of interest. This can either be determined by various hand methods or by computer analysis.

Knowledge obtained from AE 597A, advanced computer modeling for structures, incorporating the above method and equations from AISC Design Guide 11 was used to confirm the existing maximum velocity of the LS wing of MSC. A modeling process was developed to accomplish this task and then repeated with the newly designed waffle slab floor system. A computer model was created for each of these systems using SAP2000. The calculation and modeling process is explained herein.

SAP Modeling of Existing Composite Beams

SAP2000 was used in this vibration study to automate the point-load-deflection calculation of Δp using linear static analysis options. A modal analysis was also used to automate the calculation of, T, the period of vibration, for typical bays. These values of T were then compared to the results of a hand method, called Rayleigh method, used to calculate average period of vibration for a typical bay. The Rayleigh method of calculating floor vibrations is a well-known method comparing potential and kinetic energy. This check gives extra validation to the SAP model accuracy. The application of the Rayleigh method is explained below with a discussion of the results from the entire vibration analysis

Before an actual model of the existing composite beam system was created, it was worthwhile to confirm that the computer model would accurately model the composite action between the steel wide flange sections and the concrete slab. A few modeling processes for modeling this behavior were attempted. Modeling methods considered included a combination and meshing and dividing of area elements, frame meshing, and the incorporation of rigid link frame elements between the frame and area elements to mimic shear stud elements. Due to complication of modeling and inaccurate output the rigid link method was abandoned. The simplest scheme for modeling a composite beam system was one grid level for all floor elements, frames and areas, with proper insertion offsets to achieve proper stiffnesses, and proper area divides and frame meshes to achieve the composite action between the concrete slab and wide flange members. Figure 55 below shows an example of an initial model of a simply supported beam used to test this method. The figure clearly shows the beam and slab deflecting together as one composite section.

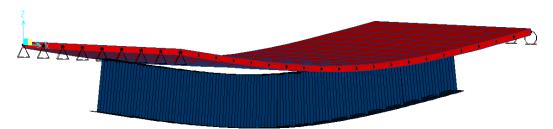


Figure 55: SAP 3D View: Composite Beam and Slab Modeled in SAP2000

Theoretical vs. Model Deflections

Visually the deflected shape above shows the composite action between the frame and area elements. This method was further approved by comparing maximum deflection values at the middle of the span with theoretical hand calculations. Considering linear elastic deflection output from SAP2000 and no cracked section modifiers modeled, referenced equations were used from AISC Steel Construction Manual 2005. Figure 56 lists the equation for this assumed deflection. Multiple beam sections, typical to the MSC LS wing, were modeled using this method to check for precision. All output values from SAP2000 were within 10 percent of the theoretical values calculated by hand, which exhibits adequate accurateness for moving ahead with the existing floor system model. Table 51 summarizes the results for this deflection check.

$$\Delta \max = \frac{5wl^4}{384EI}$$

Figure 56: SAP 3D View: Composite Beam and Slab Modeled in SAP2000

	W18x40	W18x76	W21x44	W21x68	W24x84
Theoretical Deflection(in)	0.4425	0.2547	0.3340	0.2250	0.1552
SAP2000 Deflection (in)	0.4023	0.2756	0.3563	0.2426	0.1679
% Difference	9.08	8.19	6.67	7.81	8.21

Table 51: Summary of Theoretical vs. SAP2000 Deflections

Existing Conditions Vibration Modeling in SAP2000

Having confirmed the accuracy of the modeling scheme proposed above, a model was created to simulate the vibration criteria of the existing composite steel beam and slab system. A five bay by 3 by model was created to simulate the LS wing of MSC, which is five bays wide and continuous in the other direction. Three bays were modeling in the length of the wing with the intention of viewing deflection and period of vibration output for the middle bays. Extra bays of length would increase accuracy, but three bays are a good approximation and ultimately a conservative approach. Figure 57 shows a floor plan of the typical bays modeled from the existing structure. Vertical grid lines are modeled along the column lines and half way in between, in both directions to cover the locations of the beams.

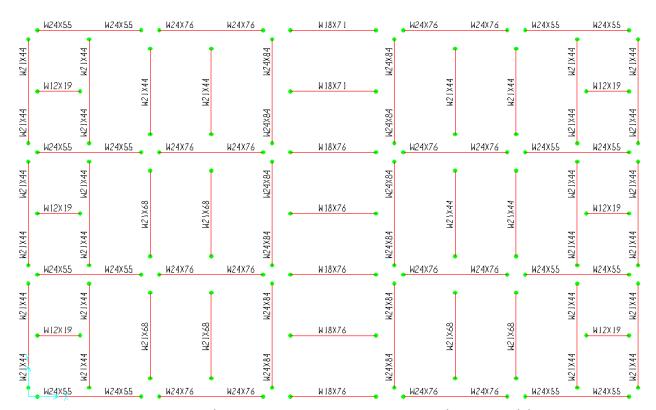


Figure 57: Plan View: SAP2000 Existing Structure Vibration Model

Three horizontal grid levels were defined 10ft apart. The lowest defined the center of the columns below the floor, the middle defined the floor level, and the highest defined the center of the columns above the floor. The columns were only modeled half way to the adjacent floors to simulate a hinge at the center of the columns where the column moments would switch sign from positive to negative. Conservatively it is a location where the column moments can be approximated as zero, and helps to simplify the model. The concrete floor slab was modeled as a shell element with a thickness assignment equal to the thickness of the existing topping concrete above the the metal decking, 3.25in. The centroid of the slab will then be at the grid level. The wide flange elements are modeled on the same horizontal grid level on the vertical grid lines. All connection between frame elements were modeled as pin connections. Member end releases were applied to all floor members to release all moment restraints.

Advanced Meshing and Insertion Points Offsets

As mentioned before, the area elements and frame elements must be meshed at equal sizes to achieve the proper composite action. Also the frame elements need to be offset down below the slab to the correct vertical locations as in the real building. The offsets will account for the added stiffness achieved from area at distances away from the neutral axis of the effective cross section. In the case of the existing system 22ft bays are present. Beams and girders are spaced at 11ft. Therefore the area of each 22ftx22ft bay was divided into a main grid of 16x16 and then further subdividing each sixteenth into a 4x4 section of 16.5in square elements. The frame elements were also meshed with maximum length of 16.5in to properly mesh with the area elements. An insertion off set of 4.625in, relative to position 8 (Top Center) was applied to all frame elements to account for the 3in decking plus half of the 3.25in slab thickness. A 3D view of the existing conditions SAP model used in the vibration calculation is shown below in Figure 58.

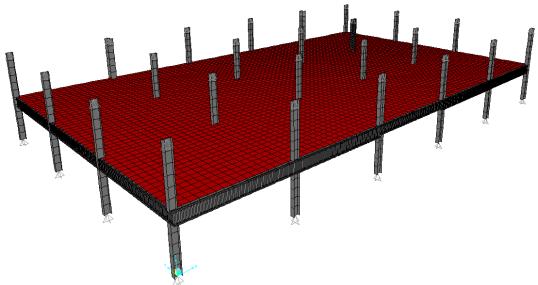


Figure 58: 3D View: Existing Conditions SAP Model, Undeformed Shape

Vibration Model Load Cases

As mentioned before the output data for the center bays will be considered to check for typical vibrational behavior within the existing structure. Three bays in total were considered including: an edge bay (Bay-A), the first interior bay (Bay-B) and the center bay (Bay-C) within the five bay width of the wing. This would show the extent of typical behavior. Therefore three static load cases were created to find the flexibility coefficient, Δp , for each bay. These load cases were named A13, B13, and C7, for the respective bays. To simplify the manipulation of the SAP output, for use in the period of vibration calculation using the Rayleigh method, the major nodes on the main 16x16 grid of each bay were relabeled in a numerical order. The 100K point load for each bay was applied at the nodes that would result in the largest deflection for that bay. These nodes labels were used as the names for the static load case for the individual bays as referenced above. For a summary of the Rayleigh method calculation and output used from the SAP analysis refer to Appendix G. The application of the Rayleigh method in this study incorporates the distribution of weights within each bay, which are lumped together by tributary area into the 25 main nodes, 16 interior and 9 edge nodes. The method uses these weights and the calculated deflections at each of these nodes, due to the static point load case for that particular bay, to calculate the approximate period of that bay.

Additionally a dynamic modal load case was created to automate the period of vibration calculation of the floor system to check against the hand calculation from the Rayleigh method. Three degrees of freedom were used in the dynamic analysis: Uz, Rx, and Ry. Ux and Uy and Rz were not used so as to limit the mode shapes and periods to the vertical period of the bays. If all degrees of freedom were turned on unnecessary modes would show up including translation and torsional modes of the entire floor system, which is not needed. 30 modes were run in the modal analysis and viewed individually one by one to single out the modes in which bay A, B, and C were excited individually. This would hint toward the approximate mode of that bay individually within the floor system. For a summary of the mode shapes for the three typical bays and the respective period of vibrations refer to Appendix G.

Existing Composite Beam System Vibration Analysis Results

Using the flexibility coefficients, Δp determined from the static load cases defined above, the Uv constant of 5500 (lb-HZ²), and the calculated periods from the Raleigh method, the maximum velocities were calculated for bays A, B, and C. It was determined that for the LS wing the existing composite beam and slab is adequate for use with the given design criteria with a max velocity of 4000ui/s. These results are summarized below in Table 52.

Span/Location	Weight	Uv(lb/sec2)	Δ_p (in/100kip)	T(sec)	Velocity(ui/sec)
Α	27.7	5500	1.115	0.0639	3916
В	27.2	5500	1.004	0.0601	3317
С	26.8	5500	1.138	0.0649	4063

Table 52: Summary of Velocity Calculation For the Existing Composite Beam System

Waffle Slab Vibration Modeling in SAP2000

A similar process and theory as used in the creation of the existing system vibration model was used in the creation of a comparable vibration model for the redesigned concrete waffle slab system. Only a few differences occur due to the change in material, from steel to concrete, and the new layout of floor members. The attempt with the waffle slab vibration model was to simulate as close as possible the same situation developed in the existing conditions model.

The same five bays by three bays layout was used. Similar efforts were needed to achieve composite action between the slab, drop panels, and the ribs and beams. The slabs were modeled with their centroid at the horizontal grid at floor level. The ribs and interior beams were modeled as frame elements with proper frame section definitions and concrete material assignments. Similar area and frame dividing and meshing occurred as well. Slab areas were modeled again as shell elements and divided into a grid defined by the intersection of the ribs, beams, and column locations. The areas defined by these boundaries were further meshed and subdivided into 3x3 squares. The frame elements were meshed with respect to intermediate nodes defined by the area subdivides. The frame elements were modeled at the same grid as the slab shell elements and offset, with respect to Location 8 (Top Center), the same way as with the existing model and equal to half of the slab thickness, 2.25in. A Plan and 3D View of the rib and beam layout is shown in Figures 59-60.

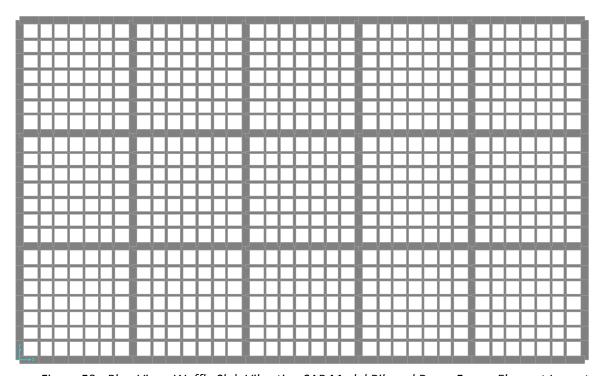


Figure 59: Plan View: Waffle Slab Vibration SAP Model Rib and Beam Frame Element Layout

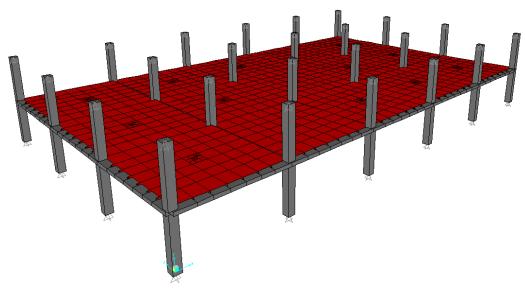


Figure 60: 3D View: Waffle Slab Vibration SAP Model

Waffle Slab Vibration Analysis Results

Based on identical calculations carried out using identical static load cases in bays A, B, and C, identical modal analysis, and the Rayleigh method for calculating approximate period of vibration values, maximum velocities were determined for the three typical bays. It was determined that for the LS wing the redesigned concrete waffle slab is more than adequate for use with the given limiting design criteria with a max velocity of 4000ui/s. These results are summarized below in Table 53.

Span/Location	Weight	Uv(lb/sec2)	Δ_p (in/100kip)	T(sec)	Velocity(ui/sec)
Α	46.3	5500	0.500	0.0695	1910
В	46.3	5500	0.463	0.0647	1647
С	46.3	5500	0.462	0.0690	1755

Table 53: Summary of Velocity Calculation for Redesigned Concrete Waffle Slab

The results show that based on purely strength design the waffle slab system was stiff enough even with the added weight to meet the vibrational design requirements. Not only that but it could even be considered too stiff and slightly inefficient, especially for the LS wing of the building. This system may work well in the MS wing for it is even under the 2000ui/s design criteria for that wing. Due to this finding it would benefit the study to consider a slightly less stiff and more efficient concrete floor system. Therefore as proposed, a one-way concrete pan-joist and girder system was also designed and checked as the waffle slab had been done to consider what truly the best alternative concrete floor system was.

One-Way Concrete Pan Joist/Girder Redesign

Based on the results from the vibrational analysis of the waffle slab, a pan joist system was proposed as another potential alternative that could prove adequate for strength, vibrations, and could offer more flexibility within the plenum for coordination purposes, especially considering the mechanical duct redesigns. The pan-joist system would offer the opportunity to run mechanical ductwork laterally between the joists across bays whereas the waffle slab system limits all MEP systems to stay below the bottom of the structural profile. The pan-joist system also offers the opportunity to more easily remove sections of slabs between ribs for potential renovations in the future. A waffle slab system limits any penetrations to the small slab area in the dome areas in between ribs. Design procedures for the pan-joist system include the design of the slab, joists, and girders.

For the slab, joist, and girder design, ACI318-08 was referenced for design methods and required procedures and limitations. For a full design summary and calculations for this system please refer to Appendix G. Slab design was based on fire protection requirements as with the waffle slab. A 4.5in slab was used for this design. For the joist design Table 9.5a was considered for minimum thickness of nonprestressed beams. For one-end continuous the limiting thickness was In/18.5 which is equal to 14.27in. Therefore 8in pans as used in the waffle slab are no longer adequate. To meet this requirement 10in pans will be the minimum required size. Keeping stiffness requirements in mind for vibration requirements a true pan-joist system was used with 6in wide ribs and 30in clear distance between ribs. For the proposed design and layout these joists meet the minimum requirement to be considered actual joist construction by section 8.13. This title greatly benefits the design requirements for the joist. Moments were calculated based on moment coefficients defined in 8.3.3. Design moments and shear forces were used to design flexural and shear reinforcing. Similar design procedures were used to design the girders, which were sufficiently designed at the same depth as the joists with a 36in width. Bar development length, cut-offs, and anchorage designs were developed according to ACI318-08 chapter 12. Figure 61 shows a plan view of the pan-joist floor system. All elements are 10in deep. Figure 62 shows a typical bay of this design in 3D.

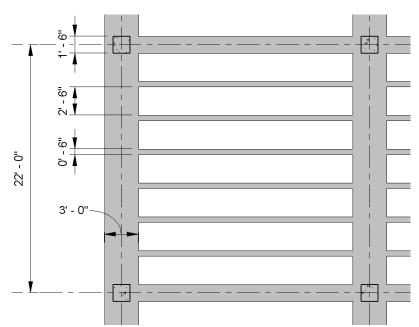


Figure 61: Plan View: Redesigned Pan-Joist System layout

Figure 62: 3D View: Redesigned Pan-Joist System Typical Bay.

Column Redesigns

Initial hand calculation of design loads and floor self-weight distributed to critical columns showed potentials for as small as a 16in square concrete column. Due to layout constraints of the joist spacing the interior beams or larger ribs located on the column lines needed to be 18in. For this reason 18 in columns were assumed adequate in all locations within the wings. Slenderness, sway frame behavior and moment magnification was considered as per ACI318-08 section 10.8 - 10.10. The concrete columns of the wings of MSC were determined to be non-slender in non-sway frames, and non-sway moment magnifiers were less than one. Therefore no moment magnification was considered in the column design moments. A simple 2-dimension gravity frame with columns and beams was analyzed in SAP2000 with calculated column and beam design loads to determine the total axial loads and moment demand on typical columns. These loads were loaded into spColumn and designed. Column Design procedures, loads and final designs with reinforcing are included in Appendix G.

Pan-Joist Vibrations Modeling in SAP2000

To create the vibration model for the redesigned pan-joist in SAP the model used for the waffle slab vibration analysis was easily modified by removing the ribs running in the three bay direction and change the beams on the column lines, in that same direction, to the new 36in wide girders. Frame sections also needed to be modified to reflect the 10in depth instead of the 8in with the waffle slab design. The slab did not need to be modified. The area subdivides and frame meshes were not edited and remained intact. The same static and modal load cases were also preserved. No additional label changes were needed for the nodes either, however, due to the change in weight with the new design the tributary weights needed to be modified to keep the accuracy of the Rayleigh method of calculating the period of vibration for the critical bays. Figure 63 shows a plan view of the new layout of joist, beams, and girders for the pan-joist SAP model and Figure 64 shows a 3D view of the same model. Notice the similarities to the previous two models.

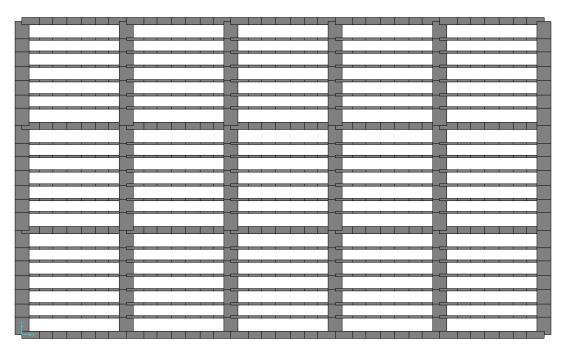


Figure 63: Plan View: Redesigned Pan-Joist System Layout in SAP2000.

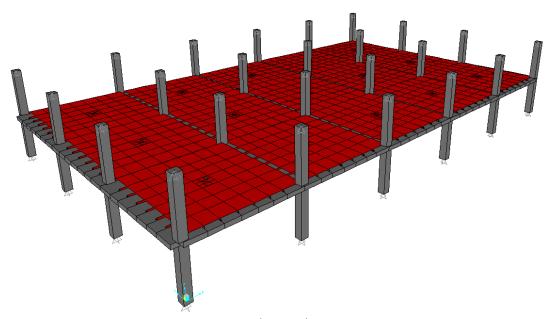


Figure 64: 3D View: Redesigned Pan-Joist in SAP2000.

Pan-Joist Vibration Analysis Results

Based on identical calculations, as compared to the waffle slab analysis, carried out using identical static load cases in bays A, B, and C, identical modal analysis, and the Rayleigh method for calculating approximate period of vibration values, maximum velocities were determined for the three typical bays. It was determined that for the LS wing the redesigned concrete pan-joist system is more than adequate for use with the given limiting design criteria with a max velocity of 4000ui/s. In fact the results are very similar to the previously discussed waffle slab design. The critical velocity even works for the more stringent 2000ui/s rating in the MS wing. Also the pan-joist is much more efficient and more flexible to mechanical systems and future renovations. These results are summarized below in Table 54.

Span/Location	Weight (kip)	Uv (lb/sec2)	Δ _p (in/100kip)	T (sec)	Velocity (ui/sec)
Α	41.7	5500	0.584	0.0637	2048
В	41.7	5500	0.541	0.0597	1776
С	41.7	5500	0.541	0.0596	1774

Table 54: Summary of Velocity Calculation for Redesigned Concrete Pan-Joist System

Impacts of Gravity System Redesign on Lateral Resisting System

Redesigning the wings as a concrete system affects the methods of lateral resistance within the extents of the concrete system. The concrete system adds mass to the building as well which increases the seismic load demand on the building. Two types of lateral resisting elements exist in the wings currently. On grid lines 15 and V exists 18in shear walls. On grid line 15 the shear wall extends from the first to third floor. A concentric braced frame exists above that extending up to the fourth floor. On grids 20 and M exists concentric braced frames as well. With the proposed pan-joist system these steel braced frames must be changed. Therefore the new proposed lateral system includes a change of all braced frames within the wings to concrete shear walls. The existing 18in shear walls will remain and it will extend to the fourth floor on grid 15. The braced frames at the ends of the wings on grid 20 and M will be replaced with 16in shear walls. To gauge the impact of this change and confirm the adequacy of the new walls an existing check of the lateral system was conducted. Following that study a redesign of the lateral system incorporated the added mass of the new concrete wings and the new shear walls which will replace the concentric braced frames within the wing. Figure 65 shows a plan view of the lateral resisting elements on the first floor. Figure 66 shows the same view with the proposed lateral system redesign. The red overlay shows the extent of the new pan-joist concrete system while the blue overlay shows the part of the building that will remain steel.

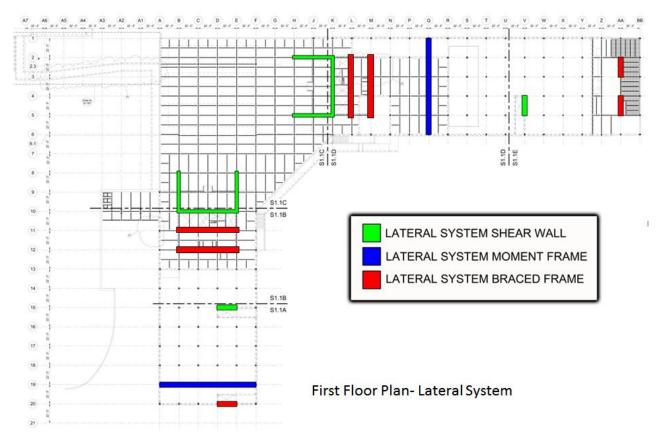


Figure 65: Plan View: Existing Lateral Resisting Elements on First Floor

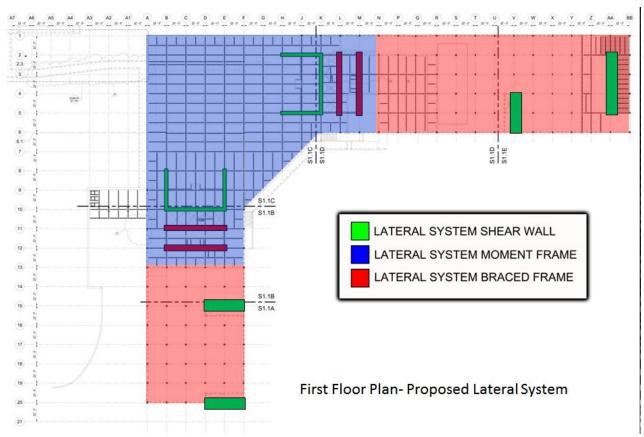


Figure 66: Plan View: New Proposed Lateral Resisting Elements on First Floor

Check of Existing Lateral System

Studying the existing lateral system helps to gauge the impact of any proposed redesign of changes within the structure. For a building of this magnitude and complexity a computer model of the lateral resisting system and the applicable design lateral loads will help to automate the stiffness based lateral distribution of forces to all the lateral resisting elements throughout the building.

Therefore methods were pulled from AE597A to create a properly working ETABS model of the existing lateral resisting elements was created. The model was limited to only the lateral resisting frames, shear walls, and the cantilever truss system, because it adds lateral stiffness to both orthogonal directions. The basement walls were also added to simulate the stiffness of the basement level. Membrane elements were modeled at each floor level connecting each lateral resisting element at that level and reaching to the extents of the actual floor slabs.

Wind and Seismic loads had been calculated previously by hand per ASCE7-05 chapter 6 for wind loadings, and chapters 11 and 12 for seismic loading. The excel calculations for these lateral loads are available in Appendix-G. Proper load case definitions and load combinations were created within ETABS to properly apply the design loads to the structure. Figure 67 shows an image of the existing ETABS lateral model.

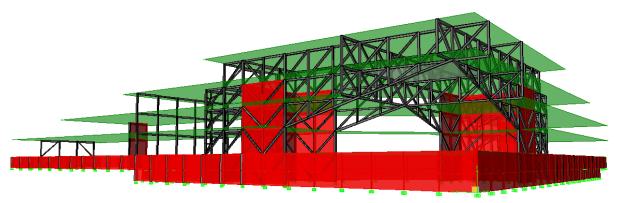


Figure 67: 3D View: Existing ETABS Lateral Model

After the model was run output from the model was reviewed including maximum displacements at roof level, maximum story drifts and overall building drifts, and shear values in walls, columns, and braces. Also modal analysis was reviewed. In all these reviews seismic loads dominated design values as compared with wind loads.

Torsional irregularity was checked per ASCE7-05 section 12.3. Based on the displacement output the building was determined to have torsional irregularity type-1a. Based on our Seismic design criteria, B, certain requirements then must be met. According to Table 12.3-1 we must then abide by sections 12.7.3 and 16.2.2, which define requirements and considerations for the lateral model including modeling cracked section properties and modeling panel zone deformations. These adjustments were made to the model and run again to obtain the adjusted output.

Individual walls, columns, and braces were then checked for strength in certain frames. Due to the large stiffness of the large 30in c-shaped shear walls integrally poured with braced frames a good portion of the lateral loads is concentrated in these walls. One of the side returns of this wall system on grid-2, the back of the c-shaped wall on grid 10, and the shear wall on grid 15. Section cuts were taken at the base of each frame. Forces in the walls, columns, and braces were separated and each set of elements checked individually. No issues arose from these checks. All elements passed for minimum strength. Allowable limits for maximum story and overall drift values were checked as well and were well within the limits for seismic and wind loads. A summary of these calculations are available in Appendix-G.

Lateral System Redesigns

Two main concerns needed to be addressed when redesigning the lateral resisting components within the wing, the change in weight of the new concrete pan-joist floor system in the wings and the potential added stiffness of the lateral system in the wings due to the addition of concrete shear walls. The weight change was considered per floor and the mass assignments to the floor diaphragms in the ETABS model were adjusted accordingly. The weight of an individual bay was calculated for the existing steel and new concrete systems. Based on how many bays were being altered on each floor determined by how much the weight of each floor needed to change. The new masses based on this added weight were calculated and new mass assignments were added to the membrane diaphragms. Also the total floor weights affected the vertical load distribution of seismic forces which were recalculated and the load cases dedicated to seismic loads within the ETABS model were updated accordingly.

The existing braced frames in the wings were then deleted and concrete shear walls were added in these bays. Conceptually this change works because concrete foundation walls, of the proposed thicknesses at these locations, are already present and could simply be continued vertically with the concrete gravity system during construction. The ETABS model was then run again and the newly changed lateral elements were reviewed and checked for strength. A check for minimum strength of the concrete wall on grid 15 was performed. It was determined that the concrete alone could take the shear stress at the base level. Therefore minimum reinforcing for longitudinal and transverse directions were designed for the wall. This was considered a typical design and would apply to all the redesigned shear walls within the wings. Calculations for the weight changes, mass assignments, vertical seismic load distribution, and shear wall designs are available in Appendix-G.

Cost Analysis

Due to time constraints, an investigation of the redesigned lateral systems in the building was not conducted.

Schedule Analysis

Due to time constraints, schedule impacts were not investigated for the redesigned lateral system within the building.

Structural Cost Analysis

The cost of the structure for the Millennium Science Complex provided a very hefty portion of the total cost of the project. As can be seen in the Project Construction Overview, the structure consisted of 17.6% of the project costs, which was just below the cost of the mechanical systems. This is unusual for a typical building, but for the Millennium Science Complex, the structure is far more complex than any normal building. Based on the drastic redesign of the structural system to concrete, a change in the cost of the structure was expected. Building information modeling was utilized in the preparation of the estimates of the existing steel wings, as well as the redesigned concrete wings. Models of the one-way system, as well as the steel, were created in Revit, which were then imported into Quantity Takeoff (QTO). QTO was used to produce takeoffs of the models in preparation for the input of cost data. This was primarily done with the existing steel. The model provided information for the steel beams and columns, as well as the slabs on metal deck, in the portion of the wings that were being redesigned. Once the takeoffs were produced in the program, cost data from RS Means Concrete and Masonry, as well as Walker's Building Estimator's Reference Book, were input to create an estimate of the steel and concrete in the existing structure. This information was combined with takeoffs produced by hand in Excel, once again using RS Means Concrete and Masonry, Walker's Building Estimator's Reference Book, and crane rental data to create an estimate of the existing structure that will change. Table 55 displays a summary of the cost totals for the existing structure.

	Material Cost	Labor Cost		
Steel Framing	\$1,722,507	\$341,182		
Metal Deck	\$408,606	\$46,170		
Concrete	\$421,088	\$163,810		
Total	\$2,552,202 \$551,163			
Cranes	\$362,500			
Overall Total	\$3,465,865			

Table 55: Summary Table of Existing Cost of Structure

The redesign to concrete provided challenges in producing an estimate that was competitive with the existing steel structure. This can be attributed to the steep increase in labor for the concrete system. Labor typically provides a very high portion of the total cost of the construction of concrete structures. Below is a table summarizing the concrete costs of redesign for the Material and Life Science wings. These costs were determined entirely through hand takeoffs done in Excel, using costs data from RS Means Concrete and Masonry and Walker's Building Estimator's Reference Book. In addition, the quantity takeoffs for the volume of concrete in the structure were verified using a Revit model imported into QTO. With the inability to model any other component of the concrete structure, QTO was not able to be further utilized during the estimation process. As can be seen, the concrete structure cost nearly \$1,400,000 more than the steel structure. This represents an increase of nearly 40% over the existing structure. Keeping in mind that the structure was redesigned with the intention to provide more space for the mechanical system, it is possible that a more efficiently designed mechanical system could help repay the increase in costs to the redesigned structure. A more detailed breakdown of how the costs for both the existing estimate and the redesign estimate were produced can be found in Appendix D.

	Material	Labor	
Concrete	\$ 403,758	\$ 110,791	
Rebar	\$ 277,595	\$ 187,798	
Formwork	\$ 1,286,819	\$ 1,787,383	
Finishing	\$ 24,606	\$ 49,213	
Shoring	\$ 296,521 \$ 6,477.8		
Total	\$ 2,289,301	\$ 2,141,664	
Cranes	\$ 402,802		
Overall Total	\$4,833,768		

Table 56: Summary Table of Redesigned Concrete Structure

BIMception - IPD/BIM Thesis

MECHANICAL SYSTEM ANALYSIS

Design Approach

The mechanical redesign of the plenum space will focus on the effects that static pressure losses have on fan energy consumption. The availability and utilization of the vertical height of the plenum will be used to evaluate more efficient duct sizing to produce lifecycle savings.

The existing supply duct for the Materials Science wing will be modeled in Revit MEP 2011, depicted in Figure 68, to produce a baseline static pressure loss, utilizing built in duct sizing capabilities. This will produce a baseline energy model in Trane Trace to analyze the cost of high static pressure. These steps will be repeated, assuming that incremental increases in plenum height are available to be used for increased duct size. As more vertical space is used for duct area, the static pressure will decrease creating potential for energy savings. The final selection of the plenum will allow for an increase in duct size, creating valuable lifecycle energy cost savings.

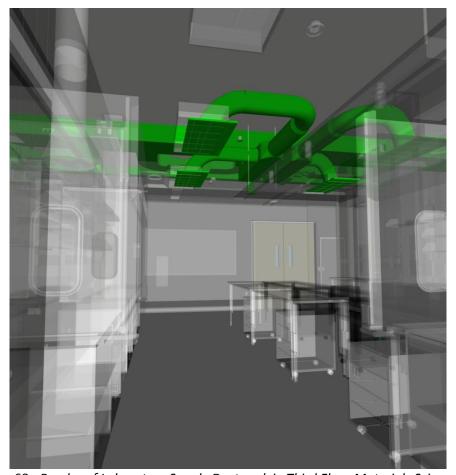


Figure 68: Render of Laboratory Supply Ductwork in Third Floor Materials Science Lab

Existing Mechanical System

The existing third floor Materials Science Wing will serve as the basis for all following analysis. As described above the laboratory supply ducts will be evaluated in isolation of the rest of the building to simplify considerations and calculations.

The laboratory supply system manifolds five 100% outdoor air handlers together on the penthouse level. This manifold splits on the penthouse level to serve both the Life and Material Science wings Figure 69. Two duct risers supply laboratory air to the Material Science Wing. One is located in the shaft to the north and the other in the shaft to the south. From the risers, the mains on each level run along the exterior corridors supplying the laboratories Figure 70.

Figure 69: Laboratory Supply System on Penthouse Level. Manifolds are shown in Red, while the Supply Mains are Green and the Air Handlers are Teal.

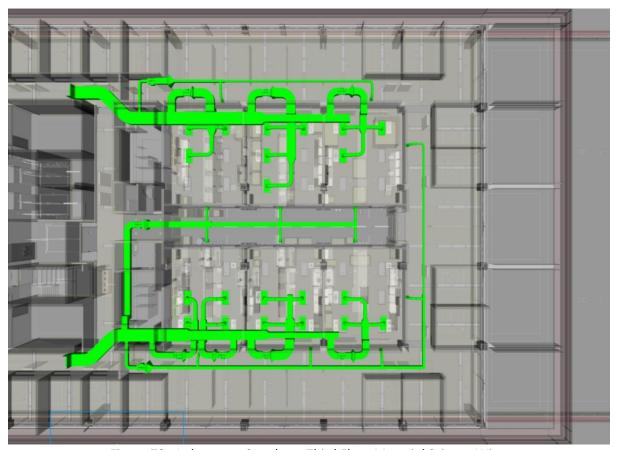


Figure 70: Laboratory Supply on Third Floor Material Science Wing

Duct Sizing

The existing duct mains have been sized using the static regain method, creating equal pressure drops for each run of duct. This translates to undersized ducts on the third floor generating high velocities and large pressure drops compensating for the longer runs on the first and second floors. In future analyses, the necessity to match the pressure drops of subsequently mentioned floors will be ignored, allowing for the energy analysis to focus solely on the run from air handler to third floor terminal units.

Fan Selection

Each of the 50,000 cfm laboratory air handlers has a total static pressure of 9 inches water gage. The external static pressure drop is 4.75" wg, and 4.25" wg internally. In future analyses external pressure drop will vary, but the internal pressure drop will be assumed constant, 4.25" wg. In the analysis of the third floor, the total cfm is about 30,000 cfm. A reduction in total brake horsepower for the fan motor from 100 bhp to 70 bhp was calculated using fan laws. The existing third floor will be modeled with a 70 bhp with 9" TSP. As static pressure varies in the analysis, the bhp will vary accordingly using fan laws.

Hand Calculations – Static Pressure Loss

A custom hand calculation spreadsheet was created in excel to evaluate and verify an external pressure drop of 4.75" wg.

The user inputs section run (#), duct accessories (part name), length of run (feet), air flow (cfm), duct dimensions (inch by inch or inches round), and absolute roughness (E) (feet). Using the Huebscher correlation for rectangular ducts, a hydraulic diameter (D) (inches) is calculated equating the rectangular duct to a standard round duct size. Once area is calculated, air velocity (V) (fpm) is found from the relationship of area and airflow. Velocity and diameter are the most integral parameters for calculating losses in duct runs and accessories.

Absolute roughness is input from ASHRAE 2009 Fundamentals Table 1 Duct Roughness Factors. 0.005 E ft. will be used for ducts of average roughness, while flex ducts will experience a roughness factor of 0.01 E ft. Relative roughness (E/D) is calculated. Kinematic Viscosity and Density are assumed constants at 60 degrees at 1.58×10^4 ft²/s and 0.075 lb/ft³ respectively. A Reynolds number (Re) is calculated.

In order to expedite calculations the Swamee-Jain Equation, Figure 71 will be used to approximate the friction factor. The accuracy of this equation was tested by manual checks and proves to be reliable. Pressure drop (in wg) will be calculated from ASHRAE 2009 Fundamentals equation 18.

$$f = \frac{0.25}{\left[\log_{10}\left(\frac{\varepsilon}{3.7D} + \frac{5.74}{\text{Be}^{0.9}}\right)\right]^2}$$

Figure 71: Swamee-Jain Equation Used to Approximate Friction Factor.

For lengths of duct run pressure drop (in wg) will be calculated from ASHRAE 2009 Fundamentals equation 18. For accessories pressure drop will be found from the product of velocity pressure and a corresponding loss coefficient from ASHRAE 2009 Fundamentals Fitting Loss Coefficients.

To find total static pressure, the losses due to duct runs and accessories will be summed at the termination of components. A copy of the excel template can be found in the Appendix F.

Existing – Static Pressure Loss

The existing laboratory supply duct pressure loss was calculated for the third floor Materials Science wing. Values for length, duct size, and airflow were input, along with any components and accessories. Pressure drops for components like diffusers, heating coils, and supply venture valves were found in the construction documents and assumed as constants. For every other component and accessory, the pressure loss was calculated as described above using velocity pressure and loss coefficients. To compensate for only considering third floor airflow, the duct sizes in the penthouse were resized to match the pressure loss per 100 feet of ductwork of the existing system, while having the flow of just the third floor.

The effectiveness and accuracy of the hand calculation spreadsheet was confirmed when a total external static pressure was given as 4.81" wg, only 2% different than the specified 4.75" wg.

Duct Sizing Effects – Static Pressure Loss Alternatives

Using the calculation for the existing duct system, iterations of different duct sizes were analyzed for their effects on static pressure and fan energy. A decrease in height of 2" and increases in height of 2", 4",6" and 8" were analyzed. By changing the area of the duct, the velocity in the duct is changed. A decrease in velocity correlates to a decrease in losses per length and losses per component. The effects of this analysis can be seen in Table 57. This table also uses fan laws to approximate adjusted fan horsepower. The exponential relationship of decreasing duct size to total static pressure can be seen in Figure 72.

	Decrease 2 Inches	Existing	Increase 2 Inches	Increase 4 Inches	Increase 6 Inches	Increase 8 Inches
External Static Pressure (in wg)	6.6	4.81	3.8	3.09	2.7	2.34
Total Static Pressure (in wg)	10.85	9.06	8	7.34	6.9	6.59
Fan HP	95	70	60	55	50	45

Table 57: Duct Sizing Effects on Fan Selection

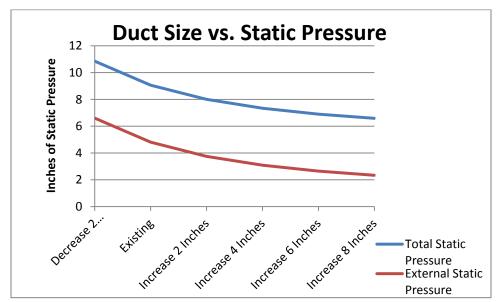


Figure 72: Exponential Relationship of Duct Size and Static Pressure

Energy Modeling – Static Pressure Loss Alternatives

The effects of changing the duct system were modeled in Trane Trace. By changing the duct system, the supply air fan experiences varying total static pressure losses and a corresponding change in fan horsepower. These are the two variables adjust in the model. Trane Trace was selected to perform this analysis to take advantage of the interdependencies of supply air systems. Duct pressure and fan operation add heat to the supply air. This can be seen in the requirement of varying cooling and heating energies to meet the constant room load of all cases. An increase in horsepower and static pressure requires less reheat energy, but more cooling energy. The ability of Trace to use utilization and operation schedules also enhances its accuracy in predicting the total effects on energy usage. The chart below analyzes the effects of static pressure on whole building energy consumption and costs, Table 58.

	Decrease 2 Inches	Existing	Increase 2 Inches	Increase 4 Inches	Increase 6 Inches	Increase 8 Inches
Building Energy Consumption (kbtu/ft2-yr)	141.4	138.1	136.9	135.9	135.2	134.7
Source Energy Consumption (kbtu/ft2-yr)	237.6	231.9	230.2	228.7	227.3	226.5
Electricity (kWh)	620,285	600,535	594,847	589,705	584,753	582,131
Yearly Electricity Cost	\$62,028.50	\$60,053.50	\$59,484.70	\$59,870.50	\$58,475.30	\$58,213.10
Purchased Steam (therms)	17,291	17,496	17,625	17,711	17,766	17,805
Steam Yearly Cost	\$37,435.00	\$37,878.84	\$38,158.13	\$38,344.32	\$38,463.39	\$38,547.83
Purchased Chilled Water(therms)	24,126	23,153	22,675	22,332	22,099	21,934
Chilled Water Yearly Cost	\$44,231.00	\$42,447.17	\$41,570.83	\$40,942.00	\$40,514.83	\$40,212.33
Total Yearly Operating Costs	\$143,694.52	\$140,379.51	\$139,213.66	\$138,256.82	\$137,453.52	\$136,973.26

Table 58: Energy and Cost Analysis of Changing Duct Size

Construction/Installation Costs of Alternate Duct Systems

With a change in ductwork comes a change in the cost of the mechanical system. In order to properly analyze the benefits of this change to the mechanical system, costs for the increase and decrease in size of ductwork must be established. In addition to the material cost of ductwork, the material cost of insulation around the ductwork must be considered due to the increase or decrease in surface area. Labor was not considered for this analysis due to the negligible effect it would have on the cost.

Based on RS Means Mechanical Cost Data, the following costs for the third floor were determined for the change in ductwork. These costs are based on four total runs of 22 gauge ductwork on the third floor, each totaling 250 feet in length. The cost for ductwork provided by RS Means was based on a cost per pound. Based on typical weights for metal ductwork, a weight per linear foot, and correspondingly a total weight per section of duct, was determined. This was then used to determine the cost for the runs of ductwork. A more detailed breakdown can be found in Appendix D.

Ductwork Size Change	Cost of Ductwork for Third Floor	Change in Insulation Cost from Existing
6 in. Increase	\$33,131	\$2,130
4 in. Increase	\$32,076	\$1,418
2 in. Increase	\$31,021	\$710
Existing	\$29,966	\$0
2in. Decrease	\$28,911	\$-710

Table 59: Construction Costs of Changing Duct Size

Schedule Impacts

Due to the negligible impacts on labor based on the changes to the ductwork, the schedule impacts were not thoroughly investigated. A change in the size of the ductwork, as referenced above, would not add additional time to labor. The change in labor for the increase or decrease in insulation would not provide significant increases to the time required for installation. It is assumed that the additional time could be done without impact to the schedule.

Life Cycle Cost Analysis

Analyzing the life cycle cost effects of manipulating duct size will help to select the most economical size for the supply duct system. In the Figure 73 below, varying duct size changes are evaluated. Both yearly operating costs and installed costs are relative values compared to the existing design. As duct size increases the installed cost increases linearly, while operating costs experience diminishing returns and eventually will converge on a value. This relationship implies that at some point the added increase in installed cost will not produce a correlated increase in operational savings. From Figure 73 below, an increased duct size of 6 inches will be selected, just as operating costs begin experiencing diminishing returns.

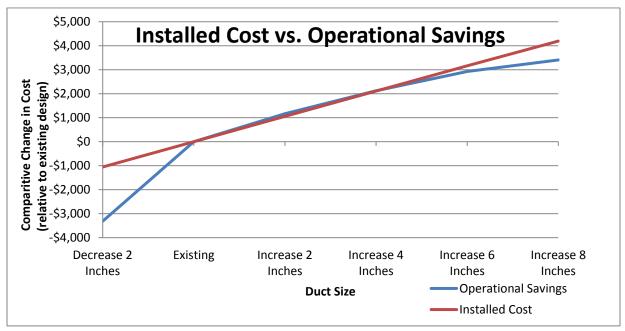


Figure 73: Comparison of Installed and Operational Costs

To confirm the value in saving yearly operational costs, a full life cycle cost analysis was performed. The following Table 60 comparatively shows the cost effects of changing duct size.

	Decrease 2 Inches	Existing	Increase 2 Inches	Increase 4 Inches	Increase 6 Inches	Increase 8 Inches
Total Yearly Operating Costs	\$143,694	\$140,379	\$139,213	\$138,256	<i>\$137,453</i>	\$136,973
Installed Cost	\$28,911	\$29,966	\$31,021	\$32,076	\$33,131	\$34,161
30 yr Life Cycle Cost	\$3,732,024	\$3,647,648	\$3,618,659	\$3,595,055	\$3,575,409	\$3,564,062

Table 60: Life Cycle Cost of Duct Size Alternatives

CONSTRUCTION SCHEDULE AND LOGISTIC IMPACTS OF FINAL SELECTION

Site Logistics and Planning

A change to a concrete structural system from steel provides significant changes to how the construction of a building is approached. For a steel building such as the Millennium Science Complex, proper site planning is important to coordinate the delivery of steel, and coordinate the location and use of mobile cranes for erection of the structure. In addition, the limited space on site provided challenges for the construction team to overcome. Congestion among the different trades on site was high, but Whiting-Turner did a great job at designing an effective and safe site for construction. Whiting-Turner's site plans can be found in Appendix D.

With the redesign of the wings to concrete, this adds to the congestion that could occur on site. Both steel erection and concrete pours are occurring on site, and sufficient room must be provided for each trade in order to effectively construct the building. In addition, safety is of the utmost importance when considering site planning. Proper planning must be done in order to minimize safety concerns on site, and provide a safe atmosphere for the workers on site. As will be seen later, both the steel and concrete will be occurring simultaneously with the goal to accelerate the overall construction of the building. Using Whiting-Turner's site plans as a reference, it was concluded that little modification would be necessary in order to adjust their logistics plans for the change to concrete in the wings. For the construction of the cantilever portion, the location of the 400-ton crane at the inner intersection of the two wings, as well as the 275-ton crane located between the areaway and Eisenhower Parking Garage, would be unnecessary to change. With the lessened area of steel, these two cranes would need to move less within their respective locations, reducing the potential congestion that could occur from the relocation of the cranes during erection. Lay down areas for steel would not change drastically for these areas, either. During the erection of the cantilever, the areaway slab was used as a lay down area. Prefabricated steel members were brought in, and trusses were bolted and welded on the ground on this slab. This allowed for easier welding, which occurred on the ground as opposed to on scaffolding 60-80 feet in the air. In addition, it allowed for easier erection of the cantilever, as it was erected in larger pieces rather than one piece at a time. The existing structure used concrete pump trucks in order to pour the concrete slabs within the building. During the construction of the wings, these concrete pumps were located on the north side of the Material Science wing, and the east side of the Life Science wing. These pump trucks moved up and down these designated locations as the concrete slabs were poured. With this in mind, the location of concrete pump trucks will be the same for the redesigned concrete wings. From these two locations, the pumps will be able to reach all locations of the concrete wings without issue.

One addition to the pouring of concrete that the steel structure did not have was dedicated cranes for the lifting and moving of rebar, formwork and equipment. Because it can't be assumed that other cranes on site could be used for these activities, two 55-ton mobile cranes were included in the estimate for the construction of the concrete wings. As such, the location and path of travel must be taken into account during site planning. The locations of these mobile cranes will be similar to the concrete pump trucks, following a similar path of travel, depending on where materials and equipment need to be moved. Another concern that can appear is the constant appearance of concrete trucks on site. A full concrete structure will require much more concrete than just slab on deck, and therefore, will require a greater quantity of concrete trucks brought to the site. With the constant student and vehicle traffic going through this area, careful planning must take place in order to not impede this traffic with the increased need for concrete trucks. However, even with this increase, the locations in which they are

brought onto the site will not change. Both the main access point on Bigler Road, as well as the secondary access point north of the main access point on Bigler will be utilized for the concrete trucks.

An adjusted site plan, which takes into account the changes to the structure, can be found in Appendix D.

Schedule Analysis

As mentioned in the Project Construction Overview section of this report, preconstruction began in March of 2008, with construction beginning on August 12, 2008. According to a schedule provided by Whiting-Turner, substantial completion is due to be May 12, 2011, with building turnover on July 7, 2011. This presents a schedule that is one week behind, as the expected dates for both of these milestones are the previous week in each case. Whiting-Turner maintains that the project will be delivered on June 30, 2011, as expected, even with the challenges that have had to face through the construction of the Millennium Science Complex. One of the key challenges faced by the construction team was the issue of weather. The structure of the building was scheduled to be constructed during the winter months. Snow is often a concern, and an aspect that project team is expected to plan for in the event weather does not permit work. However, during the winter of 2009-2010, the snowfalls were greater than expected, reaching higher amounts in State College than has been seen in recent years. This caused serious concerns for the schedule of the project, delaying steel erection and affecting the numerous quantity of welding that needed to occur. However, Whiting-Turner did an excellent job of controlling any schedule impacts that may have occurred due to these setbacks, and still maintains that the project will be delivered on time on June 30, 2011.

Whiting-Turner's schedule for the Millennium Science Complex was created with the key concept that the structural system was steel. All work was sequenced based on the sequencing of the steel. It is clear that the driving force of their schedule was the steel erection, and rightfully so as the structure is typically part of the critical path in a CPM schedule. In addition, the schedule was sequenced in a vertical fashion, where the steel was erected upwards, then horizontally. This is typical of a steel structure, and fully makes sense for this building. However, this is in high contrast to a concrete building. The driving force for a concrete building often starts with the foundation and slab on grade, which immediately extends into the concrete framing of the building. In addition, a concrete building is typically sequenced horizontally first, pouring a single level at a time, before moving vertically.

With all this in mind, a full analysis of the existing schedule needed to occur, starting from the beginning with excavation and foundation work. Because the existing schedule was heavily driven by the steel erection, it was clear that the schedule had to be entirely reworked into order to work for the addition of concrete. In order to properly analyze Whiting-Turner's schedule, the schedule tasks and starting dates were brought into Microsoft Project. It was assumed that the given durations in the schedule were the original, expected durations for each task. These durations were applied to the tasks to understand what the schedule could have looked like without giving additional time to tasks. Once the sequencing of the existing schedule was understood, the tasks related to the erection of the steel in the wings were removed, and the substructure was re-sequenced for a concrete building. Tasks for the construction of a concrete framing structure were created, and durations were determined based on information in Whiting-Turner's schedule, as well as data from RS Means Concrete and Masonry. Based on the restructuring of the existing schedule, these tasks were inserted and sequenced for the new structure.

BIMception - IPD/BIM Thesis

The goal of creating the new schedule was not only to produce a schedule to match the changes to the structural system, but to determine a way to accelerate the schedule. This was to be done through proper sequencing of the redesigned concrete wings in combination with the construction of the steel cantilever. Based on conversations with a representative of Thornton Tomasetti, and structural analysis, it was determined that the prominent cantilever at the intersection of the Material and Life Science wings could stand on its own as long as the steel remained intact through the braced frames extending into the wings. Using this information, it was decided that the steel of the cantilever and braced frames would be erected simultaneously with construction of the concrete wings. Concrete pours began at the ends of the wings, and moved towards the cantilever to the designated column line. Starting dates were determined based on the restructuring of the existing schedule, which led from the adjustment of the substructure and foundation. In addition to the structure, the precast panels needed to be adjusted to account for the change in schedule. Erection of the precast panels begins when the mechanical level concrete is being constructed. This was done to ensure proper concrete strength at the time of erection, as well as avoid overly congesting the access roads where both the precast cranes and concrete trucks would need to be. Below is a summary of the construction of the redesigned structure, as well as the cantilever and precast panels. A full schedule of the existing structure, as well as the redesigned structure, from excavation through the precast erection, can be found in Appendix D.

Task	Duration (Days)	Start	Finish
Material Science Wing Concrete	98	7/29/09	12/11/09
Life Science Wing Concrete	63	8/11/09	11/12/09
Cantilever Steel/Shear Walls	114	8/10/09	1/14/10
Precast Panels	67	12/7/10	3/4/10

Table 61: Schedule Summary of Redesign

Concrete Pours

An important aspect of the construction of a concrete building, as well as the preparation of a schedule for a concrete structure, is the pouring of concrete. Based on labor data in RS Means Concrete and Masonry, as well as Walker's Building Estimator's Reference Book, it was determined that a logical pour size for the floor system would be three full bays across the building, which is approximately 7000 square feet. This required three formwork crews and one rebar crew to prepare a pour of this size, and keep the schedule within a reasonable time frame. It is

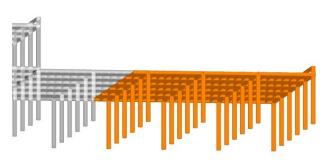


Figure 74: Visual of Concrete Pour

also important to choose pour breaks wisely in order to reduce cracking in unwanted locations in the slab. Based on moment diagrams produced for the floor system, the location of pour breaks were placed where the moment is zero. This location occurred between the first and second joist, approximately four feet passed the column line. Figure 74 provides a visual of the approximate typical pour. Placing the pour break at this location allows cracking to occur at a location where it is less detrimental to the integrity of the concrete slab. This same setup is used for all pours through the wings of this building. Three bays are typical except at the intersection of the steel and concrete, where the

BIMception - IPD/BIM Thesis

04/07/2011

pours become either one or two bays in length. In all typical pours, the break is set at the same location following the last column line between the first and second joist.

Crane Analysis

This investigation involved the potential for using the minimum cranes for steel erection and using tower cranes for precast erection and concrete placement. An initial investigation into the use of tower cranes on this project revealed several impracticalities for this building. Tower cranes are not often used on buildings of only four stories in height. This is because it is more effective to use pump trucks when it is possible for them to reach the height required of the building. In addition, one of the goals was to be able to use these tower cranes for the erection of the precast. Based on capacity diagrams and the corresponding max reach of tower cranes investigated, it would have been impossible to obtain the capacity required to erect the precast panels, as well as reach all locations of the wings from a single centralized location. Based on practicality, the choice to use tower cranes on this type of project was illogical. Based on conversations with industry professional about the topic, a similar opinion was obtained that it would be impractical to use a tower crane on a project such as the Millennium Science Complex. A more in-depth investigation was not conducted due to the above reasons. Therefore, it was determined that using pump trucks with additional small mobile cranes was a more practical choice for the construction of the concrete.

4D Modeling

In order to fully understand the existing schedule for the Millennium Science Complex, Revit models were used to provide visualizations of the structure. While a full existing 4D model was not created, parts of the schedule were analyzed in Navisworks to understand the exact order in which items were constructed. This included the foundation, as well as the existing steel. Part of the analysis of the schedule, and the creation of a new schedule, included the development of a 4D model for the redesigned building. This was meant as a visual way to incorporate a key BIM tool into the schedule work. The 4D model provides a clear picture of the schedule, as well as helps highlight the sequencing that occurs between the concrete wings, steel cantilever and the precast panels.

COORDINATION AND MODELING OF SYSTEMS

Revit Modeling of Duct Systems

The modeling of third floor Material Science Wing ductwork will create the opportunity to test automatic duct sizing and static pressure calculations as well as evaluating the benefits of a redesigned structural system. Shown below in Figure 75 the laboratory and office supplies were modeled in Revit along with the office return. Laboratory exhaust and office branch ducts were not modeled and were not analyzed in this report. A picture of the existing Navisworks model from Whiting Turner, including all mechanical duct components, can be found in Appendix F.

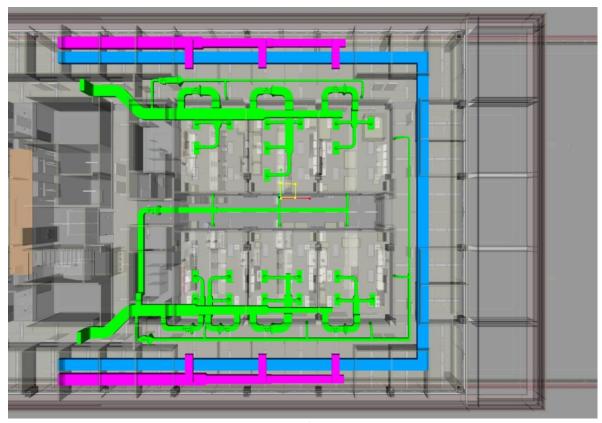


Figure 75: Navisworks Model of Third Floor Duct Systems. Lab Supply-Green, Office Supply-Blue, Office Return-Pink.

Building Information in Duct Systems

The automatic resizing function in Revit potentially can be a useful tool to help design duct layouts. The tool is meant to adjust the size of the duct based on parameters such as velocity and/or static pressure loss per 100'. In this manner, valuable information becomes inherent in the duct, making it a smart object. Ducts will have an associated airflow, air speed, and pressure loss. Every time the duct is resized these values are calculated and transferred to the next duct or piece of equipment. In theory, a duct system will be able to verify its total airflow and pressure loss. These values could be tracked and exported, helping to properly select a fan. In Revit, these values could be read by a mechanical fan object and automatically update this information in the construction document fan schedule. By modeling the duct systems correctly, the duct model can become a design calculation tool.

Limitations of Building Information in Duct Systems

In theory the above section describes how information could become a part of the mechanical duct model, but in practice these results are difficult to attain. In order to build the duct model accurately, the MSC duct model lost the ability to communicate duct information reliably.

In order to transfer data from component to component there needs to be a good connection. During the modeling of flexible duct between supply diffuser and branch duct, the good connection was broken. The loss of this good connection, created a "bad connection", defined by Revit. This bad connection disabled the ability of Revit to calculate total system airflows and pressure losses. After a whole system has been created, the time investment to correct this mistake early in the design process negates any time saving benefits in using the building information.

In designing the laboratory supply, depicted in Figure 76, a unique system was used incorporating uncommon pieces of mechanical equipment. Most supply systems use a VAV box to monitor and condition air, but the high performing laboratory system uses a combination of phoenix control valves and heating coils. Revit has a specific way that it requires duct information to be analyzed and transferred through an object. The system was unable to transfer airflow information from component to component, effectively breaking the system. The system was capable of transferring data through one object, but unable to accurately transfer information between two components. A learning curve accounted for the extra time spent trying to understand how Revit uses connectors and family parameters to communicate information through an object, but this knowledge couldn't be translated to the transfer between two component families. The online knowledge base, which is often very helpful, was unable to offer any concrete suggestion other than "Guess and Test". Due to lack of knowledge and case studies, the transfer of data between the heating coils and supply valves was abandoned. This lack of transfer disabled the ability to calculate airflow and static pressure loss through the duct system.

BIMception - IPD/BIM Thesis

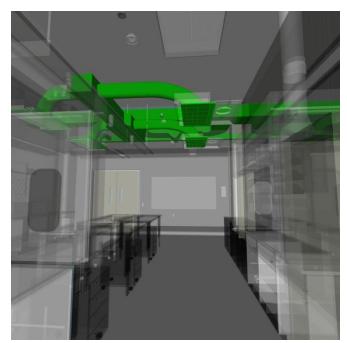


Figure 76: Render of Laboratory Supply Ductwork in Third Floor Materials Science Lab

Once the existing duct model was created, the automatic duct sizing tool was used to model varying duct sizes as described in the static pressure section above. Using this automatic tool caused numerous errors in the duct systems, invalidating the transfer of information. The transitions between ducts would not automatically resize. They would create mismatches, causing the connections to become broken or unable to resize. In other cases, automatically resizing the duct would cause the airflow direction to change, invalidating the system connections. Using the automatic duct sizing tool became a hassle trying to get Revit to do what was intended. The information inherent in ducts became a hindrance in simply trying to manipulate duct sizes.

The usefulness of building information in duct systems was lost in every case tested. The process to correctly and efficiently transfer information needs to be developed and well communicated to the user base. Without an understanding of how Revit requires things to be modeled, the user base will never be able to use the functions that are being developed. The added information actually slowed the modeling process and no information was able to be extracted from the model.

Revit Modeling of Structural Systems

An existing structural model was provided to BIMception by Whiting Turner Construction and was modeled by RVA. This model served as a good base model for coordination purposes, modeling alternative design options, creating schedules and material take-offs, and producing quality images of new design options.

Modeling of the proposed one-way concrete pan-joist system was carried out in this Revit model as a "Design Option." Revit has a unique modeling framework for simultaneously modeling multiple design options. The main structural model includes the entirety of the cantilever area with all structural steel that will be retained as the existing design. All existing structural steel in the LS and MS wing, from grid line 13 to 21 and N to BB, respectively, was moved from the main model to its own design option called "Existing Steel." Another design option was made and named "New Concrete Design." Within this design option the fully designed pan-joist system was modeled. Thus, both the existing steel wings and the new concrete wings could be present in the same model without interacting and or overlapping. By assigning the concrete option as the "primary" design option in the model the concrete pan-joist system was then automatically inserted in place of the existing steel option when the main model is viewed. The existing steel wings can also easily be viewed by switching to its respective design option. An image of this change is shown below in Figure 77. Other images of the existing steel structure are present in Appendix-G.

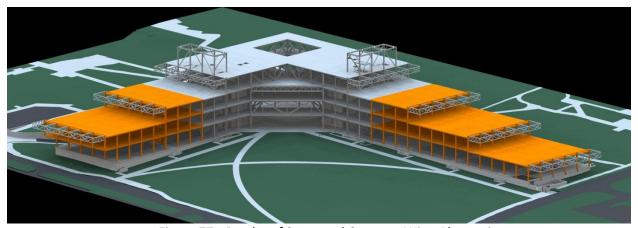


Figure 77: Render of Structural Concrete Wing Alternative

Building Information in Structural Systems

Including the existing and new design options in the same revit model poses multiple benefits and uses when attempting material take-offs and for coordination modeling. Multiple schedules can be created within the one model and filtered to reveal specific information about the model. Revit schedules pull information from all design options. By keeping the concrete elements on a separate workset named "New Concrete Design" the schedules can be filtered to only show these elements. Quantities such as areas, volumes, and grand totals can be automatically calculated by the schedule. The entire schedule can then be exported to excel and used by the construction manager to integrate with all relevant cost analyses and take-offs from other models.

Initial 3D coordination between the mechanical redesigns and structural redesigns were accomplished by inserting each model into one another as a Revit link. This is an easy way to spot collisions and design flaws early in the design process. Structural Coordination Models can easily be created from 3D views within the Revit model as well to be used in Navisworks to fun final collision detections and for 4D modeling. Section boxes within a 3D view can be used to limit to amount of elements that are exported. For more information on Structural coordination view the Coordination section of the Plenum Investigation.

Limitations of Building Information in Structural Systems

Proposed Structural BIM processes within BIMception's BIM Execution Plan included Structural Design Authoring. In this BIM process the new concrete gravity system was to be modeled entirely in ETABS for design iterations and analysis. When the system was approved an met all performance requirements it was to be exported through the ETABS-Revit link and imported into revit to be used as a design option within the entire structural model. This link is intended to be two way to allow the designer to make changes in either program. By importing/exporting through the link the same model in the other program will be updated automatically. This is an ideal description of how the process should work, however many issues with this process have been encountered.

The link was originally developed for the 2010 version of Revit and had been used by BIMception's Structural Engineer in BIM Studio in 2010 to link an ETABS analytical Model to the Revit coordination model. An initial concept model was created in Revit around the proposed architecture and then exported to ETABS. Issues were seen when running the model with gravity and lateral loads. The program showed warnings with respect to lack of stiffnesses and losses of accuracy within the analytical results. Due to the fact that Computer Structures INC (CSI), the producer ETABS and SAP, and Autodesk, the producer of Revit, are not affiliated CSI is responsible for the production of the link. Although they work with Autodesk to understand how to produce the link the process is relatively new and there are inherent issues with the link. Also with the upgrade to Revit 2011 a new link need be created to keep up with the new Revit updates. Unfortunately this takes time and was not available with the release of the new version of Revit. It was expected that it would eventually be available in time to use within the time constraints of this thesis, however, upon the conclusion of this thesis project the link is still not available and the process cannot be completed.

Extent of Modeling for Etabs-Revit Link

Analytical models created in ETABS are generally created with a different goal than a Revit coordination model. To successfully use the link feature project team members must decide not only the extent of what need be modeled for coordination purposes in the Revit model, but also what is necessary for an analytical model, in this case using ETABS. If the link is used both models will include the same components. Therefore if the entirety of the building structure is needed to integrate with the other building systems, the entire structure must be included within the ETABS model. This can pose some issues for the analytical model, those of which have been realized through this plenum investigation.

For a floor system analysis using gravity loading, unless the floor system changes drastically throughout the structure it benefits the designer to model a small section of the structure with typical member sizes to obtain general knowledge about the structural performance. The entire floor structure need not be modeled. For a lateral system analysis, ASCE7-05 allows the modeling of only lateral resisting elements within an analytical model connected with rigid diaphragms to simplify the modeling process. Using the ETABS-Revit link would essentially force the combination of the gravity and lateral analytical models. This is possible and ETABS is set up to be able to keep gravity and lateral loads as separate load cases and can be run separately. This issue arises with the size of the model.

The larger the model the longer the analysis run time and the more likely that analytical errors will occur. Even though this process would force the creating of a more complicated model it would prevent the task of modeling elements twice, once in each model, and could prevent differences between the models. However, as in the case of modeling MSC, the potential complication of a model due to the amount of structural elements within the overall structure outweighed this benefit. The fact that the link was never available ended up being the capstone and the end to this BIM process regardless of the modeling process.

BIMception - IPD/BIM Thesis

Coordination of Mechanical Supply Duct and Structure 1

In the Figure 78 below, the existing structure is shown coordinated with the existing mechanical laboratory supply. The supply mains run just below the deepest girders restricting their height, so that branch ductwork can run perpendicular underneath. The large supply phoenix valves and reheat coil can be seen. The enlarged reheat coil is mounted in the center of the duct and takes advantage of wasted plenum volume above the supply main.

The Figure 79 depicts the redesigned structure integrated with the existing mechanical system. The increase in useful plenum volume is clearly noticeable in the increased distance between the top of the supply duct and lowest structural member. The waffle ribs in the structure allow for the reheat coil to extend into the smaller volume of wasted plenum space.

A redesigned duct system is shown in Figure 80 taking advantage of the increased plenum volume of the redesigned concrete pan-joist structure. There is still wasted space above the duct system that could be analyzed in future studies with the potential to shrink the floor to floor height, reroute mechanical systems, raise the ceiling, or perform better coordination.

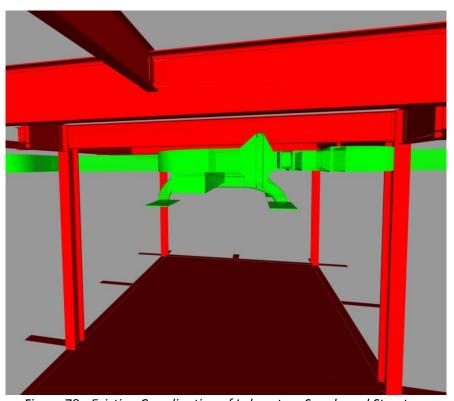


Figure 78: Existing Coordination of Laboratory Supply and Structure

BIMception – IPD/BIM Thesis

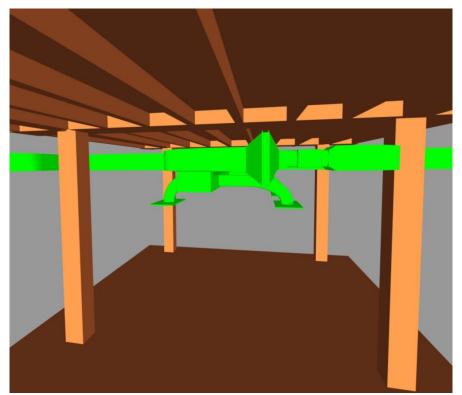


Figure 79: Coordination of Laboratory Supply and Alternate Structure

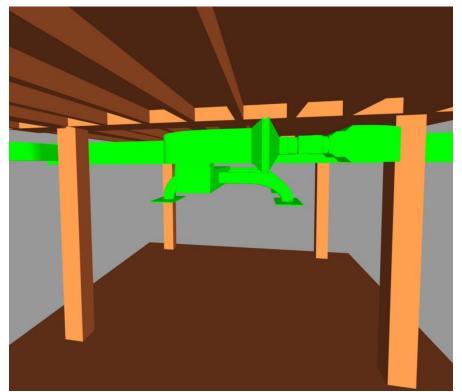


Figure 80: Coordination of Alternate Laboratory Supply and Alternate Structure

Coordination of Mechanical Supply Duct and Structure 2

In the Figure 81 below, the existing structure is shown coordinated with the existing mechanical laboratory supply. The supply duct runs tightly under the existing structure not allowing for flexibility in sizing.

Figure 82 shows the plenum space advantages of the redesigned structure. Removing the deep girders, allows for greater duct/structure clearances and an increasing in useful plenum volume.

An increase in duct height utilizes the extra plenum space created by the structural redesign, saving operational energy, shown in Figure 83.

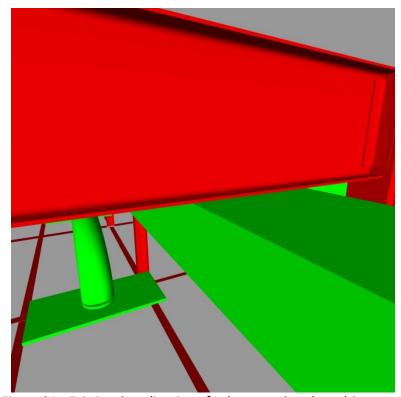


Figure 81: Existing Coordination of Laboratory Supply and Structure

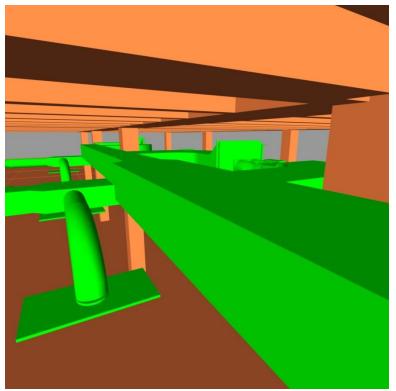


Figure 82: Coordination of Laboratory Supply and Alternate Structure

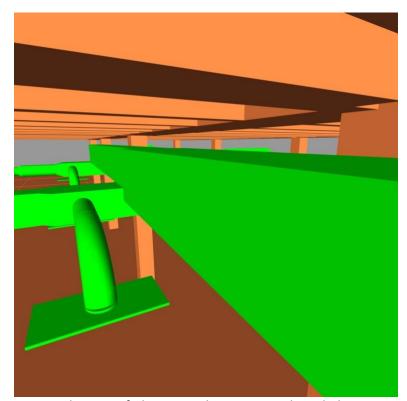


Figure 83: Coordination of Alternate Laboratory Supply and Alternate Structure

Coordination of Mechanical Supply Duct and Structure 3

In the Figure 84 below the existing mechanical and structural systems are coordinated. In order to fit in the plenum the office supply shown in blue must divert around the office return shown in pink. The office supply effectively uses the extra plenum space left by the depth of structural girders. This diversion, however, creates a significant source of static pressure loss.

A redesigned structure and redesigned mechanical solution, Figure 85, show an alternative to addressing this coordination issue. While the ribs do not allow for the supply duct to divert over the return, they do provide a horizontal chase in which the return branch can run. As seen in previous examples, the redesigned structure creates more usable plenum space, including room for horizontal chases. Due to system effects, it is difficult to predict which mechanical alternative creates the best opportunity for energy savings and therefor is not evaluated.

In Figure 86, the mechanical alternative is shown with the existing structure highlighting the collision of the branch duct and structural member. The coordination of mechanical and structural systems is imperative to creating a feasible alternative.

The 3D building section in Figure 87 better shows the close integration of the mechanical and structural systems as the branch duct runs down a chase created by the redesigned structure.

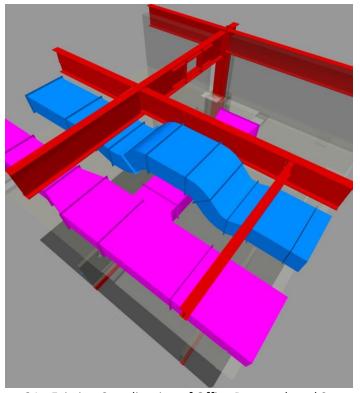


Figure 84: Existing Coordination of Office Ductwork and Structure

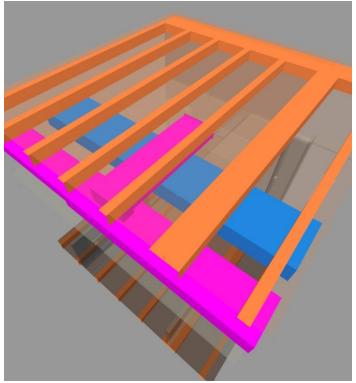


Figure 85: Coordination of Alternate Office Ductwork and Alternate Structure

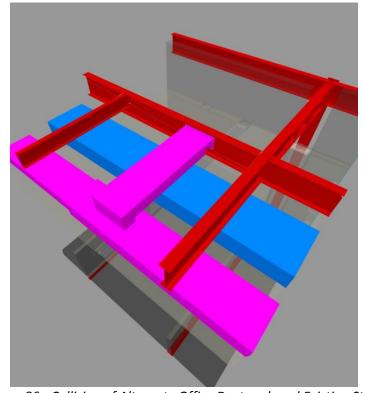


Figure 86: Collision of Alternate Office Ductwork and Existing Structure

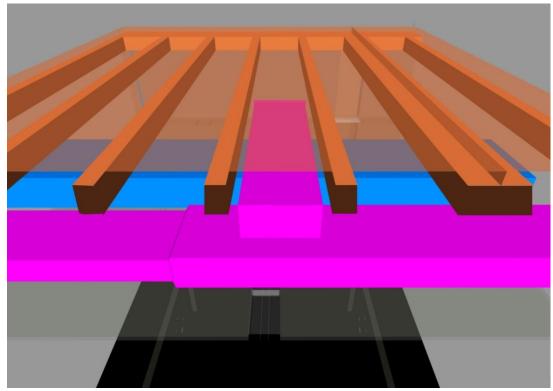


Figure 87: 3D Section of Coordinated Alternate Office Ductwork and Alternate Structure

Coordination of Mechanical Drainage Pipe and Structure

In Figure 88 the drainage system from the green roof above penetrates the existing structure. Running above all other components in the plenum, the drainage system runs directly through the structure. While this is not a field collision, the design creates unique field work-arounds to accommodate the sloping pipe. This collision has created more design work for the structural engineer and more labor within the fabrication process to cut theses holes and weld the web stiffeners in place before delivery to the site.

To allow the drainage pipes to run the length of the building, structural beams are cut and their members supported with flanges, Figure 89.

A redesigned structure in Figure 90 allows the drainage pipe to fit directly underneath the structure, preventing collisions with beams and other components in the plenum. No collisions were detected between the existing drainage pipes and the redesigned floor structure.

The render, Figure 91, highlights the numerous penetrations of drainage pipe through the structure, while Figure 92 shows the drainage pipe fitting snuggly under the redesigned structure.

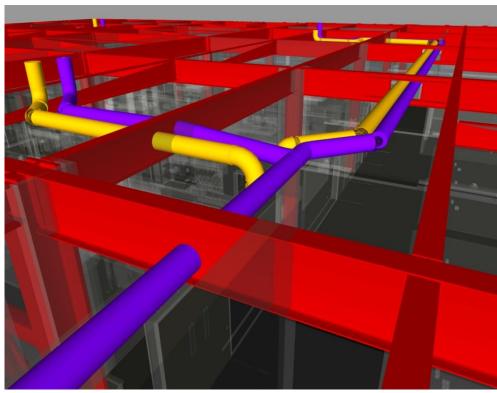


Figure 88: Existing Coordination of Drainage Piping and Structure

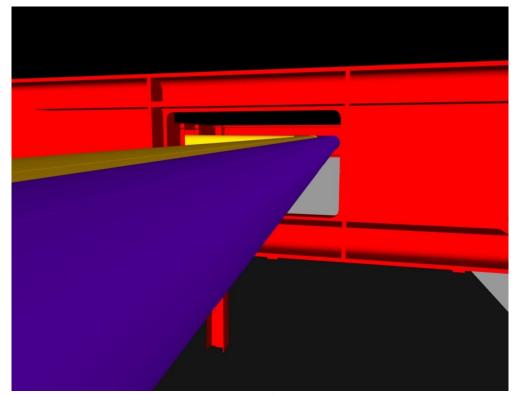


Figure 89: Existing Coordination of Drainage Piping and Structure

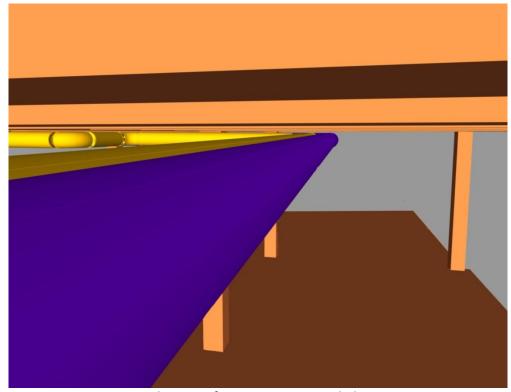


Figure 90: Coordination of Drainage Piping and Alternate Structure

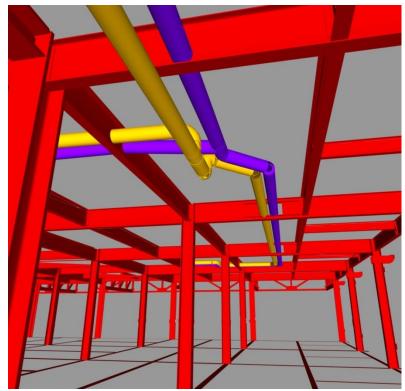


Figure 91: Existing Coordination of Drainage Piping and Structure

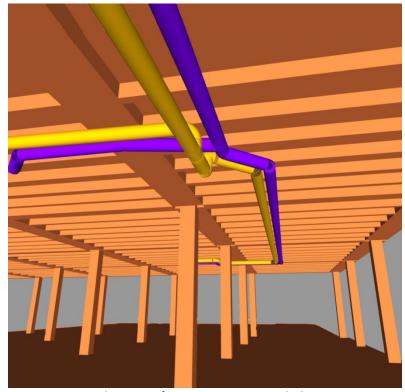


Figure 92: Coordination of Drainage Piping and Alternate Structure

PLENUM CONCLUSION

The alternative concrete structure adequately meets all strength and vibration criteria while reducing structural depth. This reduction in depth allows for an additional 14" of useful plenum space. A 6" increase in laboratory supply duct size produces nearly three thousand dollars of savings, immediately offsetting first costs. The alternative concrete system improves mechanical coordination by reducing collisions and adding flexibility. Scheduling and site logistics have also been improved.

	Existing Design	Alternative Façade Design	Savings
Total Yearly Operating Costs	\$140,379	\$137,453	\$2,926
Installation Costs	\$29,966	\$33,131	\$-3,165
30 yr Life Cycle Cost	\$3,647,648	\$3,575,409	\$72,239

Table 62: Duct Redesign Life Cycle Cost Analysis

Cantilever Plaza Redesign

DESIGN APPROACH

The Millennium Science Complex cantilever plaza creates a large architectural statement integrated with strong engineering. The plaza contains the main entrance to the MSC and brings together the Material and Life Science wings as one cohesive building. Beneath the plaza lie vibration sensitive nanotechnology laboratories. The vibration requirements play a large role in the structural system of the 150' laterally cantilever. Due to the stringent vibration requirements the plaza contains a serpentine to discourage foot traffic above the labs. Bimception's focus on the cantilever plaza is to enforce the key architectural features of this plaza while retaining the overall themes of a floating horizontality.

The cantilever structural design requires an innovative design solution. The existing system incorporates two orthogonal truss systems, each consisting of an interior and exterior truss, reaching out and upward from each wing toward the shared corner. Each of the trusses intersects each of the trusses extending from the opposite wing. Member sizes and orientations within the trusses are based on stiffness to control deflection in the cantilever. The current structural design deflects four inches under self-weight with an additional allowance of two inches for live loads.

The cantilever plaza landscape attempts to reduce pedestrian traffic above the nanotechnology labs with the winding serpentine pathway. This presents conflicting illumination goals. While the pathway creates a unique space it's essential to divert people towards the entrances and not the landscaped plaza. In order to achieve this, illuminance ratios were utilized bringing focus towards the entrance canopies, yet the pathway still needs adequate illumination to create a visually appealing space for those who venture from the main sidewalks. Fixture placement along the sidewalk edges helps create a line of light directed away from the pathway and towards the entrance. To highlight the architecture of the cantilever the absence, or void was illuminated along with the side walls in the entrance canopy.

STRUCUTRAL TRUSS ALTERNATIVE

The investigation of the cantilever will attempt to move toward a more strength controlled truss design that will allow the use of more efficient tension members. This will be accomplished by the addition of shear wall panels extending into the cantilever from the existing shear walls. This can reduce the effective length of the cantilever reducing flexural deformations and increase usable shear area within the concrete walls to reduce shear deformations due to racking in the truss. The hope is that this effort can relax the stiffness demand on the diagonal braces so that the orientation of the braces can be changed to be acting in tension and then can be downsized to a level controlled by strength.

Increases in stiffness due to the addition of concrete shear wall panels will directly affect the relative stiffnesses of each lateral resisting element within the building, specifically the concrete shear walls within the wings. Another design alternative will investigate the potential of simultaneously adding depth to the truss at the steel-concrete wall interface and reducing the effective length of the cantilever with added braces and concrete shear into the cantilevered section.

Existing Truss Designs

Truss Layout

Massive is the best word to describe the truss system that supports the 155ft building cantilever at the intersection of the two wings of MSC. An interior and exterior truss, 66ft apart, extend out from each wing. The two interior trusses intersect 66ft into the cantilever and then each intersects the exterior truss from the opposite wing an additional 66 ft from the first intersection. The exterior trusses intersect the interior truss from the opposite wing 66ft into the cantilever and then intersect each other another 66ft out from there, toward the tip of the cantilever. Each of these trusses supports one another and the multiple gravity frames between them within the cantilever. Also the space in between the truss intersections helps to define the square window opening above the cantilever plaza.

Design Theory- Balance of Stiffnesses

Both the interior and exterior trusses are designed similarly although slightly different in overall shape due to the sloped profile angles of the cantilever. These four trusses needed to be designed together due to the fact that they essentially support each other. Engineers at Thornton Tomasetti took special care in balancing the stiffnesses of the two different trusses so that the exterior trusses hung from the interior trusses or vice versa. The overall stiffnesses of each frame are roughly the same resulting in heavier members in the smaller exterior trusses and lighter members within the larger interior truss. Figure 93 and Figure 94 on the following pages show the existing truss designs and the member sizes.

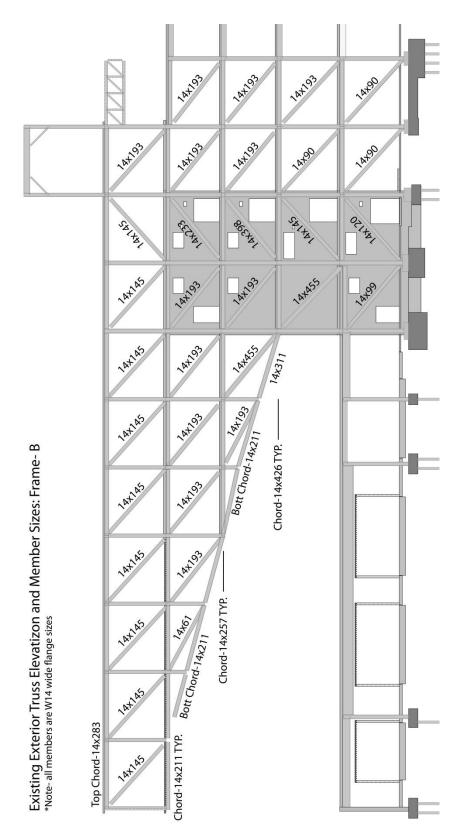


Figure 93: Existing Exterior Truss on Frame-B

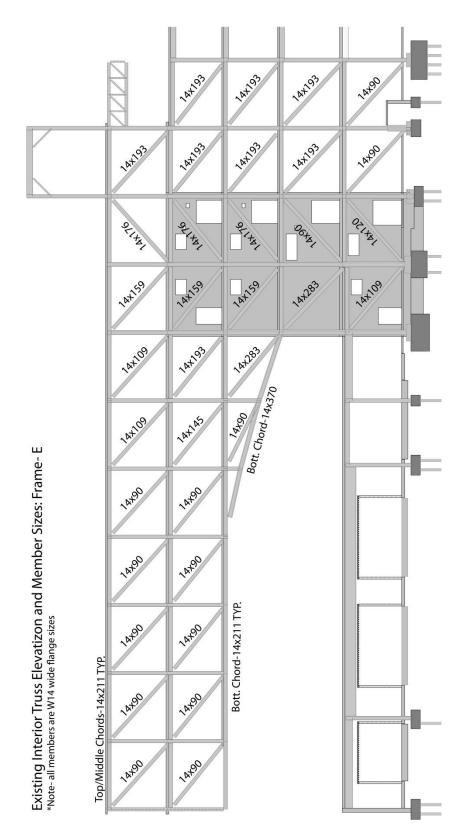


Figure 94: Existing Interior Truss on Frame-E

Total stiffnesses of the combined truss system were primarily governed by the serviceability requirements defined by the code and adjusted by the structural engineer. The code limit for the deflection at the tip of a cantilever is L/180. Over the 155ft cantilever length this would equate to slightly over 10in. This was considered unacceptable for the construction of MSC for façade panel installation, occupant comfort and exterior aesthetics of the building. Therefore the service load deflection was limited to a total of 6in. The designed structure was determined to deflect 4in under self-weight alone and the live load deflection was limited to 2in. To account for the self-weight deflection all steel members within the truss system were cambered so that when installed a deflection of approximately zero inches. Truss stiffnesses were then designed to only allow an extra 2in of deflection due to live load. Although the total deflection during construction was 6in the overall deflection below the horizontal is only the 2in live load deflection, which is negligible to human perception.

To accomplish the extreme stiffness requirements to limit the deflections a customized load path was created through the truss to transfer gravity loads back to the shear wall and down to the foundations. All braces within the cantilevered portion of the trusses are oriented in compression. This orientation, along with the increasing width of the truss toward the shear walls, creates a system of compression chords passing gravity loads to specific locations and focusing them downward toward the foundation. This creates the shortest and most efficient load path. Also considering the high stiffness requirements buckling was not an issue with the brace design. Also for constructability reasons and for added stiffness all intersections of braces, columns, and braces were moment connected with full penetration welds. Figure 95 shows the highlighted compression load paths, in blue, from the tip of the cantilever back to the shear wall, highlighted in red.

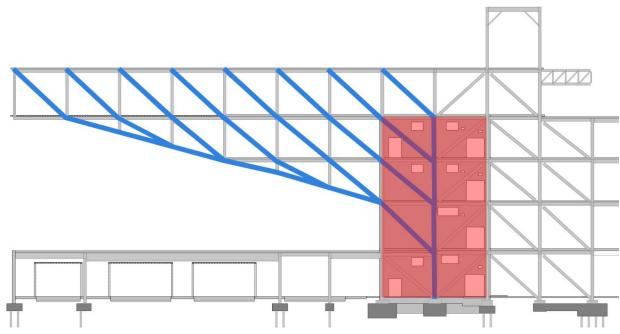


Figure 95: Exterior Truss with Efficient Compression Load Paths Highlighted in Blue

Truss Alternatives

Challenges arise with the proposed truss design in relation to the stiffness requirements. Switching to tension members can be a good idea, especially if concrete is introduced to reduce the effective length of the shear; however, the efficient load paths created by the compression members are interrupted. The first step in the redesign process was to properly model the truss system and all relevant loads in SAP2000.

Cantilever Modeling in SAP2000

Pulling again from knowledge gained in AE 597A, the existing and all redesigned truss alternatives were modeled in SAP2000 to adequately compare deflections and stiffnesses of the whole cantilever system. Two sets of models were created. The first were a set up models strictly used to compare the stiffnesses of the interior and exterior trusses as well as the stiffnesses of any redesigns with the model of the existing design. Figure 96 shows the stiffness comparison model of the existing truss configurations with the correct member sizes, shear wall sizes, material definitions, and adequate meshing of the wall and frame elements surrounding the walls. A point load of 1000 kips was added to the end of each truss. Using a linear static analysis in the model, the resulting deflections are proportional to load applied through the overall stiffness of the truss. Therefore comparing these deflections is and adequate representation of the comparison of stiffness values. The deflections of the exterior truss, frame-B, and the interior truss, frame-E, in this existing stiffness model were 5.7335in and 5.8725in, respectively.

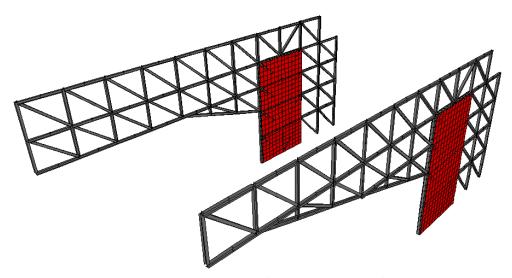


Figure 96: SAP2000 Model of Existing Truss Configurations

In attempt to recreate the ideal conditions of the existing cantilever system a larger SAP2000 model was created incorporating all four trusses, as well as all gravity frames transferring gravity loads onto the trusses. Frame elements were used for all steel columns, beams, and braces. Shell elements were modeled at the floor levels. A process of area dividing and frame meshing was used, as explained in the vibration analysis section of the floor system redesign previously, to mimic the existing composite steel beam floor system. Design loads including dead, live, superimposed dead, and façade panel loads were modeled in the proper locations. The extent of the model was exclusive to the area surrounding the cantilever plaza area, including all floor levels, roof, and all lateral resisting elements from girds one to 12 and from A to M for both wing directions. Figure 97 shows an image of the secondary model of the existing system. The service load deflection for Model-2 with the existing condition was a total of 5.233in, 0.9201in being strictly live load deflection. This is well within the defined limits and confirms the accuracy of the modeling process. Although this output may be close to the ideal conditions of the real structure to focus of this study will be the comparison of this design criteria with the same criteria calculated for all new design iterations.

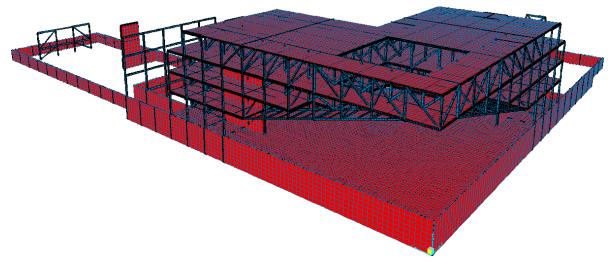


Figure 97: SAP Model of Entire Cantilever Support System With Supported Gravity Systems

Cantilever Redesign 1- Tension Members

In preparing the first alternative truss designs two goals must be accomplished including the overall stiffness of the trusses as well as the strength of the members. As a first step the orientation of all compression members from the existing design were switched to a tension orientation. Initial size changes were made in attempts to keep the truss stiffnesses intact, yet assign members appropriately for a tension dominated truss. Stiffness Model-1 was then run to gauge the impact of this change. The resulting deflections were larger than the existing design. Therefore as initial design critical members were sized larger than necessary to eventually result in slightly lower deflection on both frames as compared to the existing stiffness model. This new layout was then modeled in the large Model-2 to see if these equivalent stiffnesses carried over into a model with the real loads.

Design Loads based a load combination of 1.2D+1.6L as per ASCE7-05 were calculated in the SAP model to obtain design axial loads and moments in each brace and chord member within the truss. SAP frame element member loads were used to calculate minimum sizes of braces and chord members based on the combined axial load and moment using the combined loading tables and equations from chapter 6 in AISC Steel Construction. These minimum sizes were incorporated in the Model-2 SAP model. When the analysis had been run the service deflection was noted to be 9.336in. This is testament to the efficiency of the compression load path shown earlier. Not only was the overall truss stiffness much less, but the member sizes had already been increased through stiffness analysis using Model-1. The critical member sizes were then increased to eventually match the overall stiffness in Model-2 with the design loads. The results show a potential design alternative with tension members, yet no extra efficiency is granted from this design, in fact this design is much less efficient than the existing system. Figures 98-99 show the final design solutions of the exterior and interior frames for design iteration-1.

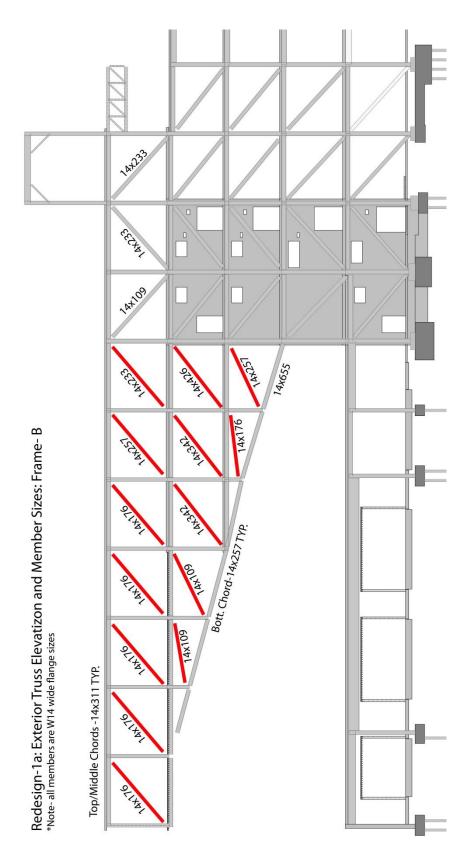


Figure 98: Redesign-1a: Exterior Truss on Frame-B With Tension Members

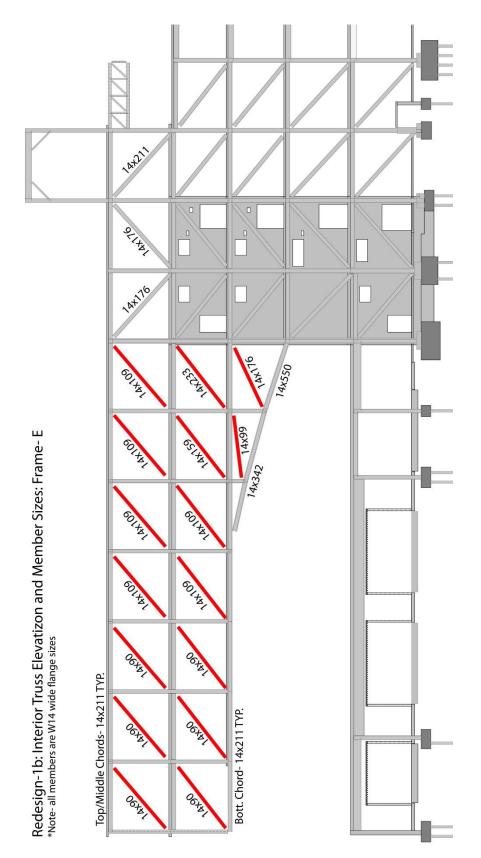


Figure 99: Redesign-1b: Interior Truss on Frame-E With Tension Members

To improve the truss redesigns incorporating tension members concrete shear walls were introduced into the cantilever to attempt to reduce the effective length of the cantilever and improve the shear stiffnesses. The one large issue with the tension member redesign-1 was the concentration of most of the chord compression force through only one member in the bottom chord thus the reason for the need of a W14x655 in the exterior truss. This is not an issue with the existing truss due to the multiple compression chords helping to distribute the large gravity loads. Therefore to help with the compression forces and increase stiffness, the shear wall was extended two bays into the cantilever for both truss configurations. An example of this addition is shown in Figure 100.

Truss Redesign-1+: Additional Shear Wall

When the shear walls were introduced into the stiffness Model-1 the deflections from redesign-1, which had been approximately equal to the existing model with larger sizes, the deflections dropped well below the target values by 17%. This was a large improvement, however, once again the same cannot be said when the same change was incorporated into Model-2. Even with the additional shear wall the members needed upsizing to meet the deflection requirements. Therefore the redesigns using tension members were becoming more and more inefficient. Adding size to the brace and chord members as well as extra concrete to even match the existing system is illogical and another alternative should be considered.

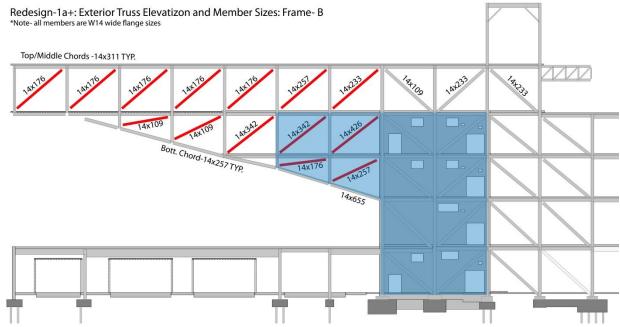


Figure 100: Redesign-1a+: Additional Shear Wall Within Truss Configuration

Truss Redesign- 2: Additional Bracing

Truss redesign-1 and 1+ showed that for the existing truss layout the efficient load path exhibited by the bracing members oriented in compression shows much more potential than a similar layout with compression members. Also additional concrete shear walls seemed to help with the individual stiffness of each frame, but with the entire system and all service loads applied member sizes still needed increasing to meet the existing deflections. It is then worthwhile to attempt to modify the existing truss configuration incorporating potential improvements to the already efficient system.

Reducing effective span and increasing usable depth in a cantilever will always yield a more efficient design. While additional shear wall with the existing configuration potentially reduced the effective span of the cantilever, it does not add any extra depth to the truss. A new idea proposed to improve this aspect with the existing truss was to add an additional brace to connect another compression load path. The proposed additional brace was added in the first bay of the cantilever plaza adjacent to the shear wall, between the first and second floor.

Initial designs for this option were formulated by adding the new brace with a similar size to the bottom compression chord at the lowest part of the cantilever. This brace was added to Model-2 at each truss and the design load case was analyzed through SAP. Axial loads and moments were once again output from the program and new minimum sizes were calculated for all braces and chords based on combined axial and moment loading. These minimum sizes were modeled in stiffness Model-1 including the new braces. After a few iterations of upsizing similar members were determined for most brace sizes as compared to the existing design, however, the critical compression members with large loads near the shear walls were reduced in size and the chord members also dropped in size. Overall more efficient truss configurations were designed overall. Figures 101-102 summarize the new member sizes in the exterior and interior trusses and show the added braces.

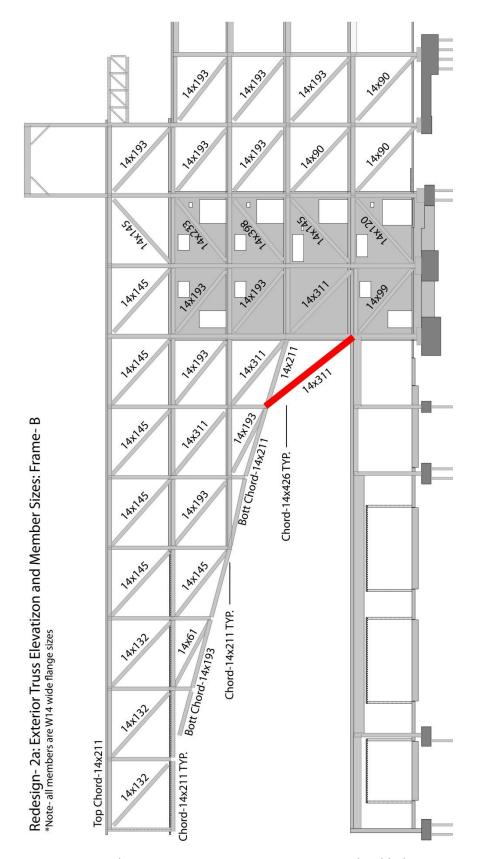


Figure 101: Redesign-2a: Exterior Truss on Frame-B With Added Brace

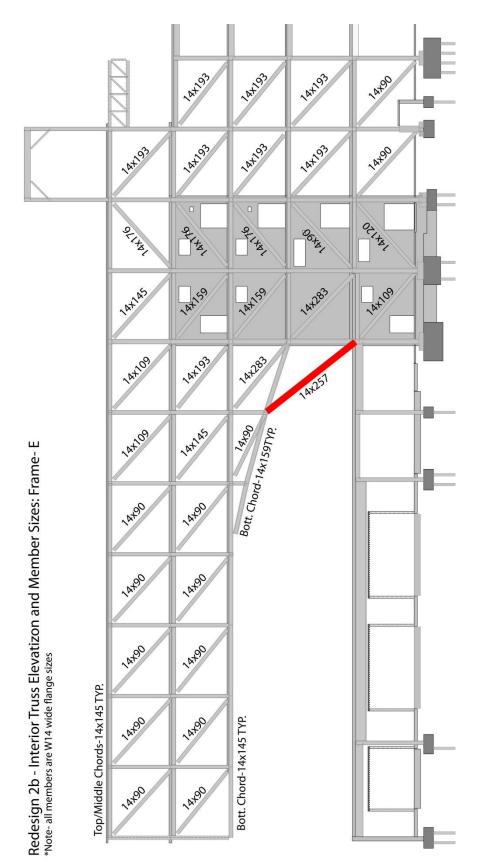


Figure 102: Redesign-2b: Interior Truss on Frame-E With Added Brace

Truss Redesign Conclusions

The added brace poses the best benefit of all the redesign options for the cantilever truss system. To compare the full potential with the previous designs shear wall was also extended a full two bays into this design as well. Once again the savings could not outweigh the input of materials and labor. When modeled in the stiffness Model-1 only 5% of the previous deflection, just with the additional brace, was removed. When incorporated with the entire gravity system in Model-2 the added wall did have a similar impact on the deflection, however, through only changing one or two brace sizes in the last two bays of the cantilever, that deflection savings was relinquished. This would have only saved roughly \$2000 in steel cost while adding the cost of additional concrete and labor alone would cost more than the savings. However, redesign-2, shown in Figure 103, with the additional brace greatly reduces the amount of steel necessary in the horizontal chords and the additional brace reduced the demand and the sizes of the critical compression braces at the lower sections of the cantilever. In all the size reductions amount a savings in excess of \$50,000, just in steel material costs between the four trusses, which makes it the most efficient structural option and the most cost effective option, between the existing and the redesign options presented above.

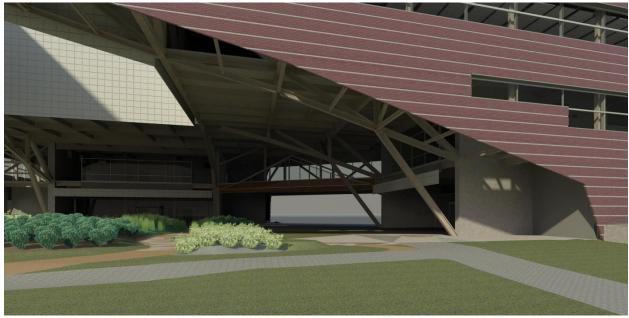


Figure 103: Cantilever Plaza BIMception's Structural Changes

BIMception – IPD/BIM Thesis

04/07/2011

Cost Analysis

Due to time constraints, an in-depth analysis of the structural changes to the cantilever was not conducted. However, a quick takeoff was produced for the changes to the beams within the trusses. Based on this takeoff, there was a savings of \$52,991 for the reduction in steel tonnage for the downsized beams. Changes to labor were not investigated. However, the expectation is that labor would not change drastically as the number of steel members did not change, nor did the welded connections. A detailed takeoff can be found in Appendix G.

Schedule Analysis

Due to time constraints, schedule impacts were not investigated for the change to the structural framing within the cantilever.

BIMception - IPD/BIM Thesis

ARCHITECTURAL

BIMception's overall architectural goal for the Millennium Science Complex was to maintain Raphael Vinoly's vision of a floating horizontal building. The structural changes to the cantilever truss resulted in architectural changes to the Millennium Science Complex. However the changes to the entrance canopy (seen in Figure 104) doesn't infringe upon the hierarchy of the design. The entrance canopy's side walls encase the structural trusses, creating a seamless integration between the structure, cantilever profile, and building entrance.

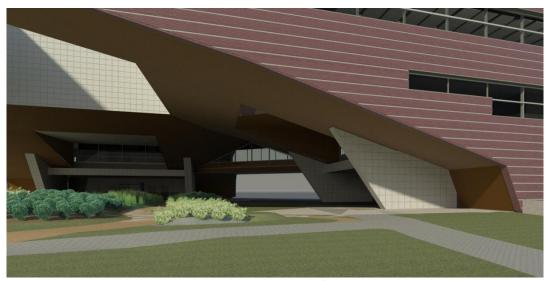


Figure 104: Cantilever Plaza BIMception's Architectural Changes

When assessing the architectural changes within the cantilever plaza it's important to look at the building as a whole. The new angled entrance canopy creates a progression of angles from ground level up to the tip of the cantilever. Figure 105 shows that from any point in the plaza the eye follows vertically along the angles towards the huge architectural statement of the cantilever.

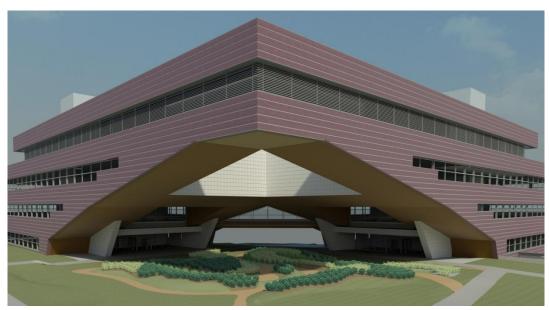


Figure 105: Cantilever Plaza BIMception's Architectural Changes

LIGHTING REDESIGN

Space Description

The cantilever plaza is located at the main entrance of the building, and brings together the two wings of the Millennium Science Complex. Located below the plaza are vibration sensitive laboratories. Due to this there is a serpentine pathway intended to limit foot traffic. BIMception's redesign of the entrance canopy ties in with the angled nature of the cantilever structure.

Figure 106: Cantilever Plaza Site Plan

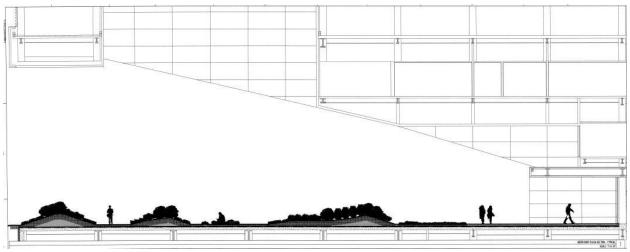


Figure 107: Cantilever Plaza Section

BIMception – IPD/BIM Thesis

Materials – Can	tilever Plaza
Surface	Reflectance Value
Grass**	0.26
Fern Area**	0.24
Ornamental Grass**	0.26
Ground Cover**	0.15
Mulch**	0.20
Pathway**	0.22
Sidewalk**	0.28
Brick**	0.26
Silver Paneling**	0.34
Copper Paneling**	0.34
** Values from AGi32 swatc	hes for similar materials

Table 63: Cantilever Plaza Material Properties

Design Criteria

IESNA Illuminance Recommendations

	Illuminance
Building Entrance	5 fc Horizontal
	Illuminance
Prominent Structures	5 fc Horizontal
	Illuminance
Garden Pathways	1 fc Horizontal
	0.3 fc Vertical
ASHRAE 90.1 Lighting Power Density	
Building Walkways (<10' wide)	1.0 W/Linear Foot
Building Walkways (>10' wide)	0.2 W/SF
Canopies & Overhangs	1.25 W/SF
Building Façade	1.25 W/SF

Plaza Considered under ASHRAE 90.1 LPD Classification of Canopies and Overhangs, This allowing 1.25W/SF. Total available connected watts 35,528 W.

Design Considerations

Very Important

Appearance of Space and Luminaires (IESNA)

When dealing with a prominent structure and building entrance, it's important to address the appearance of the space. This can help direct occupants throughout the space; this is a key theme to this space to limit foot traffic above the laboratories.

Glare (IESNA)

When designing an exterior space it's important to avoid glare. Glare can cause discomfort for the occupants entering the building. This can be addressed in fixture selection and location.

Light Pollution/Light Trespass (IESNA)

Light pollutions and light trespass can have a large effect on adjacent properties. In this space this issues aren't as important since Pennsylvania State University owns all of the adjacent property.

Modeling of Faces or Objects (IESNA)

For safety and comfort reasons it's important for occupants of an exterior space to be able to identify their surroundings.

Points of Interest (IESNA)

This space contains a large structural icon in the cantilever and void so it will be important to address this in design.

Luminaires

		Luminaire Schedule						
Fixture Type	Image	Description	Mounting	Lamp	Voltage	Ballast	Wattage	Notes
X1	Y	Louis Poulsen Kipp Post Cutoff. Pole Mounted Fixture, White Spun Aluminum Diffuser, Black Injection Molded ASA Top Shade, Clear Polycarbonate Enclosure, Black Die Cast Aluminum Frame Catalog #: KIP-1-70W-CMH-T6 G12	Pole Mounted 27'-0"	(1) 70W CMH CCT 3000K CRI 90	277V	Electronic Advanced Transformer	79W	
X2	Y	Louis Poulsen Kipp Bollard. Pole Mounted Fixture, Injection Molded White Opal Acrylic Diffuser, Injection Molded Clear Polycarbonate Enclosure, Black Die Cast Aluminum Frame. Catalog #: KIB-1-39W-CMH-T6 G12	Pole Mounted 4'-3"	(1) 39W CMH CCT 3000K CRI 90	277V	Electronic Advanced Transformer	45W	
Х3	7	Winona Lighting Spirit. Black Painted Aluminum, 18" Stem, Area Light. Catalog #: SP-0-12V-BKS-18-SM-STD	Surface 18" Stem	(1) 35W MR8 CCT 3000K CRI 100	12V		35W	Provide Series TMI 600 Ingrade Transformer
X4		Invue Entri LED Triangle Reveals. Black One Piece Die-Cast Aluminum, Injection Molded AccuLED Optical System. Catalog #: ENT-A01-E1-BL4-BK	Wall Mount	(1) LED Bar 4000K CRI >70	277V	Integrated Driver	26W	Wall mounted at 10'- 0"
X5	TAD	Lightolier Calculite 6" Recessed Downlight. Array of High Brightness Royal Blue LED's, Phosphoy Lens Assembly Converts Blue Light to White. Catalog #: C6L20-DL-30-M-CL-P	Recessed	LED CCT 3000K CRI	277V	Integrated Driver	39W	
Х6	dab	Lightolier Calculite 6" Recessed Wallwasher. Array of High Brightness Royal Blue LED's, Phosphoy Lens Assembly Converts Blue Light to White. Catalog #: C6L20-WW-30-M-CL-P	Recessed	LED CCT 3000K CRI	277V	Integrated Driver	39W	
X7		Bega Floodlight. 3"x4' Floodlight. Black Die-Cast Aluminum Extruded Housing. Catalog #: 7593P.537BLK-28	Wall Mount	(1) 28W T5HO CCT 3000K CRI 85	277V	Electronic Advanced Transformer	31W	Mount Parallel to underside of cantiliver void.
X8	-	MP Lighting. Black Anodized Aluminum Housing, Polycarbonate Lens. Catalog #: L36-3.5W-W30S-BA	Surface	LED CCT 3000K CRI	12V	Remote Driver	3.5W	Provide Remote TLDDLV60W5000 Driver

Table 64: Cantilever Plaza Luminaire Schedule

Light Loss Factors

Light Loss F	Light Loss Factors - Corridor/Study Area													
Fixture Type	LDD	LLD	BF	Total LLF										
X1	0.88	0.88	1.00	0.77										
X2	0.88	0.88	1.00	0.77										
Х3	0.88	0.92	1.00	0.81										
X4	0.75	0.92	1.00	0.69										
X5	0.75	0.92	1.00	0.69										
Х6	0.75	0.92	1.00	0.69										
X7	0.80	0.92	1.05	0.77										
X8	0.75	0.92	1.00	0.69										
_	*Using new IESNA guidelines for Clean Environment based on 12 month cleaning interval													

Table 65: Cantilever Plaza Light Loss Factors

BIMception – IPD/BIM Thesis

Control Scheme

The cantilever plaza lighting is controlled through Eaton lighting control panel Pow-R-Command 1000 (LCP-1). See Table 66 for control zones, and Appendix E for LCP cutsheet.

Lighting Control Panel Schedule (LCP-1)										
Control Time Period	Zones									
Dusk to Dawn	9,11,13,19,20,21,22,24,26,29,30,31,32,33,31,									
Dusk to 11:00 PM	3, 6									

Table 66: Cantilever Plaza Lighting Control Hours of Operation

Lighting Plan

Lighting plans found in Appendix E.

Renderings



Figure 108: Cantilever Plaza Perspective Rendering

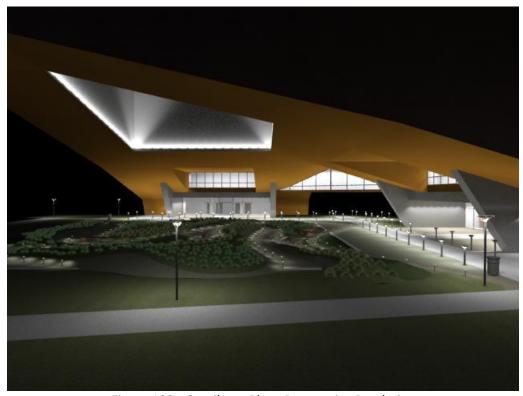


Figure 109: Cantilever Plaza Perspective Rendering

Figure 110: Cantilever Plaza Perspective Rendering

Design Performance

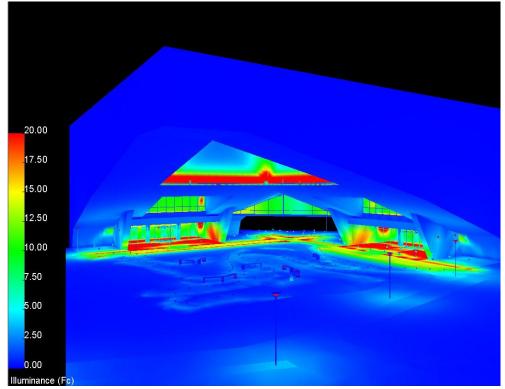


Figure 111: Cantilever Plaza Pseudo Color

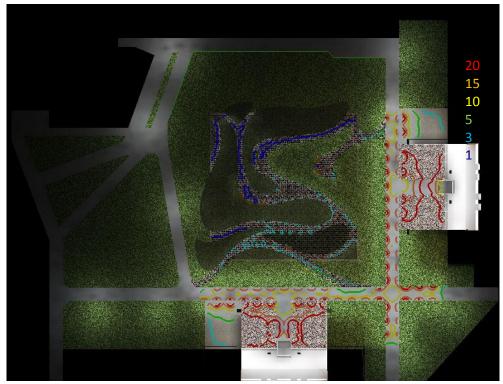


Figure 112: Cantilever Plaza Pseudo Color

BIMception - IPD/BIM Thesis

Pathway Illuminance (FC)									
E _{average}	2.32								
E _{Maximum}	6.1								
E _{Minimim}	0.7								

Table 67: Pathway Illuminance Values

Sidewalk Illuminance (FC)									
E _{average}	12.38								
E _{Maximum}	32.2								
E _{Minimim}	2.9								

Table 68: Sidewalk Illuminance Values

SkyGlow	Illuminance (FC)
E _{average}	5.1

Table 69: Sidewalk Illuminance Values

Lighting Power Density

35W * 139 Fixtures = 4865W 45W * 55 Fixtures = 2475W 79W * 9 Fixtures = 711W 26W * 4 Fixtures = 104W 39W * 32 Fixtures = 1248W 39W * 32 Fixtures = 1248W 62W * 31 Fixtures = 1922 3.5W * 18 Fixtures = 63W 12636W/28,426SF = 0.44W/SF

Performance Summary

The lighting design for the cantilever plaza highlights the void in the cantilever. There is also a prominent focus on the building entrance. The bollards along the main sidewalks help direct occupants towards the entrance and away from the serpentine pathway. Illuminance requirements are exceed, but this was done to create contrast ratios between different portions of the space. The higher values on the sidewalk help to prevent a large contrast from the interior lobby space. There are some issues with sky glow, and in order to address this issue the cantilever void lighting can be set to turn off after hours.

BIMception – IPD/BIM Thesis

04/07/2011

Cost Analysis

Due to time constraints, an investigation of the redesigned exterior lighting systems in the areaway below the cantilever was not conducted.

Schedule Analysis

Due to time constraints, schedule impacts were not investigated for the change to the exterior lighting system within the areaway under the cantilever.

BIMception - IPD/BIM Thesis

04/07/2011

CANTILEVER CONCLUSION

The additional bracing added in redesign-2 reduced the amount of steel in the horizontal chords, and reduced the size of the critical compression braces in the lower portion of the cantilever. The reduction of sizing saved \$50,000, but the architectural changes that resulted from redesign enhance the cost savings. The redesigned structure created a new entrance canopy that blends with the cantilever plaza creating a progression of angles. The cantilever plaza serves as the Millennium Science Complex main entrance and focal point that ties the Material and Life Science wings together. The progression of angles created by the redesign creates a fusion of the spaces that helps enhance the overall architectural theme of a floating building. The use of lighting design in the cantilever plaza further reinforces the architectural theme. The architectural statement of the cantilever is highlighted with light by showcasing the void. The lighting design uses illuminance ratio to guide occupants towards the building entrance and away from the serpentine path. The combination of structural and lighting redesigns serve to enhance Raphael Vinoly's vision for the Millennium Science Complex Plaza.

Electrical Work

LIGHTING CIRCUIT REDESIGN

Affected Panelboards

	PANELBOARDS												
Panel													
Tag	Voltage	System	Study Area	Office	Courtyard								
HL-3D	480Y/277V, 3P, 4W	N	Х	х									
HLE-3D	480Y/277V, 3P, 4W	N/E	Х										
HLE-1B	480Y/277V, 3P, 4W	N/E			Х								
LCP1	480Y/277V, 3P, 4W	N			Х								

Table 70: Panelboards Affected by Lighting Redesign

Student Area

Description of Lighting Redesign

The lighting design for the Millennium Science Complex perimeter student areas is comprised of pendant and under cabinet luminaires. Pendant luminaires are 277V while the under cabinet luminaires are 120V plug loads.

Control Scheme

Pendant luminaires will be controlled by ceiling mounted low voltage occupancy sensor and photosensor. Low voltage switches receive 24VDC power from WattStopper BZ150 Power Pack. Under cabinet luminaires are controlled utilizing integrated on/off switches. The under cabinet luminaires are plug loads.

Lighting Plan

See Appendix E.

Existing Panelboards

	BRAN	CH C	CIRC	CUI	TF	PAN	ELB	OA	٩RE	SC	HE	DULE	
Pane	el Name: HL-3D	Mount	ing:	Sur	face:	Х	Main Lugs Only:					Amp Main CB	200
277/	480, 3 Phase, 4 Wire			F	lush:		Ì			Main:		Amp Bus	225
14,0	00MIN A.I.C. SYM			In	MCC			Fee	d Thr	ough:		Ground Bus	
Neu	tral: 100%	Numbe	er of F	oles:		42				TVSS:		Isolated Ground Bus	
													•
СКТ	Load	TRIP	KV	A/Ph	ase	Poles	Poles	K٧	/A/Ph	ase	TRIP	Load	CKT
No.		(Amp)	1	В	С			Α	В	С	(Amp)		No.
		, ,											
1	STUDENT LIGHTING	20	0.83			1	2	1.70			20	STAFF & FACULTY LIGHTING	2
3	ELECTROACTIVE POLY LIGHTING	20		1.60		3	4		1.90		20	STUDENT/OFFICE LIGHTING	4
5	ORGANIC ELEC & PHO LIGHTING	20			1.60	5	6			1.90	20	STUDENT LIGHTING	6
7	DRY LAB A&B, STAFF LIGHTING	20	1.41			7	8	2.20			20	STAFF LIGHTING	8
9	STAFF ADMIN, KITCHEN LIGHTING	20		1.23		9	10		1.32		20	CONFERENCE RM LIGHTING	10
11	DRAY LAB, MISC COM. LIGHTING	20			1.28	11	12			1.52	20	CONFERENCE RM LIGHTING	12
13	CORRIDOR LIGHTING	20	1.60			13	14				20	SPARE	14
15	CORRIDOR LIGHTING	20		1.54		15	16				20	SPARE	16
17	CORRIDOR LIGHTING	20			1.68	17	18				20	SPARE	18
19	SPARE	20				19	20				20	SPARE	20
21	SPARE	20				21	22				20	SPARE	22
23	SPARE	20				23	24				20	SPARE	24
25	SPARE	20				25	26				20	SPARE	26
27	SPARE	20				27	28				20	SPARE	28
29	SPARE	20				29	30				20	SPARE	30
31	SPARE	20				31	32				20	SPARE	32
33	SPARE	20				33	34				20	SPARE	34
35	SPARE	20				35	36				20	SPARE	36
37	SPARE	20				37	38				20	SPARE	38
39	SPARE	20				39	40				20	SPARE	40
41	SPARE	20				41	42				20	SPARE	42
	Subtotals (kVA):		3.84	4.37	4.56			3.90	3.22	3.42		Subtotals (kVA)	╝
	Total Loads:		Pha	se A:	7.74	kVA				60.00	%	Demand Factor	
			Pha	se B:	7.59	kVA	1			13.99	kVA	Demand Load	
			Pha	se C:	7.98	kVA	1			17.48	kVA	Load x 1.25	
	Total Connected Load:				23.31	23.31 kVA				21.05	Α	AMP	

Figure 113: Existing Panelboard Schedule HL-3D

	BRANG	CH C	CIRC	CUI	TF	PAN	IELB	OA	\R[) S(CHEC	DULE	
Pane	el Name: HLE-3D	Mount	ing:	Sur	face:	Х		Mair	Lugs	Only:		Amp Main CB	200
277/	277/480, 3 Phase, 4 Wire			F	lush:		Shunt Trip Main:					Amp Bus	225
14,0	OOMIN A.I.C. SYM			In MCC				Fee	d Thr	ough:		Ground Bus	х
Neu	tral: XXX%	Numb	er of F	oles:		42				TVSS:		Isolated Ground Bus	
		•					•				•		•
СКТ	Load	TRIP	KV	A/Pha	ase	Poles	Poles	K٧	/A/Ph	ase	TRIP	Load	CKT
No.		(Amp)	Α	В	С			Α	В	С	(Amp)		No.
	•												
1	EXIT SIGN	20	0.10			1	2	1.02			20	STAIR N-1 LIGHTING	2
3	TOILET & CORRIDOR LIGHTING	20		2.16		3	4		1.45		20	STAIR N-1 LIGHTING	4
5	OFFICE LIGHTING	20			2.30	5	6				20	SPARE	6
7	SPARE	20				7	8				20	SPARE	8
9	SPARE	20				9	10				20	SPARE	10
11	SPARE	20				11	12				20	SPARE	12
13	SPARE	20				13	14				20	SPARE	14
15	SPARE	20				15	16				20	SPARE	16
17	SPARE	20				17	18				20	SPARE	18
19	SPARE	20				19	20				20	SPARE	20
21	SPARE	20				21	22				20	SPARE	22
23	SPARE	20				23	24				20	SPARE	24
25	SPARE	20				25	26				20	SPARE	26
27	SPARE	20				27	28				20	SPARE	28
29	SPARE	20				29	30				20	SPARE	30
31	SPARE	20				31	32				20	SPARE	32
33	SPARE	20				33	34				20	SPARE	34
35	SPARE	20				35	36				20	SPARE	36
37	PANEL LE-3D VIA	F0	4.94			37	38				20	SPARE	38
39	XFMR 'TRE-LE-3D'	50		3.80		39	40				20	SPARE	40
41	(50C)	3P			3.80	41	42				20	SPARE	42
							_						
	Subtotals (kVA):		5.04	5.96	6.10			1.02	1.45	0.00		Subtotals (kVA)	
	Total Loads:		Pha	se A:	6.06	kVA		60.00			%	Demand Factor	
			Pha	se B:	7.41	kVA				11.74	kVA	Demand Load	
			Pha	se C:	6.10	kVA			14.68			Load x 1.25	
	Total Connected Load:				19.57	kVA				17.68	Α	AMP	

Figure 114: Existing Panelboard Schedule HLE-3D

Panelboard Worksheets

		PA	NEL	BOARD	SIZING \	NOR	KSHE	ET		•	
		Panel Tag	>		HL-3D	Р	anel Lo	cation:	Elec.	Closet N-	P347
		Nominal Phase to Neutral Voltage			277		Phas	e:	3		
		Nominal Phase to Phase Voltage		>	480		Wire	s:	4		
Pos	Ph.	Load Type	Cat.	Location	Load	Units	I. PF	Watts	VA	Ren	narks
1	Α	Student LTG	3		0.83	KVA	1.00	830	830		
2	Α	Staff and Facult LTG	3		1.7	KVA	1.00	1700	1700		
3	В	Electroactive Poly LTG	3		1.6	KVA	1.00	1600	1600		
4	В	Student Area/Private OfficeLTG	3		0.59	KVA	1.00	590	590		
5 6	C	Organic Elec. & PH LTG Student LTG	3		1.6 1.9	KVA	1.00	1600 1900	1600 1900		
7	A	Dry Lab A&B, Staff LTG	3		1.41	KVA	1.00	1410	1410		
8	Α	Staff LTG	3		2.2	KVA	1.00	2200	2200		
9	В	Staff Admin. Kitchen LTG	3		1.23	KVA	1.00	1230	1230		
10	В	Conference RM LTG	3		1.32	KVA	1.00	1320	1320		
11	C	Dry Lab, Misc. Comp. LTG	3		1.28	KVA	1.00	1280	1280		
12	C	Conference RM LTG	3		1.52	KVA	1.00	1520	1520		
13	Α	Corridor LTG	3		0.87	KVA	1.00	870	870		
14	Α	Spare	<u> </u>		3.55	KVA	1.00	3550	3550		
15	В	Corridor LTG	3		1.54	KVA	1.00	1540	1540		
16	В	Spare Corridor LTC	_		3.55	KVA	1.00	3550	3550		
17 18	С	Corridor LTG Spare	3		1.68 3.55	KVA KVA	1.00	1680 3550	1680 3550		
19	A	Spare	+		3.55	KVA	1.00	3550	3550		
20	Α	Spare	†		3.55	KVA	1.00	3550	3550		
21	В	Spare	1		3.55	KVA	1.00	3550	3550		
22	В	Spare	1		3.55	KVA	1.00	3550	3550		
23	O	Spare			3.55	KVA	1.00	3550	3550		
24	С	Spare			3.55	KVA	1.00	3550	3550		
25	Α	Spare			3.55	KVA	1.00	3550	3550		
26	Α	Spare			3.55	KVA	1.00	3550	3550		
27	В	Spare	-		3.55	KVA	1.00	3550	3550		
28	В	Spare	-		3.55	KVA	1.00	3550	3550		
29	С	Spare	-		3.55	KVA	1.00	3550	3550		
30	C A	Spare Spare	1		3.55 3.55	KVA KVA	1.00	3550 3550	3550 3550		
32	A	Spare	1		3.55	KVA	1.00	3550	3550		
33	В	Spare			3.55	KVA	1.00	3550	3550		
34	В	Spare			3.55	KVA	1.00	3550	3550		
35	С	Spare			3.55	KVA	1.00	3550	3550		
36	U	Spare			3.55	KVA	1.00	3550	3550		
37	Α	Spare			3.55	KVA	1.00	3550	3550		
38	Α	Spare			3.55	KVA	1.00	3550	3550		
39	В	Spare	-		3.55	KVA	1.00	3550	3550		
40	В	Spare	1-		3.55	KVA	1.00	3550	3550		
41 42	C	Spare	1-		3.55 3.55	KVA KVA	1.00	3550	3550		
_		Spare COTAL	1	<u> </u>	3.55	NVA	1.00	3550 117.1	3550 117.1	Amps=	140.9
				,	1						
PHA	SE I	LOADING	1					kW	kVA	%	Amps
		PHASE TOTAL	A					39.0	39.0	33%	140.6
		PHASE TOTAL	В					38.2	38.2	33%	138.0
		PHASE TOTAL	С	<u> </u>			L	39.9	39.9	34%	144.2
LOA	D C	ATAGORIES	1	Conne				mand			Ver. 1.04
			1	kW	kVA	DF	kW	kVA	PF		
1		receptacles	1-	0.0	0.0		0.0	0.0			
3		computers fluorescent lighting	+	0.0 21.3	0.0	1.00	0.0	0.0	1.00	1	
4		fluorescent lighting HID lighting	1-	0.0	21.3 0.0	1.00	21.3 0.0	21.3 0.0	1.00		
5		incandescent lighting	1	0.0	0.0		0.0	0.0		+ +	
6		HVAC fans	1	0.0	0.0		0.0	0.0			
7		heating	1	0.0	0.0		0.0	0.0			
8		kitchen equipment	1	0.0	0.0		0.0	0.0			
9		unassigned		95.9	95.9		95.9	95.9	1.00		
		Total Demand Loads					117.1	117.1			
		Spare Capacity	1	0%			0.0	0.0			
		Total Design Loads	<u> </u>				117.1	117.1	1.00	Amps=	140.9
		ower Factor =	1.00								
i Jefa	ıuıt D	emand Factor =	100	%	l						

Figure 115: Panelboard Worksheet HL-3D

		P	AN	ELBOAR	D SIZIN	G WC	RKS	HEET		-	
		>			HLE-3D	el Loca	ation:	Elec.	Clost. N-	P347	
		/oltage>			277	Phase			3		
Pha	se V	oltage>			480	Wires:			4		
Pos	_	Load Type	Cat.	Location	Load	Units	I. PF	Watts	VA	Remarks	
1	Α	Exit Sign			0.1	KVA	1.00	100	100		
2	Α	Stair N-1 LTG	3		1.02	KVA	1.00	1020	1020		
3	B B	Toilet & Corridor LTG Stair N-1 LTG	3		1.1 1.45	KVA KVA	1.00	1100 1450	1100 1450		
5	С	Office LTG	3		2.3	KVA	1.00	2300	2300		
6	С	Spare	,		3.55	KVA	1.00	3550	3550		
7	Α	Spare			3.55	KVA	1.00	3550	3550		
8	Α	Spare			3.55	KVA	1.00	3550	3550		
9	В	Spare			3.55	KVA	1.00	3550	3550		
10	В	Spare			3.55	KVA	1.00	3550	3550		
11	С	Spare			3.55	KVA	1.00	3550	3550		
12	С	Spare			3.55	KVA	1.00	3550	3550		
13	Α	Spare			3.55	KVA	1.00	3550	3550		
14 15	A B	Spare Spare			3.55 3.55	KVA	1.00	3550 3550	3550 3550		
16	В	Spare			3.55	KVA	1.00	3550	3550		
17	С	Spare			3.55	KVA	1.00	3550	3550		
18	С	Spare			3.55	KVA	1.00	3550	3550		
19	Α	Spare			3.55	KVA	1.00	3550	3550		
20	Α	Spare			3.55	KVA	1.00	3550	3550		
21	В	Spare			3.55	KVA	1.00	3550	3550		
22	В	Spare			3.55	KVA	1.00	3550	3550		
23	С	Spare			3.55	KVA	1.00	3550	3550		
24	С	Spare			3.55	KVA	1.00	3550	3550		
25	Α	Spare			3.55	KVA	1.00	3550	3550		
26 27	A B	Spare Spare			3.55 3.55	KVA	1.00	3550 3550	3550 3550		
28	В	Spare			3.55	KVA	1.00	3550	3550		
29	С	Spare			3.55	KVA	1.00	3550	3550		
30	C	Spare			3.55	KVA	1.00	3550	3550		
31	Α	Spare			3.55	KVA	1.00	3550	3550		
32	Α	Spare			3.55	KVA	1.00	3550	3550		
33	В	Spare			3.55	KVA	1.00	3550	3550		
34	В	Spare			3.55	KVA	1.00	3550	3550		
35	C	Spare			3.55	KVA	1.00	3550	3550		
36	С	Spare VEMP			3.55	KVA	1.00	3550	3550		
37 38	A	Panel LE-3D via XFMR Spare			4.94 3.55	KVA	1.00	4940 3550	4940 3550		
39	В	Panel LE-3D via XFMR			3.8	KVA	1.00	3800	3800		
40	В	Spare Spare			3.55	KVA	1.00	3550	3550		
41	C	Panel LE-3D via XFMR			3.8	KVA	1.00	3800	3800		
42	С	Spare			3.55	KVA	1.00	3550	3550		
PAN	IEL T	OTAL						139.2	139.2	Amps=	167.5
DU/	SE I	OADING						kW	kVA	%	Amps
	OTAI		Α			 		45.1	45.1	32%	162.9
	OTAL		В			†		45.1	45.1	33%	163.9
<u> </u>	OTAL		С			1		48.7	48.7	35%	175.8
		ATAGORIES		Connected			Damana				
LUF	10 C/	TIAUUNEU		kW	kVA	DF	Demano kW	kVA	PF		Ver. 1.04
1	eptac	eles		0.0	0.0	101	0.0	0.0	- ' '		
	nput			0.0	0.0		0.0	0.0			
		lighting		5.9	5.9		5.9	5.9	1.00		
4	light			0.0	0.0		0.0	0.0			
5		t lighting		0.0	0.0		0.0	0.0			
6	AC fa			0.0	0.0	<u> </u>	0.0	0.0			
7	eatin			0.0	0.0	ļ	0.0	0.0			
8	_	ipment		0.0	0.0	1	0.0	0.0	4.00		
_	ssign			133.3	133.3	 	133.3	133.3 139.2	1.00		
	nd Lo pacit			0%		 	139.2 0.0	0.0		 	
	n Loa			U /0		1	139.2	139.2	1.00	Amps=	167.5
July	00		_			_	. 50.2	. 50.2	1.00	,ps=	. 37 .0
Def:	ult P	ower Factor =	1.00								
		emand Factor =	100	%							

Figure 116: Panelboard Worksheet HLE-3D

Revised Panelboard Schedules

	PANELBOARD SCHEDULE												
VOLTAGE: SIZE/TYPE BUS: SIZE/TYPE MAIN:		PANEL TA	ON:	Ele	ec. C		7	MIN. C/B AIC: 14K OPTIONS: PROVIDE FEED THROUGH LUGS FOR PANELBOARD 1L1B					
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A		_	POS. NO.	C/B SIZE	LOAD (WATTS)		<u> </u>	
Student LTG		830	20A/1P	1	*			2	20A/1P	1700		Staff and Facult LTG	
Electroactive Poly LTG		1600	20A/1P	3		*	╁	4	20A/1P	590		Student Area/Private OfficeLTG	
Organic Elec. & PH LTG		1600	20A/1P	5			*	6	20A/1P	1900		Student LTG	
Dry Lab A&B, Staff LTG		1410	20A/1P	7	*	\vdash	H	8	20A/1P	2200		Staff LTG	
Staff Admin, Kitchen LTG		1230	20A/1P	9		*	1	10	20A/1P	1320		Conference RM LTG	
Dry Lab, Misc. Comp. LTG		1280	20A/1P	11			*	12	20A/1P	1520		Conference RM LTG	
Corridor LTG		870	20A/1P	13	*		1	14	20A/1P	3550		Spare	
Corridor LTG		1540	20A/1P	15		*		16	20A/1P	3550		Spare	
Corridor LTG		1680	20A/1P	17			*	18	20A/1P	3550		Spare	
Spare		3550	20A/1P	19	*			20	20A/1P	3550		Spare	
Spare		3550	20A/1P	21		*		22	20A/1P	3550		Spare	
Spare		3550	20A/1P	23			*	24	20A/1P	3550		Spare	
Spare		3550	20A/1P	25	*			26	20A/1P	3550		Spare	
Spare		3550	20A/1P	27		*		28	20A/1P	3550		Spare	
Spare		3550	20A/1P	29			*	30	20A/1P	3550		Spare	
Spare		3550	20A/1P	31	*			32	20A/1P	3550		Spare	
Spare		3550	20A/1P	33		*		34	20A/1P	3550		Spare	
Spare		3550	20A/1P	35			*	36	20A/1P	3550		Spare	
Spare		3550	20A/1P	37	*			38	20A/1P	3550		Spare	
Spare		3550	20A/1P	39		*		40	20A/1P	3550		Spare	
Spare		3550	20A/1P	41			*	42	20A/1P	3550		Spare	
CONNECTED LOAD (KW) - A Ph.		38.96		•				•		TOTAL DESIGN	LOAD (KW	117.12	
CONNECTED LOAD (KW) - B Ph.		38.23								POWER FACTO	OR	1.00	
CONNECTED LOAD (KW) - C Ph.		39.93								TOTAL DESIGN	LOAD (AM	141	

Figure 117: Panelboard Schedule HL-3D

		PANE	LBC	ARE)	S	С	HEC	ULE			PANELBOARD SCHEDULE													
VOLTAGE: SIZE/TYPE BUS: SIZE/TYPE MAIN:		PANEL T. NEL LOCATI EL MOUNTI	ON:	Ele	c. C	Clost. N-P34	MIN. C/B AIC: 14K OPTIONS: PROVIDE FEED THROUGH LUGS FOR PANELBOARD 1L1B																		
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	Α	В	С	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION													
Exit Sign		100	20A/1P	1	*			2	20A/1P	1020	0	Stair N-1 LTG													
Toilet & Corridor LTG	0	1100	20A/1P	3		*		4	20A/1P	1450	0	Stair N-1 LTG													
Office LTG	0	2300	20A/1P	5			*	6	20A/1P	3550	0	Spare													
Spare		3550	20A/1P	7	*			8	20A/1P	3550		Spare													
Spare		3550	20A/1P	9		*		10	20A/1P	3550		Spare													
Spare		3550	20A/1P	11			*	12	20A/1P	3550		Spare													
Spare		3550	20A/1P	13	*			14	20A/1P	3550		Spare													
Spare		3550	20A/1P	15		*		16	20A/1P	3550		Spare													
Spare		3550	20A/1P	17			*	18	20A/1P	3550		Spare													
Spare		3550	20A/1P	19	*			20	20A/1P	3550		Spare													
Spare		3550	20A/1P	21		*		22	20A/1P	3550		Spare													
Spare		3550	20A/1P	23			*	24	20A/1P	3550		Spare													
Spare		3550	20A/1P	25	*			26	20A/1P	3550		Spare													
Spare		3550	20A/1P	27		*		28	20A/1P	3550		Spare													
Spare		3550	20A/1P	29			*	30	20A/1P	3550		Spare													
Spare		3550	20A/1P	31	*			32	20A/1P	3550		Spare													
Spare		3550	20A/1P	33		*		34	20A/1P	3550		Spare													
Spare		3550	20A/1P	35			*	36	20A/1P	3550		Spare													
Panel LE-3D via XFMR	0	4940		37	*			38	20A/1P	3550		Spare													
Panel LE-3D via XFMR	0	3800	50A/3P	39		*		40	20A/1P	3550		Spare													
Panel LE-3D via XFMR	0	3800		41	<u> </u>		*	42	20A/1P	3550		Spare													
CONNECTED LOAD (KW) - A Ph.		45.11	.11 TOTAL DESIGN LOAD (KW) 138									139.21													
CONNECTED LOAD (KW) - B Ph.		45.40	40 POWER FACTOR 1.00																						
CONNECTED LOAD (KW) - C Ph.		48.70								TOTAL DESIGN	LOAD (AMPS)	168													

Figure 118: Panelboard Schedule HLE-3D

Wiring Diagram

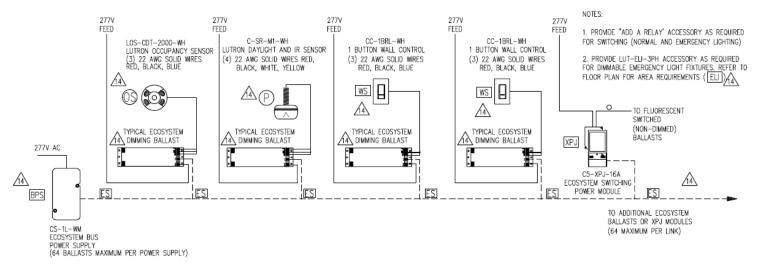
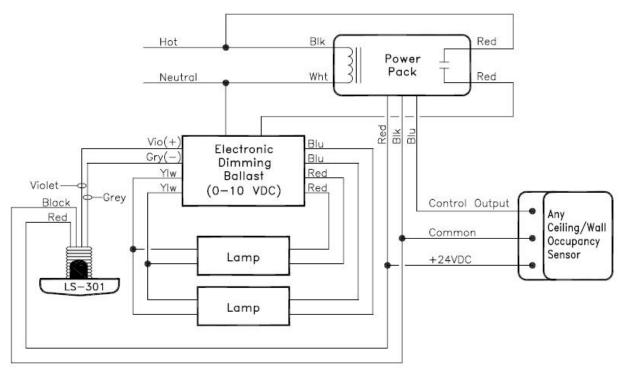



Figure 119: Existing Student Area Wiring Diagram

Wiring with Occupancy Sensor

Operation:

Occupancy Sensor switches Lights ON/OFF. When occupied, the LS-301 dims the lights as daylight increases.

Figure 120: Student Area Wiring Diagram

BIMception – IPD/BIM Thesis

Feeder Sizing

Panel HL-3D	Feeder Sizing
Voltage	277
Design Load kVA	117
Power Factor	1
Design Load Amps	141
Circuit Break Size	150 A
Number of Sets	1
Phase Conductors	(3) #1/0
Neutral Conductor	(1) #1/0
Ground Conductor	(1) #6
Conduit	1-1/2"
Run Length	207'
Voltage Drop	7.1V
Percent Voltage drop	2.6%

Table 71: Feeder Sizing for Panelboard HL-3D

Panel HLE-3D	Feeder Sizing
Voltage	277
Design Load kVA	139.21
Power Factor	1
Design Load Amps	168
Circuit Break Size	175 A
Number of Sets	1
Phase Conductors	(3) #2/0
Neutral Conductor	(1) #2/0
Ground Conductor	(1) #6
Conduit	2"
Run Length	207'
Voltage Drop	0.8V
Percent Voltage drop	0.3%

Table 72: Feeder Sizing for Panelboard HLE-3D

Private Office

Description of Lighting Redesign

The lighting redesign for the Millennium Science Complex perimeter office utilizes pendant Luminaires. The pendant Luminaires operate on 277V.

Control Scheme

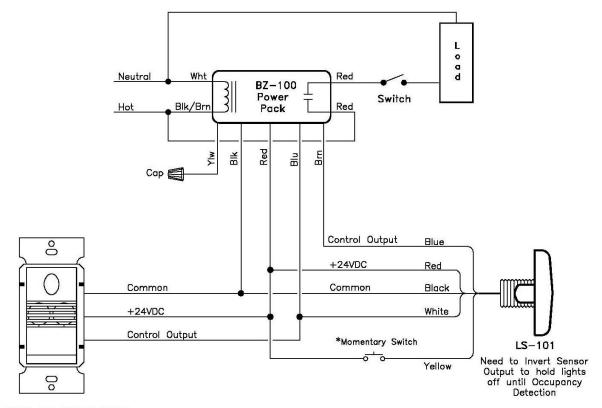
The pendants are controlled using a wall mounted occupancy sensor, and ceiling mounted photosensor. Photosensor lighting control will switch fixtures off enough daylight is present. Wiring diagram will be provided showing power pack for low voltage switch. The photosensor and occupancy sensors receive 24VDC from Wattstopper BZ100 Power Pack.

Lighting Plan

See Appendix E.

Existing Panelboards

See Existing Panelboards for student area.


Panelboard Worksheets

See Panelboard Worksheets for student area. Office is circuited on HL-3D circuit 4 along with the student area.

Revised Panelboards

See Revised Panelboards for student area. Office is circuited on HL-3D circuit 4 along with the student area.

Wiring Diagram

Single Low Voltage Switch For use with DW-100-24, PW-100-24, and UW-100-24.

Operation

* Switch lets you turn load On for 1 hour.

Occupancy sensor signals BZ-100 power pack based on detection.

If lighting level is above the LS-101 set point, LS-101 will send 24 VDC to force BZ-100 off. During the off condition, pushing the momentary switch will turn lights on for one hour.

If lighting level is below LS-101 set point, LS-101 will release force off and allow occupancy sensor to control BZ-100.

Figure 121: Private Office Wiring Diagram

Feeder Sizing

See Feeder Sizing for student area. Office is circuited on HL-3D circuit 4 along with the student area.

Cantilever Plaza

Description of Lighting Redesign

The lighting redesign for the cantilever plaza consists of ceramic metal halide, halogen, and LED fixtures. The CMHs run at 277V, the halogens run on 12V with an in grade transformer, and the LEDs have an in grade remote driver.

Control Scheme

The cantilever plaza lighting is controlled through Eaton lighting control panel Pow-R-Command 1000 (LCP-1). See Table 73 for control zones, and Appendix E for LCP cutsheet.

Lighting Control Panel Schedule (LCP-1)									
Control Time Period	Zones								
Dusk to Dawn	9,11,13,19,20,21,22,24,26,29,30,31,32,33,31,								
Dusk to 11:00 PM	3, 6								

Table 73: Cantilever Plaza Lighting Control Hours of Operation

Lighting Plan

See Appendix E.

Existing Panelboards

Pan	el Name: LCP-1	Mounti	ing:	Sur	face:	Χ		Main Lugs Only:				Amp Main CB	
277/480, 3 Phase, 4 Wire			F	Flush:			Shun	t Trip	Main:		Amp Bus	22	
14,000MIN A.I.C. SYM				In	MCC			Fee	ed Thr	rough:		Ground Bus	
leu	tral: 100%	Numbe	er of F	oles:		42				TVSS:		Isolated Ground Bus	
CKT	Load	TRIP	KV	A/Ph	ase	Poles	Poles	KVA/Ph		ase	TRIP	Load	Cŀ
No.		(Amp)	Α	В	С			Α	В	С	(Amp)		N
													_
1	ZONE 1 LOBBY LIGHTING	20	0.42			1	2				20	SPARE	
3	SPARE	20				3	4		0.24		-	ZONE 19 SITE LIGHTING	
5	ZONE 3 EXTERIOR LIGHTING	20			1.40	5	6			0.24	20	ZONE 20 SITE LIGHTING	
7	ZONE 4 LS LOBBY LIGHTING	20	0.31			7	8	0.36			20	ZONE 21 SITE LIGHTING	
9	ZONE 5 LS LOBBY LIGHTING	20		0.56		9	10		0.70		20	ZONE 22 SITE LIGHTING	1
11	ZONE 6 EXTERIOR LIGHITNG	20			1.25	11	12				20	SPARE	
13	ZONE 7 ML LOBBY LIGHTING	20	0.84			13	14	0.38			20	ZONE 24 SITE LIGHTING	:
15	ZONE 8 ML LOBBY LIGHTING	20		0.56		15	16				20	SPARE	
17	ZONE 9 EXTERIOR LIGHTING	20			1.40	17	18			0.40	20	ZONE 26 SITE LIGHTING	:
19	SPARE	20				19	20	0.05			20	ZONE 27 SITE LIGHTING	1
21	ZONE 11 EXTERIOR LIGHTING	20		1.25		21	22		0.40		20	ZONE 28 SITE LIGHTING	1
23	ZONE 12 ML LOBBY LIGHTING	20			0.31	23	24			0.27	20	ZONE 29 EXTERIOR LIGHTING	2
25	ZONE 13 EXTERIOR LIGHTING	20	0.63			25	26	0.27			20	ZONE 30 EXTERIOR LIGHTING	2
27	ZONE 14 EXTERIOR LIGHTING	20		0.84		27	28		0.23		20	ZONE 31 EXTERIOR LIGHTING	2
29	ZONE 15 SITE LIGHTING	20			2.10	29	30			0.20	20	ZONE 32 EXTERIOR LIGHTING	
31	ZONE 16 SITE LIGHTING	20	2.10			31	32	0.23			20	ZONE 33 EXTERIOR LGITHING	
33	ZONE 17 SITE LIGHTING	20		1.90		33	34		0.27		20	ZONE 34 EXTERIOR LIGHTING	
35	ZONE 35 ML LOBBY LIGHTING	20			0.46	35	36			0.42	20	ZONE 36 LS LOBBY LIGHTING	11,
37	SPARE	20				37	38				20	SPARE	1
39	SPARE	20				39	40				20	SPARE	4
41	SPARE	20				41	42				20	SPARE	4
							-						_
	Subtotals (kVA):		4.30	5.11	6.92]	1.29	1.84	1.53		Subtotals (kVA)	_
	Total Loads:		Pha	se A:	5.59	kVA				80.00	%	Demand Factor	Ţ
			Pha	se B:	6.95	kVA				16.79	kVA	Demand Load	1
			Pha	se C:	8 45	k\/Δ	1			20.99	k۱/۸	Load x 1.25	7

Subtotals (kVA):	4.30 5.11 6.92
Total Loads:	Phase A: 5.59 kVA
	Phase B: 6.95 kVA
	Phase C: 8.45 kVA
Total Connected Load:	20.99 kVA

1.29	1.84	1.53		Subtotals (kVA)
		80.00	%	Demand Factor
		16.79	kVA	Demand Load
		20.99	kVA	Load x 1.25
		25.28	Α	AMP

REMARKS: * - DENOTES PROGRAMMABLE REMOTE CONTROL BREAKER

Figure 122: Existing Panelboard Schedule LCP-1

	BRANC	CH C	IRC	CUI	T P	AN	ELB	ΟA	RD	SC	HEC	ULE	
Pan	el Name: HLE-1B	Mounting:		Surface:		Х		Mair	ո Lugs	Only:		Amp Main CB	100
277/	480, 3 Phase, 4 Wire			F	Flush: .		Shunt Trip Main:					Amp Bus	100
14,0	OOMIN A.I.C. SYM	In			MCC					rough:		Ground Bus	
Neu	tral: 100%	Numbe	er of F	oles:		42				TVSS:		Isolated Ground Bus	
CKT	Load	TRIP KVA/P			ase	Poles	Poles	KVA/Phase			TRIP	Load	CKT
No.		(Amp)	_	В	С	İ		А В С			(Amp)		No.
	1												-
1	PERIMETER CORRIDOR LIGHTING	20	1.60			1	2	1.02			20	ELEC,TEL,LAB LIGHTING	2
3	EXIT LIGHTS	20		0.04		3	4				20	SPARE	4
5	CORRIDOR LIGHTING	20			1.31	5	6				20	SPARE	6
7	STAIR-W2,W3 LIGHTING - (B.MEZZ.)	20	0.50			7	8				20	SPARE	8
9	SPARE	20				9	10				20	SITE LIGHTING (XP0-1)	10
11	SPARE	20				11	12				20	EL-5 (EMERGENCY)	12
13	SPARE	20				13	14	0.63			20	EXTERIOR CANOPY LIGHTING	14
15	SPARE	20				15	16				20	SPARE	16
17	SPARE	20				17	18				20	SPARE	18
19	SPARE	20				19	20				20	SPARE	20
21	SPARE	20				21	22				20	SPARE	22
23	SPARE	20				23	24				20	SPARE	24
25	SPARE	20				25	26				20	SPARE	26
27	SPARE	20				27	28				20	SPARE	28
29	SPARE	20				29	30				20	SPARE	30
31	SPARE	20				31	32				20	SPARE	32
33	SPARE	20				33	34				20	SPARE	34
35	SPARE	20				35	36				20	SPARE	36
37	SPARE	20				37	38				20	SPARE	38
39	SPARE	20				39	40				20	SPARE	40
41	SPARE	20				41	42			1.36	20	HEAT TRACE	42
	Subtotals (kVA):		2.10	0.04	1.31			1.65	0.00	1.36		Subtotals (kVA)	
	Total Loads:		<u> </u>		3.75 kVA					60.00 %		Demand Factor	1
			Phase B:			kVA				3.88	Kva	Demand Load	1
					2.67 kVA		1			4.85 kVA		Load x 1.25	1
	Total Connected Load:				6.46	kVA				5.83	Α	AMP	1

Figure 123: Existing Panelboard Schedule HL-1B

Panelboard Worksheets

		PA	NEL	BOARD	SIZING	NOR	KSHE	ET			
		Panel Tag	>		LCP-1	Pa	anel Loc	ation:		N-P052	
	١	Nominal Phase to Neutral Volta	ge	>	277		Phase	e:	3		
	N	Nominal Phase to Phase Voltage	je	>	480		Wires	:	4		
Pos	Ph.	Load Type	Cat.	Location	Load	Units	I. PF	Watts	VA	Ren	narks
1	Α	Zone 1 Lobby Lighting	4		0.42	KVA	1.00	420	420		
2	Α	Spare			3.55	KVA	1.00	3550	3550		
3	В	Spare			3.55	KVA	1.00	3550	3550		
4	В	Zone 19 MS Sidewalk	4		1.215	KVA	1.00	1215	1215		
5	С	Zone 3 Void Lighting	3		0.93	KVA	1.00	930	930		
6	С	Zone 20 MS Canopy Lighting	4		1.3	KVA	1.00	1300	1300		
7	A	Zone 4 LS Lobby Lighting	5		0.31 0.525	KVA KVA	1.00	310 525	310 525		
9	В	Zone 21 Pathway Lighting Zone 5 LS Lobby Lighting	4		0.525	KVA	1.00	560	560		
10	В	Zone 22 Pathway Lighting	5		0.455	KVA	1.00	455	455		
11	C	Zone 6 Void Lighting	3		0.93	KVA	1.00	930	930		
12	C	Spare			3.55	KVA	1.00	3550	3550		
13	A	Zone 7 ML Lobby Lighting	4		0.84	KVA	1.00	840	840		
14	Α	Zone 24 Pathway Lighting	5		0.49	KVA	1.00	490	490		
15	В	Zone 8 ML Lobby Lighting	4		0.56	KVA	1.00	560	560		
16	В	Spare			3.55	KVA	1.00	3550	3550		
17	С	Zone 9 Bench Lighting			0.063	KVA	1.00	63	63		
18	С	Zone 26 Pathway Lighting	5		0.49	KVA	1.00	490	490		
19	Α	Spare			3.55	KVA	1.00	3550	3550		
20	Α	Zone 27 Site Lighting	4		0.05	KVA	1.00	50	50		
21	В	Zone 11 LS Sidewalk	3		1.125	KVA	1.00	1125	1125		
22	В	Zone 28 Site Lighting	4		0.4	KVA	1.00	400	400		
23	С	Zone 12 ML Lobby Lighting	4		0.31	KVA	1.00	310	310		
24	C	Zone 29 Pathway Lighting	5		0.455	KVA KVA	1.00	455	455		
25	A	Zone 13 LS Canopy Lighting Zone 30 Pathway Lighting	_		1.3	KVA	1.00	1300	1300 270		
26 27	A B	Spare	5		0.27 3.55	KVA	1.00	270 3550	3550		
28	В	Zone 31 Pathway Lighting	5		0.525	KVA	1.00	525	525		
29	С	Zone 15 Site Lighting	4		2.1	KVA	1.00	2100	2100		
30	C	Zone 32 Pathway Lighting	5		0.49	KVA	1.00	490	490		
31	Α	Zone 16 Site Lighting	4		2.1	KVA	1.00	2100	2100		
32	Α	Zone 33 Pathway Lighting	5		0.455	KVA	1.00	455	455		
							4.00	4000			
33	В	Zone 17 Site Lighting	4		1.9	KVA	1.00	1900	1900		
33	В	Zone 34 Pathway Lighting	5		1.9 0.49	KVA KVA	1.00	490	1900 490		
34 35	B C	Zone 34 Pathway Lighting Zone 35 ML Lobby Lighitng	5 4		0.49 0.46	KVA KVA	1.00	490 460	490 460		
34 35 36	B C C	Zone 34 Pathway Lighting Zone 35 ML Lobby Lighting Zone 36 LS Lobby Lighting	5		0.49 0.46 0.42	KVA KVA	1.00 1.00 1.00	490 460 420	490 460 420		
34 35 36 37	B C C	Zone 34 Pathway Lighting Zone 35 ML Lobby Lighting Zone 36 LS Lobby Lighting Spare	5 4		0.49 0.46 0.42 3.55	KVA KVA KVA	1.00 1.00 1.00 1.00	490 460 420 3550	490 460 420 3550		
34 35 36 37 38	B C C A A	Zone 34 Pathway Lighting Zone 35 ML Lobby Lighting Zone 36 LS Lobby Lighting Spare Spare	5 4		0.49 0.46 0.42 3.55 3.55	KVA KVA KVA KVA	1.00 1.00 1.00 1.00 1.00	490 460 420 3550 3550	490 460 420 3550 3550		
34 35 36 37 38 39	B C C A A B	Zone 34 Pathway Lighting Zone 35 ML Lobby Lighting Zone 36 LS Lobby Lighting Spare Spare Spare Spare	5 4		0.49 0.46 0.42 3.55 3.55 3.55	KVA KVA KVA KVA KVA	1.00 1.00 1.00 1.00 1.00	490 460 420 3550 3550 3550	490 460 420 3550 3550 3550		
34 35 36 37 38 39 40	B C C A A B B	Zone 34 Pathway Lighting Zone 35 ML Lobby Lighting Zone 36 LS Lobby Lighting Spare Spare Spare Spare Spare Spare	5 4		0.49 0.46 0.42 3.55 3.55 3.55 3.55	KVA KVA KVA KVA KVA KVA	1.00 1.00 1.00 1.00 1.00 1.00	490 460 420 3550 3550 3550 3550	490 460 420 3550 3550 3550 3550		
34 35 36 37 38 39 40 41	B C C A A B B	Zone 34 Pathway Lighting Zone 35 ML Lobby Lighting Zone 36 LS Lobby Lighting Spare Spare Spare Spare Spare Spare Spare Spare Spare	5 4		0.49 0.46 0.42 3.55 3.55 3.55 3.55 3.55	KVA KVA KVA KVA KVA KVA	1.00 1.00 1.00 1.00 1.00 1.00 1.00	490 460 420 3550 3550 3550 3550 3550	490 460 420 3550 3550 3550 3550 3550		
34 35 36 37 38 39 40 41 42	B C C A A B C C	Zone 34 Pathway Lighting Zone 35 ML Lobby Lighting Zone 36 LS Lobby Lighting Spare	5 4		0.49 0.46 0.42 3.55 3.55 3.55 3.55	KVA KVA KVA KVA KVA	1.00 1.00 1.00 1.00 1.00 1.00	490 460 420 3550 3550 3550 3550 3550 3550	490 460 420 3550 3550 3550 3550 3550 3550	Amne	77.7
34 35 36 37 38 39 40 41 42 PAN	B C C A A B B C C	Zone 34 Pathway Lighting Zone 35 ML Lobby Lighting Zone 36 LS Lobby Lighting Spare	5 4		0.49 0.46 0.42 3.55 3.55 3.55 3.55 3.55	KVA KVA KVA KVA KVA KVA	1.00 1.00 1.00 1.00 1.00 1.00 1.00	490 460 420 3550 3550 3550 3550 3550	490 460 420 3550 3550 3550 3550 3550	Amps=	77.7
34 35 36 37 38 39 40 41 42 PAN	B C C A A B B C C	Zone 34 Pathway Lighting Zone 35 ML Lobby Lighting Zone 36 LS Lobby Lighting Spare Spare Spare Spare Spare Spare Spare Spare Spare COTAL	5 4 4		0.49 0.46 0.42 3.55 3.55 3.55 3.55 3.55	KVA KVA KVA KVA KVA KVA	1.00 1.00 1.00 1.00 1.00 1.00 1.00	490 460 420 3550 3550 3550 3550 3550 3550 64.5	490 460 420 3550 3550 3550 3550 3550 3550 64.5	%	Amps
34 35 36 37 38 39 40 41 42 PAN	B C C A A B B C C	Zone 34 Pathway Lighting Zone 35 ML Lobby Lighting Zone 36 LS Lobby Lighting Spare Spare Spare Spare Spare Spare Spare Spare Spare COTAL OADING PHASE TOTAL	5 4 4 A		0.49 0.46 0.42 3.55 3.55 3.55 3.55 3.55	KVA KVA KVA KVA KVA KVA	1.00 1.00 1.00 1.00 1.00 1.00 1.00	490 460 420 3550 3550 3550 3550 3550 3550 64.5 kW 21.0	490 460 420 3550 3550 3550 3550 3550 3550 64.5 kVA	% 32%	Amps 75.7
34 35 36 37 38 39 40 41 42 PAN	B C C A A B B C C	Zone 34 Pathway Lighting Zone 35 ML Lobby Lighting Zone 36 LS Lobby Lighting Spare Spare Spare Spare Spare Spare Spare OTAL OADING PHASE TOTAL PHASE TOTAL	5 4 4 A B		0.49 0.46 0.42 3.55 3.55 3.55 3.55 3.55	KVA KVA KVA KVA KVA KVA	1.00 1.00 1.00 1.00 1.00 1.00 1.00	490 460 420 3550 3550 3550 3550 3550 3550 64.5 kW 21.0	490 460 420 3550 3550 3550 3550 3550 3550 64.5 kVA 21.0	% 32% 39%	Amps 75.7 90.2
34 35 36 37 38 39 40 41 42 PAN	B C C A A B B C C	Zone 34 Pathway Lighting Zone 35 ML Lobby Lighting Zone 36 LS Lobby Lighting Spare Spare Spare Spare Spare Spare Spare Spare Spare COTAL OADING PHASE TOTAL	5 4 4 A		0.49 0.46 0.42 3.55 3.55 3.55 3.55 3.55	KVA KVA KVA KVA KVA KVA	1.00 1.00 1.00 1.00 1.00 1.00 1.00	490 460 420 3550 3550 3550 3550 3550 3550 64.5 kW 21.0	490 460 420 3550 3550 3550 3550 3550 3550 64.5 kVA	% 32%	Amps 75.7
34 35 36 37 38 39 40 41 42 PAN	B C C A B B C C C	Zone 34 Pathway Lighting Zone 35 ML Lobby Lighting Zone 36 LS Lobby Lighting Spare Spare Spare Spare Spare Spare Spare OTAL OADING PHASE TOTAL PHASE TOTAL	5 4 4 A B	Conn	0.49 0.46 0.42 3.55 3.55 3.55 3.55 3.55 3.55	KVA KVA KVA KVA KVA KVA	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	490 460 420 3550 3550 3550 3550 3550 3550 64.5 kW 21.0	490 460 420 3550 3550 3550 3550 3550 3550 64.5 kVA 21.0	% 32% 39%	Amps 75.7 90.2
34 35 36 37 38 39 40 41 42 PAN	B C C A B B C C C	Zone 34 Pathway Lighting Zone 35 ML Lobby Lighting Zone 36 LS Lobby Lighting Spare Spare Spare Spare Spare Spare Spare OTAL OADING PHASE TOTAL PHASE TOTAL	5 4 4 A B	Conni	0.49 0.46 0.42 3.55 3.55 3.55 3.55 3.55 3.55	KVA KVA KVA KVA KVA KVA	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	490 460 420 3550 3550 3550 3550 3550 64.5 kW 21.0 25.0	490 460 420 3550 3550 3550 3550 3550 3550 64.5 kVA 21.0	% 32% 39%	Amps 75.7 90.2 67.1
34 35 36 37 38 39 40 41 42 PAN PHA	B C C A B B C C C	Zone 34 Pathway Lighting Zone 35 ML Lobby Lighting Zone 36 LS Lobby Lighting Spare Spare Spare Spare Spare Spare Spare OTAL OADING PHASE TOTAL PHASE TOTAL	5 4 4 A B	kW 0.0	0.49 0.46 0.42 3.55 3.55 3.55 3.55 3.55 3.55	KVA KVA KVA KVA KVA KVA	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	490 460 420 3550 3550 3550 3550 3550 64.5 kW 21.0 25.0 18.6	490 460 420 3550 3550 3550 3550 3550 3550 44.5 kVA 21.0 25.0	% 32% 39%	Amps 75.7 90.2 67.1
34 35 36 37 38 39 40 41 42 PAN PHA LOA	B C C A B B C C C	Zone 34 Pathway Lighting Zone 35 ML Lobby Lighting Zone 36 LS Lobby Lighting Spare Spare Spare Spare Spare Spare Spare Spare Spare TOTAL COADING PHASE TOTAL PHASE TOTAL PHASE TOTAL PHASE TOTAL TOTAL COADING PHASE TOTAL COADING SPASE TOTAL COADING SPASE TOTAL SPASE TOTAL STAGORIES Receptacles Computers	5 4 4 A B	kW 0.0 0.0	0.49 0.46 0.42 3.55 3.55 3.55 3.55 3.55 3.55 3.55 4.55 3.55 3.05	KVA KVA KVA KVA KVA KVA	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	490 460 420 3550 3550 3550 3550 3550 3550 44.5 kW 21.0 25.0 18.6 mand kVA 0.0	490 460 420 3550 3550 3550 3550 3550 3550 4.5 kVA 21.0 25.0 18.6	% 32% 39%	Amps 75.7 90.2 67.1
34 35 36 37 38 39 40 41 42 PAN PH/ 1 2 3	B C C A B B C C C	Zone 34 Pathway Lighting Zone 35 ML Lobby Lighting Zone 36 LS Lobby Lighting Spare TOTAL LOADING PHASE TOTAL PHASE TOTAL PHASE TOTAL PHASE TOTAL STAGORIES receptacles computers fluorescent lighting	5 4 4 A B	kW 0.0 0.0 3.0	0.49 0.46 0.42 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55	KVA KVA KVA KVA KVA KVA	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	490 460 420 3550 3550 3550 3550 3550 3550 64.5 kW 21.0 25.0 18.6 mand kVA 0.0 0.0	490 460 420 3550 3550 3550 3550 3550 4.5 kVA 21.0 25.0 18.6	% 32% 39%	Amps 75.7 90.2 67.1
34 35 36 37 38 39 40 41 42 PAN PH/ 1 2 3	B C C A B B C C C	Zone 34 Pathway Lighting Zone 35 ML Lobby Lighting Zone 36 LS Lobby Lighting Spare Spare Spare Spare Spare Spare Spare OTAL COADING PHASE TOTAL PHASE TOTAL PHASE TOTAL PHASE TOTAL ATAGORIES receptacles computers fluorescent lighting HID lighting	5 4 4 A B	kW 0.0 0.0 3.0 11.6	0.49 0.46 0.42 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55	KVA KVA KVA KVA KVA KVA	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	490 460 420 3550 3550 3550 3550 3550 64.5 kW 21.0 25.0 18.6 mand kVA 0.0 0.0 3.0	490 460 420 3550 3550 3550 3550 3550 3550 64.5 kVA 21.0 25.0 18.6 PF	% 32% 39%	Amps 75.7 90.2 67.1
34 35 36 37 38 39 40 41 42 PAN PH/ 1 2 3 4 5	B C C A B B C C C	Zone 34 Pathway Lighting Zone 35 ML Lobby Lighting Zone 36 LS Lobby Lighting Spare TOTAL OADING PHASE TOTAL PHASE TOTAL PHASE TOTAL PHASE TOTAL PHASE TOTAL TOTAL ATAGORIES receptacles computers fluorescent lighting HID lighting incandescent lighting	5 4 4 A B	kW 0.0 0.0 3.0 11.6 4.6	0.49 0.46 0.42 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.15 3.55 3.15	KVA KVA KVA KVA KVA KVA	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	490 460 420 3550 3550 3550 3550 3550 64.5 kW 21.0 25.0 18.6 mand kVA 0.0 0.0 3.0 11.6 4.6	490 460 420 3550 3550 3550 3550 3550 4.5 kVA 21.0 25.0 18.6	% 32% 39%	Amps 75.7 90.2 67.1
34 35 36 37 38 39 40 41 42 PAN PH/ 1 2 3 4 5 6	B C C A B B C C C	Zone 34 Pathway Lighting Zone 35 ML Lobby Lighting Zone 36 LS Lobby Lighting Spare Spare Spare Spare Spare Spare Spare Spare Spare OTAL OADING PHASE TOTAL PHASE TOTAL PHASE TOTAL PHASE TOTAL PHASE TOTAL PHASE TOTAL HOBBIT STATE TOTAL ATAGORIES receptacles computers fluorescent lighting HID lighting incandescent lighting HVAC fans	5 4 4 A B	kW 0.0 0.0 3.0 11.6 4.6 0.0	0.49 0.46 0.42 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.15 3.55 3.55 3.55 3.55 3.55 3.65	KVA KVA KVA KVA KVA KVA	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	490 460 420 3550 3550 3550 3550 3550 4.5 kW 21.0 25.0 18.6 mand kVA 0.0 0.0 3.0 11.6 4.6 0.0	490 460 420 3550 3550 3550 3550 3550 3550 64.5 kVA 21.0 25.0 18.6 PF	% 32% 39%	Amps 75.7 90.2 67.1
34 35 36 37 38 39 40 41 42 PAN PH/ 1 2 3 4 5 6	B C C A B B C C C	Zone 34 Pathway Lighting Zone 35 ML Lobby Lighting Zone 36 LS Lobby Lighting Spare Spare Spare Spare Spare Spare Spare Spare TOTAL COADING PHASE TOTAL PHASE TOTAL PHASE TOTAL PHASE TOTAL PHASE TOTAL ATAGORIES receptacles computers fluorescent lighting HID lighting incandescent lighting HVAC fans heating	5 4 4 A B	kW 0.0 0.0 3.0 11.6 4.6 0.0	0.49 0.46 0.42 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.15 0.00 0.00 11.6 4.6 0.00 0.00	KVA KVA KVA KVA KVA KVA	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	490 460 420 3550 3550 3550 3550 3550 3550 4.5 kW 21.0 25.0 18.6 mand kVA 0.0 0.0 3.0 11.6 4.6 0.0	490 460 420 3550 3550 3550 3550 3550 3550 64.5 kVA 21.0 25.0 18.6 PF	% 32% 39%	Amps 75.7 90.2 67.1
34 35 36 37 38 39 40 41 42 PAN PH/ 1 2 3 4 5 6 7 8	B C C A B B C C C	Zone 34 Pathway Lighting Zone 35 ML Lobby Lighting Zone 36 LS Lobby Lighting Spare Spare Spare Spare Spare Spare Spare Spare TOTAL COADING PHASE TOTAL Treceptacles computers fluorescent lighting HID lighting incandescent lighting HVAC fans heating kitchen equipment	5 4 4 A B	kW 0.0 0.0 3.0 11.6 4.6 0.0 0.0	0.49 0.46 0.42 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.15 3.55 3.00 4.00	KVA KVA KVA KVA KVA KVA	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	490 460 420 3550 3550 3550 3550 3550 3550 44.5 kW 21.0 25.0 18.6 mand kVA 0.0 0.0 3.0 11.6 4.6 0.0 0.0	490 460 420 3550 3550 3550 3550 3550 3550 64.5 kVA 21.0 25.0 18.6 PF	% 32% 39%	Amps 75.7 90.2 67.1
34 35 36 37 38 39 40 41 42 PAN PH/ 1 2 3 4 5 6	B C C A A B B C C C C A A A B C C C C A A A B B C C C C	Zone 34 Pathway Lighting Zone 35 ML Lobby Lighting Zone 36 LS Lobby Lighting Spare Spare Spare Spare Spare Spare Spare Spare Spare OTAL COADING PHASE TOTAL PHASE TOTAL PHASE TOTAL PHASE TOTAL PHASE TOTAL PHASE TOTAL ATAGORIES receptacles computers fluorescent lighting HID lighting incandescent lighting HVAC fans heating kitchen equipment unassigned	5 4 4 A B	kW 0.0 0.0 3.0 11.6 4.6 0.0	0.49 0.46 0.42 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.15 0.00 0.00 11.6 4.6 0.00 0.00	KVA KVA KVA KVA KVA KVA	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	490 460 420 3550 3550 3550 3550 3550 3550 4.5 kW 21.0 25.0 18.6 mand kVA 0.0 0.0 3.0 11.6 4.6 0.0 0.0 45.3	490 460 420 3550 3550 3550 3550 3550 3550 64.5 kVA 21.0 25.0 18.6 PF	% 32% 39%	Amps 75.7 90.2 67.1
34 35 36 37 38 39 40 41 42 PAN PH/ 1 2 3 4 5 6 7 8	B C C A A B B C C C C A A A B C C C C A A A B B C C C C	Zone 34 Pathway Lighting Zone 35 ML Lobby Lighting Zone 36 LS Lobby Lighting Spare Spare Spare Spare Spare Spare Spare Spare OTAL COADING PHASE TOTAL PHASE TOTAL PHASE TOTAL PHASE TOTAL PHASE TOTAL PHASE TOTAL ATAGORIES receptacles computers fluorescent lighting HID lighting incandescent lighting HVAC fans heating kitchen equipment unassigned Total Demand Loads	5 4 4 A B	kW 0.0 0.0 3.0 11.6 4.6 0.0 0.0 0.0 45.3	0.49 0.46 0.42 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.15 3.55 3.00 4.00	KVA KVA KVA KVA KVA KVA	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	490 460 420 3550 3550 3550 3550 3550 3550 64.5 kW 21.0 25.0 18.6 mand kVA 0.0 0.0 3.0 11.6 4.6 0.0 0.0 45.3 64.5	490 460 420 3550 3550 3550 3550 3550 3550 64.5 kVA 21.0 25.0 18.6 PF	% 32% 39%	Amps 75.7 90.2 67.1
34 35 36 37 38 39 40 41 42 PAN PH/ 1 2 3 4 5 6 7 8	B C C A A B B C C C C A A A B C C C C A A A B B C C C C	Zone 34 Pathway Lighting Zone 35 ML Lobby Lighting Zone 36 LS Lobby Lighting Spare Spare Spare Spare Spare Spare Spare Spare Spare OTAL OADING PHASE TOTAL ATAGORIES receptacles computers fluorescent lighting HID lighting incandescent lighting HVAC fans heating kitchen equipment unassigned Total Demand Loads Spare Capacity	5 4 4 A B	kW 0.0 0.0 3.0 11.6 4.6 0.0 0.0	0.49 0.46 0.42 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.15 3.55 3.00 4.00	KVA KVA KVA KVA KVA KVA	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	490 460 420 3550 3550 3550 3550 3550 3550 64.5 kW 21.0 25.0 18.6 mand kVA 0.0 0.0 3.0 11.6 4.6 0.0 0.0 45.3 64.5 0.0	490 460 420 3550 3550 3550 3550 3550 64.5 kVA 21.0 25.0 18.6 PF	% 32% 39% 29%	Amps 75.7 90.2 67.1 Ver.104
34 35 36 37 38 39 40 41 42 PAN PH/ 1 2 3 4 5 6 7 8	B C C A A B B C C C C A A A B C C C C A A A B B C C C C	Zone 34 Pathway Lighting Zone 35 ML Lobby Lighting Zone 36 LS Lobby Lighting Spare Spare Spare Spare Spare Spare Spare Spare OTAL COADING PHASE TOTAL PHASE TOTAL PHASE TOTAL PHASE TOTAL PHASE TOTAL PHASE TOTAL ATAGORIES receptacles computers fluorescent lighting HID lighting incandescent lighting HVAC fans heating kitchen equipment unassigned Total Demand Loads	5 4 4 A B	kW 0.0 0.0 3.0 11.6 4.6 0.0 0.0 0.0 45.3	0.49 0.46 0.42 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.15 3.55 3.00 4.00	KVA KVA KVA KVA KVA KVA	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	490 460 420 3550 3550 3550 3550 3550 3550 64.5 kW 21.0 25.0 18.6 mand kVA 0.0 0.0 3.0 11.6 4.6 0.0 0.0 45.3 64.5	490 460 420 3550 3550 3550 3550 3550 3550 64.5 kVA 21.0 25.0 18.6 PF	% 32% 39%	Amps 75.7 90.2 67.1
34 35 36 37 38 39 40 41 42 PAN PHA 1 2 3 4 5 6 7 8 9	B C C A A B B B C C C C C C C C C C C C	Zone 34 Pathway Lighting Zone 35 ML Lobby Lighting Zone 36 LS Lobby Lighting Spare Spare Spare Spare Spare Spare Spare Spare Spare OTAL OADING PHASE TOTAL ATAGORIES receptacles computers fluorescent lighting HID lighting incandescent lighting HVAC fans heating kitchen equipment unassigned Total Demand Loads Spare Capacity Total Design Loads	4 4 A B C	kW 0.0 0.0 3.0 11.6 4.6 0.0 0.0 0.0 45.3	0.49 0.46 0.42 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.15 3.55 3.00 4.00	KVA KVA KVA KVA KVA KVA	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	490 460 420 3550 3550 3550 3550 3550 3550 64.5 kW 21.0 25.0 18.6 mand kVA 0.0 0.0 3.0 11.6 4.6 0.0 0.0 45.3 64.5 0.0	490 460 420 3550 3550 3550 3550 3550 64.5 kVA 21.0 25.0 18.6 PF	% 32% 39% 29%	Amps 75.7 90.2 67.1 Ver.104
34 35 36 37 38 39 40 41 42 PAN 1 2 3 4 5 6 7 8 9	B C C A A B B B C C C S S S S S S S S S S S S S S	Zone 34 Pathway Lighting Zone 35 ML Lobby Lighting Zone 36 LS Lobby Lighting Spare Spare Spare Spare Spare Spare Spare Spare Spare OTAL OADING PHASE TOTAL ATAGORIES receptacles computers fluorescent lighting HID lighting incandescent lighting HVAC fans heating kitchen equipment unassigned Total Demand Loads Spare Capacity	5 4 4 A B	kW 0.0 0.0 3.0 11.6 4.6 0.0 0.0 0.0 45.3	0.49 0.46 0.42 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.15 3.55 3.00 4.00	KVA KVA KVA KVA KVA KVA	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	490 460 420 3550 3550 3550 3550 3550 3550 64.5 kW 21.0 25.0 18.6 mand kVA 0.0 0.0 3.0 11.6 4.6 0.0 0.0 45.3 64.5 0.0	490 460 420 3550 3550 3550 3550 3550 64.5 kVA 21.0 25.0 18.6 PF	% 32% 39% 29%	Amps 75.7 90.2 67.1 Ver.104

Figure 124: Panelboard Worksheet LCP-1

		PAN	IELI	BOARD S	SIZING V	VORK	SHEE	T			
		Panel Tag	>		HLE-1B	Pa	anel Loc	ation:	Е	lec. W-P1	27
		Nominal Phase to Neutral Voltage		>	277		Phase		3		
		Nominal Phase to Phase Voltage)	>	480		Wires	i:	4		
Pos	Ph.	Load Type	Cat.	Location	Load	Units	I. PF	Watts	VA	Ren	narks
1	Α	Perimeter Corridor Lighting	3		1.6	KVA	1.00	1600	1600		
2	Α	Elec, Tel, Lab Lighting	3		1.02	KVA	1.00	1020	1020		
3	В	Exit Lights			0.04	KVA	1.00	40	40		
4	В	Spare			3.55	KVA	1.00	3550	3550		
5	С	Corridor Lighting	3		1.31	KVA	1.00	1310	1310		
6	C	Spare	2		3.55	KVA	1.00	3550	3550		
7 8	A	Stair-W2,W3 Lighting (B.Mezz) Spare	3		0.5 3.55	KVA	1.00	500 3550	500 3550		
9	В	Spare			3.55	KVA	1.00	3550	3550		
10	В	Site Lighting XPO-1	4		0.711	KVA	1.00	711	711		
11	С	Spare	·		3.55	KVA	1.00	3550	3550		
12	C	EL-5 (Emergency)			0	KVA	1.00	0	0		
13	Α	Spare			3.55	KVA	1.00	3550	3550		
14	Α	Exterior Canopy Lighting	4		0.63	KVA	1.00	630	630		
15	В	Spare			3.55	KVA	1.00	3550	3550		
16	В	Spare			3.55	KVA	1.00	3550	3550		
17	С	Spare			3.55	KVA	1.00	3550	3550		
18	C	Spare			3.55	KVA	1.00	3550	3550		
19	A	Spare	-		3.55	KVA	1.00	3550	3550		
20	A	Spare			3.55	KVA	1.00	3550	3550		
21 22	B B	Spare			3.55 3.55	KVA	1.00	3550	3550		
		Spare			3.55	KVA	1.00	3550 3550	3550		
23 24	C	Spare Spare			3.55	KVA	1.00	3550	3550 3550		
25	A	Spare			3.55	KVA	1.00	3550	3550		
26	A	Spare			3.55	KVA	1.00	3550	3550		
27	В	Spare			3.55	KVA	1.00	3550	3550		
28	В	Spare			3.55	KVA	1.00	3550	3550		
29	C	Spare			3.55	KVA	1.00	3550	3550		
30	С	Spare			3.55	KVA	1.00	3550	3550		
31	Α	Spare			3.55	KVA	1.00	3550	3550		
32	Α	Spare			3.55	KVA	1.00	3550	3550		
33	В	Spare			3.55	KVA	1.00	3550	3550		
34	В	Spare			3.55	KVA	1.00	3550	3550		
35	С	Spare			3.55	KVA	1.00	3550	3550		
36	С	Spare			3.55	KVA	1.00	3550	3550		
37	A	Spare			3.55	KVA	1.00	3550	3550		
38	A B	Spare			3.55	KVA	1.00	3550	3550		
39		Spare			3.55	KVA	1.00	3550	3550		
40 41	B C	Spare Spare	 		3.55 3.55	KVA	1.00	3550 3550	3550 3550	 	
42	С	Spare			3.55	KVA	1.00	3550	3550		
_		TOTAL Spare			0.00	INVA	1.00	126.5	126.5	Amps=	152.2
PHA	SE I	OADING				<u> </u>		kW	kVA	%	Amps
		PHASE TOTAL	Α					39.3	39.3	31%	141.7
		PHASE TOTAL	В					43.4	43.4	34%	156.5
		PHASE TOTAL	С			<u> </u>		43.9	43.9	35%	158.5
LOA	D C	ATAGORIES		Conne				mand			Ver. 1.04
				kW	kVA	DF	kW	kVA	PF		
1		receptacles	-	0.0	0.0	-	0.0	0.0			
2		computers	-	0.0	0.0		0.0	0.0	1.00		
3		fluorescent lighting	 	4.4	4.4	1	4.4	4.4	1.00		
5		HID lighting incandescent lighting	-	1.3 0.0	1.3 0.0	-	1.3 0.0	1.3 0.0	1.00		
6		HVAC fans	 	0.0	0.0		0.0	0.0		 	
7		heating	1	0.0	0.0		0.0	0.0		1	
8		kitchen equipment		0.0	0.0		0.0	0.0			
9		unassigned		120.7	120.7	0.60	72.4	72.4	1.00		
-		Total Demand Loads					78.2	78.2			
		Spare Capacity	L	0%			0.0	0.0			
		Total Design Loads					78.2	78.2	1.00	Amps=	94.1
Defa	ult P	ower Factor =	1.00								
Defa	ult D	emand Factor =	100	%							

Figure 125: Panelboard Worksheet HLE-1B

Revised Panelboard Schedules

		PAN	IELE	BOAF	₹ [)	S	CHE	DUI	_ E			
VOLTAGE:	480Y/277V,3PI	H,4W	PANEL TAG: LCP-1							MIN. C/B AIC: 14K			
SIZE/TYPE BUS:	225A		PAN	IEL LOCATION	ON:	N-P	052			OPTIONS:			
SIZE/TYPE MAIN:	SIZE/TYPE MAIN: 80A/3P C/B					SUI	RFA	CE					
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	Α	В	С	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION	
Zone 1 Lobby Lighting		420	20A/1P	1	*			2	20A/1P	3550		Spare	
Spare		3550	20A/1P	3		*		4	20A/1P	1215		Zone 19 MS Sidewalk	
Zone 3 Void Lighting		930	20A/1P	5			*	6	20A/1P	1300		Zone 20 MS Canopy Lighting	
Zone 4 LS Lobby Lighting		310	20A/1P	7	*			8	20A/1P	525		Zone 21 Pathway Lighting	
Zone 5 LS Lobby Lighting		560	20A/1P	9		*		10	20A/1P	455		Zone 22 Pathway Lighting	
Zone 6 Void Lighting		930	20A/1P	11			*	12	20A/1P	3550		Spare	
Zone 7 ML Lobby Lighting		840	20A/1P	13	*			14	20A/1P	490		Zone 24 Pathway Lighting	
Zone 8 ML Lobby Lighting		560	20A/1P	15		*		16	20A/1P	3550		Spare	
Zone 9 Bench Lighting		63	20A/1P	17			*	18	20A/1P	490		Zone 26 Pathway Lighting	
Spare		3550	20A/1P	19	*			20	20A/1P	50		Zone 27 Site Lighting	
Zone 11 LS Sidewalk		1125	20A/1P	21		*		22	20A/1P	400		Zone 28 Site Lighting	
Zone 12 ML Lobby Lighting		310	20A/1P	23			*	24	20A/1P	455		Zone 29 Pathway Lighting	
Zone 13 LS Canopy Lighting		1300	20A/1P	25	*			26	20A/1P	270		Zone 30 Pathway Lighting	
Spare		3550	20A/1P	27		*		28	20A/1P	525		Zone 31 Pathway Lighting	
Zone 15 Site Lighting		2100	20A/1P	29			*	30	20A/1P	490		Zone 32 Pathway Lighting	
Zone 16 Site Lighting		2100	20A/1P	31	*			32	20A/1P	455		Zone 33 Pathway Lighting	
Zone 17 Site Lighting		1900	20A/1P	33		*		34	20A/1P	490		Zone 34 Pathway Lighting	
Zone 35 ML Lobby Lighitng		460	20A/1P	35			*	36	20A/1P	420		Zone 36 LS Lobby Lighting	
Spare		3550	20A/1P	37	*			38	20A/1P	3550		Spare	
Spare		3550	20A/1P	39		*		40	20A/1P	3550		Spare	
Spare		3550	20A/1P	41			*	42	20A/1P	3550	•	Spare	
CONNECTED LOAD (KW) - A Ph.		20.96								TOTAL DESIGN	LOAD (KW)	64.54	
CONNECTED LOAD (KW) - B Ph.		24.98								POWER FACTO)R	1.00	
CONNECTED LOAD (KW) - C Ph.		18.60								TOTAL DESIGN	LOAD (AMPS)	78	

Figure 126: Panelboard Schedule LCP-1

		PANE	LBC	ARI	<u> </u>	S	С	HED	ULE			
VOLTAGE:	VOLTAGE: 480Y/277V,3PH,4W					HLE	E-1E	3		MIN. C/B AIC:	14K	
SIZE/TYPE BUS:	100A		PAN	IEL LOCATI	ON:	Ele	c. V	V-P127		OPTIONS:	PROVIDE F	EED THROUGH LUGS
SIZE/TYPE MAIN:	100A/3P C/B		PAN	EL MOUNTI	NG:	SU	RF/	ACE			FOR PANE	LBOARD 1L1B
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	Α	В	С	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
Perimeter Corridor Lighting		1600	20A/1P	1	*			2	20A/1P	1020		Elec, Tel, Lab Lighting
Exit Lights		40	20A/1P	3		*		4	20A/1P	3550		Spare
Corridor Lighting		1310	20A/1P	5			*	6	20A/1P	3550		Spare
Stair-W2,W3 Lighting (B.Mezz)		500	20A/1P	7	*			8	20A/1P	3550		Spare
Spare		3550	20A/1P	9		*		10	20A/1P	711		Site Lighting XPO-1
Spare		3550	20A/1P	11			*	12	20A/1P	0		EL-5 (Emergency)
Spare		3550	20A/1P	13	*			14	20A/1P	630		Exterior Canopy Lighting
Spare		3550	20A/1P	15		*		16	20A/1P	3550		Spare
Spare		3550	20A/1P	17			*	18	20A/1P	3550		Spare
Spare		3550	20A/1P	19	*			20	20A/1P	3550		Spare
Spare		3550	20A/1P	21		*		22	20A/1P	3550		Spare
Spare		3550	20A/1P	23			*	24	20A/1P	3550		Spare
Spare		3550	20A/1P	25	*			26	20A/1P	3550		Spare
Spare		3550	20A/1P	27		*		28	20A/1P	3550		Spare
Spare		3550	20A/1P	29			*	30	20A/1P	3550		Spare
Spare		3550	20A/1P	31	*			32	20A/1P	3550		Spare
Spare		3550	20A/1P	33		*		34	20A/1P	3550		Spare
Spare		3550	20A/1P	35			*	36	20A/1P	3550		Spare
Spare		3550	20A/1P	37	*			38	20A/1P	3550		Spare
Spare		3550	20A/1P	39		*		40	20A/1P	3550		Spare
Spare		3550	20A/1P	41			*	42	20A/1P	3550		Spare
CONNECTED LOAD (KW) - A Ph.		39.25	_	-				-		TOTAL DESIGN	LOAD (KW	78.22
CONNECTED LOAD (KW) - B Ph.		43.35								POWER FACTO	OR	1.00
CONNECTED LOAD (KW) - C Ph.		43.91								TOTAL DESIGN	LOAD (AM	94

Figure 127: Panelboard Schedule HL-1B

Feeder Sizing

Panel LCP-1	Feeder Sizing
Voltage	LCP-1
Design Load kVA	64.5
Power Factor	1
Design Load Amps	77.7
Circuit Break Size	80 A
Number of Sets	1
Phase Conductors	(3) #3
Neutral Conductor	(1) #3
Ground Conductor	(1) #8
Conduit	1-1/4"
Run Length	10'
Voltage Drop	0.4V
Percent Voltage drop	0.1%

Table 74: Feeder Sizing for Panelboard LCP-1

Panel HLE-3D	Feeder Sizing
Voltage	277
Design Load kVA	78.2
Power Factor	1
Design Load Amps	94.1
Circuit Break Size	100 A
Number of Sets	1
Phase Conductors	(3) #1
Neutral Conductor	(1) #1
Ground Conductor	(1) #8
Conduit	1-1/2"
Run Length	45'
Voltage Drop	1.3V
Percent Voltage drop	0.5%

Table 75: Feeder Sizing for Panelboard HLE-3D

SHORT CIRCUIT CALCULATION

						Short Circu	uit Aalysis (Per Unit I	Viethod)						
			Equ	ipment Ch	aracteristic	S						Per-Unit \	/alue		
Mark	%X	%R	%Z	kVA	X/1000ft	R/1000ft	Z/1000ft	Length (ft)	No. Sets	3ph Voltage (V)	Mark	X _u	R _u	Z _u	I _{sc}
Utility	0.235			42563.55						12470	Utility	0.2349		0.2349	
					-										1970.656
TRN-PSU-2	5.730	0.478	5.750	5000						480	PSU-2	0.1146	0.0096	0.1150	
															34371.90
FEEDER MDS-01B (750)					0.0445	0.0216	0.0495	30	12	480	FEEDER MDS-01B	0.0048	0.0023	0.0054	
											1				33852.67
MDS-01B										480	MDS-01B				
									_						33852.67
FEEDER TRN-SDP-2D1 (600)					0.0257	0.0463	0.0530	1000	2	480	FEEDER TRN-SDP-2D1	0.5577	1.0048	1.1492	
TON CDD 204	2.070	4.000	4.504	200	1					400	TDN 500 204	0.0000	4 2222	4 5040	7994.798
TRN-SDP-2D1	2.070	4.000	4.504	300	J					480	TRN-SDP-2D1	0.6900	1.3333	1.5013	4004 CE0
FEEDER SDP-2D1 (400)					0.0490	0.0356	0.0606	154	3	208	FEEDER SDP-2D1	0.5814	0.4224	0.7186	4001.658
FEEDER 3DP-2D1 (400)					0.0490	0.0356	0.0606	154	3	208	FEEDER SDP-2D1	0.5814	0.4224	0.7180	7452.76
SDP-2D1											SDP-2D1				7432.70
351 251											301 201				7452.76
FEEDER UPS-3D1/2 (2/0)					0.0553	0.1020	0.1150	200	1	208	FEEDER UPS-3D1/2	2.5564	4.7152	5.3636	
1 222211 01 0 00 27 2 (27 0)					0.0555	0.1020	0.1150			200	1225211 01 0 05272	2.5501	, 152	5.5656	3054.251
UPS-3D1/2	0.992	0.012	0.992	50	1					208	UPS-3D1/2	1.9840	0.0240	1.9841	
,											,				2506.928
FEEDER-LB-3D1/2 (2/0)					0.0553	0.1020	0.1150	10	1	208	FEEDER-LB-3D1/2	0.1278	0.2358	0.2682	
															2447.643
LB-3D1/2											LB-3D1/2				

Table 76: Short Circuit Analysis Calculation Table

A short circuit analysis of the follow sting of electrical components was completed using the per-unit method:

- PSU Utility
- TRN-PSU-2
 - o (12) Sets of 750
- MDS-01B
 - o (2) Sets of 600
- TRN-SDP-2D1
 - o (3) Sets of 400
- SDP-2D1
 - o (1) Set of 2/0
- UPS-3D1/2
 - o (1) Set of 2/0
- LB-3D1/2

The one-line view of this run can be seen in Figure 128 below.

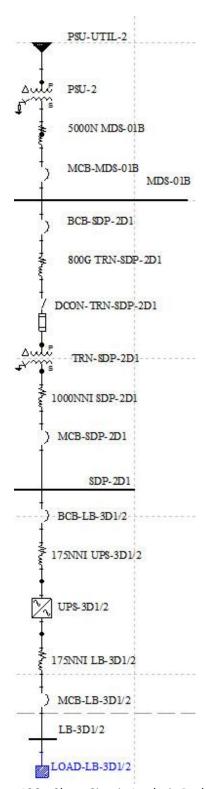


Figure 128: Short Circuit Analysis Path

DEVICE COORDINATION STUDY

■ 450A Trip MDS ■ 175A Trip SDP ■ 20A Trip BRANCH

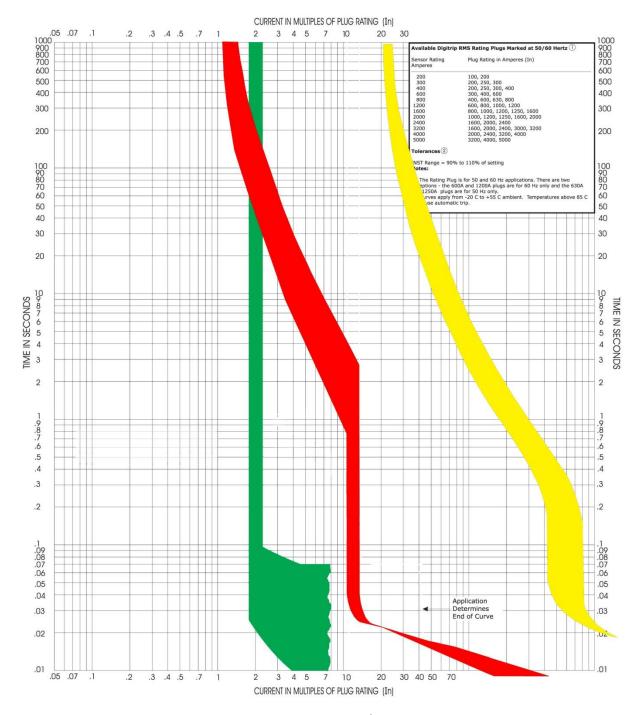


Figure 129: Device Coordination

The devices are coordinated, but there may be an issue regarding a slight over current for a long duration of time.

ELECTRICAL DEPTH TOPIC 1: SKM ANALYSIS

This electrical depth topic was performed cooperatively between the lighting/electrical students of each IPD/BIM team. Due to time constraints and the repetitive nature of the distribution system, the scope of the depth topic was limited to distribution equipment that serves the third floor of the Millennium Science Complex. Each individual IPD/BIM team also focused their thesis on the third floor of the building for coordination. The intent of this depth topic is to gain experience in using SKM Power Tools for Windows. The equipment that was modeled in SKM can be seen in Table 77 below:

			SKM N	1odel Equi	pment S	chedule	
	Lvl	Name	Location	Floorplan	Voltage	RATING	Series Rating
ī	0	MDS-01A	W-P003	E2.0B-P	480/277V	5,000A	100 kAIC
gea	O	MDS-01B	W-P003	E2.0B-P	480/277V	5,000A	100 kAIC
Switchgear		MDS-02A	N-P051	E2.0MD-LP	480/277V	2,000A	100 kAIC
wit	OM	MDS-02B	N-P051	E2.0MD-LP	480/277V	2,000A	100 kAIC
S		EMDS-1	N-P052	E2.0MD-LP	480/277V	2,000A	65 kAIC
	ОМ	EDPS-1E1	N-P052	E2.0MD-LP	480/277V	800A	65 kAIC
	0	EDPS-1E2	N-P052	E2.0MD-LP	480/277V	800A	65 kAIC
	2	SDP-2B	W-P249	E2.2B-P	480/277V	1,000A	65 kAIC
qs	Level	SDP-2D	N-P258	E2.2BD-P	480/277V	1,000A	65 kAIC
oar	Le	SDP-2D1	N-P238	E2.2E-P	480/277V	1,000A	65 kAIC
Switchboards	13	EDPS-3B	W-P338	E2.3B-P	208/120V	800A	65 kAIC
/itc	Z	EDPS-3D	N-P347	E2.3D-P	208/120V	800A	65 kAIC
Š	Penthouse	EDPS-M41	N-M401	E2.4C-P	480/277V	800A	65 kAIC
	nou	EDPS-M42	N-M401	E2.4C-P	480/277V	800A	65 kAIC
	nth	MDP-M41	N-M401	E2.4C-P	480/277V	1,000A	65 kAIC
	Pe	MDP-M42	N-M401	E2.4C-P	480/277V	1,000A	65 kAIC
		HL-3B	W-P338	E2.3B-P	480/277V	200A	14 kAIC Min.
		HMS-3B	W-P338	E2.3B-P	480/277V	100A	14 kAIC Min.
		LB-3B1/2	W-Q304	E4.3B	208/120V	225A	10 kAIC Min.
		LB-3B3/4	W-321	E4.3B	208/120V	225A	10 kAIC Min.
	38	LB-3B5/6	W-337	E4.3B	208/120V	225A	10 kAIC Min.
	Level 3B	LB-3B7	W-Q304	E4.3B	208/120V	225A/MLO	10 kAIC Min.
	Lev	LBS-3B1/2	W-Q304	E4.3B	208/120V	225A	10 kAIC Min.
		LBS-3B3/4	W-321	E4.3B	208/120V	225A	10 kAIC Min.
m		LR-3B	W-P338	E2.3B-P	208/120V	150A	10 kAIC Min.
<u>e</u>		LR-3B5/6	W-337	E4.3B	208/120V	225A	10 kAIC Min.
Le/		LS-3B	W-P338	E2.3B-P	208/120V	100A	10 kAIC Min.
Panelboards: Level 3	()	LB-3C1/2	W-Q302	E2.3C-P	208/120V	150A	10 kAIC Min.
ar	3C	LR-3C1/2	N-Q307	E2.3C-P	208/120V	225A	10 kAIC Min.
ogli		HL-3D	N-P347	E2.3D-P	480/277V	200A	14 kAIC Min.
ane		HM-3D	N-P347	E2.3D-P	480/277V	100A	14 kAIC Min.
P		HMS-3D	N-P347	E2.3D-P	480/277V	100A	14 kAIC Min.
		LB-3D1/2	N-361	E4.3D	208/120V	175A	10 kAIC Min.
	3D	LB-3D5/6	N-361	E4.3D	208/120V	175A	10 kAIC Min.
	Level 3D	LB-3D7/8	N-361	E4.3D	208/120V	175A	10 kAIC Min.
	Lev	LBS-3D1/2	N-Q304	E4.3D	208/120V	225A	10 kAIC Min.
		LBS-3D5/6	N-361	E4.3D	208/120V	225A	10 kAIC Min.
		LR-3D1/2	N-P346	E2.3D-P	208/120V	225A	10 kAIC Min.
		LR-3D3/4	N-P346	E2.3D-P	208/120V	225A	10 kAIC Min.
		LS-3D	N-P347	E2.3D-P	208/120V	100A	10 kAIC Min.
	Lvl	Name	Location	Enl. Plan	Rating	Poles/Ph/Voltage	Series Rating
	ne	ATS-HS1	N-P052	E2.0MD-LP	800 A	4P, 480V	65 kAIC
	ani	ATS-HS2	N-P052	E2.0MD-LP	800 A	4P, 480V	65 kAIC
ent	ezzanine	ATS-HS3	N-P052	E2.0MD-LP	800 A	4P, 480V	65 kAIC
	Me	ATS-HS4	N-P052	E2.0MD-LP	800 A	4P, 480V	65 kAIC
luip		TRN-SDP-2B	W-P249	E2.2B-P	300 kVA	480Δ - 208Y/120V	N/A
Eq	LvI 2	TRN-SDP-2D	N-P258	E2.2D-P	300 kVA	480Δ - 208Y/120V	N/A
ion	_	TRN-SDP-2D1	N-P238	E2.2E-P	300 kVA	480Δ - 208Y/120V	N/A
out		TRE-EDPS-3B	W-P338	E2.3B-P	225 kVA	480Δ - 208Y/120V	N/A
ij	3	TRE-EDPS-3D	N-P347	E2.3D-P	225 kVA	480Δ - 208Y/120V	N/A
T .						N/A	Unknown
Dist	vel	UPS-3D-1/2	N-361	E4.3D	50 kVA	IN/A	OTIKITOWIT
Distribution Equipm	Level	UPS-3D-1/2 UPS-3D-5/6	N-361 N-361	E4.3D	50 kVA	N/A	Unknown

BIMception - IPD/BIM Thesis

	Lvl	Name	Location	Motor Size	Sizing Remarks	Not Used
		ACF-1	N-M401	100 hp	200 A MCP, 175 A FS	
ent		ACF-2	N-M401	100 hp	200 A MCP, 175 A FS	
Equipment	se	ACF-3	N-M401	100 hp	200 A MCP, 175 A FS	
lui	Penthouse	ACF-4	N-M401	100 hp	200 A MCP, 175 A FS	
Eq	nth	ACF-5	N-M401	100 hp	200 A MCP, 175 A FS	
ch.	Pe	ACF-6	N-M401	60 hp	110 A MCP, 100 A FS	
Mech.		ACF-7	N-M401	60 hp	110 A MCP, 100 A FS	
		ACF-8	N-M401	60 hp	110 A MCP, 100 A FS	

Table 77: SKM Equipment Schedule

The Power Tools for Windows analysis software from SKM is an excellent tool for calculating voltage drop, arc flash characteristics, short circuit current, equipment sizing, motor starting, and breaker coordination. Each of the aforementioned analyses is critical to ensure the safety of a distribution system. One goal of engineering design, in any area of study, is to ensure the safety of users and occupants. By knowing arc flash and short circuit characteristics of equipment, each piece of distribution equipment can be safely sized to avoid loss of life during maintenance or fires associated with electrical equipment.

When starting a model in SKM, there are two screens to work from – the component editor and the one-line diagram. The component editor allows the designer to specify exactly the equipment that will be constructed by the contractor. Within the component editor, specific equipment characteristics can be drawn out from the SKM library. The one-line diagram holds the same purpose as a one-line diagram in paper drawings – to orient the viewer with how equipment is fed and ordered throughout the building. Figure 130 below shows the library and component editor overlaid on the one-line diagram for a bus that is used as main switchgear.

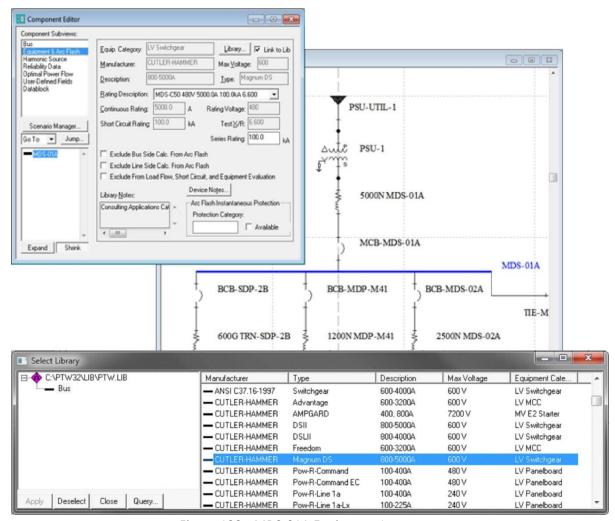


Figure 130: MDS-01A Equipment Inputs

As the circuits continue, the switchgear feed other distribution panels. Between these two bus types, the engineer can specify wire sizes, insulation, lengths, and ampacity according to the National Electric Code's table 310.16. Many values for wire sizes can be drawn out of SKM in the same fashion as discussed in the previous example. The wire sizing example can be seen in Figure 131 below:

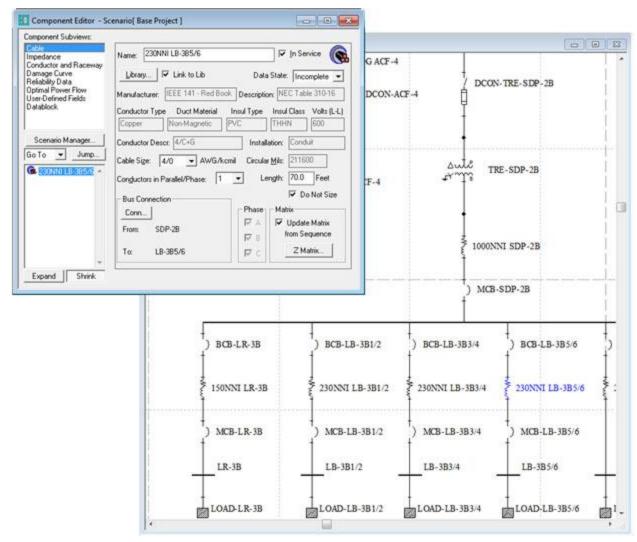


Figure 131: Wire Sizing in SKM

Panelboards further down the one-line diagram are powered by voltage-reducing transformers from 480V to 208Y/120V. As with the previous examples, it is possible to specify various attributes to these transformers such as primary and secondary voltages, impedance, kVA rating and connection type. There is also a contingent of equipment in the SKM library to assist the designer – see Figure 132 below:

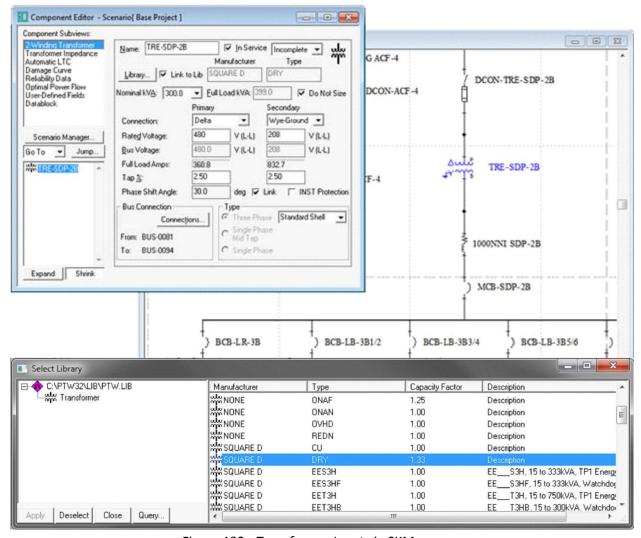


Figure 132: Transformer Inputs in SKM

The ends of circuits in SKM cannot be left open. Therefore, each circuit must either end at a bus (panelboard, switchboard, switchgear, etc.) or at a load. These loads can be synchronous motors, induction motors (squirrel cage by NEC), or a non-motor panel load. Again, the engineer can specify detailed information about each piece of equipment through the component editor. Figures 133-134 below illustrate the inclusion of an induction motor load and non-motor panelboard load for the third floor of the Millennium Science Complex.

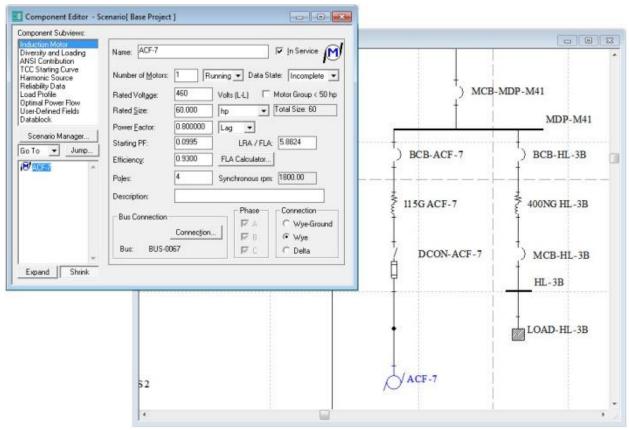


Figure 133: Induction Motor Inputs in SKM



Figure 134: Non-Motor Load Inputs in SKM

The following Figures 135-146 illustrate the distribution equipment servicing the third floor of the Millennium Science Complex, beginning with the overall one-line diagram:

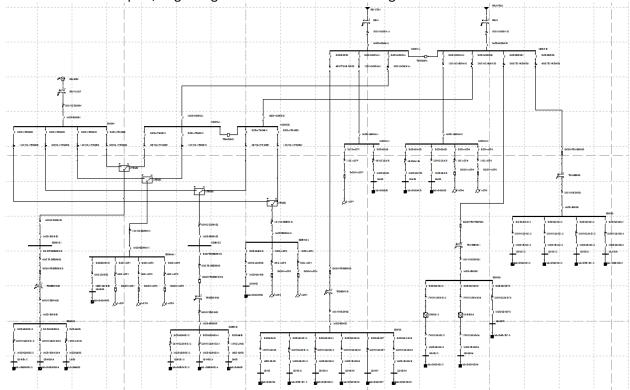


Figure 135: Millennium Science Complex Third Floor Service Equipment One-Line Diagram

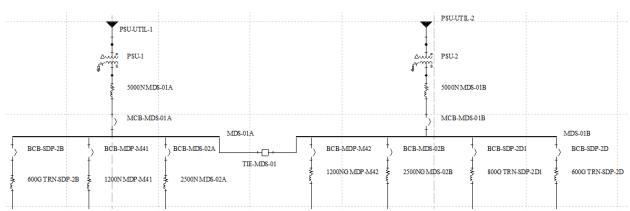


Figure 136: MDS-01A and MDS-01B One-Line Diagram

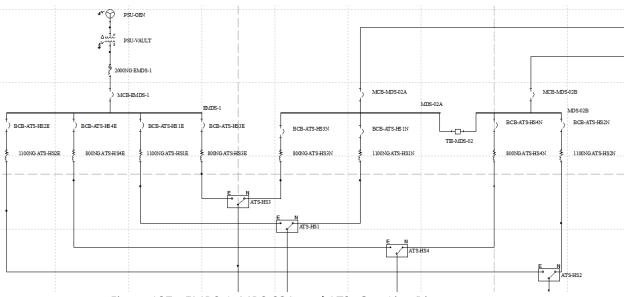


Figure 137: EMDS-1, MDS-02A, and ATSs One-Line Diagram

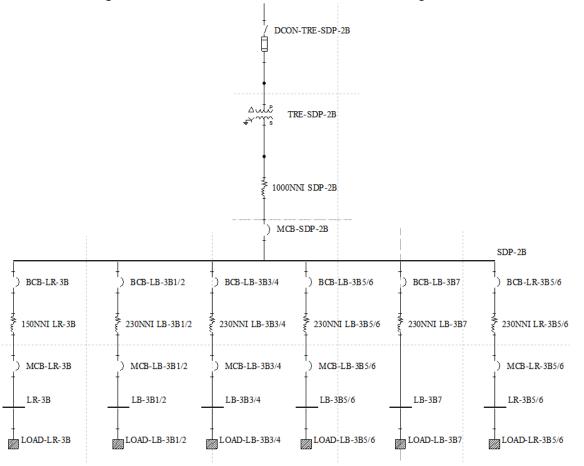


Figure 138: SDP-2B and Loads One-Line Diagram

BIMception – IPD/BIM Thesis

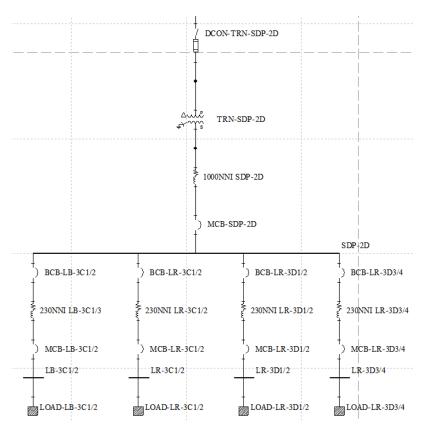


Figure 139: SDP-2D and Loads One-Line Diagram

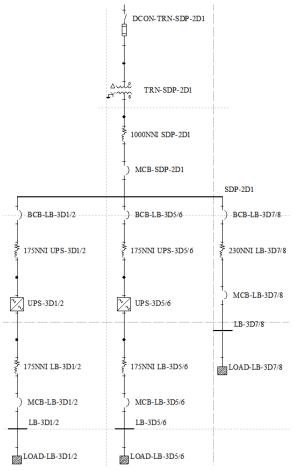


Figure 140: SDP-2D1 and Loads One-Line Diagram

BIMception - IPD/BIM Thesis

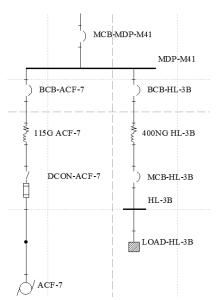


Figure 141: MDP-M41 and Loads One-Line Diagram

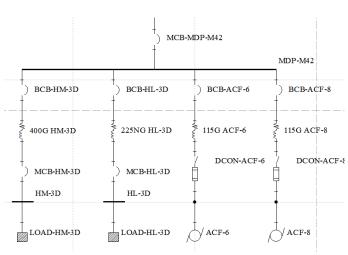


Figure 142: MDP-M42 and Loads One-Line Diagram

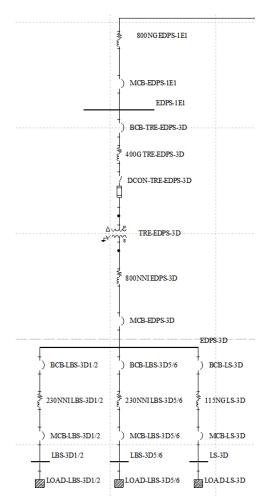


Figure 143: EDPS-1E1 and Loads One-Line Diagram

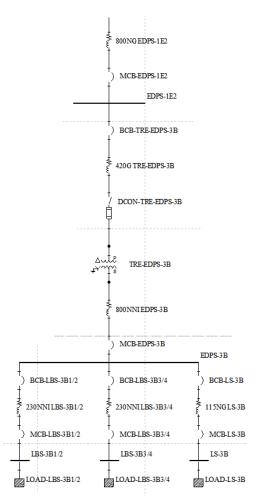


Figure 144: EDPS-3B and Loads One-Line
Diagram

BIMception - IPD/BIM Thesis

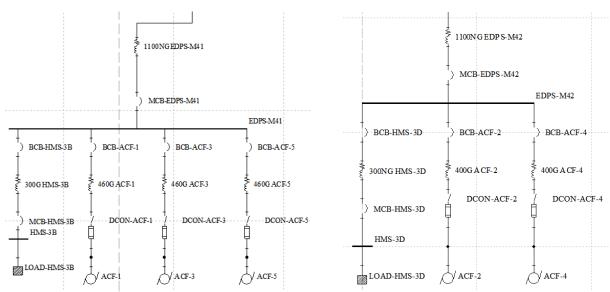


Figure 145: EDPS-M41 and Loads One-Line Diagram

Figure 146: EDPS-M41 and Loads One-Line
Diagram

Once the one-line diagram is finalized in the model and all components will run through the analysis software without fatal errors or warnings, it is possible to run a report on arc flash, short circuit, equipment sizing, etc. Utility available fault current for this depth topic is courtesy of Penn State OPP. The two main utility feeds for the Millennium Science Complex contribute 37,246A from utility transformer PSU-1 and 34,372A from utility transformer PSU-2 to the system. The impedance values of the transformers are summarized in Table 78 below.

Transformer Impedance Summary										
Tag	Primary Voltage	Secondary Voltage	%R	%X						
PSU-1	12.47kV Delta	480Y/277V	0.4775	5.73						
PSU-2	12.47kV Delta	480Y/277V	0.4775	5.73						
PSU-VAULT	4160V Delta	480Y/277V	1.05	5.65						
TRN-SDP-2D	480V Delta	208Y/120V	2.07	4.00						
TRN-SDP-2D1	480V Delta	208Y/120V	2.07	4.00						
TRE-SDP-2B	480V Delta	208Y/120V	2.07	4.00						
TRE-EDPS-3B	480V Delta	208Y/120V	2.36	3.83						
TRE-EDPS-3D	480V Delta	208Y/120V	2.36	3.83						

Table 78: Transformer Impedance Summary

Based on the impedances of the transformer tables above, the analyses can be performed and summarized in reports compiled by SKM Power Tools. These reports appear as text documents – file extension .rpt or .rp2 – but can be printed to PDF if the user has that type of converter installed on his or her machine. For simplicity and to conserve space, the SKM report will not be included in this document, but a summary has been composed in table format. Bus short circuit results from the SKM analysis can be seen in Table 79 below.

	Fault A	Analysis	Sumr	nary	
D . N	\	Av	ailable	Fault Current	
Bus Name	Voltage	3-Phase	X/R	LINE/GRND	X/R
EDPS-1E1	480	39353.3	3	8391.63	0.2
EDPS-1E2	480	38449.6	2.9	8364.93	0.2
EDPS-3B	208	8147.9	1.6	9238.12	1.6
EDPS-3D	208	9963.3	1.6	10713.51	1.6
EDPS-M41	480	26611.3	2.1	7238.23	0.3
EDPS-M42	480	32169.3	2.4	7817.41	0.3
EMDS-1	480	10039.0	4.9	1621.01	0.1
HL-3B	<mark>480</mark>	13108.6	<mark>1.6</mark>	<mark>5383.71</mark>	<mark>0.5</mark>
HL-3D	480	11810.3	1.2	4971.80	0.5
HM-3D	<mark>480</mark>	13304.3	<mark>1.6</mark>	<mark>5406.24</mark>	<mark>0.5</mark>
HMS-3B	<mark>480</mark>	15707.0	<mark>1.4</mark>	<mark>5858.97</mark>	<mark>0.4</mark>
HMS-3D	<mark>480</mark>	17537.7	<mark>1.4</mark>	<mark>6259.26</mark>	<mark>0.4</mark>
LB-3B1/2	208	7593.2	1.1	6792.20	1.2
LB-3B3/4	208	7756.9	1.1	6964.21	1.2
LB-3B5/6	208	7756.9	1.1	6964.21	1.2
LB-3B7	208	8104.7	1.2	7334.45	1.2
LB-3C1/2	208	4502.6	0.9	4019.60	1
LB-3D1/2	208	138.7	7.9	134.64	8.1
LB-3D5/6	208	138.7	7.9	134.64	8.1
LB-3D7/8	208	4508.2	0.9	4021.00	1
LBS-3B1/2	208	6467.5	1.2	6633.94	1.2
LBS-3B3/4	208	6467.5	1.2	6633.94	1.2
LBS-3D1/2	208	7560.1	1.2	7361.22	1.2
LBS-3D5/6	208	7560.1	1.2	7361.22	1.2
LR-3B	<mark>208</mark>	<mark>9213.2</mark>	<mark>1.2</mark>	<mark>8620.65</mark>	1.2
LR-3B5/6	208	7756.9	1.1	6964.21	1.2
LR-3C1/2	208	3773.0	8.0	3288.52	0.9
LR-3D1/2	208	6503.1	1.1	6244.65	1.2
LR-3D3/4	208	6503.1	1.1	6244.65	1.2
LS-3B	208	6746.9	1.1	7098.78	1
LS-3D	208	7936.7	1.1	7928.46	1
MDP-M41	480	18646.1	1.9	6337.24	0.4
MDP-M42	480	19033.2	1.9	6367.69	0.4
MDS-01A	480	57411.7	5.7	9248.60	0.1
MDS-01B	480	57406.8	5.7	9248.52	0.1
MDS-02A	480	44453.2	3.5	8669.88	0.2
MDS-02B	480	44450.1	3.5	8669.80	0.2
SDP-2B	208	10951.5	1.6	10647.34	1.7
SPD-2D	208	8645.7	1.4	9083.76	1.5
SDP-2D1	208	8574.7	1.3	9026.44	1.6

Table 79: SKM Short Circuit Report Summary

As stated in the introduction to this analysis, knowing arc flash and short circuit characteristics of equipment can help engineers prevent loss of live in worst-case-scenario events. Ideally, each piece of equipment should have an interrupting rating greater than the analysis results in the SKM output. The highlighted values in Table 79 above are pieces of equipment that can be deemed in violation of their interrupting rating or are close to violating their interrupting rating. The higher voltage panelboards (H-prefix) are currently rated for 14,000 AIC. The two HMS panelboards above can now be seen to be unsafe for the event of a short circuit – given the manner in which this system was modeled. Similarly, panelboard LR-3B is close to its maximum interrupting current rating. On panelboard schedules, a minimum value for interrupting current is written in. After viewing this results table, designs can be adjusted to account for dangers such as panelboard failures and arc flashes.

ELECTRICAL DEPTH TOPIC 2: UPS VS. POWER CONDITIONER

The Millennium Science Complex currently uses nineteen (19) Eaton Powerware 9390 50kVA, 208/120V UPS modules without battery cabinets. Each UPS serves 2 adjacent panelboards. This depth will compare the current system with that of using a 1000kVA Cutler-Hammer Sag Ride Through (SRT) Power Conditioner. The use of a central power conditioning device will also result in the addition of a new distribution panel. The new distribution panel will be the same type as the other typical panels (1200A, 120/208V, 3phase, 4 wire, 65KAIC, with a 200% rated neutral, and isolated ground), and fed from switchboard "MDS-01B." In order to meet space requirements the Power Conditioning Device and additional panel would need to be located in a new room requiring an architectural change. For the purpose of this depth topic the location for the new devices would be the Electrical Closet N-P129A on the first floor. The cost comparison can be found in Tables 80-84.

Equipment	#	Cost/per	Total
Eaton 9390-50 208V IN & Out UPS w/out Battery	19	\$ 35,000.00	\$665,000.00

Table 80: Existing Equipment Cost

Panel	Run	Phase	#	Material	Labor	Neutral	#	Material	Labor	Isolated	#	Material	Labor	Conduit	Material	Labor	Total Cost
	Length	Conductor		Cost (If)	Cost (If)			Cost (If)	Cost (If)	Ground		Cost (If)	Cost (If)	Size (in)	Cost (If)	Cost	
LB-0C1	150	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 5,901.00
LB-0C3	190	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 7,474.60
LB-0C5	170	#2/0	З	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 6,687.80
LB-0C7	190	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 7,474.60
LB-0C9	215	#2/0	З	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 8,458.10
LB-0C11	330	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 12,982.20
LB-OC13	230	#2/0	З	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 9,048.20
LB-0C17	120	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 4,720.80
LB-1D1	170	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 6,687.80
LB-1E5	360	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 14,162.40
LBS-1E3	210	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 8,261.40
LB-2D1	140	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 5,507.60
LB-2D3	140	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 5,507.60
LB-2D5	60	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 2,360.40
LB-2D6	60	#2/0	З	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 2,360.40
LB-2D9	160	#2/0	З	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 6,294.40
LBR-0C11	260	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 10,228.40
LB-3D1	70	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 2,753.80
LB-3D5	70	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 2,753.80
		•				·				·			<u> </u>	·	·	·	\$129,625.30

Table 81: Existing Feeder Material and Labor Cost

Equipment	#	Cost/per	Total
Eaton Sag Ride Through SRT21000208AB	1	\$250,000.00	\$250,000.00
Pow-R-Line 4 Panelboard (1200A, 120/208V, 65KAIC)	1	\$ 5,000.00	\$ 5,000.00

Table 82: New Equipment Cost

Panel	Run Length	Phase Conductor	#	Material Cost (If)	Labor Cost (If)	Neutral	#	Material Cost (If)	Labor Cost (If)	Isolated Ground	#	Material Cost (If)	Labor Cost (If)	Conduit Size (in)	Material Cost (If)	Labor Cost	Total Cost
LB-0C1	540	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 21,243.60
LB-0C3	510	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 20,063.40
LB-0C5	420	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 16,522.80
LB-0C7	450	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 17,703.00
LB-0C9	470	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 18,489.80
LB-0C11	360	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 14,162.40
LB-OC13	430	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 16,916.20
LB-0C17	580	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 22,817.20
LB-1D1	160	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 6,294.40
LB-1E5	120	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 4,720.80
LBS-1E3	90	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 3,540.60
LB-2D1	200	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 7,868.00
LB-2D3	210	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 8,261.40
LB-2D5	280	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 11,015.20
LB-2D6	290	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 11,408.60
LB-2D9	190	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 7,474.60
LBR-0C11	380	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 14,949.20
LB-3D1	260	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 10,228.40
LB-3D5	270	#2/0	3	\$ 2.71	\$ 1.39	#2/0	2	\$ 2.71	\$ 1.39	#6	2	\$ 0.55	\$ 0.62	2	\$ 7.55	\$ 8.95	\$ 10,621.80
NEW DP	710	#600	6	\$ 15.00	\$ 3.10	#600	2	\$ 15.00	\$ 3.10	#1/0	2	\$ 3.65	\$ 1.22	3.5	\$ 21.50	\$ 18.30	\$166,239.40
	<u> </u>			<u> </u>		<u> </u>		<u> </u>	<u> </u>			<u> </u>		<u> </u>	<u> </u>	<u> </u>	\$410,540.80

Table 83: New Feeder Cost

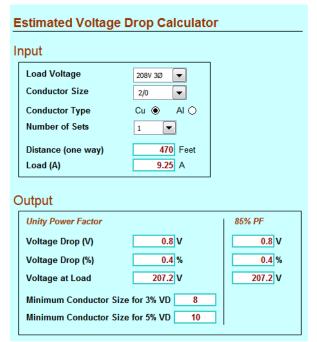


Figure 147: LB-0C9 Voltage Drop

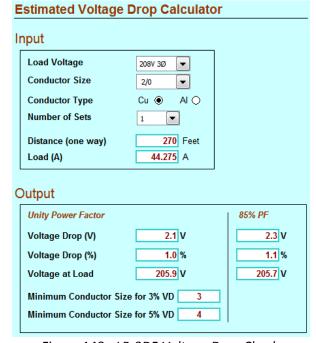


Figure 148: LB-3D5 Voltage Drop Check

Overall Price Comparison					
System	Total Price				
Existing Eaton Powerware UPSs	\$794,625.30				
New Eaton SRT Central Power Conditioning	\$665,540.80				

Table 84: Overall Cost Comparison

BIMception - IPD/BIM Thesis

04/07/2011

This study resulted in a cost savings of \$129,084.50, but through further analysis it was determined the original design using individual UPS would be more beneficial. Older drawing sets call for UPSs without the note saying the without battery racks. This shows that the removal of batteries may have been an upfront cost issue. If that were the case then the newly redesigned system with an Eaton SRT Central Power Conditioner would be most cost efficient than the installed system. However the installed system provides future backup availability. Some of the laboratories served by the individual UPSs still aren't assigned. If the lab equipment were to require backup power then the addition of batteries in the UPS would be cheaper than purchasing a new \$35,000 UPS with the additional cost of the battery rack. For future growth purposes and minimal savings it was decided that the existing system should remain.

IPD / BIM Lessons Learned

BIMception formed as a group to execute thesis as an integrated team. The designs selected for analysis were areas of the Millennium Complex that had the best opportunities to include and benefit from multidisciplinary evaluation. Integrated design was supported by building information modeling. BIM served as the tool that quickly and effectively allowed BIMception to communicate and produce our design concepts. The final product that we have delivered in this product was greatly enhanced and molded by our team focus. BIMception's motto is "improving design through innovation and coordination" and both the IPD process and BIM tools were integral to helping us achieve our goals.

INTEGRATED PROJECT DELIVERY EVALUATION

BIMception established regularly scheduled meetings every week. While these meetings were documented in the meeting minutes, the informal "meetings" that happened every day were much more valuable. The team performed best when members took initiative to stay in constant communication. This open line of communication allowed the team to stay on top of production and design developments.

The team's performance was hurt early in the semester before normal work habits were changed. Working in silos, prevented the team from communicating important changes in design. Oftentimes these changes would be relayed at the end of a process, forcing analyses to be run multiple times with crucial data having to be changed and re-input. Integrated design in this case caused much more work for all members, and any BIM process still required manual inputs of information.

A more vocal team atmosphere solved many of the issues created by the lack of communication. Rather than running an entire individual analysis and relaying to the team the final results, the communication and explanation of each analysis was conveyed to the team with the intentions of gaining feedback before an error was made. This effectively reduced the number of analyses that had to be rerun.

Some issues were unable to be avoided, and may simply be caused by the use of integrated design. Relying on other team members for information inherently affects one's individual design process. If one delivery item to another team member becomes a day late, it has the effect of snowballing throughout the whole team causing each integrated process schedule to be off track. As described above, early communication solves this issue more often than not, but unexpected developments are almost guaranteed to affect any design process.

By the end of the semester, team members were able to prepare and anticipate information exchanges. The team was able to work more fluidly as we communicated our needs more timely and effectively. If the team was to restart the spring semester, BIMception would reach the same conclusions, but in a small fraction of the time. Unfortunately there is no better way to understand an interdisciplinary process than to be a part of a committed integrated team like BIMception.

Even though integrated project delivery required additional time and analysis, it created a more complete building product. The inclusion of each discipline revealed topics that may have been overlooked in silo design. In this manner, each member was able to use their expertise to achieve BIMception's design goals. Understanding the contributions of each team member, allowed the building to realize benefits from discipline compromises. Integrated project delivery balanced individual focuses, leading to a whole building solution that reflects the contributions of each discipline.

BIM EX PLAN

The Penn State BIM Execution Plan laid out the foundation for how BIMception organized our interdisciplinary research. Each analysis was preplanned and orchestrated throughout the team. While this plan was developed without a full understanding of how each piece of research would actually proceed, it produced a template and a plan to help the team achieve its goals. Throughout the semester the team learned how to execute the plan and how each member's contributions affected the final design. The BIM EX Plan effectively guided BIMception towards its final goals, through processes the team had never experienced.

BUILDING INFORMATION MODELING EVALUATION

Building Information Modeling is the collective set of tools that enabled BIMception to create and engineer our alternative designs. Modeling each discipline's designs allowed the coordination and sharing of important design criteria and information. Each model that was created served a specific purpose towards developing this final report and achieving team goals.

BIMception effectively utilized the following BIM Uses as prescribed by the BIM EX Plan: Building System Analysis, Cost Estimation, 4D Modeling, Engineering Analysis, Design Reviews, 3D Coordination, and Energy Analysis.

The existing Revit models, provided by Raphael Vinoly Architects, Flack and Kurtz, and Whiting Turner, enabled BIMception to establish baseline conditions for each analysis. As redesigns were developed, models were created to reflect these evolving ideas. Design information was input into the models and the learning process began as BIMception experimented with new processes.

Model expectations and building methods evolved as the team tried to move further into design. The structural models had to be rebuilt multiple times to facilitate the next step in producing final documentation. For the 4D modeling, the structural slabs had to be broken up, reflecting the construction pours. For the final presentation, new worksets had to be created, enabling the model to be broken up for visualizations.

In order to energy model, there was a great effort to share project design information through our models. Revit models were created with spaces that had crucial information fields for energy analysis. With the input of our mechanical and electrical engineers' design standards, the model successfully exported embedded building information. When opened for analysis in Trane TRACE, the model retained such important information as room names, floor areas, occupancy, lighting power densities, and equipment load densities. This information would be the basis of our load calculations, energy analysis, and system analysis. The model was unable however to transfer accurate information about the roof areas and exterior walls, which were later manually updated. These errors stem from the creation methodology and complexity of the architecture model, requiring a significant time investment to ensure their correctness. Despite the transfers short comings, it effectively reduced the total amount of time require to produce the energy model that became the basis for all energy analyses.

There were some limitations with the BIM concept for the lighting and electrical redesigns. The lighting calculations from Revit were evaluated in the Lighting/Electrical collaborative Technical Report 1 and some inconsistencies were discovered. The illuminance values didn't match up with those from lighting calculation programs, such as AGi32. For this reason all lighting calculations were done in using a

BIMception - IPD/BIM Thesis

04/07/2011

program whose information could not be linked back into the group models. Due to electrical requirements, worksheets and established panelboard templates, from the electrical consultant electrical changes were not relayed back into the group models. These factors created a disconnect in the lighting and electrical work with the established BIM hierarchy. While there were limitations, the BIM models did provide valuable information for creating lighting models utilized for graphics and calculations. The updated façade architecture model provided building geometry to be utilized in calculations and rendering programs.

Building Information Modeling and Management enhanced the validity of BIMception's designs providing the necessary tools to communicate and engineer our new concepts. While we struggled with new workflows and design processes, information modeling allowed the integrated team to work across disciplines. The modeled design content was easily shared and utilized to coordinate designs and produce analyses or visuals. Building information modeling facilitated the successes and building improvements created by integrated project delivery for the Millennium Science Complex.

Final THESIS Conclusion

BIMception was dedicated to improving design through innovation and coordination. The redesigns of the Millennium Science Complex were highlighted by more energy efficient designs, coordinated system integration, life cycle cost improvements, and a higher valued final building product. The integrated design approach of IPD, allowed each member to incorporate their expertise early in the design phase, while BIM became the tool allowing the team to quickly validate and communicate new design concepts.

Each of the three main areas of focus realized improvements from integrated design:

- 1. Analysis of the building envelope reduced energy consumption and improved daylight delivery system
- 2. Investigation into the ceiling plenum space reduced structural profile depth allowing for reductions in energy consumption and improvements in systems coordination
- 3. Evaluation of the cantilever plaza improved the efficiency of the truss system, creating an architectural statement enhanced by the lighting redesign

One of the primary construction goals was to find a way to accelerate the schedule. This was done by taking advantage of the new sequencing opportunities provided by the redesigned concrete structure. Integration of the cantilever and concrete wing construction allowed for a significant reduction in project schedule. While cost increased, value was added to the Millennium Science Complex through system redesigns.

By redesigning a concrete floor system for the wings a more flexible and coordinated ceiling plenum allowed the redesign of a more efficient mechanical duct system. Structural modifications to the building façade system reduced the amount of structural weight necessary to enclose the building. An addition to the cantilever truss system added efficiency, saving on steel tonnage and cost. This change integrated with the cantilever plaza created an appealing architectural progression of angles that effectively unified structure, architecture, and lighting design.

The lighting redesign of the Millennium Science Complex student areas, private office, and cantilever utilizes energy efficient luminaires. The lighting design reinforces the architectural theme and BIMception's goals of a cost effective, energy efficient system. The illuminance values, Table 85, meet all IESNA recommendations. The higher values for the cantilever plaza are due to the desire to create illuminance ratios between points of interest.

Space	IESNA Recommendation (fc)	Design Illumiance (fc)	LPD (w/ft²)
Student Area	30 fc	34 fc	0.78 W/ft ²
Corridor	5 fc	21.7 fc	0.40 W/ft ²
Office	30 fc	31 fc	0.84 W/ft ²
Cantilever Plaza Pathway	1 fc	2.3 fc	0.44 w/ft ²
Cantilever Plaza Sidewalk	5 fc	12.4 fc	0.44 w/ft ²
			2

 ${\sf BIM}\textit{ception} - {\sf IPD/BIM} \; {\sf Thesis}$

Sky Glow

*LPD Values For Cantilever Plaza Based On The Whole Space Table 85: *Millennium Science Complex Lighting Redesign Summary*

5 fc

 0.44 w/ft^2

The energy analysis of all alternative design options, including triple pane glazing, a 60% window to wall ration, lighting space redesigns, and duct size redesign, produces a 14% savings compared to the existing design. The life cycle value of the design can be improved by about a half million dollars and a simple payback of about two years proves feasible.

Yearly Energy Savings by Alternative

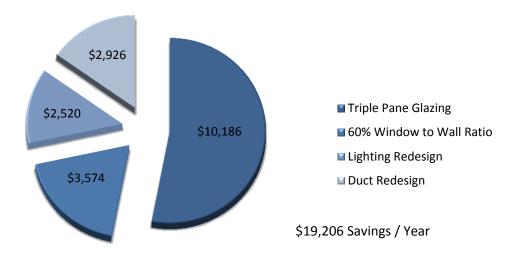


Figure 149: Yearly Energy Savings Cost Analysis

Existing Design	All Alternative	Savings
	Designs	

BIMception – IPD/BIM Thesis

04/07/2011

Total Yearly Operating Costs	\$154,262	\$135,056	\$19,206
Installation Costs	\$1,688,026	\$1,730,213	\$-42,187
30 yr Life Cycle Cost	\$5,663,480	\$5,210,708	\$452,772

Table 86: Combined Alternative Life Cycle Cost Analysis

APPENDIX A: MAE/BAE Requirements

MECHANICAL MAE

In order to fulfill the requirements established for the MAE program, the exterior façade was investigated with material taught in AE 542 – Building Enclosure Design and Science. This class analyzes the effects the enclosure can have on the control of thermal transfer and structural loading. Knowledge learned in this class guided the evaluation and analysis of the existing façade's heat and moisture transfer characteristics, as seen in pages 23-28. A redesigned façade incorporates the concepts of cavity wall design, moisture control, thermal transfer, and phase change materials, as seen in pages 31-34.

In addition, knowledge learned in AE558 – Centralized Heating Production and Distribution Systems enabled much iteration of economic modeling and system lifecycle costing. The evaluation of dynamic investment allowed for a comparison of first installed and energy costs. This understanding helped provide validity to design selections, as seen in page 41.

STRUCTURAL MAE

To adequately represent the knowledge base of an integrated MAE/BAE student in the field of building structures, analyses and redesigns of the gravity system, lateral system, and cantilever redesigns incorporated specific advanced techniques of structural modeling learned in AE597A and advanced seismic considerations learned in AE538.

Multiple iterations of models within SAP2000 used advanced area and frame meshing and used dynamic modal analysis to calculate period of vibrations of typical bays within the existing and redesigned floor systems to calculate vibrational criteria and help compare the effectiveness of all design iterations. The cantilever truss system redesigns involved critical meshing between shell and frame elements and stiffness comparison analysis. A proper understanding of element contribution to overall truss stiffnesses pulled material from the most critical lessons of stiffness definitions from AE597A. These focuses are highlighted in existing and redesign vibration modeling sections within the Plenum Investigation and within the entirety of the structural truss redesigns in the Cantilever Redesign discussion.

In checking the existing lateral system for strength and drift limitations, knowledge about seismic analysis according to ASCE7-05 was pulled from AE538 including more advanced analysis of horizontal and vertical structural irregularities. Modeling lessons from AE597A also helped when creating the ETABS lateral models when defining rigid diaphragms and applying additional area masses lumped at the story levels. These focuses are highlighted in check of the existing lateral system and the lateral system redesign sections within the Plenum Investigation.

BIMception – IPD/BIM Thesis

APPENDIX B: List of Tables and Figures

Figure 1: View of Millennium Science Complex from corner of Pollack and Bigler Roads courtesy of the Huck	•
Institute at Penn State	8
Figure 2: Mockup of building enclosure, including precast panels courtesy of Ryan Solnosky	9
Figure 3: Model of typical steel framing layout	10
Figure 4: Layout of existing lateral system elements on first floor	11
Figure 5: Gravity load simulation in cantilever truss along Frame B. Red and blue denote tension and compr	ression
respectively	12
Figure 6: Bing Map of Millennium Science Complex Site	15
Figure 7: Map of Material Delivery Route	
Figure 8: Whiting-Turner Staffing Plan	19
Figure 9: Exploded View of Existing Façade Panel Composition	23
Figure 10: 3D Render and Section of Existing Façade Composition	24
Figure 11: HAM Condensation Analysis of Existing Wall – Winter Condition – No Vapor Barrier	25
Figure 12: HAM Condensation Analysis of Existing Wall – Winter Condition – Vapor Barrier	26
Figure 13: Evaluation of Condensation Potential of Existing Wall – Winter Condition – No Vapor Barrier	27
Figure 14: Conduction Time Series Factor of Existing Wall	28
Figure 15: Structural Load Cases: Left- Flexure Due to Wind, Right- Flexure Due to Dead Loads	30
Figure 16: Exploded View of Alternate PCM Façade Panel Composition	31
Figure 17: 3D Render and Section of Alternate PCM Façade Panel Design	32
Figure 18: Condensation Analysis of Redesigned Wall – Winter Conditions	33
Figure 19: Conduction Time Series Factor – Redesigned Wall	34
Figure 20: Structural Load Case: Bending Due to Self-Weight During Precast Fabrication	35
Figure 21: Millennium Science Complex Third Floor Daylight Autonomy 322.8 lux	45
Figure 22: West Façade Existing Useful Illuminance	50
Figure 23: West Façade 60% WWR Useful Illuminance	
Figure 24: Lighting/Electrical Window to Wall Ratio Analysis Graph	51
Figure 25: Mechanical Window to Wall Ratio Analysis Graph	
Figure 26: Construction Management Window to Wall Analysis	
Figure 27: Integrated Window to Wall Analysis Graph	
Figure 28: Existing Building Rendering	57
Figure 29: Building Rendering With 60% Final Selection WWR	57
Figure 30: Equinox Direct Sunlight Penetration Comparison for West Façade	
Figure 31: Typical Vasari Visualization of Solar Loading with Shades Included	
Figure 32: MechoShade Material Properties	
Figure 33: Student Area/Corridor Floor Plan	65
Figure 34: Student Area/Corridor Materials	
Figure 35: Student Area Furniture Plan	67
Figure 36: Partition elevation	67
Figure 37: Student Area Perspective Rendering	
Figure 38: Student Area Perspective Rendering	
Figure 39: Student Area Pseudo Color	71
Figure 40: Student Area Contour Lines	71

Figure 41:	Private Office Floor Plan	73
Figure 42:	Private Office Material Plan	74
Figure 43:	Private Office Perspective Rendering	77
Figure 44:	Private Office Perspective Rendering	77
Figure 46:	Private Office Perspective	78
Figure 45:	Private Office Perspective Rendering	78
Figure 47:	South Façade Daylight Autonomy	81
Figure 48:	South Façade Continuous Daylight Autonomy	81
Figure 49:	South Façade Critical Point Selection	82
Figure 50:	South Façade Signal vs. Dimming Plot	82
Figure 51:	Schedule of Lighting Power Density Monthly Setbacks –Student Areas	83
Figure 52:	Plan View: Typical Exterior Bay Layout of Waffle Slab With 3ft Module	89
Figure 53:	3D View: Typical Interior Bay Waffle Slab Construction	89
Figure 54:	Reference Velocity Equation from AISC Design Guide 11	90
Figure 55:	SAP 3D View: Composite Beam and Slab Modeled in SAP2000	91
Figure 56:	SAP 3D View: Composite Beam and Slab Modeled in SAP2000	91
Figure 57:	Plan View: SAP2000 Existing Structure Vibration Model	92
Figure 58:	3D View: Existing Conditions SAP Model, Undeformed Shape	93
Figure 59:	Plan View: Waffle Slab Vibration SAP Model Rib and Beam Frame Element Layout	95
Figure 60:	3D View: Waffle Slab Vibration SAP Model	96
Figure 61:	Plan View: Redesigned Pan-Joist System layout	97
Figure 62:	3D View: Redesigned Pan-Joist System Typical Bay	98
Figure 63:	Plan View: Redesigned Pan-Joist System Layout in SAP2000	99
Figure 64:	3D View: Redesigned Pan-Joist in SAP2000.	99
Figure 65:	Plan View: Existing Lateral Resisting Elements on First Floor	101
Figure 66:	Plan View: New Proposed Lateral Resisting Elements on First Floor	102
Figure 67:	3D View: Existing ETABS Lateral Model	103
Figure 68:	Render of Laboratory Supply Ductwork in Third Floor Materials Science Lab	107
Figure 69:	Laboratory Supply System on Penthouse Level. Manifolds are shown in Red, while the Supply Main.	s are
Green and	the Air Handlers are Teal	108
Figure 70:	Laboratory Supply on Third Floor Material Science Wing	109
Figure 71:	Swamee-Jain Equation Used to Approximate Friction Factor	110
Figure 72:	Exponential Relationship of Duct Size and Static Pressure	111
Figure 73:	Comparison of Installed and Operational Costs	114
Figure 74:	Visual of Concrete Pour	117
Figure 75:	Navisworks Model of Third Floor Duct Systems.	119
Figure 76:	Render of Laboratory Supply Ductwork in Third Floor Materials Science Lab	121
Figure 77:	Render of Structural Concrete Wing Alternative	122
Figure 78:	Existing Coordination of Laboratory Supply and Structure	125
Figure 79:	Coordination of Laboratory Supply and Alternate Structure	126
Figure 80:	Coordination of Alternate Laboratory Supply and Alternate Structure	126
Figure 81:	Existing Coordination of Laboratory Supply and Structure	127
Figure 82:	Coordination of Laboratory Supply and Alternate Structure	128
Fiaure 83:	Coordination of Alternate Laboratory Supply and Alternate Structure	128

Figure 84: Existing Coordination of Office Ductwork and Structure	129
Figure 85: Coordination of Alternate Office Ductwork and Alternate Structure	130
Figure 86: Collision of Alternate Office Ductwork and Existing Structure	130
Figure 87: 3D Section of Coordinated Alternate Office Ductwork and Alternate Structure	131
Figure 88: Existing Coordination of Drainage Piping and Structure	132
Figure 89: Existing Coordination of Drainage Piping and Structure	133
Figure 90: Coordination of Drainage Piping and Alternate Structure	133
Figure 91: Existing Coordination of Drainage Piping and Structure	134
Figure 92: Coordination of Drainage Piping and Alternate Structure	134
Figure 93: Existing Exterior Truss on Frame- B	138
Figure 94: Existing Interior Truss on Frame-E	139
Figure 95: Exterior Truss with Efficient Compression Load Paths Highlighted in Blue	140
Figure 96: SAP2000 Model of Existing Truss Configurations	141
Figure 97: SAP Model of Entire Cantilever Support System With Supported Gravity Systems	142
Figure 98: Redesign-1a: Exterior Truss on Frame-B With Tension Members	143
Figure 99: Redesign-1b: Interior Truss on Frame-E With Tension Members	144
Figure 100: Redesign-1a+: Additional Shear Wall Within Truss Configuration	145
Figure 101: Redesign-2a: Exterior Truss on Frame-B With Added Brace	147
Figure 102: Redesign-2b: Interior Truss on Frame-E With Added Brace	148
Figure 103: Cantilever Plaza BIMception's Structural Changes	149
Figure 104: Cantilever Plaza BIMception's Architectural Changes	151
Figure 105: Cantilever Plaza BIMception's Architectural Changes	151
Figure 106: Cantilever Plaza Site Plan	152
Figure 107: Cantilever Plaza Section	152
Figure 108: Cantilever Plaza Perspective Rendering	156
Figure 109: Cantilever Plaza Perspective Rendering	157
Figure 110: Cantilever Plaza Perspective Rendering	157
Figure 111: Cantilever Plaza Pseudo Color	158
Figure 112: Cantilever Plaza Pseudo Color	158
Figure 113: Existing Panelboard Schedule HL-3D	163
Figure 114: Existing Panelboard Schedule HLE-3D	164
Figure 115: Panelboard Worksheet HL-3D	165
Figure 116: Panelboard Worksheet HLE-3D	166
Figure 117: Panelboard Schedule HL-3D	167
Figure 118: Panelboard Schedule HLE-3D	167
Figure 119: Existing Student Area Wiring Diagram	168
Figure 120: Student Area Wiring Diagram	168
Figure 121: Private Office Wiring Diagram	171
Figure 122: Existing Panelboard Schedule LCP-1	173
Figure 123: Existing Panelboard Schedule HL-1B	174
Figure 124: Panelboard Worksheet LCP-1	175
Figure 125: Panelboard Worksheet HLE-1B	176
Figure 126: Panelboard Schedule LCP-1	177
Figure 127: Panelhoard Schedule HI-1R	177

Figure 128: Short Circuit Analysis Path	180
Figure 129: Device Coordination	181
Figure 130: MDS-01A Equipment Inputs	184
Figure 131: Wire Sizing in SKM	185
Figure 132: Transformer Inputs in SKM	186
Figure 133: Induction Motor Inputs in SKM	187
Figure 134: Non-Motor Load Inputs in SKM	188
Figure 135: Millennium Science Complex Third Floor Service Equipment One-Line Diagram	189
Figure 136: MDS-01A and MDS-01B One-Line Diagram	189
Figure 137: EMDS-1, MDS-02A, and ATSs One-Line Diagram	190
Figure 138: SDP-2B and Loads One-Line Diagram	190
Figure 139: SDP-2D and Loads One-Line Diagram	191
Figure 140: SDP-2D1 and Loads One-Line Diagram	192
Figure 141: MDP-M41 and Loads One-Line Diagram	193
Figure 142: MDP-M42 and Loads One-Line Diagram	193
Figure 143: EDPS-1E1 and Loads One-Line Diagram	193
Figure 144: EDPS-3B and Loads One-Line Diagram	193
Figure 145: EDPS-M41 and Loads One-Line Diagram	194
Figure 146: EDPS-M41 and Loads One-Line Diagram	194
Figure 147: LB-0C9 Voltage Drop Figure 148: LB-3D5 Voltage Drop Check	197
Figure 149: Yearly Energy Savings Cost Analysis	203
Figure 150: Temperature Analysis of Redesigned Wall Assembly	365
Table 1: Schedule Summary of Key Tasks	17
Table 2: Total Cost of Building	
Table 3: Construction Cost of Building	
Table 4: Building System Costs	
Table 5: ASHRAE Weather Data for University Park, PA	
Table 6: OPP Interior Design Conditions	
Table 7: Hand Calculation Condensation Analysis of Existing Wall – Winter Condition – No Vapor Barrier	
Table 8: Thickness Analysis Due to In Place Wind Loads For Existing Façade Panel	
Table 9: Thickness Analysis Due to In Place Dead Loads For Existing Façade Panel	
Table 10: Comparison of Thermal Properties	
Table 11: Thickness Analysis Due to Self-Weight Flexure During Precast Fabrication	
Table 12: Comparison of Thermal Properties	
Table 13: Total Energy Consumption of Design Options	
Table 14: Yearly Operating Cost Breakdown	
Table 15: Construction Costs of Existing Panels on Third Floor with 2 & 3-Pane Glass	
Table 16: 30 Year Life Cycle Cost Assessment	
Table 17: Wall Composition Life Cycle Cost Analysis Summary	
Table 18: Third Floor Daysim Settings	
Table 19: Student Area Daysim Settings	
Table 20: Poom Cavity Class to Wall Patio Engray Analysis	16

Table 21: Original Erection Dates for the Precast Panels.	47
Table 22: New Erection Dates for the Precast Panels	48
Table 23: Existing Façade Useful Illuminance Values by Orientation	49
Table 24: Useful Illuminance for tested Window to Wall Ratios	49
Table 25: Mechanical Window to Wall Ratio Analysis	52
Table 26: Window to Wall Ratio Based on Minimum Thicknesses of Façade Panel	53
Table 27: Construction Costs of Redesigned Panel on Third Floor at 70% and 60% ratio	55
Table 28: Window to Wall Ratio Life Cycle Cost Analysis Summary	56
Table 29: Interior Shelf Analysis Study Times	59
Table 30: No Shelf Problematic Times	59
Table 31: Interior Shelf Problematic Times	61
Table 32: Analysis of Shade Mounting Height	63
Table 33: Analysis of Shade Mounting Height	63
Table 34: Student Area/Corridor Material Properties	
Table 35: Student Area Luminaire Schedule	69
Table 36: Student Area/Corridor Light Loss Factors	69
Table 37: Student Area Illuminance Values	71
Table 38: Corridor Illuminance Values	71
Table 39: Private Office Material Properties	74
Table 40: Private Office Luminaire Schedule	76
Table 41: Private Office Light Loss Factors	76
Table 42: Private Office Illuminance Values	78
Table 43: Cost of Existing Lighting, Third Floor	
Table 44: Cost of Redesigned Lighting, Third Floor	79
Table 45: South Façade Dimmed Zone Energy Savings	80
Table 46: Yearly Operating Costs – Lighting Redesign	84
Table 47: Lighting Redesign Life Cycle Cost Analysis	85
Table 48: Facade Redesign Life Cycle Cost Analysis	86
Table 49: Worst Case Floor Loading	
Table 50: Typical Reinforcement for Waffle Slab Design	90
Table 51: Summary of Theoretical vs. SAP2000 Deflections	92
Table 52: Summary of Velocity Calculation For the Existing Composite Beam System	94
Table 53: Summary of Velocity Calculation for Redesigned Concrete Waffle Slab	96
Table 54: Summary of Velocity Calculation for Redesigned Concrete Pan-Joist System	100
Table 55: Summary Table of Existing Cost of Structure	105
Table 56: Summary Table of Redesigned Concrete Structure	106
Table 57: Duct Sizing Effects on Fan Selection	111
Table 58: Energy and Cost Analysis of Changing Duct Size	112
Table 59: Construction Costs of Changing Duct Size	
Table 60: Life Cycle Cost of Duct Size Alternatives	
Table 61: Schedule Summary of Redesign	
Table 62: Duct Redesign Life Cycle Cost Analysis	
Table 63: Cantilever Plaza Material Properties	153
Table 64: Cantilever Plaza Luminaire Schedule	155

BIM <i>ception</i> – IPD/BIN	1 T	hesis
------------------------------	-----	-------

Table 65: Cantilever Plaza Light Loss Factors	155
Table 66: Cantilever Plaza Lighting Control Hours of Operation	156
Table 67: Pathway Illuminance Values	159
Table 68: Sidewalk Illuminance Values	159
Table 69: Sidewalk Illuminance Values	159
Table 70: Panelboards Affected by Lighting Redesign	162
Table 71: Feeder Sizing for Panelboard HL-3D	169
Table 72: Feeder Sizing for Panelboard HLE-3D	169
Table 73: Cantilever Plaza Lighting Control Hours of Operation	172
Table 74: Feeder Sizing for Panelboard LCP-1	178
Table 75: Feeder Sizing for Panelboard HLE-3D	178
Table 76: Short Circuit Analysis Calculation Table	179
Table 77: SKM Equipment Schedule	183
Table 78: Transformer Impedance Summary	194
Table 79: SKM Short Circuit Report Summary	195
Table 80: Existing Equipment Cost	196
Table 81: Existing Feeder Material and Labor Cost	196
Table 82: New Equipment Cost	196
Table 83: New Feeder Cost	197
Table 84: Overall Cost Comparison	197
Table 85: Millennium Science Complex Lighting Redesign Summary	203
Table 86: Combined Alternative Life Cycle Cost Analysis	204

APPENDIX C: Citations

American Society of Civil Engineers. Minimum Design Loads for Buildings and other Structures. 2006

- ASHRAE Handbook Fundamentals 2009. ASHRAE, 2009. Print.
- ASHRAE Standard 90.1-2007: Energy Standard for Buildings Except Low-Rise Residential Buildings.

 American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc. Atlanta, GA. 2007.
- BASF. Micronal PCM. Ludwigshafen, Germany: BASF, 2008. Print.
- Bentz, Dale P., and Randy Turpin. *Potential Applications of Phase Change Materials in Concrete Technology*. Tech. Elsevier. *ScienceDirect*. Web. 14 Jan. 2011.
- Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary. ACI Committee 318, January 2008.
- Cutler-Hammer 2006 Consulting Application Guide, 14th Edition. Eaton Electrical. Moon, PA. 2006.
 Elledge, James and Christel Hunter. "Aluminum Versus Copper Electrical Wiring." Today's Facility Manager. January 2008. http://www.todaysfacilitymanager.com/fm expert171.php.
- Grant, Bob. "Can Labs Go Green?" The Scientist Magazine of the Life Sciences (2008). Print.
- Laboratories for the 21st Century: An Introduction to Low-Energy Design. Tech. EPA, 2008. Print.
- Labs21 Environmental Performance Criteria 3.0. Tech. Labs for the 21st Century, 2010. Print.
- Lester, Thomas. "Using Excel for Duct Calcuations." ASHRAE Journal 51.8 (2009): 42-46. Print.
- Lstiburek, Joseph W. "Confusion About Diffusion." ASHRAE Journal 52.12 (2010): 56-62. Print.
- Pasupathy, A. P., and R. Velraj. *Phase Change Material-based Building Architecture for Thermal*Management in Residential and Commercial Establishments. Tech. Elsevier. ScienceDirect. Web. 14 Jan. 2011.
- Plotner, Stephen C. Concrete & Masonry Cost Data, 2009. Kingston, MA: RS Means, 2008. Print.
- National Electric Code: 2008. National Fire Protection Association. Quincy, MA. 2004.
- The IESNA Lighting Handbook: Reference & Application, 9th Edition. Illuminating Engineering Society of North America. New York, NY. 2000.
- The IESNA Lighting Handbook: Reference & Application, 10th Edition. Illuminating Engineering Society of North America. New York, NY. 2010.
- Ratner, Jerrold. The Building Estimator's Reference *Book*. Lisle, IL: Frank R. Walker, 2002. Print.

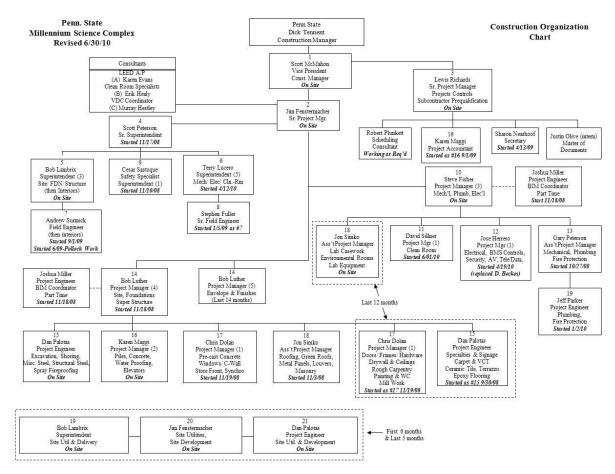
RS Means Mechanical Cost Data 2011. R S Means, 2010. Print.

Steel Construction Manual. American Institute of Steel Construction, Thirteenth Edition. AISC, 2005.

Steel Design guide Series - 11. Floor Vibrations Due to Human Activity. 1997

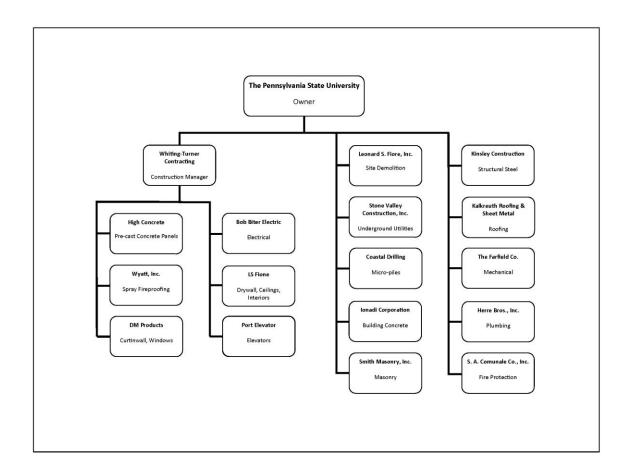
United States of America. US Department of Commerce. Office of Management and Budget. *Energy Price Indices and Discount Factors for Life Cycle Cost Analysis 2010*. Web. 10 Feb. 2011.

US Department of Energy. "Energy Analysis." Laboratories for the 21st Century (2003). Print.

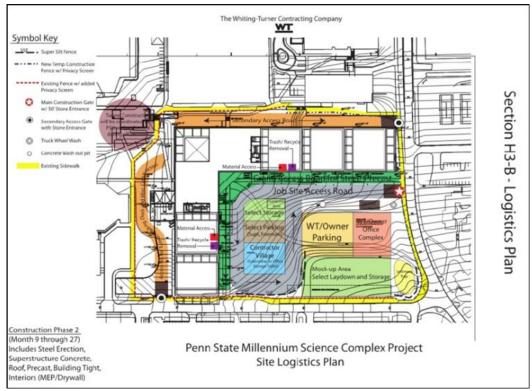

Utility Fact Sheet University Park Campus. Rep. UFS-UP: OPP, 2009. Print.

- Wang, Xin, YinPing Zhang, Wei Xiao, RuoLang Zeng, QunLi Zhang, and HongFa Di. "Review on Thermal Performance of Phase Change Energy Storage Building Envelope." *Chinese Science Bulletin* (2009). Print.
- Zalba, Belen, Jose Martin, Luisa Cabeza, and Harald Mehling. *Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications*. Tech. Elsevier. *ScienceDirect*. Web. 14 Jan. 2011.

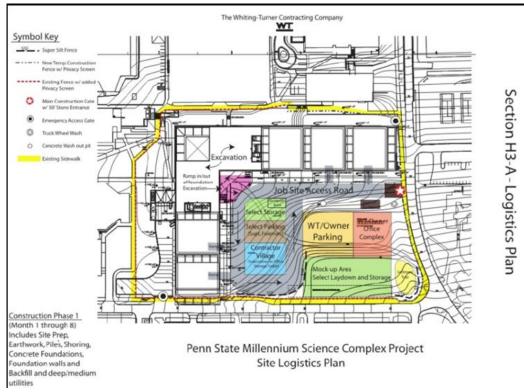
BIMception – IPD/BIM Thesis


APPENDIX D: Construction Management

Project Staff

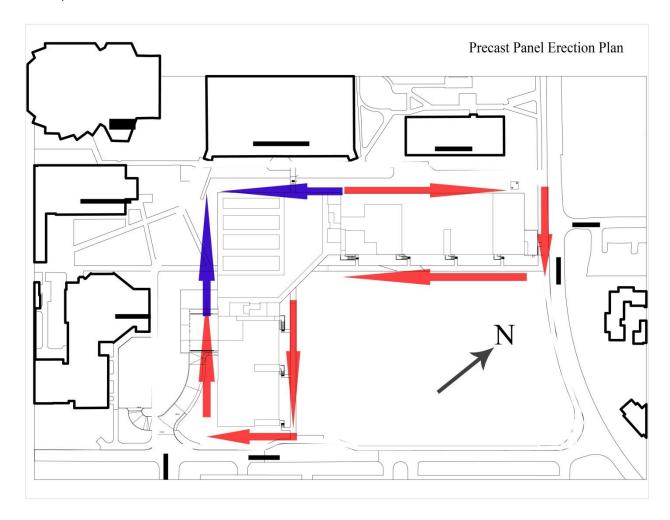

Whiting-Turner Project Staff

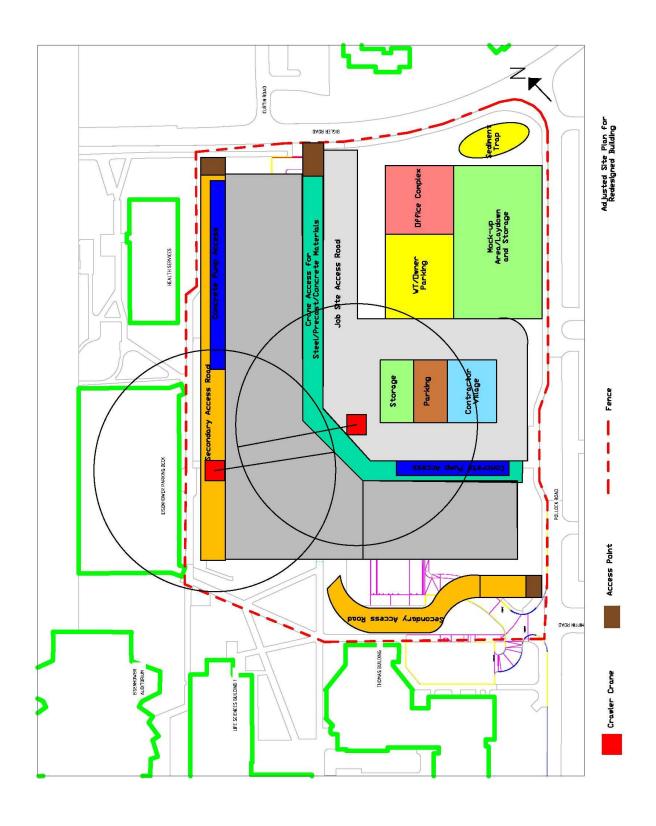
Project Delivery Method

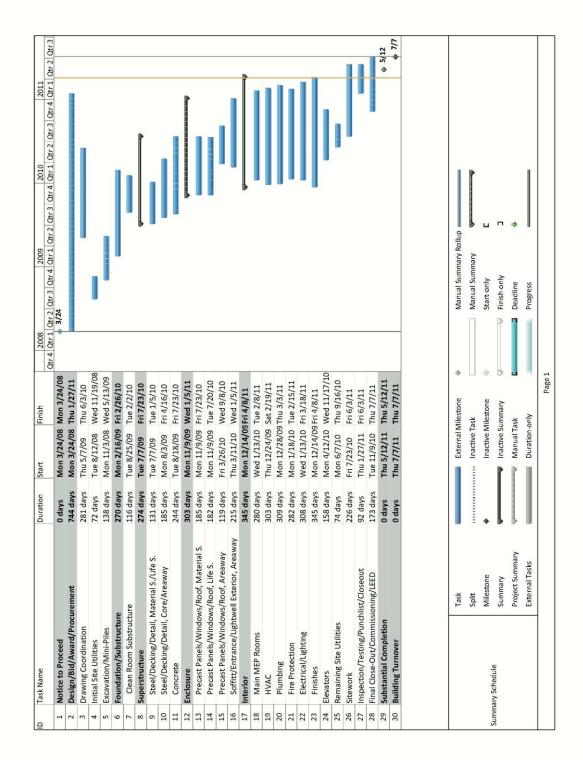


Project Delivery Method Organizational Model

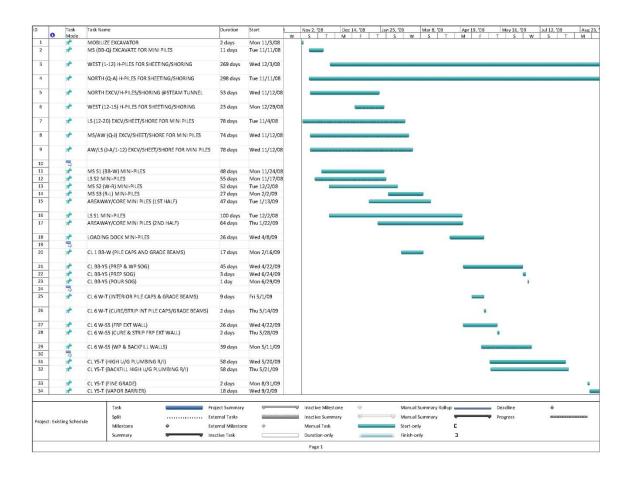
Site Logistics

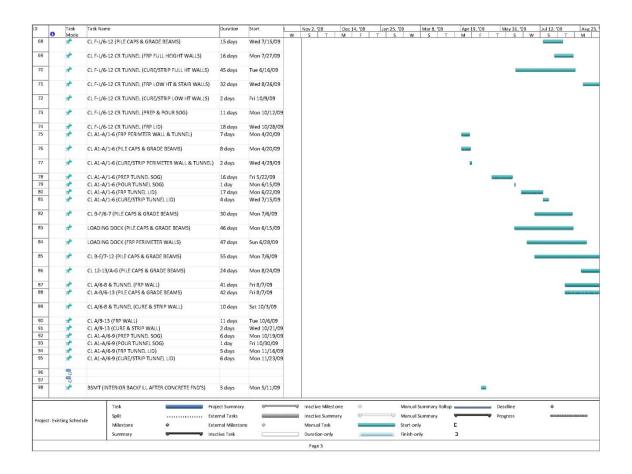


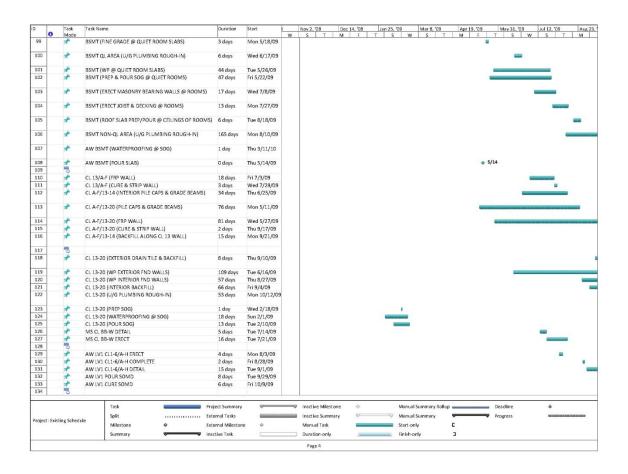

Whiting-Turner Phase 1 Site Plan

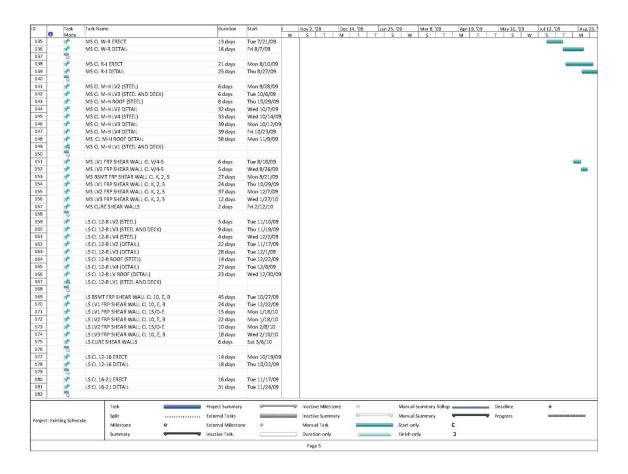

Whiting-Turner Phase 2 Site Plan

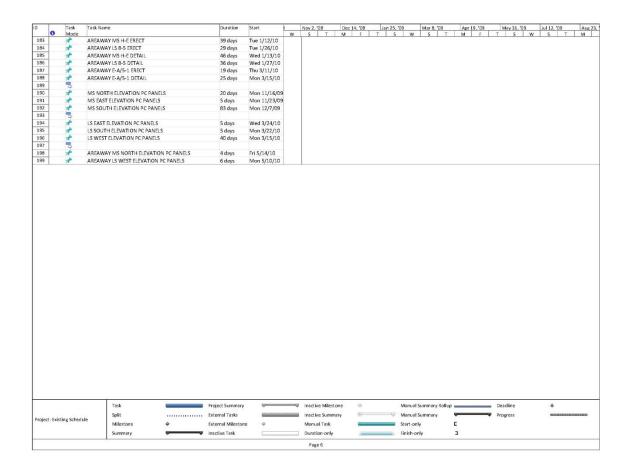
BIMception – IPD/BIM Thesis

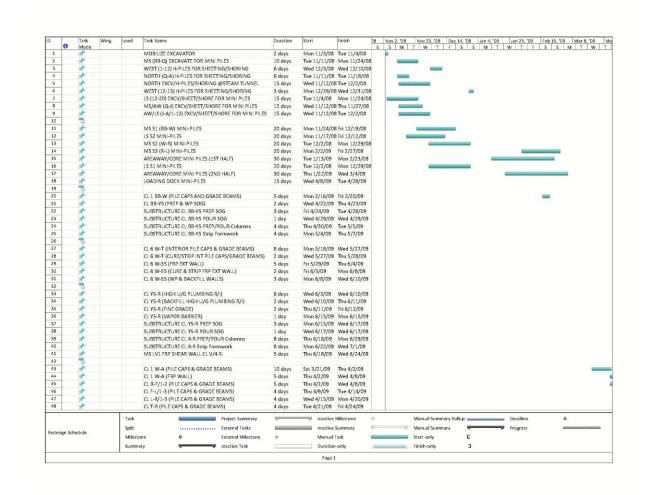


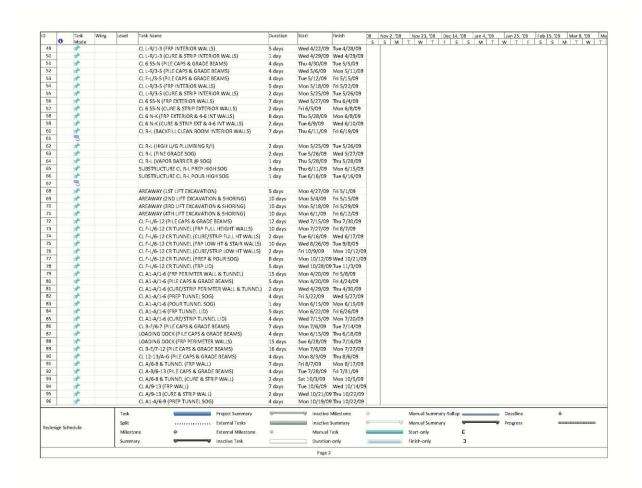

Project Schedule

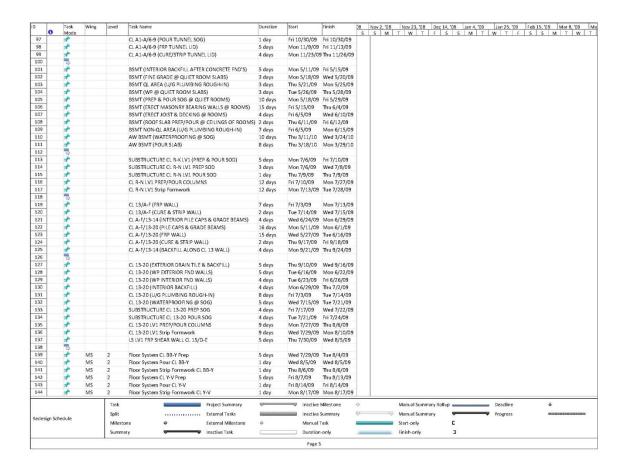


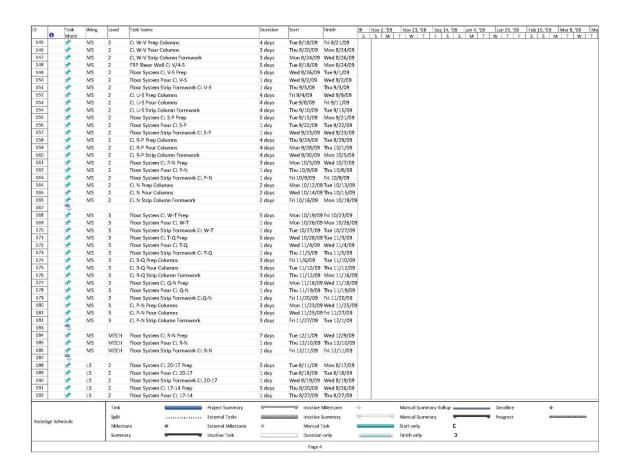

Project Summary Schedule

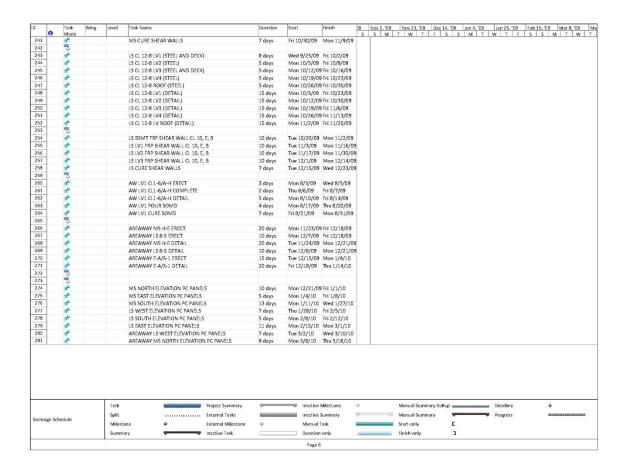












BIMception - IPD/BIM Thesis

D		Task Mode	Wing	Level	Task Name		Duration	Start	Finish		Nov 2, '08			8 Jan 4, '09 S M T	Jan 25, '09 W T F	Feb 15, '09 S S M	
193	-	* Due	LS	2	Floor System Strip Formwork CL 17-	14	1 day	Fri 8/28/09	Fri 8/28/09	3	3 M	W	1 1 3	2 M	1 44 1 1	1 2 1 3 M	I W
194		A.	LS	2	CL 16-14 Prep Columns			Mon 8/31/09									
195		A.	LS	2	CL 16-14 Pour Columns		4 days	Wed 9/2/09	Mon 9/7/09								
196		#	LS	2	CL 16-14 Strip Column Formwork		4 days	Fri 9/4/09	Wed 9/9/09								
197		A.	LS	2	FRP SHEAR WALL CL 15/D-E		5 days	Mon 8/31/09	Fri 9/4/09								
198		A	LS	2	Floor System CL 14-13 Prep		3 days	Wed 9/9/09	Fri 9/11/09								
199		A.	LS	2	Floor System Pour CL 14-13		1 day	Mon 9/14/09	Mon 9/14/09								
200		A.	LS	2	Floor System Strip Formwork CL 14-	13	1 day	Tue 9/15/09	Tue 9/15/09								
201		A .	LS	2	CL 13 Prep Columns		2 days	Wed 9/16/09	Thu 9/17/09								
202		A	LS	2	CL 13 Pour Columns		2 days	Fri 9/18/09	Mon 9/21/09								
203		78°	LS	2	CL 13 Strip Column Formwork		2 days	Tue 9/22/09	Wed 9/23/09								
204		3															
205		A.	LS	3	Floor System CL 21-18 Prep		5 days	Wed 9/23/09	Tue 9/29/09								
206		18 miles	LS	3	Floor System Pour CL 21-18		1 day	Wed 9/30/09	Wed 9/30/09								
207		78	LS	3	Floor System Strip Formwork CL 21-	18	1 day	Thu 10/1/09	Thu 10/1/09								
208		A.	LS	3	Floor System CL 18-15 Prep		5 days	Fri 10/2/09	Thu 10/8/09								
209		A.	LS	3	Floor System Pour CL 18-15		1 day	Fri 10/9/09	Fri 10/9/09								
210		A.	LS	3	Floor System Strip Formwork CL 18-	15		Mon 10/12/09									
211		AP.	LS	3	CL 16-15 Prep Columns		3 days	Tue 10/13/09	Thu 10/15/09								
212		A.	LS	3	CL 16-15 Pour Columns		3 days	Thu 10/15/09	Mon 10/19/09	9							
213		A	LS	3	CL 16-15 Strip Column Formwork		3 days	Mon 10/19/09	Wed 10/21/09	9							
214		7º	LS	3	Floor System CL 15-13 Prep		3 days	Wed 10/21/09	Fri 10/23/09								
215		A.	LS	3	Floor System Pour CL 15-13		1 day	Mon 10/26/09	Mon 10/26/09	9							
216		78	LS	3	Floor System Strip Formwork CL 15-	13	1 day	Tue 10/27/09	Tue 10/27/09								
217		A	LS	3	CL 14-13 Prep Columns		3 days	Wed 10/28/09	Fri 10/30/09								
218		AP.	LS	3	CL 14-13 Pour Columns		3 days	Fri 10/30/09	Tue 11/3/09								
219		A.	LS	3	CL 14-13 Strip Column Formwork		3 days	Tue 11/3/09	Thu 11/5/09								
220		3															
221		A.	LS	MECH	Floor System CL 16-13 Prep		4 days	Thu 11/5/09	Tue 11/10/09								
222		st.	LS	MECH	Floor System Pour CL 16-13		1 day	Wed 11/11/09	Wed 11/11/09	9							
223		A.	LS	MECH	Floor System Strip Formwork CL 16-	13	1 day	Thu 11/12/09	Thu 11/12/09								
224		000															
225		-															
226		A.			MS CL M-H LV1 (STEEL AND DECK)		8 days	Mon 8/10/09	Wed 8/19/09								
227		A.			MS CL M-H LV2 (STEEL)	9	6 days	Thu 8/20/09	Thu 8/27/09								
228		A			MS CL M-H LV3 (STEEL AND DECK)		6 days	Fri 8/28/09	Fri 9/4/09								
229		A			MS CL M-H LV4 (STEEL)		6 days	Mon 9/7/09	Mon 9/14/09								
230		A.			MS CL M-H ROOF (STEEL)			Tue 9/15/09									
231		*			MS CL M-H LV1 DETAIL			Thu 8/20/09									
232		A.			MS CL M-H LV2 DETAIL				Thu 9/17/09								
233		A			MS CL M-H LV3 DETAIL				Fri 9/25/09								
234		#			MS CL M-H LV4 DETAIL		15 days	Tue 9/15/09	Mon 10/5/09								
235		A			MS CL M-H ROOF DETAIL			Wed 9/23/09									
236		3															
237		*			MS BSMT FRP SHEAR WALL CL K, 2, 5	i .	10 days	Fri 9/4/09	Thu 9/17/09	1							
238		A			MS LV1 FRP SHEAR WALL CL K, 2, 5			Fri 9/18/09	Thu 10/1/09	1							
239		*			MS LV2 FRP SHEAR WALL CL K, 2, 5			Fri 10/2/09	Thu 10/15/09								
240		A			MS LV3 FRP SHEAR WALL CL K, 2, 5			Fri 10/16/09									
				Task	Pro Pro	oject Summary	φ	- Inactive	Milestone	φ		Manual Sumr	mary Rollup		Deadline	4	
				Split	Ex	ternal Tasks		Inactive:	Summary	0	U	Manual Sumr	nary		♥ Progress	-	
Redesi	gn Scheo	dule		Milesto			٥	Manual 1				Start-only					
				33,122,020										-			
				Summa	ory inc	ictive Task		Duration	-only	100	-	Finish-only		4			

Project Estimates

Component	Types	Quantity	Unit	Cost per Unit	Cost
Precast Panel, 22'	Concrete, Brick, Reinforcing	215.875	SF	60	12952.5
Structural Steel Connections	Lateral Connection	4	EA	250	1000
	Bearing Connection	2	EA	250	500
	Seismic Connection	1	EA	250	250
Light Shelf	Existing	22	LF	150	3300
Insulation	3" Rigid	175.24	SF	6.25	1095.25
Window Assembly/Glass	2-pane glazing assembly	176	SF	55	9680
				Total Cost	28777.75
Existing Big Panel					
Component	Types	Quantity	Unit	Cost per Unit	Cost
Precast Panel, 31'	Concrete, Brick, Reinforcing	304.186	SF	60	18251.16
Structural Steel Connections	Lateral Connection	4	EA	250	1000
	Bearing Connection	2	EA	250	500
	Seismic Connection	1	EA	250	250
Light Shelf	Existing	22	LF	150	3300
Insulation	3" Rigid	370.215	SF	6.25	2313.84375
Window Assembly/Glass	2-pane glazing assembly	248	SF	55	13640
				Total Cost	39255.00375
Existing Small Panel					
Component	Types	Quantity	Unit	Cost per Unit	Cost
Precast Panel, 14'	Concrete, Brick, Reinforcing	137.375	SF	60	8242.5
Structural Steel Connections	Lateral Connection	4	EA	250	1000
	Bearing Connection	2	EA	250	500
	Seismic Connection	1	EA	250	250
Light Shelf	24"	22	LF	150	3300
Insulation	3" Rigid	174.958	SF	6.25	1093.4875
Window Assembly/Glass	2-pane glazing assembly	112	SF	55	6160
				Total Cost	20545.9875

Existing Façade Components with 2-Pane Glazing Estimate

Component	Types	Quantity	Unit	Cost per Unit	Cost
Precast Panel, 22'	Concrete, Brick, Reinforcing	215.875	SF	60	12952.5
Structural Steel Connections	Lateral Connection	4	EA	250	1000
	Bearing Connection	2	EA	250	500
	Seismic Connection	1	EA	250	250
Light Shelf	Existing	22	Ŀ	150	3300
Insulation	3" Rigid	175.24	SF	6.25	1095.25
Window Assembly/Glass	3-pane glazing assembly	176	SF	65	11440
				Total Cost	30537.75
Existing Big Panel					
Component	Types	Quantity	Unit	Cost per Unit	Cost
Precast Panel, 31'	Concrete, Brick, Reinforcing	304.186	SF	60	18251.16
Structural Steel Connections	Lateral Connection	4	EA	250	1000
	Bearing Connection	2	EA	250	500
	Seismic Connection	1	EA	250	250
Light Shelf	Existing	22	Ŀ	150	3300
Insulation	3" Rigid	370.215	SF	6.25	2313.84375
Window Assembly/Glass	3-pane glazing assembly	248	SF	65	16120
				Total Cost	41735.00375
Existing Small Panel					
Component	Types	Quantity	Unit	Cost per Unit	Cost
Precast Panel, 14'	Concrete, Brick, Reinforcing	137.375	SF	60	8242.5
Structural Steel Connections	Lateral Connection	4	EA	250	1000
	Bearing Connection	2	EA	250	500
	Seismic Connection	1	EA	250	250
Light Shelf	24"	22	LF	150	3300
Insulation	3" Rigid	174.958	SF	6.25	1093.4875
Window Assembly/Glass	3-pane glazing assembly	112	SF	65	7280
				Total Cost	21665.9875

Existing Façade Components with 3-Pane Glazing Estimate

Redesign, 70%					
Component	Types	Quantity	Unit	Cost per Unit	Cost
Precast Panel, 22'	Concrete, Brick, Reinforcing	215.875	SF	60	12952.5
Structural Steel Connections	Lateral Connection	4	EA	250	1000
	Bearing Connection	2	EA	250	500
	Seismic Connection	1	EA	250	250
Light Shelf	16"	22	LF	100	2200
Insulation	3" Rigid	175.24	SF	6.25	1095.25
Window Assembly/Glass	3-pane glazing assembly	176	SF	65	11440
				Total Cost	29437.75
Existing Big Panel, 70%					
Component	Types	Quantity	Unit	Cost per Unit	Cost
Precast Panel, 31'	Concrete, Brick, Reinforcing	304.186	SF	60	18251.16
Structural Steel Connections	Lateral Connection	4	EA	250	1000
	Bearing Connection	2	EA	250	500
	Seismic Connection	1	EA	250	250
Light Shelf	16"	22	LF	100	2200
Insulation	3" Rigid	370.215	SF	6.25	2313.84375
Window Assembly/Glass	3-pane glazing assembly	248	SF	65	16120
				Total Cost	40635.00375
Existing Small Panel, 70%					
Component	Types	Quantity	Unit	Cost per Unit	Cost
Precast Panel, 14'	Concrete, Brick, Reinforcing	137.375	SF	60	8242.5
Structural Steel Connections	Lateral Connection	4	EA	250	1000
	Bearing Connection	2	EA	250	500
	Seismic Connection	1	EA	250	250
Light Shelf	16"	22	LF	100	2200
Insulation	3" Rigid	174.958	SF	6.25	1093.4875
Window Assembly/Glass	3-pane glazing assembly	112	SF	65	7280
				Total Cost	20565.9875

Redesigned Façade Components at 70% WW Ratio Estimate

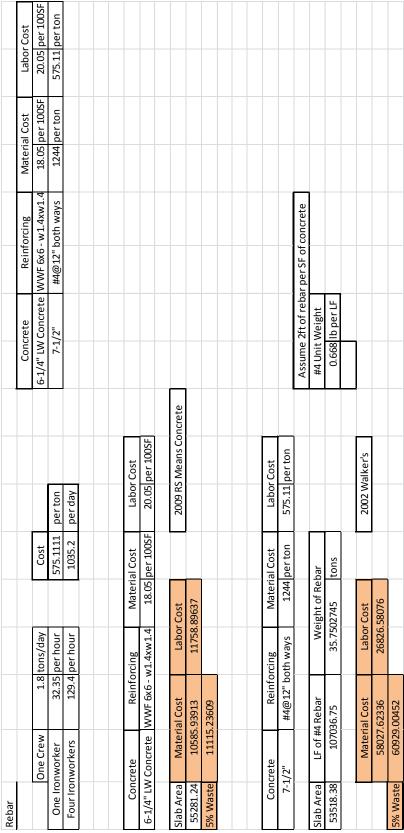
Redesign, 60%					
Component	Types	Quantity	Unit	Cost per Unit	Cost
Precast Panel, 22'	Concrete, Brick, Reinforcing	240.075	SF	60	14404.5
Structural Steel Connections	Lateral Connection	4	EA	250	1000
	Bearing Connection	2	EA	250	500
	Seismic Connection	1	EA	250	250
Light Shelf	16"	22	LF	100	2200
Insulation	3" Rigid	198.056	SF	6.25	1237.85
Window Assembly/Glass	3-pane glazing assembly	154	SF	65	10010
				Total Cost	29602.35
Redesigned Big Panel, 60%					
Component	Types	Quantity	Unit	Cost per Unit	Cost
Precast Panel, 31'	Concrete, Brick, Reinforcing	338.288	SF	60	20297.28
Structural Steel Connections	Lateral Connection	4	EA	250	1000
	Bearing Connection	2	EA	250	500
	Seismic Connection	1	EA	250	250
Light Shelf	16"	22	LF	100	2200
Insulation	3" Rigid	402.354	SF	6.25	2514.7125
Window Assembly/Glass	3-pane glazing assembly	217	SF	65	14105
				Total Cost	40866.9925
Redeigned Small Panel, 60%					
Component	Types	Quantity	Unit	Cost per Unit	Cost
Precast Panel, 14'	Concrete, Brick, Reinforcing	152.775	SF	60	9166.5
Structural Steel Connections	Lateral Connection	4	EA	250	1000
	Bearing Connection	2	EA	250	500
	Seismic Connection	1	EA	250	250
Light Shelf	16"	22	LF	100	2200
Insulation	3" Rigid	188.681	SF	6.25	1179.25625
Window Assembly/Glass	3-pane glazing assembly	98	SF	65	6370
				Total Cost	20665.75625

Redesigned Façade Components at 60% WW Ratio Estimate

Material (Items Only)

Description	Quantity 1		Quantity 2	2	Material	Cost	Labor C	Cost	Total Cost
				f	Unit Cost	Total Cost	Unit Cost	Total Cost	
Vaterials					<u> </u>				\$1,722,146.1
Floor\Generic - 6 1/4" - slab	55,281.235	sq. ft	1,066.382	cubic yd	150.25	160,223.87	21.15	22,553.98	182,777.8
Floor\Generic - 7 1/2" - slab	53,518.375	sq. ft	1,238.851	cubic yd	111.25	137,822.20	21.15	26,201.70	164,023.9
W-Wide Flange1\W12X19	1,089.000	ft	10.346		1,328.80	13,747.10	263.20	2,722.94	16,470.0
W-Wide Flange1\W14X132	50.000	ft	3.300	1	1,328.80	4,385.04	263.20	868.56	5,253.6
W-Wide Flange1\W14X43	550.000	ff	11.825	1	1,328.80	15,713.06	263.20	3,112.34	18,825.4
W-Wide Flange1\W18X35	21.500	ft	0.376	1	1,328.80	499.96	263.20	99.03	598.9
W-Wide Flange1\W18X40	1,320.000	ft	26.400	- 1	1,328.80	35,080.32	263.20	6,948.48	42,028.8
W-Wide Flange1\W18X76	682.000	ft	25.916	- 1	1,328.80	34,437.18	263.20	6,821.09	41,258.2
W-Wide Flange1\W21X44	5,412.000	ft	119.064		1,328.80	158,212.24	263.20	31,337.64	189,549.8
W-Wide Flange1\W21X50	176.000	fi	4.400	1	1,328.80	5,846.72	263.20	1,158.08	7,004.8
W-Wide Flange1\W21X68	1,210.000	ft	41.140	11	1,328.80	54,666.83	263.20	10,828.05	65,494.8
W-Wide Flange1\W24X176	264.000	fi	23.232	- 1	1,328.80	30,870.68	263.20	6,114.66	36,985.3
W-Wide Flange1\W24X55	3,366.000	ft	92.565	- 1	1,328.80	123,000.37	263.20	24,363.11	147,363.4
W-Wide Flange1\W24X76	836.000	ft	31.768	ı	1,328.80	42,213.32	263.20	8,361.34	50,574.6
W-Wide Flange1\W24X84	1,540.000	ft	64.680	1	1,328.80	85,946.78	263.20	17,023.78	102,970.5
W-Wide Flange1\W27X84	528.000	ft	22.176	1	1,328.80	29,467.47	263.20	5,836.72	35,304.1
W-Wide Flange1\W40X149	264.000	ft	19.668	1	1,328.80	26,134.84	263.20	5,176.62	31,311.4
W-Wide Flange1\W40X167	88.000	ft	7.348	1	1,328.80	9,764.02	263.20	1,933.99	11,698.0
W-Wide Flange1\W44X230	176.000	ft	20.240		1,328.80	26,894.91	263.20	5,327.17	32,222.0
W-Wide Flange-Column1\W	980.000	ft	86.240	1	1,328.80	114,595.71	263.20	22,698.37	137,294.0
14X176 W-Wide Flange-Column1\W 14X193	75.000	fi	7.238	1	1,328.80	9,617.19	263.20	1,904.91	11,522.1
W-Wide Flange-Column1\W	335.458	ff	35.391	1	1,328.80	47,027.37	263.20	9,314.87	56,342.2
W-Wide Flange-Column1\W	362.833	fi	42.270	1	1,328.80	56,168.49	263.20	11,125.49	67,293.9
W-Wide Flange-Column1\W 14X257	40.625	fl	5.220	1	1,328.80	6,936.75	263.20	1,373.99	8,310.7
W-Wide Flange-Column1\W	43.792	ft	6.810	- 1	1,328.80	9,048.60	263.20	1,792.29	10,840.8
W-Wide Flange-Column1\W	637.042	fl	19.430	1	1,328.80	25,818.29	263.20	5,113.92	30,932.2
W-Wide Flange-Column1\W	398.604	ft	13.553		1,328.80	18,008.61	263.20	3,567.03	21,575.6

Existing Structural Estimate


Material (Items Only)

Description	Quantity 1	Quantity 2	Material	Cost	Labor Co	ost	Total Cost	
			Unit Cost	Total Cost	Unit Cost	Total Cost		
W-Wide Flange-Column1\W	406.167	ft 15.028	1,328.80	19,969.43	263.20	3,955.41	23,924.84	
14X74 W-Wide Flange-Column1\W	210.125	ft 8.615	1,328.80	11,447.78	263.20	2,267.50	13,715.28	
14X82		<u> </u>	· · · · · · · · · · · · · · · · · · ·					
W-Wide Flange-Column1\W	1,953.938	ft 87.927	1,328.80	116,837.65	263.20	23,142.44	139,980.08	
14X90								
W-Wide Flange-Column1\W	237.271	ft 11.745	1,328.80	15,606.63	263.20	3,091.26	18,697.89	
14X99	, ve	AM. 2	77.					
						Total Cost	\$1,722,146.17	

Existing Steel and Slab Estimate

Metal Dec	king	2009 RS Me	2009 RS Means Concrete					
Туре	Mat. Cost	SF	Total					
3" 18 ga.	3.54	108799.61	408606.3					
	Labor Cost							
	0.4		46170.2					
	Total for	Building	454776.5					

Existing Metal Deck Estimate

Existing Rebar Estimate

Finishing		2009 RS Mea	ans Concre	te	
LW Concre	ete				
03 35 29.30 (0100)		Manual	Screed, Bu	II Float	
Crew C-10		Labor	0.22	per SF	
		One C	rew	Two (Crews
		Labor	12902.53	Labor	25805.06
NW Concr	ete				
03 35 29.	.30 (0100)	Manual	Screed, Bu	II Float	
Crev	Crew C-10		0.22	per SF	
			rew	Two (Crews
		Labor	12491.08	Labor	24982.16

Existing Finish Estimate

ormworl	k	2009 RS Me	ans Concre	te								
.W Concr	ete, 6-1/4"											
03 11 13	3.35 (7101)	Edge For	ms, 7-12" h	igh, elevat	ted slab		SFCA					
4-use		Floor	Slab Formy	vork			229.1667	per 5x	5 pour	Assume	5x5 bays pe	er pou
Crew C-1		Material	0.17	per SFCA			458.3333	2	units	110	110	
		Labor	3.46	per SFCA			183.3333	per 3x	5 pour	3x5 bays p	er pour	
		One C	Crew	Three	Crews	10% Waste	550	3	units	66	110	
		Material	181.8559	Material	545.5678	600.1246075						
		Labor	3701.303	Labor	11103.91	11103.90985						
		Total	3883.159	Total	11649.48	11704.03446						
IW Conci	rete, 7-1/2"											
03 11 13	3.35 (7101)	Edge For	ms, 7-12" h	igh, elevat	ted slab		SFCA					
4-	-use	Floor	Slab Formy	vork			229.1667	per 5x	5 pour	Assume	5x5 bays pe	er pou
Cre	w C-1	Material	0.17	per SFCA			687.5	3	units	110	110	
		Labor	3.46	per SFCA			183.3333	per 3x	5 pour	3x5 bays p	er pour	
		One C	Crew	Three	Crews	10% Waste	366.6667	2	units	66	110	
		Material	190.1221	Material	570.3664	627.4029988						
		Labor	3869.544	Labor	11608.63	11608.63303						
		Total	4059.666	Total	12179	12236.03602						

Existing Formwork Estimate

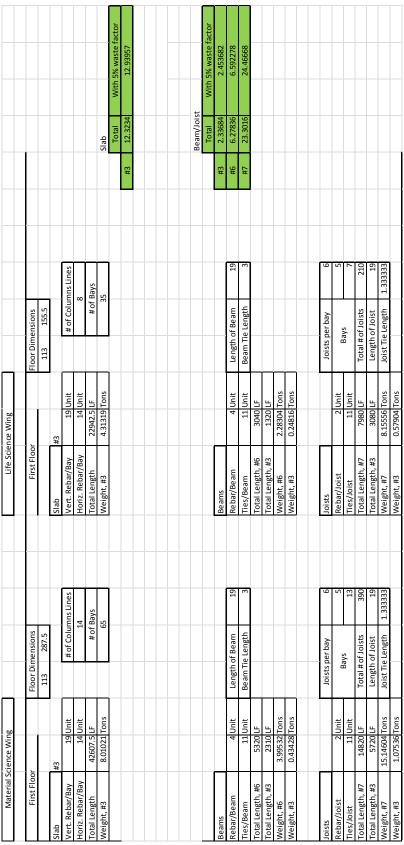
Dates for	Steel Erection of N	Naterial Science Wing.	CL BB-N	Duration		Cost
July 7, 200	9 - August 20, 200	9		3	5 days	137500
Dates for	Steel Erection of L	ife Science Wing, CL 21	l-13	Duration		Cost
October 1	9, 2009 - January 5	, 2010		6	0 days	225000
					Total	362500
300	ton crane and 275	ton crane				
25,000	per month	Rental				
2500	per day	Operations				
Assume re	ental cost is paid e	very four weeks at the	beginning	of the first week	of the cy	rcle.

Existing Crane Estimate

Welding					
Add addit	ional 15% to	total steel	cost for we	lding in w	ings

Existing Welding Estimate

Mater	ial Science W	/ing				Life	Science W	/ing]					
First F	Floor		Floor Dim			First	Floor		Floor Dim					
	-	L	113	287.5					113	155.5	<u> </u>			-
lab	 			,, , , ,		Slab	ļ		_	,, , , -	<u> </u>			-
hickness	4.5 ir			# of Co		Thickness		inch	-		olumns			
Area	32487.5 SI			14	4	Area	17571.5	SF			8			
/olume	12182.81 C					Volume	6589.313	CF						
	451.2153 C	.Υ					244.0486	CY	_			Takal	1240 000111	CV
C:!						Girders				Mariale	100/+-	Total	1249.986111 1374.984722	
Girders	10 ir	1-					10	inch	_	with	10% waste	ractor	1374.984722	CY
Thickness	1725 LF					Thickness	933	LF						
ength Vidth	3 Li					Length Width	955	LF						
/olume	4312.5 C					Volume	2332.5	CF						
June	159.7222 C					VOIUIIIE		CY	+					
	133.7222						00.30009	<u> </u>	_					
eams						Beams								
hickness	10 ir	nch				Thickness	10	inch						
ength	1582 LF					Length	904		1					
Vidth	1.5 LF					Width	1.5	LF	1					
/olume	1977.5 C					Volume	1130	CF						
	73.24074 C						41.85185	CY						
oists			Joists p	er bay	6	Joists	İ		Joists	oer bay	6			
hickness	10 ir	nch			5	Thickness	10	inch			5			
ength.	7980 LI		Bay	ys	14	Length		LF	Ba	ays	8			
Vidth	0.5 LI		Total # o	of Joists	420	Width	0.5	LF	Total #	of Joists	240			
olume/	3325 C		Length o		19	Volume	1900	CF		of Joist	19			
	123.1481 C	:Y					70.37037	CY						
		_												
Second	Floor		Floor Dim			Secon	d Floor		_	mensions				
			113	177.5					113	177.5	J			-
ilab						Slab			_					
Thickness	4.5 ir			# of Co		Thickness	4.5	inch	-		olumns			-
Area	20057.5 SI			9		Area	20057.5	SF			9			-
/olume	7521.563 C					Volume		CF	+					
	278.5764 C	.Υ					278.5764	CY	_					-
irders						Girders			-					-
hickness	10 ir	ach					10	inch	_					
	10 Ir					Thickness	1065		_					
ength	1065 LI					Length			_			Total	4000.075	CV
Vidth						Width	3	LF		,	100/ -	Total	1006.875	
olume/	2662.5 C					Volume	2662.5	CF		with	10% waste	Tactor	1107.5625	CY
	98.61111 C	, Υ					98.61111	LY	_					-
						D								
Beams	401.	1-				Beams		to als						
hickness	10 ir					Thickness		inch	+					
ength	1017 LI					Length	1017	LF	+					
Vidth	1.5 LI					Width		LF						
olume	1271.25 C					Volume		CF						
	47.08333 C	.Υ					47.08333	LY	_					
			leists -	or bou		Loists			loiste		-			
oists			Joists p	er pay	6	Joists	10	inah	JOISTS	per bay	5			
	40	o ob			.5	Thickness		inch	Ва	ays				
oists	10 ir		Bay	ys		Lancard Co.								
hickness ength	5130 LF	F		-	9	Length	5130			-	270			
hickness ength Vidth	5130 LF 0.5 LF	F F	Total # o	of Joists	9 270	Width	0.5	LF	Total #	of Joists	270			
hickness ength	5130 LF	F F :F		of Joists	9 270 19				Total #	-				


Redesign Floor System Estimate, First/Second Floor

				1											
Third	Floor	Floor Di	imensions				Third	Floor		Eloor Dia	mensions	1			
IIIIIu	FIOOI	113	67.5				IIIII	FIOOI		113	67.5	1			
ilab		113	07.3				Slab	i		113	07.5				
hickness	4.5 inch		# of Co	olumns			Thickness	4.5	inch		# of C	olumns			
rea	7627.5 SF			4			Area	7627.5				4			
/olume	2860.313 CF						Volume	2860.313							
	105.9375 CY							105.9375							
Girders							Girders								
Thickness	10 inch						Thickness	10	inch	1					
ength	405 LF						Length	405	LF						
Vidth	3 LF						Width	3	LF				Total	399.097222	2 CY
/olume	1012.5 CF						Volume	1012.5	CF		With	10% waste	factor	439.006944	4 CY
	37.5 CY							37.5	CY			İ			
Beams							Beams								
Thickness	10 inch						Thickness	10	inch						
ength	452 LF						Length	452							
Vidth	1.5 LF						Width	1.5	LF						
/olume	565 CF						Volume	565							
	20.92593 CY							20.92593	CY						
oists		Joists	per bay	6	ò		Joists			Joists	per bay	6			
hickness	10 inch	ь	lays	5	5		Thickness	10	inch	D.	ays	5			
ength.	2280 LF	В	oays	4	ı		Length	2280	LF	Di	ays	4			
Nidth	0.5 LF	Total #	of Joists	120)		Width	0.5			of Joists	120			
/olume	950 CF	Length	n of Joist	19	9		Volume	950		Length	of Joist	19			
	35.18519 CY							35.18519	CY						
															+
															-
															-
															-
					R	uilding To	tal	Concre	te Cost	1					
					Total	2655.958			5.3646						
			\\/ith	10% waste		2921.554			22.901						
			VVILII .	1070 Waste	Tuctor	2321.334		32302	2.301	_					
				4000	nci NIM co	ncroto w/	winter con	croto admi	ivturo	1					-
				Base	•	per CY	willer con	uete aum	ixture						-
				Winter	+	per CY	1								-
						percr	4			-					+
				Total	111.25	1									+
															-
							Masonry Co	ost Data 20)9	-					+
				03 31	Structural		crete, Reac	l B 4:-	- 70	-					-
				103 31 05 3	· Normal W	reignt ('on	CLELE RESU	IN BAILY	p70						

Redesian	Eloor	Suctom	Ectimata	Third	Eloor/Tot	-~1
Reaesian	Floor	System	Estimate.	- i nira	Floor/Tot	a

Slab	Rebar	#3 @ 12"	, both dire	ections		
		Unit Wt.		C	Cost per To	n
	#3	0.376	lb/ft		1327	
	#6	1.502	lb/ft		1228	
	#7	2.044	lb/ft		1222	
	#9	3.4	lb/ft		1222	
	Vert	. Rebar Leng	th	20.5	LF	
	Hori	z. Rebar Leng	gth	19	LF	

Rebar Costs/Information

Redesign Floor System Rebar Estimate, First Floor

Second Floor	oor	Floor Dimensions		Second Floor	or	Floor Dimensions				
		113 177.5				113 177.5				
Slab				Slab						
Vert. Rebar/Bay	19 Unit	# of Column	mns Lines	Vert. Rebar/Bay	19 Unit	# of Columns Lines	nes			
Horiz. Rebar/Bay	14 Unit	J.	6	Horiz. Rebar/Bay	14 Unit	6				
Total Length	26220 LF	# of	# of Bays	Total Length	26220 LF	# of Bays				
Weight, #3	4.92936 Tons	4	40	Weight, #3	4.92936 Tons	40				
									4.0	
									Total	With 5% waste factor
								#3	9.85872	10.351656
Beams				Beams					Beam/Joist	
Rebar/Beam	4 Unit	Length of Beam	19	Rebar/Beam	4 Unit	Length of Beam	19		Total	With 5% waste factor
Fies/Beam	11 Unit	Beam Tie Length	3	Ties/Beam	11 Unit	Beam Tie Length	m	#3	1.88188	1.975974
Fotal Length, #6	3420 LF			Total Length, #6	3420 LF			9#	5.13684	5.393682
Fotal Length, #3	1485 LF			Total Length, #3	1485 LF			L#	18.64128	19.573344
Weight, #6	2.56842 Tons			Weight, #6	2.56842 Tons					
Weight, #3	0.27918 Tons			Weight, #3	0.27918 Tons					
Joists		Joists per bay	9	Joists		Joists per bay	9			
Rebar/Joist	2 Unit	2770	2	Rebar/Joist	2 Unit	2772	2			
Ties/Joist	11 Unit	Days	8	Ties/Joist	11 Unit	Days	8			
Total Length, #7	9120 LF	Total # of Joists	240	Total Length, #7	9120 LF	Total # of Joists	240			
Total Length, #3	3520 LF	Length of Joist	19	Total Length, #3	3520 LF	Length of Joist	19			
Weight, #7	9.32064 Tons	Joist Tie Length	1.333333	Weight, #7	9.32064 Tons	Joist Tie Length 1.333333	3333			
Weight #3	0.66176 Tons			Weight. #3	0.66176 Tons					

Redesign Floor System Rebar Estimate, Second Floor

Third Floor		Floor Dimensions		Third Floor		Floor Dimensions				
		113 67.5				113 67.5				
Slab				Slab						
Vert. Rebar/Bay	19 Unit	# of Colu	# of Columns Lines	Vert. Rebar/Bay	19 Unit	# of Columns Lines	ins Lines			
Horiz. Rebar/Bay	14 Unit		4	Horiz. Rebar/Bay	14 Unit	4				
Total Length	9832.5 LF	# of	# of Bays	Total Length	9832.5 LF	# of Bays	says			
Weight, #3	1.84851 Tons		15	Weight, #3	1.84851 Tons	15				
									Slab	
									Total	With 5% waste factor
								#3	3.69702	3.881871
Beams				Beams					Beam/Joist	
Rebar/Beam	4 Unit	Length of Beam	19	Rebar/Beam	4 Unit	Length of Beam	19		Total	With 5% waste factor
Ties/Beam	11 Unit	Beam Tie Length	3	Ties/Beam	11 Unit	Beam Tie Length	3	#3	0.74448	0.781704
Total Length, #6	1520 LF			Total Length, #6	1520 LF			9#	2.28304	2.397192
Total Length, #3	999 LF			Total Length, #3	660 LF			2#	6.99048	7.340004
Weight, #6	1.14152 Tons			Weight, #6	1.14152 Tons					
Weight, #3	0.12408 Tons			Weight, #3	0.12408 Tons					
Joists		Joists per bay	9	Joists		Joistsperbay	9			
Rebar/Joist	2 Unit	Č	2	Rebar/Joist	2 Unit	9	2			
Ties/Joist	11 Unit	pdys	3	Ties/Joist	11 Unit	Sdba	3			
Total Length, #7	3420 LF	Total # of Joists	06	Total Length, #7	3420 LF	Total # of Joists	06			
Total Length, #3	1320 LF	Length of Joist	19	Total Length, #3	1320 LF	Length of Joist	19			
Weight, #7	3.49524 Tons	Joist Tie Length	1.333333	Weight, #7	3.49524 Tons	Joist Tie Length	1.333333			
Weight #3	0.24816 Tons			Weight #3	0 24816 Tons					

Redesign Floor System Rebar Estimate, Third Floor

		Slab	
		Total	With 5% waste factor
	#3	25.87914	27.173097
	Cost/Ton		
	1327	34341.6188	36058.69972
		Beam/Joist	
		Total	With 5% waste factor
	#3	4.9632	5.21136
	#6	13.69824	14.383152
	#7	48.93336	51.380028
			Costs
	Cost/Ton	Total	With 5% waste factor
#3	1327	6586.1664	6915.47472
#6	1228	16821.4387	17662.51066
#7	1222	59796.5659	62786.39422

Redesign Floor System Rebar Estimate, Total

Material Science Wing				Li	ife Science Wing			
First Floor	Floor [Dimensions		First Flo	or	Floor Din	nensions	
	113	286				113	154	
Interior Girder				Interior	Girder			
# of Top Rebar, Full Len	gth	4	Unit	#	of Top Rebar, Full	Length	4	Unit
Length of Top Rebar, Full I	_	287.75	LF		gth of Top Rebar, F		155.75	LF
Total Length, #9		4604			Total Length,		2492	LF
Weight, #9		7.8268	Tons		Weight, #9		4.2364	Tons
# of Bottom Rebar, Full Le	ength	4	Unit	# 0	of Bottom Rebar, Fu	ıll Length	4	Unit
Length of Bottom Rebar, Ful		286.5			h of Bottom Rebar		154.5	
Total Length, #9		4584		20.18	Total Length,		2472	
Weight, #9		7.7928		Weight, #9				Tons
# of Bottom Rebar, Exterio	or Span	6	Unit	# of	Bottom Rebar, Ext	erior Span	6	Unit
Length of Bottom Rebar, Ful		11.75	LF		h of Bottom Rebar		11.75	LF
Total Length, #9	- ŭ	282	LF		Total Length,		282	LF
Weight, #9		0.4794			Weight, #9		0.4794	Tons
# of Dotton Dobou Intonio	n C	-	Unit	# 4	Dattan Dahar Int	anian Caan	-	Unit
# of Bottom Rebar, Interio Length of Bottom Rebar, Ful		11.8333			f Bottom Rebar, Int th of Bottom Rebar,	•	11.8333	
	Length	2839.992		Lengt			1419.996	
Total Length, #9 Weight, #9		4.8279864			Total Length, # Weight, #9	49	2.413993	
weight, #9		4.6279604	10115		weight, #9		2.415995	10115
# of Top Rebar, First Interior	Column	6	Unit	# of T	op Rebar, First Inte	rior Column	6	Unit
Length of Bottom Rebar, Ful	l Length	12.5	LF	Lengt	h of Bottom Rebar,	, Full Length	12.5	LF
Total Length, #9		300	LF		Total Length,	#9	300	LF
Weight, #9		0.51	Tons		Weight, #9		0.51	Tons
# of Top Rebar, All Other Inte			Unit		op Rebar, All Other			Unit
Length of Bottom Rebar, Ful	I Length	11.8333		Lengt	h of Bottom Rebar,		11.8333	
Total Length, #9		3407.9904			Total Length,	#9	1703.995	
Weight, #9		5.79358368	Tons		Weight, #9		2.896792	Tons
# of Ties/Girder		25	Unit		# of Ties/Gird	er	25	Unit
			9.8333					
Total Length, #3	LIUII	12783.29			Length of Tie Configuration Total Length, #3		6883.31	
Weight, #3	+	2.40325852			Weight, #3	+3	1.294062	
vveigiit, #3		2.40323632	10113		weigiil, #5		1.234002	10113

Redesign Floor System Girder Rebar Estimate, First Floor

	Unit Wt.		(ost per To	n			
#3	0.376	lb/ft		1327				
#6	1.502	lb/ft						
#7	2.044	lb/ft		1222				
#9	3.4	lb/ft		1222				
	Materia	Science	Life So	cience				
	# of Colu	nns Lines	# of Colu	# of Columns Lines				
	1	.4	:	3				
	# of	Bays	# of	Bays				
	1	.3		7				
	# of Colu	mn Lines						
	(õ						
De	velopmen	t Length, T	ор					
	1.	75						
Deve	elopment I	ength, Bo	ttom					
	0	.5						

Redesign Floor System Girder Rebar Estimate Info, First Floor

xterior Girder					Exterior G	iirder				
" (7 5 1 5 11 11	21.					(T. D.)				
# of Top Rebar, Full Length		Init				of Top Reb				Unit
Length of Top Rebar, Full Length	287.75 L				Lengt	h of Top R		_ength	155.75	
Total Length, #7	1151 L						ngth, #7		623	
Weight, #7	1.176322 T	ons				Weig	ht, #7		0.636706	Tons
# of Bottom Rebar, Full Length	2 U	Init			# of	Bottom Re	bar, Full L	ength	2	Unit
Length of Bottom Rebar, Full Length	286.5 L	F			Length	of Bottom	Rebar, Ful	l Length	154.5	LF
Total Length, #7	1146 L	F					ngth, #7		618	LF
Weight, #7	1.171212 T	ons					ht, #7		0.631596	Tons
							,			
# of Bottom Rebar, Exterior Span	5 U	Init			# of B	ottom Reb	ar, Exterio	r Span	5	Unit
Length of Bottom Rebar, Full Length	9.3333 L	F			Length	of Bottom	Rebar, Ful	l Length	9.3333	LF
Total Length, #7	93.333 L	F				Total Le	ngth, #7		93.333	LF
Weight, #7	0.095386326 T	ons			Weight, #7			0.095386	Tons	
# of Bottom Rebar, Interior Span	5 U	Init			# of B	ottom Reb	ar, Interio	r Span	5	Unit
Length of Bottom Rebar, Full Length	11.8333 L	F			Length	of Bottom	Rebar, Ful	l Length	11.8333	LF
Total Length, #7	1419.996 L	F				Total Le	ngth, #7		709.998	LF
Weight, #7	1.451235912 T	ons			Weight, #7				0.725618	Tons
Wef Tee Below First Interior Column	clu	1-14			U - 6 T	D-1 51		Calina		Unit
# of Top Rebar, First Interior Column	6 U 13.75 L					Rebar, Fi			13.75	
Length of Bottom Rebar, Full Length Total Length, #7	13.75 L				Length	of Bottom		Length	13.75	
•							ngth, #7			
Weight, #7	0.16863 T	ons				weig	ht, #7		0.16863	ions
# of Top Rebar, All Other Interior Col.	4 U	Init			# of Top	Rebar, All	Other Inte	erior Col.	4	Unit
Length of Bottom Rebar, Full Length	10.5 L	F			Length	of Bottom	Rebar, Ful	l Length	10.5	LF
Total Length, #7	1008 L	F				Total Le	ngth, #7		504	LF
Weight, #7	1.030176 T	ons		ļ		Weig	ht, #7		0.515088	Tons
# of Ties/Girder	25 U						s/Girder			Unit
Length of Tie Configuration	7.667 L				Ler	ngth of Tie		tion	7.667	
Total Length, #3	4983.55 L						ngth, #3		2683.45	
Weight, #3	0.9369074 T	ons				Weig	ht, #3		0.504489	Tons
		Total	With	5% waste f	actor					
	#3 !	5.138717		5.39565264						
	#6		0							
	#7	7.865987	8	.259285846	5					
	#9	41.96956	4	4.06803288	3					

Redesign Floor System Girder Rebar Estimate, First Floor and Subtotal

Material Science Win	g			Life Scie	ence Wing		
Second Floor	Floor D	Dimensions		Second Floor	Floor Din	nensions	
	113	176			113	176	
Interior Girder				Interior Girder			
# of Top Rebar, Fu	ll Length	4	Unit	# of Top	Rebar, Full Length	4	Unit
Length of Top Rebar,	Full Length	177.75	LF	Length of	Top Rebar, Full Length	177.75	LF
Total Length,	, #9	2844	LF	To	otal Length, #9	2844	ᄕ
Weight, #9	9	4.8348	Tons		Weight, #9	4.8348	Tons
# of Bottom Rebar, F	ull Length	4	Unit	# of Botto	om Rebar, Full Length	4	Unit
Length of Bottom Reba	r, Full Length	176.5	LF	Length of Bo	ottom Rebar, Full Length	176.5	LF
Total Length,	, #9	2824	LF	To	otal Length, #9	2824	LF
Weight, #9	9	4.8008	Tons		Weight, #9	4.8008	Tons
# of Bottom Rebar, Ex	cterior Span	6	Unit	# of Botto	m Rebar, Exterior Span	6	Unit
Length of Bottom Reba	r, Full Length	11.75	LF	Length of Bo	ottom Rebar, Full Length	11.75	LF
Total Length,	, #9	282	LF	To	otal Length, #9	282	LF
Weight, #9	9	0.4794	Tons		Weight, #9	0.4794	Tons
# of Bottom Rebar, In	terior Span	5	Unit	# of Botto	m Rebar, Interior Span	5	Unit
Length of Bottom Reba	r, Full Length	11.8333	LF		ottom Rebar, Full Length	11.8333	LF
Total Length,	, #9	1656.662	LF	To	otal Length, #9	1656.662	LF
Weight, #9	9	2.8163254	Tons		Weight, #9	2.816325	Tons
# of Top Rebar, First Int	erior Column	6	Unit	# of Top Reb	ar, First Interior Column		Unit
Length of Bottom Reba	r, Full Length	12.5		Length of Bo	ottom Rebar, Full Length	12.5	LF
Total Length,	, #9	300	LF	To	otal Length, #9	300	LF
Weight, #9	9	0.51	Tons		Weight, #9	0.51	Tons
# of Top Rebar, All Othe			Unit		ar, All Other Interior Col.		Unit
Length of Bottom Reba		11.8333			ottom Rebar, Full Length	11.8333	
Total Length,		1987.9944		To	otal Length, #9	1987.994	
Weight, #9	9	3.37959048	Tons		Weight, #9	3.37959	Tons
# of Ties/Gird			Unit		of Ties/Girder		Unit
Length of Tie Confi			9.8333 LF Length of Tie Configuration		9.8333		
Total Length,		7866.64		To	otal Length, #3	7866.64	
Weight, #3	3	1.47892832	Tons		Weight, #3	1.478928	Tons

Redesign Floor System Girder Rebar Estimate, Second Floor

	Unit Wt.		C	Cost per To	n		
#3	0.376	lb/ft					
#6	1.502	lb/ft	1228				
#7	2.044	lb/ft		1222			
#9	3.4	lb/ft		1222			
	Materia	Science	Life So	cience			
	# of Colu	nns Lines	# of Colu				
	Ç	9	Ç				
	# of	Bays	# of				
		3					
	# of Colu	mn Lines					
	(5					
De	velopmen	t Length, T	ор				
	1.	75	•				
Deve	elopment I	ength, Bo	ttom				
	0	.5	•				

Redesign Floor System Girder Rebar Estimate Info, Second Floor

2 Unit 177.75 LF	t							
	t							
177.75 LF				# of Top	Rebar, Full Le	ngth	2	Unit
				Length of To	op Rebar, Full	Length	177.75	LF
711 LF				Tot	al Length, #7		711	LF
0.726642 Ton:	S			\	Weight, #7		0.726642	Tons
	t							Unit
						ıll Length		
				Tot	al Length, #7			
0.721532 Ton	S			\	Weight, #7		0.721532	Tons
	t			# of Bottom	Rebar, Exteri	or Span		Unit
						ıll Length		
93.333 LF				•			93.333	LF
0.095386326 Tons	S			Weight, #7			0.095386	Tons
	t			# of Bottom	Rebar, Interi	or Span	_	Unit
				Length of Bottom Rebar, Full Length				
828.331 LF				Total Length, #7			828.331	LF
0.846554282 Ton	S			Weight, #7			0.846554	Tons
6 Unit	t			# of Top Reba	r, First Interio	r Column	6	Unit
13.75 LF							13.75	LF
165 LF				Tot	al Length, #7			
0.16863 Ton:	ıs			1	Weight, #7		0.16863	Tons
4 Unit	t			# of Top Reba	, All Other In	terior Col.	4	Unit
10.5 LF				Length of Bot	tom Rebar, Fu	ıll Length	10.5	LF
588 LF				Tot	al Length, #7		588	LF
0.600936 Ton	S			\	Weight, #7		0.600936	Tons
25 Unit	+			# 0	f Ties/Girder		25	Unit
					•	ation		
			-			acion		
	s	9 :						
0.570550-4 1011.				· ·			3.370330	.0113
т.	otal	\\/i+b F0	2/ wasto fac	tor				
	1109/3	0						
	10261							
	176.5 LF 706 LF 706 LF 0.721532 Ton 5 Uni 9.3333 LF 93.333 LF 93.333 LF 0.095386326 Ton 5 Uni 11.8333 LF 828.331 LF 0.846554282 Ton 6 Uni 13.75 LF 165 LF 0.16863 Ton 4 Uni 10.5 LF 588 LF 0.600936 Ton 25 Uni 7.667 LF 3066.8 LF 0.5765584 Ton T #3 4.1	706 LF 0.721532 Tons 5 Unit 9.3333 LF 93.333 LF 0.095386326 Tons 5 Unit 11.8333 LF 828.331 LF 0.846554282 Tons 6 Unit 13.75 LF 165 LF 0.16863 Tons 4 Unit 10.5 LF 588 LF 0.600936 Tons 25 Unit 7.667 LF 3066.8 LF 0.5765584 Tons Total #3 4.110973 #6 #7 6.319361	176.5 LF 706 LF 706 LF 0.721532 Tons 5 Unit 9.3333 LF 93.333 LF 0.095386326 Tons 5 Unit 11.8333 LF 828.331 LF 0.846554282 Tons 6 Unit 13.75 LF 165 LF 0.16863 Tons 4 Unit 10.5 LF 588 LF 0.600936 Tons 25 Unit 7.667 LF 3066.8 LF 0.5765584 Tons Total With 56 #3 4.110973 4.3	176.5 LF 706 LF 706 LF 0.721532 Tons 5 Unit 9.3333 LF 93.333 LF 0.095386326 Tons 5 Unit 11.8333 LF 828.331 LF 0.846554282 Tons 6 Unit 13.75 LF 165 LF 0.16863 Tons 4 Unit 10.5 LF 588 LF 0.600936 Tons 25 Unit 7.667 LF 3066.8 LF 0.5765584 Tons Total With 5% waste face #3 4.110973 4.316522112 #6 0	176.5 LF	176.5 LF 706 LF 706 LF 706 LF 707 LF 707 LF 707 LF 708 LF 708 LF 708 LF 708 LF 708 LF 708 LF 708 LF 708 LF 708 LF 708 LE 708 LE 828.333 LF 828.331 LF 828.331 LF 828.331 LF 828.331 LF 828.331 LF 828.331 LF 846 LF 858 LF	176.5 LF	176.5 F Length of Bottom Rebar, Full Length 176.5 706 F 706 F 706 F 707 706 F 707 706 F 707

Redesign Floor System Girder Rebar Estimate, Second Floor and Subtotal

Material Science Win	ng			Life Scier	nce Wing		
Third Floor	Floor D	Dimensions		Third Floor	Floor Din	nensions	
	113	66			113	66	
nterior Girder				Interior Girder			
# of Top Rebar, Fu	III Length	4	Unit	# of Top	Rebar, Full Length	4	Unit
Length of Top Rebar,		67.75			op Rebar, Full Length	67.75	
Total Length		1084			tal Length, #9	1084	LF
Weight,#	9	1.8428	Tons	,	Weight, #9	1.8428	Tons
# of Bottom Rebar,	Full Length		Unit	# of Botto	m Rebar, Full Length		Unit
Length of Bottom Reba	ar, Full Length	66.5			ttom Rebar, Full Length	66.5	
Total Length	, #9	1064	LF	Tot	tal Length, #9	1064	LF
Weight,#	9	1.8088	Tons	,	Weight, #9	1.8088	Tons
# of Bottom Rebar, E			Unit		Rebar, Exterior Span		Unit
Length of Bottom Reba		11.75			ttom Rebar, Full Length	11.75	
Total Length		282			tal Length, #9	282	
Weight,#	9	0.4794	Tons	,	Weight, #9	0.4794	Tons
# of Bottom Rebar, Ir	nterior Span	5	Unit	# of Botton	n Rebar, Interior Span	5	Unit
Length of Bottom Reba		11.8333			ttom Rebar, Full Length	11.8333	
Total Length		473.332			tal Length, #9	473.332	
Weight,#		0.8046644			Weight, #9	0.804664	
# of Top Rebar, First In	terior Column	6	Unit	# of Top Reba	ar, First Interior Column	6	Unit
Length of Bottom Reba	ar, Full Length	12.5	LF	Length of Bot	ttom Rebar, Full Length	12.5	LF
Total Length	, #9	300	LF	Tot	tal Length, #9	300	LF
Weight,#	9	0.51	Tons	,	Weight, #9	0.51	Tons
# of Top Rebar, All Othe		6	Unit		r, All Other Interior Col.	6	Unit
Length of Bottom Reba	ar, Full Length	11.8333	LF	Length of Bot	ttom Rebar, Full Length	11.8333	LF
Total Length	,	567.9984			tal Length, #9	567.9984	LF
Weight,#	9	0.96559728	Tons	,	Weight, #9	0.965597	Tons
# of Ties/Gir			Unit		f Ties/Girder		Unit
	ength of Tie Configuration 9.8333 LF Length of Tie Configuration		9.8333				
Total Length		2949.99			tal Length, #3	2949.99	
Weight,#	3	0.55459812	Tons		Weight, #3	0.554598	Tons

Redesign Floor System Girder Rebar Estimate, Third Floor

	Unit Wt.	•	(ost per To	n
#3	0.376	lb/ft		1327	
#6	1.502	lb/ft			
#7	2.044	lb/ft		1222	
#9	3.4	lb/ft		1222	
	Material	Science	Life So	cience	
	# of Colur	nns Lines	# of Colu	mns Lines	
	4		4		
	# of	Bays	# of	Bays	
	3	3	3		
	# of Colu	mn Lines			
	(ĵ			
De	velopmen	t Length, T	ор		
	1.	75			
Dev	elopment l	ength, Bo	ttom		
	0	.5			
		0: 1 5			·

Redesign Floor System Girder Rebar Estimate Info, Third Floor

Exterior Girder					Exterior G	irder				
# of Top Rebar, Full Length	2	Unit			# c	f Top Reb	ar, Full Len	gth	2	Unit
Length of Top Rebar, Full Length	67.75	LF			Lengt	h of Top R	ebar, Full	Length	67.75	LF
Total Length, #7	271						ength, #7		271	
Weight, #7	0.276962	Tons					ght, #7		0.276962	Tons
# of Bottom Rebar, Full Length	2	Unit			# of	Bottom Re	bar, Full L	ength	2	Unit
Length of Bottom Rebar, Full Length	66.5	LF			Length	of Bottom	Rebar, Ful	ll Length	66.5	LF
Total Length, #7	266	LF				Total Le	ength, #7		266	LF
Weight, #7	0.271852	Tons				Wei	ght, #7		0.271852	Tons
# of Bottom Rebar, Exterior Span	5	Unit			# of B	ottom Reb	oar, Exterio	r Span	5	Unit
Length of Bottom Rebar, Full Length	9.3333	LF			Length	of Bottom	Rebar, Ful	ll Length	9.3333	LF
Total Length, #7	93.333	LF				Total Le	ength, #7		93.333	LF
Weight, #7	0.095386326	Tons				Weig	ght, #7		0.095386	Tons
# of Bottom Rebar, Interior Span		Unit			# of B	ottom Rel	oar, Interio	r Span	5	Unit
Length of Bottom Rebar, Full Length	11.8333	LF			Length	of Bottom	Rebar, Ful	l Length	11.8333	LF
Total Length, #7	236.666	LF				Total Le	ength, #7		236.666	LF
Weight, #7	0.241872652	Tons				Wei	ght, #7		0.241873	Tons
# of Top Rebar, First Interior Column		Unit					rst Interior			Unit
Length of Bottom Rebar, Full Length	13.75				Length		Rebar, Ful	l Length	13.75	
Total Length, #7	165					Total Le	ength, #7		165	
Weight, #7	0.16863	Tons				Weig	ght, #7		0.16863	Tons
# of Top Rebar, All Other Interior Col.		Unit				-	Other Into			Unit
Length of Bottom Rebar, Full Length	10.5				Length	of Bottom	Rebar, Ful	ll Length	10.5	
Total Length, #7	168	LF				Total Le	ength, #7		168	LF
Weight, #7	0.171696	Tons				Weig	ght, #7		0.171696	Tons
# of Ties/Girder		Unit					s/Girder			Unit
Length of Tie Configuration	7.667				Ler		Configura	tion	7.667	
Total Length, #3	1150.05						ength, #3		1150.05	
Weight, #3	0.2162094	Tons				Weig	ght, #3		0.216209	Tons
		Total	\A/i+b	E9/ wasta	factor					
	#2	Total		5% waste						
	#3	1.541615	1	61869579	2	-				
	#6			0						
	#7 2.452798 2.5754378 ¹									
	#9	12.82252	1	3.4636495	3					

Redesign Floor System Girder Rebar Estimate, Third Floor and Subtotal

			Building Total
		Total	With 5% waste factor
	#3	10.79131	11.33087054
	#7	16.63815	17.47005298
	#9	88.43391	92.85560575
	Cost/Ton		
#3	1327	14320.06	15036.06521
#7	1222	20331.81	21348.40474
#9	1222	108066.2	113469.5502

Redesign Floor System Girder Rebar Estimate, Total

	Material	Life	Height (ft)		Column Dir	nensions			
First	84	48	20		1.5	1.5			
Second	54	54	18						
Third	24	24	18		Rebar V	/eight	Cost/Ton		
Total	162	126	56		#3	0.376	1327		
					#9	3.4	1222		
Concrete									
	Columns	Height	Total H	eight of Co	olumn	Volum	e of Concrete	(CY)	
First	132	20		2640			220		
Second	108	18		1944			162		
Third	48	18		864			72		Cost
					Total		454		50507.5
					10% Waste		499.4		55558.25
Rebar									
#9	Rebar/Column	Total Height of Column	Total L	ength of F	Rebar	Weig	ht of Rebar (to	ons)	
First	4	2640		10560			17.952		
Second	4	1944		7776			13.2192		
Third	4	864		3456			5.8752		Cost
					Total		37.0464		45270.7
					5% Waste		38.89872		47534.24
#3	Ties/Column	Total # of Ties	Length of Tie	Total Ler	ngth of Ties	Weig	ht of Rebar (to	ons)	
First	14	1848	5.33	98	49.84		1.85176992		
Second	13	1404	5.33	74	83.32		1.40686416		
Third	13	624	5.33	33	25.92		0.62527296		Cost
					Total		3.88390704		5153.945
					5% Waste		4.078102392		5411.642
		4000 psi, 1	NW concrete w		oncrete adm	ixture			
		Base		per CY					
		Winter		per CY					
		Total	111.25						

Redesign Floor System Column Estimate

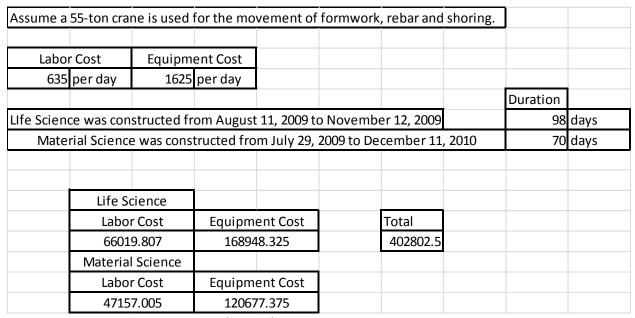
		-	1					
		Ht. of Col	SF of C.A.		Colum	n Size		
	First Floor	2640	15840		1.5	1.5		
	Second Floor	1944	11664		Height of	Column		
	Third Floor	864	5184		18	20		
		Total	32688					
Columns								
03 11 13.25 (6150)	Colum	nn Formwo	rk		Daily O	utput:	235	SFCA/day
16x16 Column	Material	0.73	per SFCA		Three (Crews	705	SFCA/day
4-use	Labor	5.15	per SFCA					
Crew C-1	One Cr	ew	Three	Crews	10% Waste			
	Material	23862.24	Material	71586.72	78745.392			
	Labor	168343.2	Labor	505029.6	505029.6			
	Total	192205.4	Total	576616.3	583774.992			
Floor System								
03 11 13.35 (3650)	Floor Sla	b, with one	e-way joist	pans	Daily O	utput:	500	SF/day
4-use	Floor S	lab Formw	ork		Three (Crews	1500	SF/day
Crew C-2	Material	3.26	per SF					
	Labor	3.73	per SF					
	One Cr	ew	Three	Crews	10% Waste			
	Material	343698.5	Material	1031096	1134205.18			
	Labor	393250.2	Labor	1179751	1179750.51			
	Total	736948.7	Total	2210846	2313955.69			

Redesign Floor System Formwork Estimate

Rebar Placement				
Based on Walker's 0	Guide to Es	timating		
One Crew	1.8	tons/day	Cost	
One Ironworker	32.35	per hour	575.1111	perton
Four Ironworkers	129.4	per hour	1035.2	per day
Floor System Reba	r, Tons			
Slab, Beam, Joist	93.47394			
Girders	115.8634			
Columns	40.93031			
Total Tons of Rebar	250.2676			
Days for Rebar	139.0376			
Total Cost	143931.7			

Redesign Floor System Rebar Placement Estimate

Concrete Placement								
Columns								
03 31 05.70 (0600)		nns, 18" pu	1		Daily C	output:	90	CY/day
Crew C-20	Labor	32.8	per CY					
	One	Crew						
	Labor	14891.2						
Beams, Girders, Jois	ts							
03 31 05.70 (0500)	Beams, E	levated, Sn	nall Beams	ed	Daily C	output:	60	CY/day
Crew C-20	Labor	49.15	per CY					
	One	Crew						
	Labor	58570.42						
Floor Slab								
03 31 05.70 (1400)	Elevated S	Slab, less tl	nan 6" thic	ed	Daily C	output:	60	CY/day
03 31 05.70 (1400) Crew C-20	Elevated S	1	nan 6" thic per CY	ed	Daily C	output:	60	CY/day
	Labor	1		ed	Daily C	Output:	60	CY/day


Redesign Floor System Concrete Placement Estimate

Concrete I	Finishing				
03 35 29.	30 (0100)	Manual	Screed, Bu	ıll Float	
Crew	C-10	Labor	0.22	per SF	
		One	Crew	Two (Crews
		Labor	23194.38	Labor	46388.76
	Daily C	Output:	4000	SF/day	
	Two (Crews	8000	SF/day	

Redesign Floor System Concrete Finishing Estimate

Shoring						
Horiz	ontal, stee	el beam, ad	justable, 1	.2'-20'		
Materi	al Cost					
650	ea					
Labor	r Cost					
14.2	ea					
Assume	two units	per bay.				
# of bays	Units p	per bay	Materi	al Cost	Labo	r Cost
215		2	2965	21.55	6477	.8554
First	Floor	105				
Second	d Floor	80				
Third	Floor	30				

Redesign Floor System Shoring Estimate

Redesign Floor System Crane Estimate

BIMception – IPD/BIM Thesis

	twork Redesign										
ection	Component		<u>Length</u>	<u>Airflow</u>	Width	<u>Height</u>	Hydraulic Diameter	Round Diameter	Assume 22	gauge	
			(ft)	(cfm)	(in)	(in)	(in)	(in)			_
	1		1.00	500.00	4.00	1.00		10.00	Wt./LF	Total Weight	_
1	Diffuser	SR4-1	4.00	600.00	1.00	1.00	1	12.00			-
	90 Diverging Tee	SR5-11									-
	50 Diverging ree	313-11									
2			5.00	600.00	14.00	10.00	11.66666667		6	30	┪
	90 Rounded Elbow	CR3-1	5.00	000.00	14.00	10.00	11.00000007			30	┪
	50 Roulided Elbow	CIGI									
3			6.00	600.00	14.00	10.00	11.66666667		6	36	_
	Transition	SR5-13	0.00	000.00	100	20.00	11.00000007			30	_
	Transition:	5113 13									
4			10.00	2000.00	18.00	14.00	15.75		8	80	1
	90 Diverging Tee	SR5-13									7
	Fire Damper	CR9-6									
	90 Rounded Elbow	CR3-1									
5			9.00	2000.00	18.00	14.00	15.75		8	72	
	Transition Diverge	SR4-1									
	Heating Coil	-									
	Transition Converge	SR4-1									
	Supply Valve	-									
	90 Rounded Elbow	CR3-1									
6			5.00	2000.00	18.00	14.00	15.75		8	40	4
	Fire Damper	CR9-6									
	90 Converging Tee	SR5-13									
7			40.00	6650.00	30.00	16.00	20.86956522		11.5	460	┸
	Diverging Tap	SR5-11									
	Diverging Tap	SR5-11									\perp
	Transition	SR4-1									
											_
8			17.00	8800.00	40.00	16.00	22.85714286		14	238	
	Diverging Tap	SR5-11									
	Diverging Tap	SR5-11									
	45 Elbow	CD3-3									
											4
9			9.00	8800.00	40.00	16.00	22.85714286		14	126	_
	45 Elbow	CD3-3									
											4
10			9.00	8800.00	40.00	16.00	22.85714286		14	126	_
	Fire Damper	CR9-6									
	90 Elbow	CR3-12									_
			46.00	0000 00	40.00	46.00	00.0574.4000				4
11			16.00	8800.00	40.00	16.00	22.85714286		14	224	-
	90 Elbow	CR3-9									-
		-	0.0-	0000 5-	40.0-	45.05	00 0004 :		 	412	-
12		CD2 C	8.00	8800.00	40.00	16.00	22.85714286		14	112	-
	90 Elbow	CR3-9									1
			32.00	0000 0-	40.00	40.00	22.0004.55-			200	-
13		CD2 C	22.00	8800.00	40.00	16.00	22.85714286		14	308	-
	90 Elbow	CR3-9									-
4-			0.00	0000.00	40.00	46.00	22.0574.020			126	-
15		CDE 45	9.00	8800.00	40.00	16.00	22.85714286		14	126	-
	Bullhead Tee	SR5-15									-
16			75.00	14855.00	54.00	20.00	29.18918919		18.5	1387.5	-
		CDE 12	/5.00	14000.00	34.00	20.00	29.18918919		16.5	1367.3	-
	Diverging Tap	SR5-13 SR5-13									-
	Diverging Tap 90 Elbow	CR3-9									1
	JO LIDOW	CN3-3									
16			6.00	5000.00	54.00	20.00	29.18918919		18.5	111	-
	90 Elbow	CR3-9	0.00	5000.00	34.00	20.00	27.10710717		10.3	111	-
	50 EIDOW	CN3-9									-
17			4.00	5000.00	54.00	20.00	29.18918919		18.5	74	Со
	Abrupt Opening	-	4.00	5000.00	34.00	20.00	23.10310313		Total Wt.	3550.5	2
	Asiupt Opening	-							Total Cost	7491.555	Ť
								Insulation	Total Cost	1431.333	_
		-						\$0.20/SF of surface			+
								your of sulface			

Existing Ductwork Estimate, Single Run

ction	work Redesign Component		Length	Airflow	Width	Height	Hydraulic Diameter	Round Diameter	Assume 2	2 gauge	
	-		(ft)	(cfm)	(in)	(in)	(in)	(in)			
		1							Wt./LF	Total Weight	
1	Diffuser	SR4-1	4.00	600.00	1.00	1.00	1	12.00			
	90 Diverging Tee	SR5-11									
2			5.00	600.00	14.00	16.00	14.93333333		7.5	37.5	
	90 Rounded Elbow	CR3-1									
3			6.00	600.00	14.00	16.00	14.93333333		7.5	45	
	Transition	SR5-13									
4			10.00	2000.00	18.00	20.00	18.94736842		9.5	95	
	90 Diverging Tee	SR5-13	10.00	2000.00	16.00	20.00	10.94730042		9.5	95	
	Fire Damper	CR9-6									
	90 Rounded Elbow	CR3-1									
5			9.00	2000.00	18.00	20.00	18.94736842		9.5	85.5	
	Transition Diverge	SR4-1									
	Heating Coil Transition Converge	- CD4 1									
	Supply Valve	3N4-1 -									
	90 Rounded Elbow	CR3-1									
6			5.00	2000.00	18.00	20.00	18.94736842		9.5	47.5	
	Fire Damper	CR9-6									
	90 Converging Tee	SR5-13									
-			40.0-	CCEC C-	20.00	22.00	AP 00:0:5-		- 42	520	
7	Diverging Tap	SR5-11	40.00	6650.00	30.00	22.00	25.38461538		13	520	
	Diverging Tap	SR5-11									
	Transition	SR4-1									
8			17.00	8800.00	40.00	22.00	28.38709677		15.5	263.5	
	Diverging Tap	SR5-11									
	Diverging Tap	SR5-11									
	45 Elbow	CD3-3									
9			0.00	0000 00	40.00	22.00	20.20700077		15.5	120.5	
9	45 Elbow	CD3-3	9.00	8800.00	40.00	22.00	28.38709677		15.5	139.5	
	45 EIDOW	CD3-3									
10			9.00	8800.00	40.00	22.00	28.38709677		15.5	139.5	
	Fire Damper	CR9-6									
	90 Elbow	CR3-12									
11			16.00	8800.00	40.00	22.00	28.38709677		15.5	248	
	90 Elbow	CR3-9									
12			8.00	0000 00	40.00	22.00	20 20700077		15.5	124	
12	90 Elbow	CR3-9	8.00	8800.00	40.00	22.00	28.38709677		15.5	124	
	90 EIDOW	CN3-9									
13			22.00	8800.00	40.00	22.00	28.38709677		15.5	341	
	90 Elbow	CR3-9									
15			9.00	8800.00	40.00	22.00	28.38709677		15.5	139.5	
	Bullhead Tee	SR5-15									
					_	_					
16			75.00	14855.00	54.00	26.00	35.1		20	1500	
	Diverging Tap	SR5-13									
	Diverging Tap 90 Elbow	SR5-13 CR3-9									
16			6.00	5000.00	54.00	26.00	35.1		20	120	
	90 Elbow	CR3-9									
17			4.00	5000.00	54.00	26.00	35.1		20	80	Cost
	Abrupt Opening	-							Total Wt.	3925.5	2.1
		Total LF	Material	Labor				Inc. deti	Total Cost	8282.805	
		Total LF Add. SF/LF	250.00 1				Material	Insulation \$0.20/SF of surface			
		Total SF	250	250				\$1.93/SF			
		Cost of Ins.	50	482.5				glass flexible, fsk vapor wr	ap, 1" thick		
							, p. 5, 501				
		Total	53	2.5			Difference in Cost				
							Ductwork	791.25			
							Insulation	50			
							Labor	482.5			
							Total	1323.75			

Ductwork Estimate, Single Run, 6" increase

ion	Component		Length (ft)	Airflow (cfm)	Width (in)	Height (in)	Hydraulic Diameter (in)	Round Diameter (in)	Assume 22	gauge	
									Wt./LF	Total Weight	
1			4.00	600.00	1.00	1.00	1	12.00			
	Diffuser	SR4-1									_
	90 Diverging Tee	SR5-11									
			= 00	500.00	44.00					25	
2		000 4	5.00	600.00	14.00	14.00	14		7	35	_
	90 Rounded Elbow	CR3-1									
			5.00	500.00	44.00						_
3			6.00	600.00	14.00	14.00	14		7	42	_
	Transition	SR5-13									
			40.00	2000.00	40.00	40.00	40			00	_
4		CDF 12	10.00	2000.00	18.00	18.00	18		9	90	_
	90 Diverging Tee	SR5-13 CR9-6									
	Fire Damper 90 Rounded Elbow	CR3-1									
	30 Koulided Elbow	CN3-1									
5			9.00	2000.00	19.00	18.00	18		9	81	_
	Transition Diverge	SR4-1	5.00	2000.00	10.00	10.00	10			01	_
	Heating Coil	-									
	Transition Converge	SR4-1									
	Supply Valve	-									
	90 Rounded Elbow	CR3-1									
6			5.00	2000.00	18.00	18.00	18		9	45	
	Fire Damper	CR9-6									
	90 Converging Tee	SR5-13									
7			40.00	6650.00	30.00	20.00	24		12.5	500	
	Diverging Tap	SR5-11									
	Diverging Tap	SR5-11									
	Transition	SR4-1									
8			17.00	8800.00	40.00	20.00	26.66666667		15	255	
	Diverging Tap	SR5-11									
	Diverging Tap	SR5-11									
	45 Elbow	CD3-3									
9			9.00	8800.00	40.00	20.00	26.66666667		15	135	
	45 Elbow	CD3-3									
10			9.00	8800.00	40.00	20.00	26.66666667		15	135	_
	Fire Damper	CR9-6									
	90 Elbow	CR3-12									
			45.00		40.00						_
11			16.00	8800.00	40.00	20.00	26.66666667		15	240	_
	90 Elbow	CR3-9									
			0.00		40.00					400	_
12	00 511		8.00	8800.00	40.00	20.00	26.66666667		15	120	_
	90 Elbow	CR3-9									
13			22.00	8800.00	40.00	20.00	26.6666667		15	330	+
	90 Elbow	CR3-9	22.00	0000.00	40.00	20.00	∠0.0000000/		15	330	+
	20 EIDUW	CU3-3									
15			0.00	8800.00	40.00	20.00	26.6666667		15	135	+
	Bullhead Tee	SR5-15	3.00	5550.00	-0.00	20.00	20.00000007		15	133	1
	Samicad ICC	3113 13									
16			75.00	14855.00	54.00	24.00	33.23076923		19.5	1462.5	+
	Diverging Tap	SR5-13	75.00	055.00	5 7.00	_ +.00	55.25070923		15.5	1.52.5	1
	Diverging Tap	SR5-13									
	90 Elbow	CR3-9									
16			6.00	5000.00	54.00	24.00	33.23076923		19.5	117	
	90 Elbow	CR3-9									1
17			4.00	5000.00	54.00	24.00	33.23076923		19.5	78	Cost
	Abrupt Opening	-							Total Wt.	3800.5	2.1
			Material	Labor					Total Cost	8019.055	
		Total LF	250.00					Insulation			
		Add. SF/LF	0.666				Material	\$0.20/SF of surface			
		Total SF	166.5	166.5			Labor	\$1.93/SF			
		Cost of Ins.	33.3	321.345				rglass flexible, fsk vapor	wrap, 1" thick		
		Total	354.	645			Difference in Cost				
							Ductwork	527.5			
							Insulation	33.3			
							Labor	321.345			

Ductwork Estimate, Single Run, 4" increase

	work Redesign		Law eth	A:£!	MCdel	IIai-t-	I budua ulia Diama t	David Diameter		12	
ction	Component		<u>Length</u> (ft)	Airflow (cfm)	Width (in)	Height (in)	Hydraulic Diameter (in)	Round Diameter (in)	Assume 2	2 gauge	
			(10)	(CIII)	(111)	(111)	(111)	()	Wt./LF	Total Weight	
1			4.00	600.00	1.00	1.00	1	12.00			
	Diffuser	SR4-1									_
	90 Diverging Tee	SR5-11									-
2			5.00	600.00	14.00	12.00	12.92307692		6.5	32.5	-
	90 Rounded Elbow	CR3-1	3.00	000.00	14.00	12.00	12.52307032		0.5	32.3	_
	30 Rounded Libow	CNS-1									
3			6.00	600.00	14.00	12.00	12.92307692		6.5	39	_
	Transition	SR5-13									
4			10.00	2000.00	18.00	16.00	16.94117647		8.5	85	
	90 Diverging Tee	SR5-13									
	Fire Damper	CR9-6									
	90 Rounded Elbow	CR3-1									_
											_
5			9.00	2000.00	18.00	16.00	16.94117647		8.5	76.5	_
	Transition Diverge	SR4-1									
	Heating Coil	- CD4 1									
	Transition Converge Supply Valve	- JN4-1									1
	90 Rounded Elbow	- CR3-1									
	EIDOW	2.10 1									
6			5.00	2000.00	18.00	16.00	16.94117647		8.5	42.5	_
	Fire Damper	CR9-6									
	90 Converging Tee	SR5-13									
7			40.00	6650.00	30.00	18.00	22.5		12	480	
	Diverging Tap	SR5-11									
	Diverging Tap	SR5-11									_
	Transition	SR4-1									_
8			17.00	8800.00	40.00	18.00	24.82758621		14.5	246.5	4
	Diverging Tap	SR5-11									
	Diverging Tap 45 Elbow	SR5-11 CD3-3									-
	45 EIDOW	CD3-3									-
9			9.00	8800.00	40.00	18.00	24.82758621		14.5	130.5	-
	45 Elbow	CD3-3	3.00	8800.00	40.00	10.00	24.02730021		14.5	130.3	7
	15 21 50 11	0000									
10			9.00	8800.00	40.00	18.00	24.82758621		14.5	130.5	
	Fire Damper	CR9-6									
	90 Elbow	CR3-12									
11			16.00	8800.00	40.00	18.00	24.82758621		14.5	232	
	90 Elbow	CR3-9									
12			8.00	8800.00	40.00	18.00	24.82758621		14.5	116	_
	90 Elbow	CR3-9									-
12			22.00	8800.00	40.00	10.00	24.82758621		14.5	210	-
13	90 Elbow	CR3-9	22.00	8800.00	40.00	18.00	24.82/58621		14.5	319	-
	20 EIDOW	CU3-3									
15			9.00	8800.00	40.00	18.00	24.82758621		14.5	130.5	-
	Bullhead Tee	SR5-15	5.00	3300.00	-0.00	10.00	24.02730021		14.5	130.3	_
16			75.00	14855.00	54.00	22.00	31.26315789		19	1425	
	Diverging Tap	SR5-13									
	Diverging Tap	SR5-13									
	90 Elbow	CR3-9									
16			6.00	5000.00	54.00	22.00	31.26315789		19	114	
	90 Elbow	CR3-9									
				=0.7.							+-
17	A h		4.00	5000.00	54.00	22.00	31.26315789		19	76	Cost
	Abrupt Opening	-		1-1					Total Wt.	3675.5	2.:
		Total I	Material	Labor				Insulation	Total Cost	7755.305	
		Total LF Add. SF/LF	250.00 0.333333333				Material	\$0.20/SF of surface			-
		Total SF	83.33333333	83.33333333			Labor	\$1.93/SF			
		Cost of Ins.	16.66666667	160.8333333				glass flexible, fsk vapor v	vrap, 1" thick		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		22.235555				,	. ,on		
		Total	17	7.5			Difference in Cost				
							Ductwork	263.75			
							Insulation	16.66666667			
							Labor	160.8333333			
							Luboi				

Ductwork Estimate, Single Run, 2" increase

Duc	ctwork Redesign										
<u>Section</u>	Component		<u>Length</u>	Airflow	Width	Height	Hydraulic Diameter	Round Diameter	Assume	22 gauge	
			(ft)	(cfm)	(in)	(in)	(in)	(in)	Wt./LF	Total Weight	_
1	ı		4.00	600.00	1.00	1.00	1	12.00		Total Weight	_
	Diffuser	SR4-1									
	90 Diverging Tee	SR5-11									
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		F 00	C00.00	14.00	0.00	40 40404040			27.5	4
2	90 Rounded Elbow	CR3-1	5.00	600.00	14.00	8.00	10.18181818		5.5	27.5	-
	50 Rounded Libow	CN3-1									-
3	3		6.00	600.00	14.00	8.00	10.18181818		5.5	33	7
	Transition	SR5-13									7
4			10.00	2000.00	18.00	12.00	14.4		7.5	75	_
	90 Diverging Tee	SR5-13									_
	Fire Damper 90 Rounded Elbow	CR9-6 CR3-1									_
	50 Nourided Elbow	CKS I									
5	5		9.00	2000.00	18.00	12.00	14.4		7.5	67.5	
	Transition Diverge	SR4-1									
	Heating Coil	-									_
	Transition Converge	SR4-1									_
	Supply Valve 90 Rounded Elbow	- CR3-1									-
	- I Hourided Elbow	5.15 1									
6	5		5.00	2000.00	18.00	12.00	14.4		7.5	37.5	
	Fire Damper	CR9-6									
	90 Converging Tee	SR5-13									
									L		_
7		SR5-11	40.00	6650.00	30.00	14.00	19.09090909		11	440	-
	Diverging Tap Diverging Tap	SR5-11									-
	Transition	SR4-1									
8	3		17.00	8800.00	40.00	14.00	20.74074074		13.5	229.5	
	Diverging Tap	SR5-11									
	Diverging Tap	SR5-11									_
	45 Elbow	CD3-3									_
g	1		9.00	8800.00	40.00	14.00	20.74074074		13.5	121.5	-
	45 Elbow	CD3-3	5.00	0000.00	40.00	14.00	20.74074074		15.5	121.5	\dashv
10)		9.00	8800.00	40.00	14.00	20.74074074		13.5	121.5	
	Fire Damper	CR9-6									_
	90 Elbow	CR3-12									
11			16.00	8800.00	40.00	14.00	20.74074074		13.5	216	_
- 11	90 Elbow	CR3-9	10.00	8800.00	40.00	14.00	20.74074074		13.3	210	_
12	2		8.00	8800.00	40.00	14.00	20.74074074		13.5	108	
	90 Elbow	CR3-9									
											4
13		600.0	22.00	8800.00	40.00	14.00	20.74074074		13.5	297	4
	90 Elbow	CR3-9									-
15	5		9.00	8800.00	40.00	14.00	20.74074074		13.5	121.5	\dashv
1.5	Bullhead Tee	SR5-15	5.00	3555.00	.0.00	100	20.7.1074074		13.3		1
16			75.00	14855.00	54.00	18.00	27		18	1350	_
	Diverging Tap	SR5-13									
	Diverging Tap	SR5-13									-
	90 Elbow	CR3-9									-
16	5		6.00	5000.00	54.00	18.00	27		18	108	\neg
	90 Elbow	CR3-9			- 70						7
17			4.00	5000.00	54.00	18.00	27		18	72	Cost
	Abrupt Opening	-							Total Wt.	3425.5	2.1
		Tot-U.F	Material	Labor				Incul-*:	Total Cost	7227.805	
		Total LF Add. SF/LF	250.00 -0.333333333				Material	Insulation \$0.20/SF of surface			-
		Total SF	-83.33333333	-83.33333333				\$1.93/SF			
		Cost of Ins.	-16.66666667	-160.8333333			Blanket type, fiberg	lass flexible, fsk vapor v	vrap, 1" thick		
							,, , , ,				
		Total	-177	7.5			Difference in Cost				
							Ductwork	-263.75			
							Insulation	-16.6666667			
							Labor	-160.8333333			
							Total	-441.25			

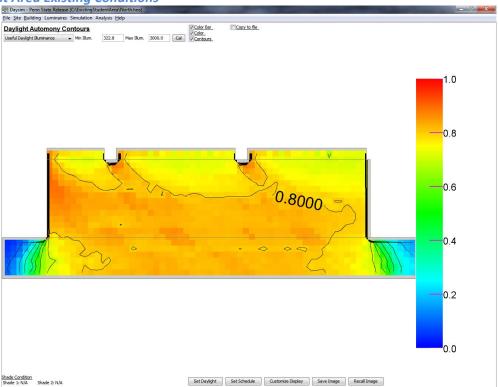
Ductwork Estimate, Single Run, 2" Decrease

APPENDIX E: Lighting/Electrical

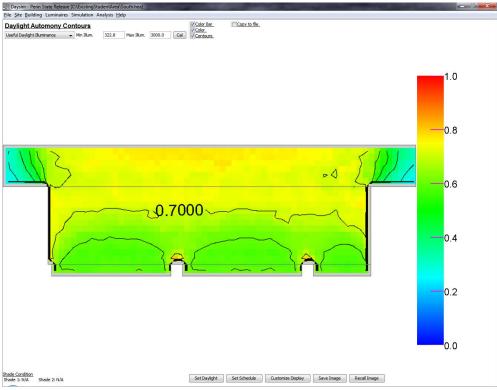
Window to Wall Ratio Results

WWR 50 Third Floor DA 322.8 lux

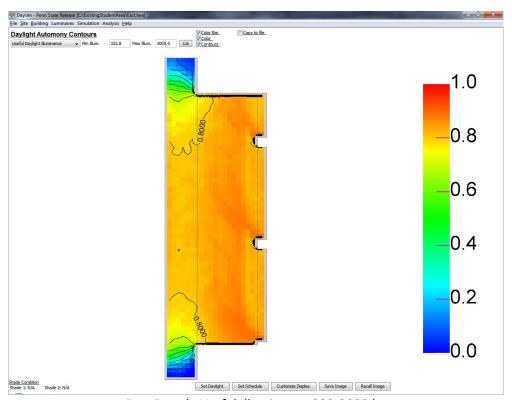
WWR 70 Third Floor DA 322.8 lux

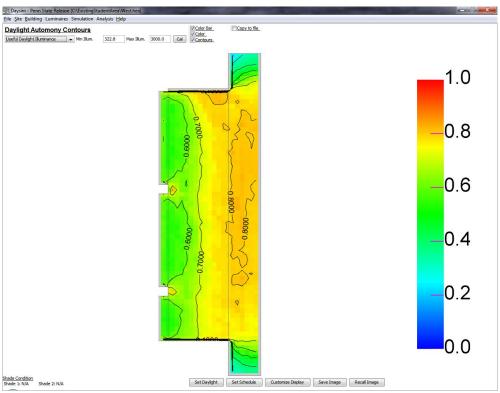


WWR 80 Third Floor DA 322.8 lux

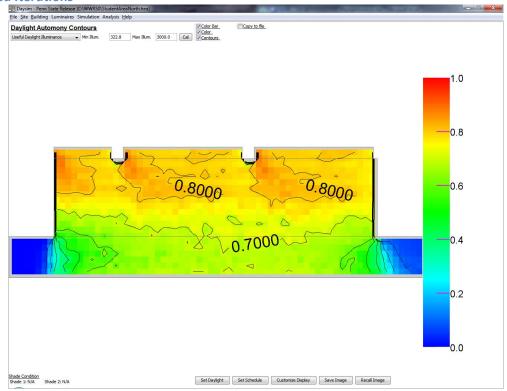


WWR 90 Third Floor DA 322.8 Lux

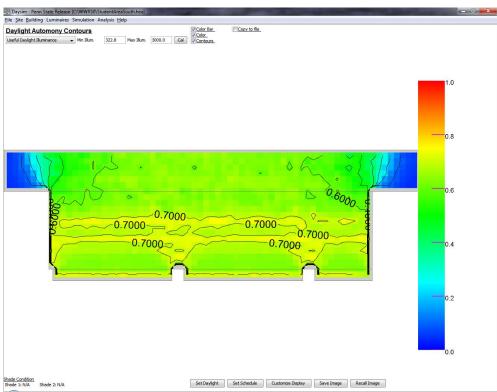

Student Area Existing Conditions


North Façade Useful Illuminance 322.8-3000 lux

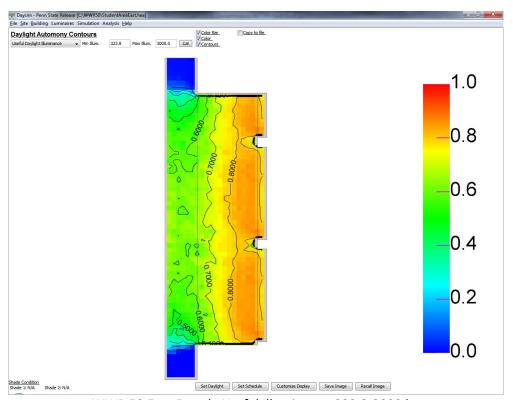
South Façade Useful Illuminance 322.8-3000 lux

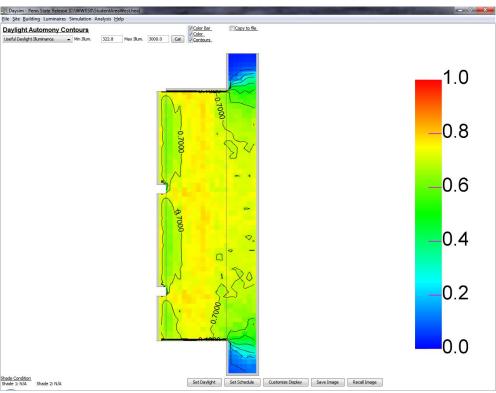


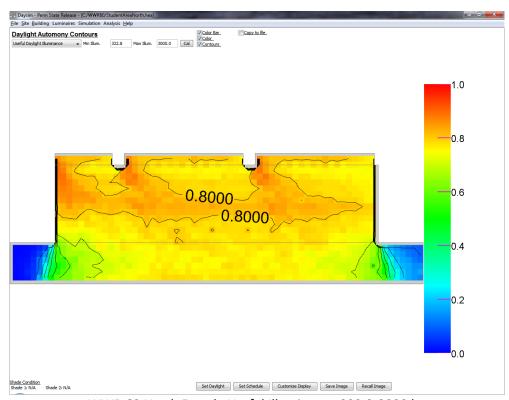
East Façade Useful Illuminance 322-3000 lux

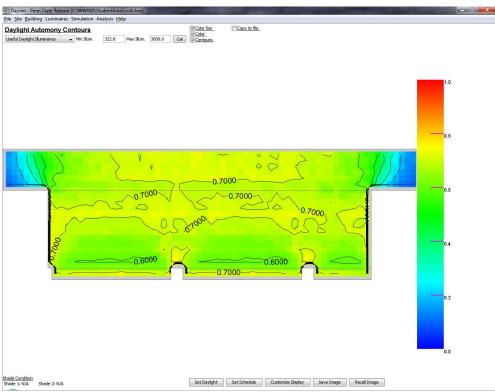


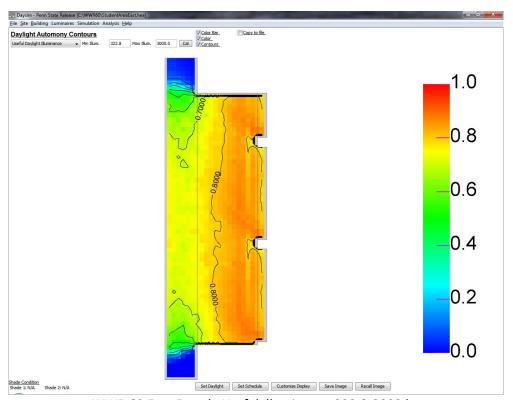
East Façade Useful Illuminance 322.8-3000 lux

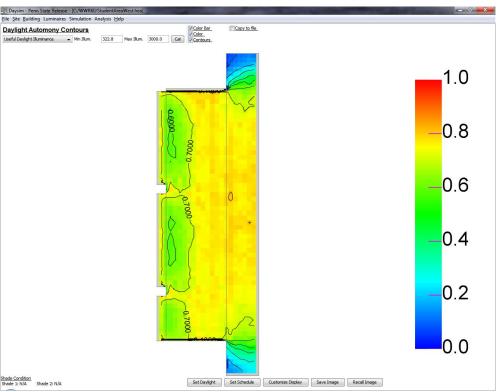

Student Area Iterations

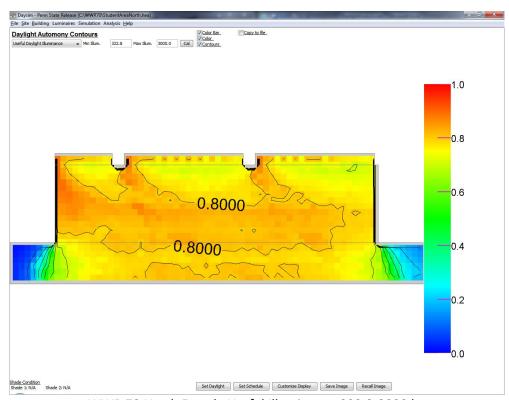

WWR 50 North Façade Useful Illuminance 322.8-3000 lux

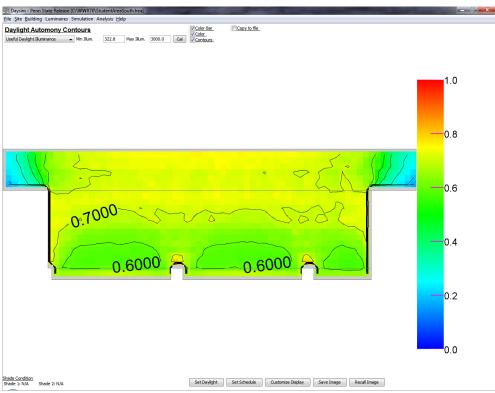

WWR 50 South Façade Useful Illuminance 322.8-3000 lux

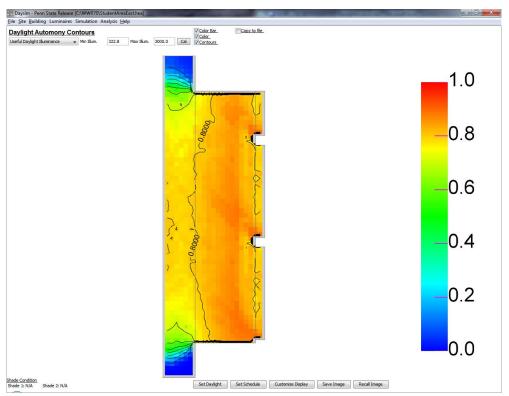

WWR 50 East Façade Useful Illuminance 322.8-3000 lux

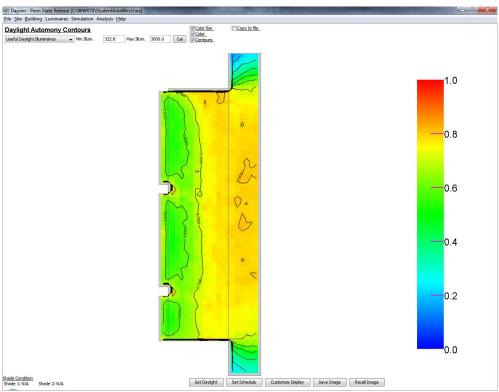

WWR 50 West Façade Useful Illuminance 322.8-3000 lux


WWR 60 North Façade Useful Illuminance 322.8-3000 lux

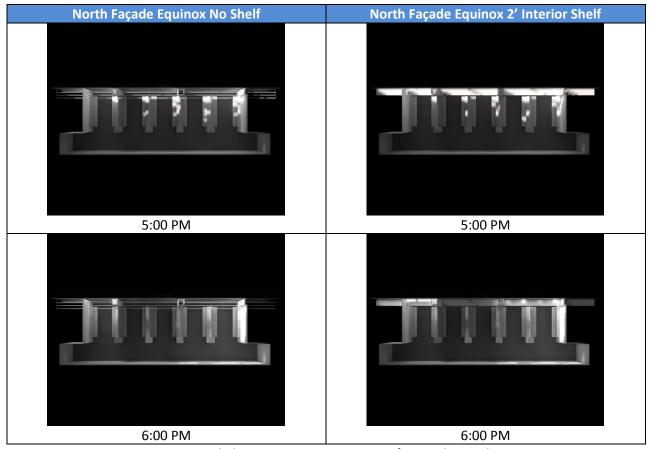

WWR 60 South Façade Useful Illuminance 322.8-3000 lux


WWR 60 East Façade Useful Illuminance 322.8-3000 lux

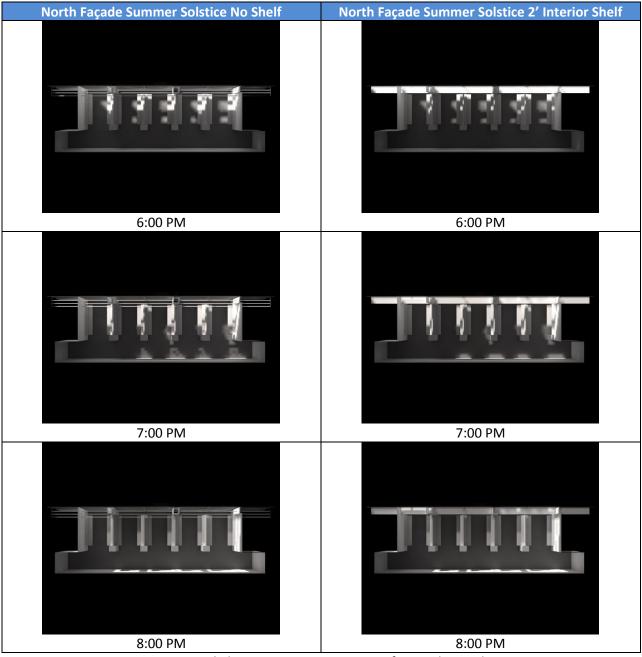

WWR 60 West Façade Useful Illuminance 322.8-3000 lux


WWR 70 North Façade Useful Illuminance 322.8-3000 lux

WWR 70 South Façade Useful Illuminance 322.8-3000 lux

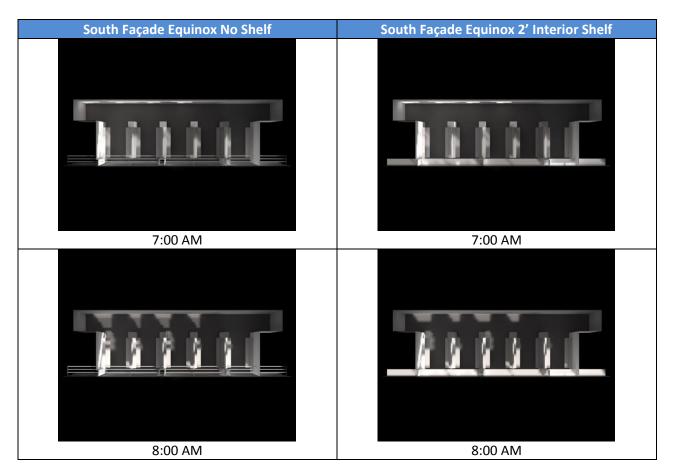


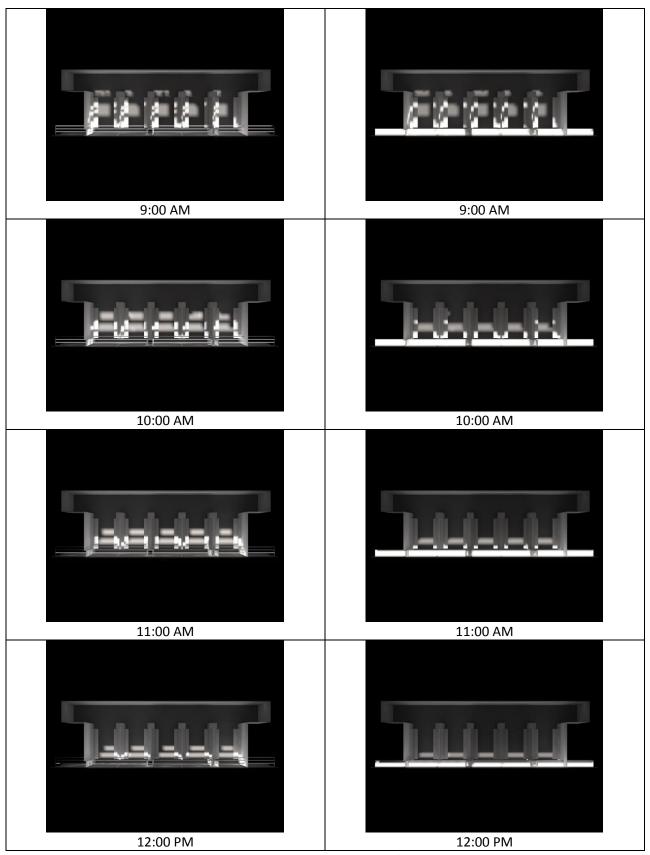
WWR 70 East Façade Useful Illuminance 322.8-3000 lux



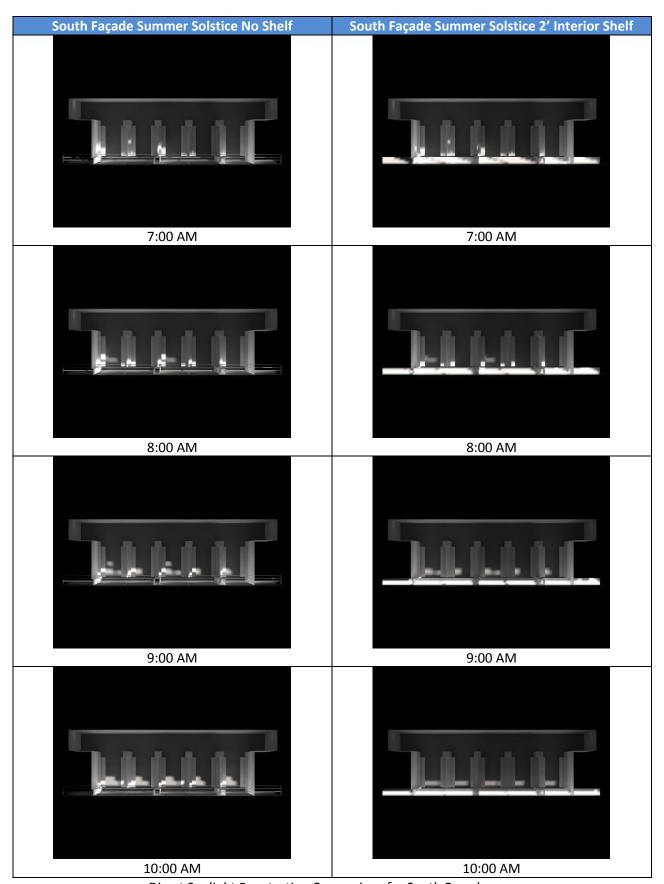
WWR 70 West Façade Useful Illuminance 322.8-3000 lux

Interior Shelf

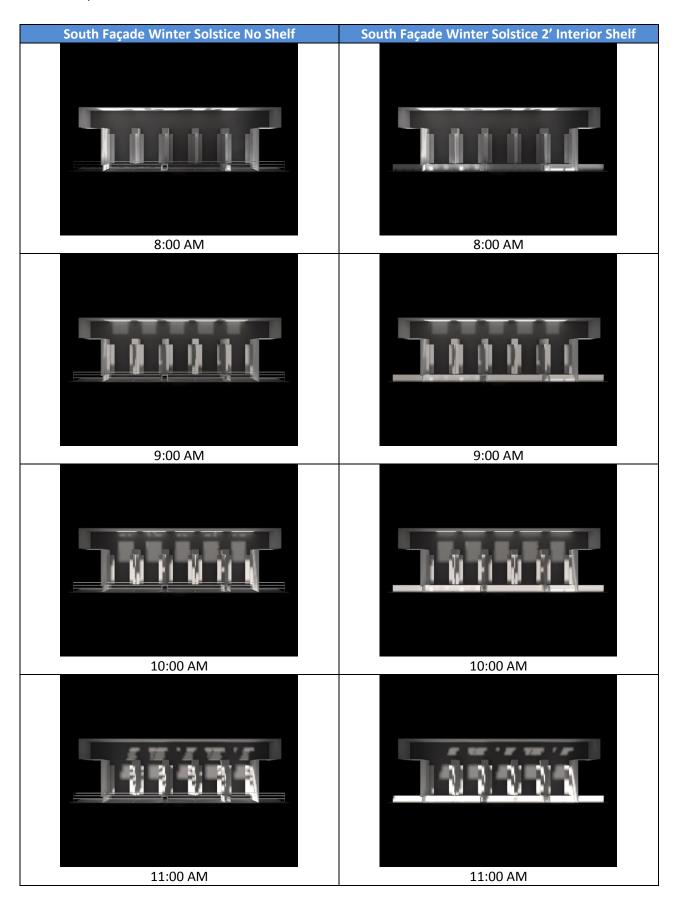

Direct Sunlight Penetration Comparison for North Façade

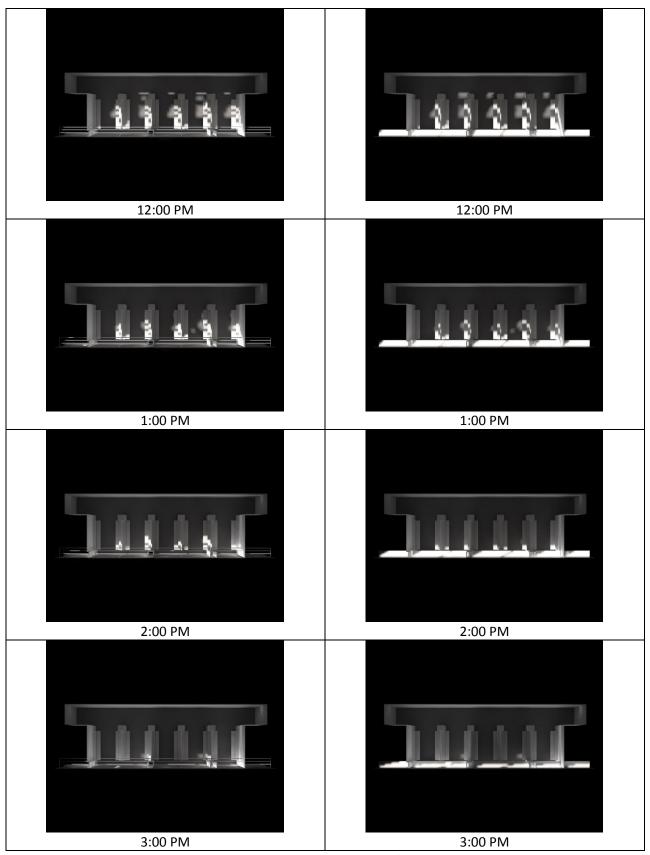


Direct Sunlight Penetration Comparison for North Façade

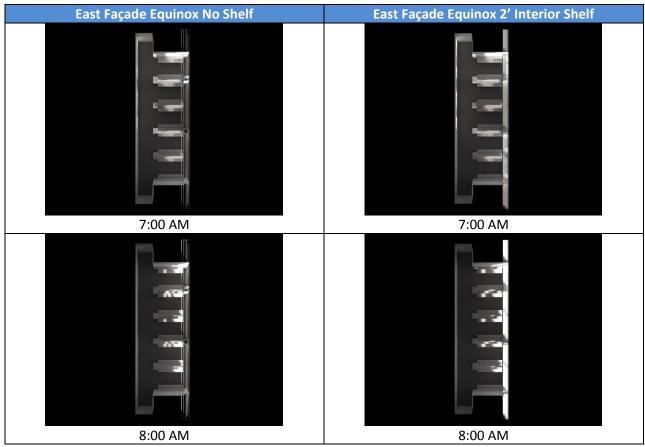


Direct Sunlight Penetration Comparison for North Façade





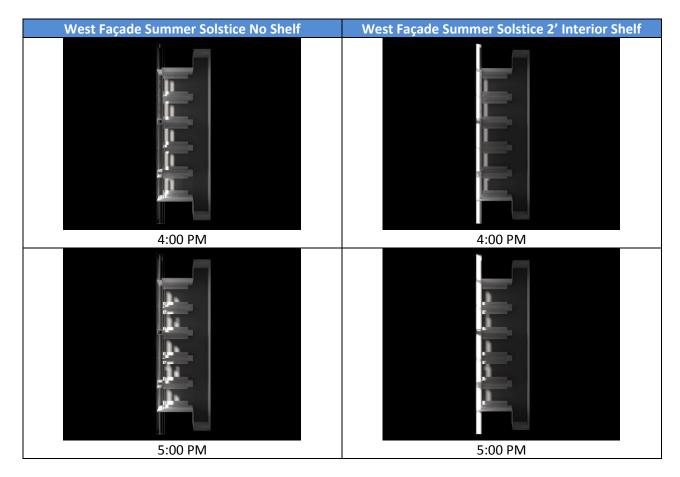
Direct Sunlight Penetration Comparison for South Façade

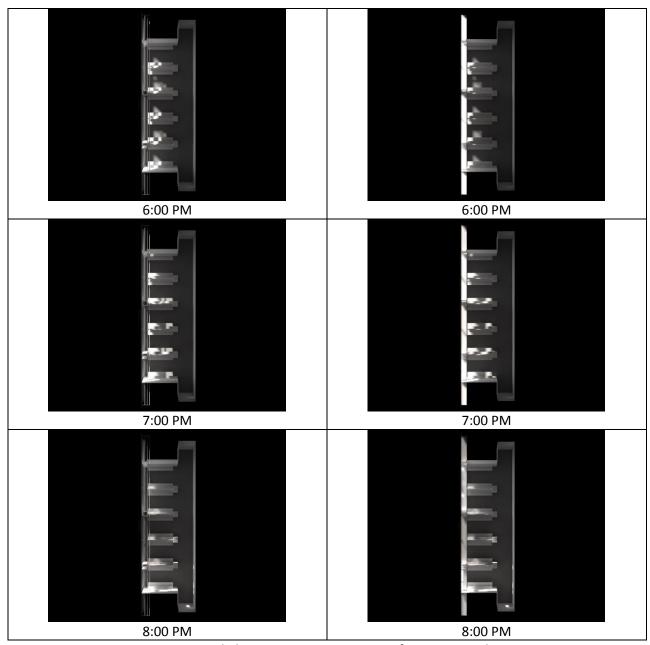


Direct Sunlight Penetration Comparison for South Façade

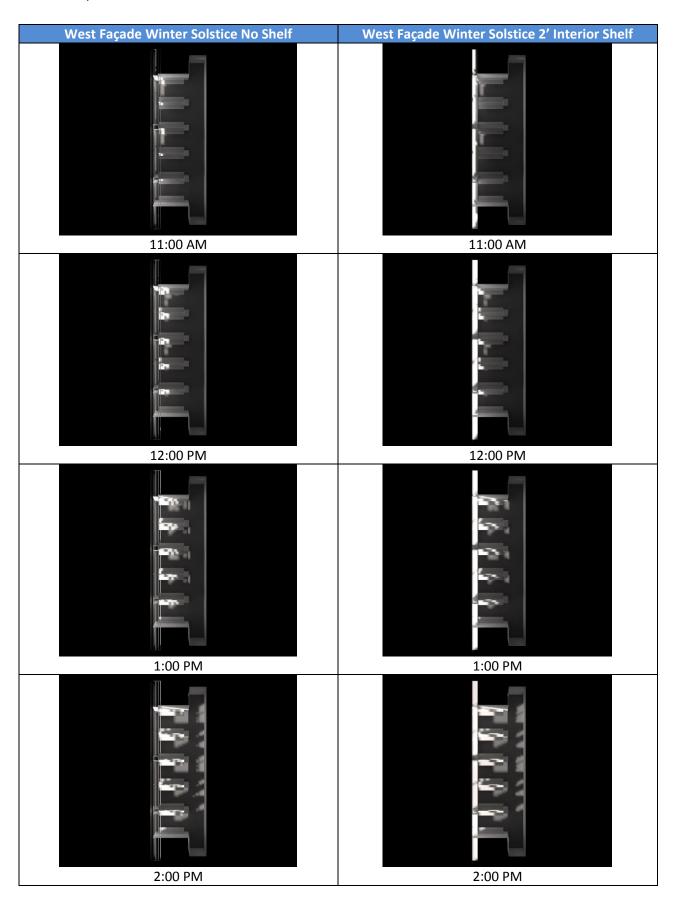


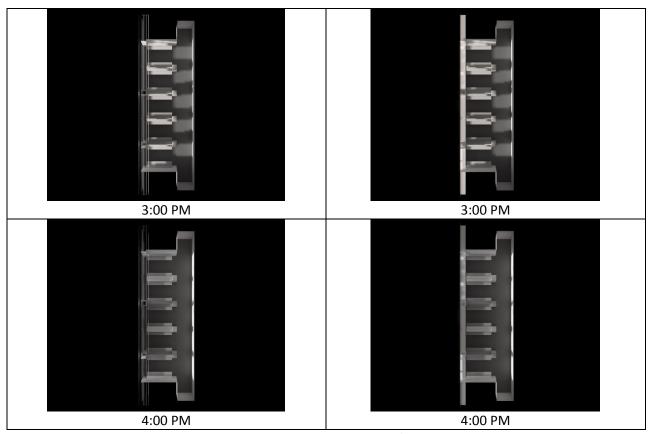
Direct Sunlight Penetration Comparison for South Façade


Direct Sunlight Penetration Comparison for East Façade

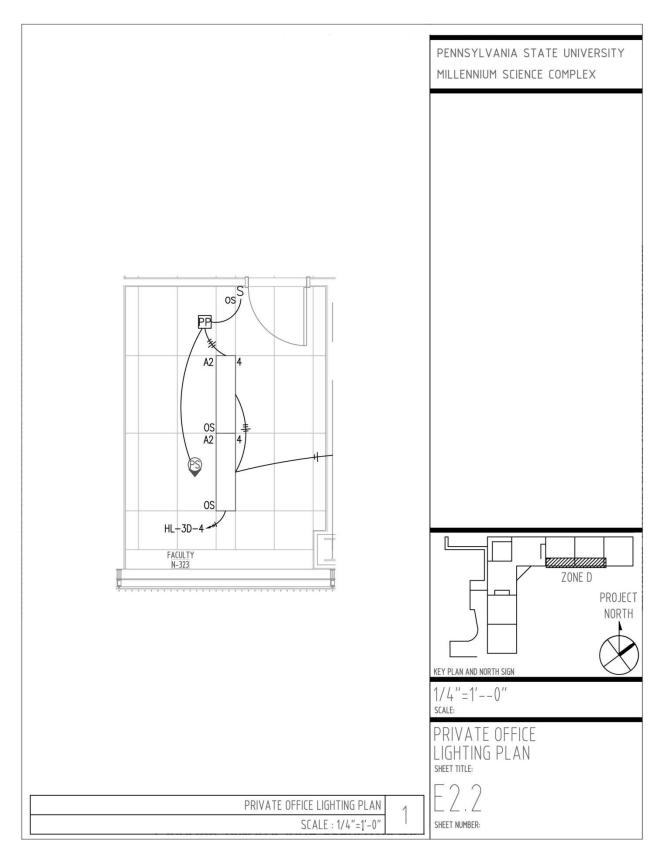


Direct Sunlight Penetration Comparison for East Façade




Direct Sunlight Penetration Comparison for East Façade

Direct Sunlight Penetration Comparison for West Façade


Direct Sunlight Penetration Comparison for West Façade

Millennium Science Complex	IPD/BIM Thesis Final Report

04/07/2011

Lighting Plans

Student Area Place Holder

04/07/2011

Courtyard A Place Holder

04/07/2011

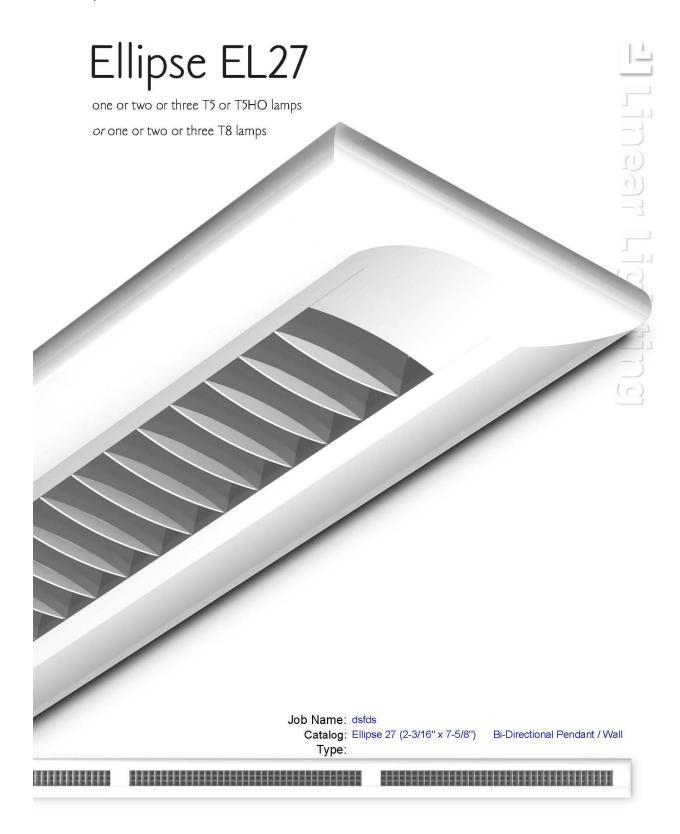
Courtyard B Place Holder

04/07/2011

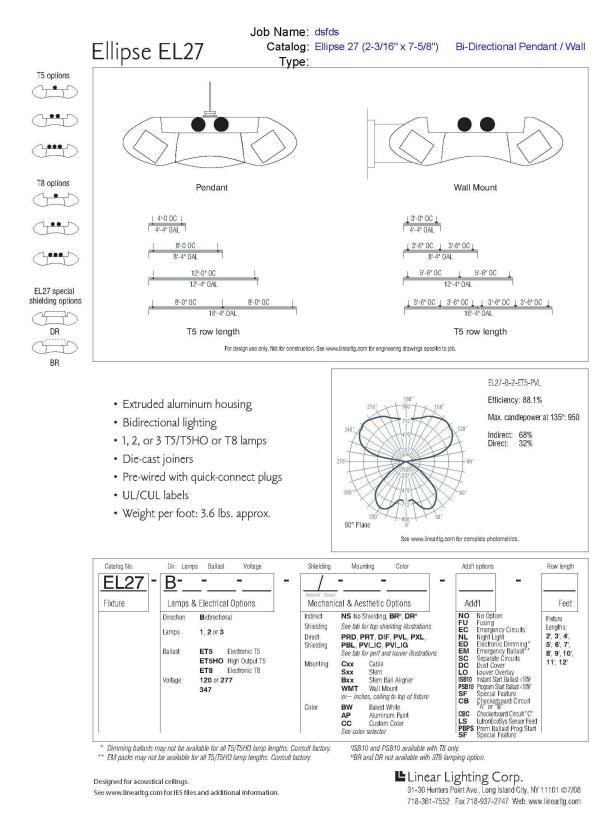
Courtyard C Place Holder

04/07/2011

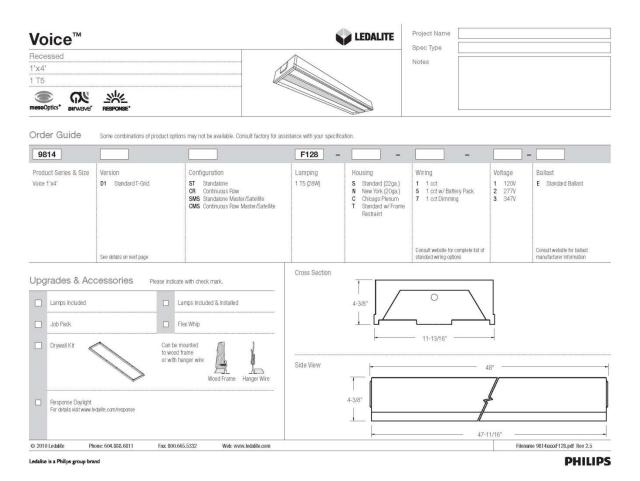
Courtyard D Place Holder

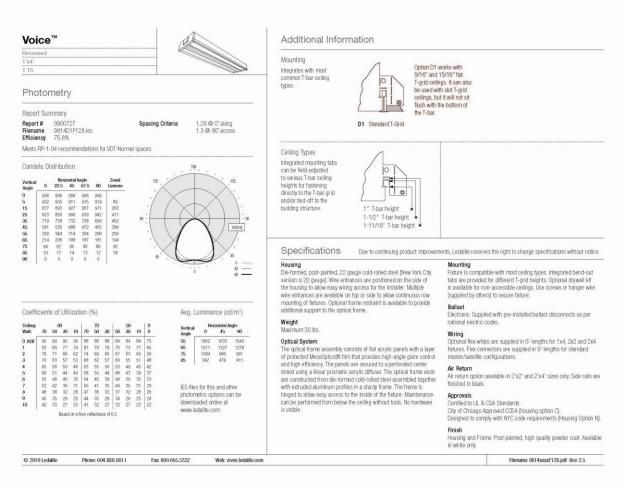

04/07/2011

Courtyard E Place Holder


Luminaires

		Luminaire Schedule						
Fixture Type	e Image	Description	Mounting	Lamp	Voltage	Ballast	Wattage	Notes
A2		Linear Lighting Ellipse 27. 1'x4' Indirect/Direct Pendant Fixture, Extruded Aluminum Housing, Baked White finish. Concave louver blades with clear convex insert Catalog #: EL27-B-1-ET5-277-PVI_IC	Pendant 9'-0" A.F.F.	(1) 54W T5 CCT 4100K CRI 85	277V	Electronic Advanced Transformer	63W	
А3		Linear Lighting Ellipse 27. 1'x4' Indirect/Direct Pendant Fixture, Extruded Aluminum Housing, Baked White finish. Concave louver blades with clear convex insert Catalog #: EL27-B-1-ET5-277-PVI IC-LS	Pendant 9'-0" A.F.F.	(1) 28W T5 CCT 4100K CRI 85	277V	Electronic Dimming Advanced Transformer	32W	
В		Ledalite Voice. Recessed 1'x4' Fixture, Die-Formed Cold Rolled Steel Housing, Flat Acrylic Panels Connected to Prismatic Acrylic Diffuser Catalog #: 9814D1-ST-F128-S-1-2-E	Recessed	(1) 28W T5 4100K CRI 85	277V	Electronic Advanced Transformer	31W	
C1		Philips Alkco Aris Series. 11" Low Profile LED Fixture, Extruded Aluminum Housing, Pearl Finish, Extruded Clear Polycarbonate Lens. Integrated On/Off Swtich Catalog # ARIS-11-40-120-PRL-DWC	Surface	(5) 1W LEDs CCT 4000K CRI 71-73	120V	Integrated Driver	5W	Surface mounted to bottom of shelf at 4'-3" A.F.F.
C2		Philips Alkco Aris Series. 21" Low Profile LED Fixture, Extruded Aluminum Housing, Pearl Finish, Extruded Clear Polycarbonate Lens, Integrated On/Off Switch Catalog # ARIS-21-40-120-PRL-DWC	Surface	(10) 1W LEDs CCT 4000K CRI 71-73	120V	Integrated Driver	10W	Surface mounted to bottom of shelf at 4'-3" A.F.F.
X1	Y	Louis Poulsen Kipp Post Cutoff. Pole Mounted Fixture, White Spun Aluminum Diffuser, Black Injection Molded ASA Top Shade, Clear Polycarbonate Enclosure, Black Die Cast Aluminum Frame Catalog #: KIP-1-70W-CMH-T6 G12	Pole Mounted 27'-0"	(1) 70W CMH CCT 3000K CRI 90	277V	Electronic Advanced Transformer	79W	
X2	T	Louis Poulsen Kipp Bollard. Pole Mounted Fixture, Injection Molded White Opal Acrylic Diffuser, Injection Molded Clear Polycarbonate Enclosure, Black Die Cast Aluminum Frame. Catalog #: KIB-1-39W-CMH-T6 G12	Pole Mounted 4'-3"	(1) 39W CMH CCT 3000K CRI 90	277V	Electronic Advanced Transformer	45W	
ХЗ	1	Winona Lighting Spirit. Black Painted Aluminum, 18" Stem, Area Light. Catalog #: SP-0-12V-BKS-18-SM-STD	Surface 18" Stem	(1) 35W MR8 CCT 3000K CRI 100	12V		35W	Provide Series TMI 600 Ingrade Transformer
X4		Invue Entri LED Triangle Reveals. Black One Piece Die-Cast Aluminum, Injection Molded AccuLED Optical System. Catalog #: ENT-A01-E1-BL4-BK	Wall Mount	(1) LED Bar 4000K CRI >70	277V	Integrated Driver	26W	Wall mounted at 10 0"
X5	THD	Lightolier Calculite 6" Recessed Downlight. Array of High Brightness Royal Blue LED's, Phosphoy Lens Assembly Converts Blue Light to White. Catalog #: C6L20-DL-30-M-CL-P	Recessed	LED CCT 3000K CRI	277V	Integrated Driver	39W	
Х6	MAD	Lightolier Calculite 6" Recessed Wallwasher. Array of High Brightness Royal Blue LED's, Phosphoy Lens Assembly Converts Blue Light to White. Catalog #: C6L20-WW-30-M-CL-P	Recessed	LED CCT 3000K CRI	277V	Integrated Driver	39W	
Х7		Bega Floodlight. 3"x4' Floodlight. Black Die-Cast Aluminum Extruded Housing. Catalog #: 7593P.537BLK-28	Wall Mount	(1) 28W T5HO CCT 3000K CRI 85	277V	Electronic Advanced Transformer	31W	Mount Parallel to underside of cantiliver void.
X8	2	MP Lighting. Black Anodized Aluminum Housing, Polycarbonate Lens. Catalog #: L36-3.5W-W30S-BA	Surface	LED CCT 3000K CRI	12V	Remote Driver	3.5W	Provide Remote TLDDLV60W5000 Driver


Luminaire Schedule


Fixture Type A

Fixture Type A

Fixture Type B

Fixture Type B

Description

Aris is a low-profile LED luminaire that is ideal for undercabinet, task and display case lighting in both residential and commercial applications. Its 0.86" high × 1.7" cross-section is easy to conceal in cabinetry and casework. With an integrated driver, Aris can be connected directly to line voltage power without the need for external drivers. Jumper cables and mounting clips further simplify system installation. The LED light source offers long life, good color rendition, and low power consumption. With no ultraviolet or infrared radiation, photosensitive objects are safe from damage. Aris provides maintenance-free operation for years.

Additional features:

- Available in two color temperatures: 2700K and 4000K
- Three fixture lengths
- Line voltage operation doesn't require an external driver
- Up to 50 linear feet and \leq 324 watts of Aris luminaires can be connected
- Controllable with commercially available line voltage dimmers (ELV-type)
- . LED source provides 50,000 hours of life with 70% of initial lumens

Specifications

Construction Extruded aluminum body with molded polycarbonate endcaps.

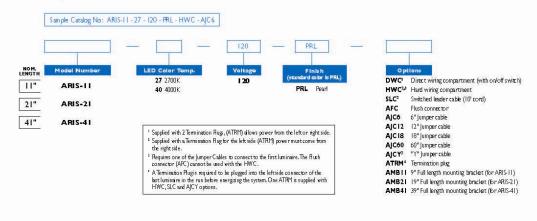
Finish The luminaire body has a polyester paint finish in a pearl finish. The endcaps are molded to match.

Lens Extruded clear, polycarbonate lens.

Lamps High efficacy (240 lumens per watt), high brightness LEDs with a beam angle of 110° × 110° beam angle. The LED source has a life of 50,000 hours (based on manufacturer's test data). ARIS-11 has 5 LEDs,ARIS-21 has 10 LEDs and ARIS-41 has 20 LEDs, Aris is available in a 2700K color temperature with a CRI of 71-73 and a 4000K color temperature with a CRI of 80-81. The CRI varies depending on the length of the fixture.

Listings UL and CUL Damp Listed for both permanent and portable installations.

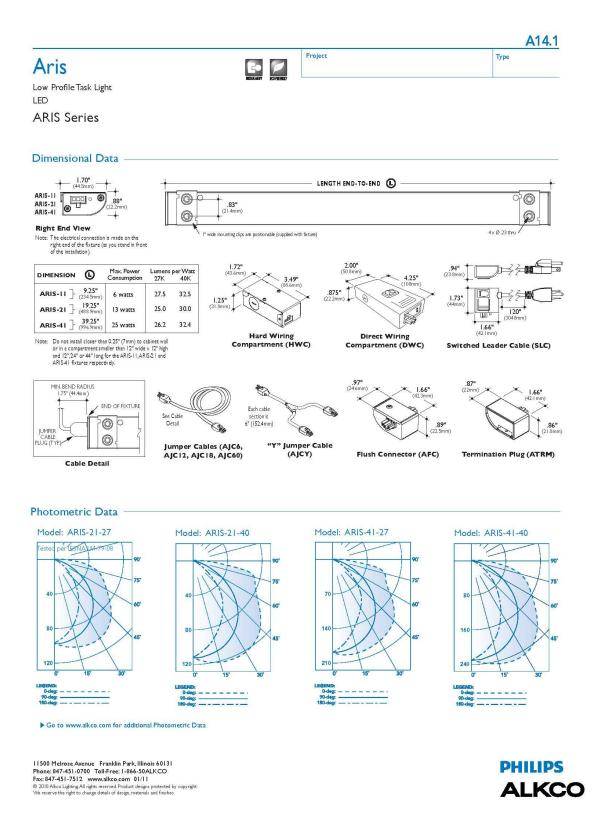
Electrical Aris has an integrated driver system so that luminaires can be connected directly to 120 volts and can be operated at temperatures ranging from -4°F to 122°F (-20°C to 50°C). Aris is not available for 277 or 347 volt applications.


Dimming Aris can be dimmed with commercially available line voltage dimmers (electronic low voltage load type). See Aris installation instructions for compatible dimmers.

Installation Mounting clips are provided with each Aris luminaire. Once the clips are installed, the Aris luminaire can be snapped into place. Full length mounting brackets are also available as an option.

A hard-wire connection can be made with the optional hard wiring compartment (HWC) which requires a jumper cable to connect the right end of the first foture or a direct wiring compartment (DWC) which has an on/off switch and connects directly to the right or left end of the first fixture. The switched leader cable (SLC) has an on/off switch and plugs into a standard 120v receptacle. For other installation details, refer to the back of this sheet.

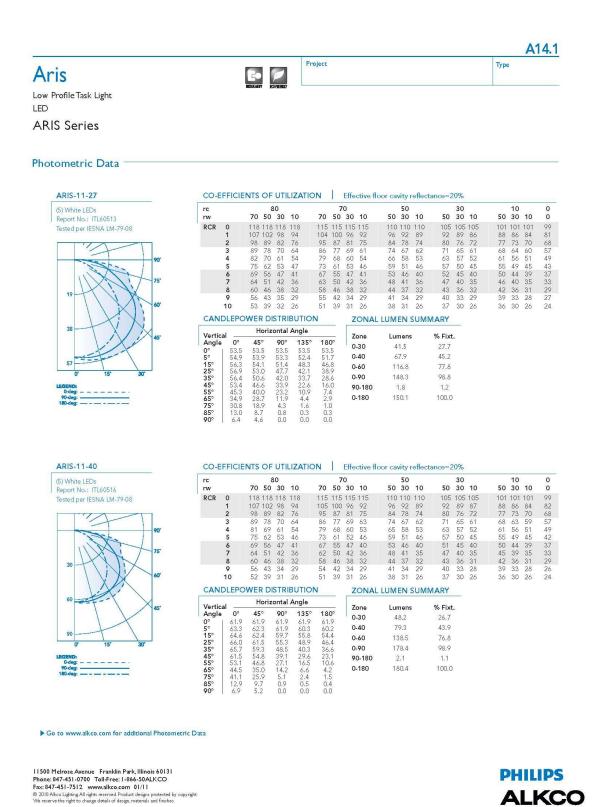
Warranty Aris fixtures (for the original installation) have a driver warranty of 3 years from the date of manufacture and a LED warranty for the specified lumen maintenance for 10 years.


Ordering Information


| 1500 Melrose Avenue Franklin Park, Illinois 6013| Phone: 847-451-0700 Toll-Free: I-866-50ALKCO Fax: 847-451-7512 www.alkco.com 01/11 © 2010 Akte blank, 24 light reserve the right to sharpe 4 retails and finishes.



Fixture Type C


Fixture Type C

Fixture Type C

ALKCO

Kipp Post Cutoff

post tops/poles & cable hung

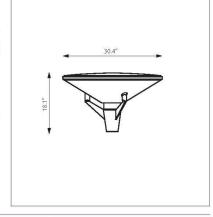
louis poulsen

Weblink 167

<mark>Design</mark> Alfred Homann

Concept
Kipp Post Cutoff emits symmetrical, downward illumination. The relationship between the slightly curved design of the top shade and the calculated distance to the light source ensures a uniform and wide distribu-tion of light. The design of the internal diffuser ensures an optimal and glare free illumination. The opaque diffuser satisfies cutoff requirements.

Natural painted aluminum or black, powder coated.


Material Diffuser: White, spun aluminum. Top shade: Black or white, injection molded ASA. Enclosure: Injection molded clear polycarbonate. Frame: Die cast aluminum.

Mounting
Post top: Mounted on dual round aluminum (DRA) or round straight aluminum (RSA) pole.

Weight Max. 24 lbs.

Label

cUL, Wet location. IBEW.

Product code	Light source	Voltage	Finish	Distribution	Transition to pole
KIP	1/150W/CMH/T-6 G12 1/175W/MH/ED-17 medium 1/85W/QL	120/277V 120V 277V	BLK NAT PAINT ALU	ситогг	T-DRA-5"-3" T-RSA-4.5"

Specification notes: a, QL variants provided with 120V or 277V HF integral generator and can only be used with RSA-4.5" $^{\circ}$

pole.
b. CAHI and MH variants provided with one 120/277V F-can style ballast to be mounted in RSA-4.5" or DRA-5"-3" poles.

Info notes:

I. Black top shade is provided with black finish.

II. White top shade is provided with natural painted aluminum finish.

III. Enclosure is U.V. stabilized polyrarbonate.

IV. The comparable EU version has the following classification: Ingress Protection Code: IP66.

V. For pole selection, refer to pages 204 and 205.

louis poulsen

Project page 290, 340, 348

Design Affred Homann

Kipp Bollard emits symmetrical, downward illumination. The relationship between the curved design of the top shade and the calculated distance to the light source ensures a uniform and wide distribution of light. The design of the internal diffuser ensures an optimal even and glare free illumination.

8 lack or natural painted aluminum, powder coated.

Diffuser: Injection molded white opal acrylic. Top shade: Die cast aluminum, Enclosure: Injection molded cleer polycarbonate. Frame: Die cast aluminum, Post: Extruded aluminum, 8ase plate: Die cast aluminum.

Mounting
Base plate dimension: 11" diameter. Base plate; Mounted to a concrete base with 3 anchor bolts.

Weight Max, 41 lbs.

taibel cUL, Wet location, ISBW.

17.3"	i i
	۲۵ م
—►11 <i>0</i> "- ←	

Product code	Dimension	Light source	Voltage	Finish	
юв	51.8"	1/70W/CMH/T-6 G12 1/100W/MH/ED-17 medium 1/37W LED, 4000 K	120/277V	BLK NAT PAINT ALU	

Specification notes: a. CMH and MH variants provided with one 1,20/277V F-can style ballast.

In 6 notes: I. The bollard is supplied without basecover. II. The comparable EU version has the following classification: Ingress Protection Code: IPSS.

Fixture Type X2

Fixture Type X3

CODES

AMP.	DESCRIPTION	BEAM SPREAD
	Lamp By Others	
K -	Custom Lamping	
6-	No Lamp, 39W Ballast	
17-	No Lamp, 70W Ballast	
98-	No Lamp, 100W Ballast	
99-	No Lamp, 150W Ballast No Lamp, 20W Ballast	
100-	No Lamp, 20W Ballast	
VR-8		100
42-	20W/10° MR8	10°
43-	20W/23° MR8 35W/13° MR8	23°
44-	35W/26° MR8	13° 26°
45- 140- 1		20
VIR-11 35-	12W/8° MR11	8°
36-	FSS/20W/10° MR11	10°
37-	FST/20W/17° MR11	17°
38-	FSV/20W/30° MR11	30°
39-	GDX/35W/10° MR11	10°
40-	GDY/35W/20° MR11	20°
41-	GDZ/35W/30° MR11	30°
VR-16		
10-	ESX/20W/12° MR16	12°
11-	BAB/20W/36° MR16	36°
12-	FRB/35W/12° MR16	12°
13-	FRA/35W/24° MR16	24°
14-	FMW/35W/36° MR16	36°
15-	EYR/42W/12° MR16	12°
16-	EYS/42W/23° MR16	23°
17-	EYP/42W/38° MR16	38°
18-	EXT/50W/12° MR16	12°
19-	EXZ/50W/24° MR16	24°
20-	EXN/50W/36° MR16	36°
21-	FNV/50W/60° MR16	60°
22-	EYF/75W/12° MR16	12°
23-	EYJ/75W/24° MR16	24°
24-	EYC/75W/36° MR16	36°
130-	BBF/20W/24° MR16 10,000 HR	24°
131-	BAB/20W/36° MR16 10,000 HR	36°
65-	FMV/35W/24° MR16 10,000 HR	24°
66-	FMW/35W/36° MR16 10,000 HF	
132-	35W/60° MR16 10,000HR	60°
67-	EXT/50W/12° MR16 10,000 HR	12°
68-	EXZ/50W/24° MR16 10,000HR	24°
69-	EXN/50W/36° MR16 10,000 HR	36°
133-	FNV/50W/60° MR16 10,000 HR	60°
T-3/T-	4	5116
90-	5W T3 Halogen	N/A
91-	10W T3 Halogen	N/A
92-	20W T3 Halogen	N/A
94-	35W T4 Halogen	N/A
PAR-1		400
112-	45W PAR16/H/SP10	10° 27°
113-	45W PAR16/H/NFL27	
114-	60W PAR16/H/SP10	10°
115-	60W PAR16/H/FL30	10°
116-	75W PAR16/H/SP10 75W PAR16/H/FL30	30°
117- PAR-2		30
	50W PAR20/H/NSP10	10°
46- 48-	50W PAR20/H/FL30	30°
48- PAR-3		30
49-		10°
49- 50-	50W PAR30/H/NSP10 50W PAR30/H/SP16	16°
50- 51-	50W PAR3U/H/SP16	30°
51- 52-	50W PAR30/H/WFL40	40°
52- 53-		10°
55- 54-	75W PAR30/H/NSP10 75W PAR30/H/SP16	16°
55-	75W PAR30/H/FL30	30°
	75W PAR30/H/WFL40	40°
56- PAR-3	7 JVN FARJUIT/WFL4U	40
74.K- 118-	35W PAR36/H/NSP5	5°
.10-	35W PAR36/H/NSP8	8°
110		30°
119-		- 00
120-	35W PAR36/H/FL30 50W PAR36/H/NSP5	F.º
120- 121-	50W PAR36/H/NSP5	5°
120-		9° 30°

LAMP	DESCRIPTION	BEAM SPREAD
AR-11		
104-	50W AR111/H/NSP8	8°
105-	50W AR111/H/FL25	25°
106	75W AR111/H/NSP8	8°
107-	75W AR111/H/FL25	25°
108-	75W AR111/H/WFL45	45°
109-	100W AR111/H/NSP8	8°
110-	100W AR111/H/FL25	25°
111-	100W AR1111/H/WFL45	45°
PAR-3		
57-	90W PAR38/H/NSP10	10°
59-	90W PAR38/H/FL30	30°
60-	120W PAR38/H/NSP10	10°
61-	120W PAR38/H/FL30	30°
62-	120W PAR38/H/WFL55	55°
PAR-2		
88-	20W PAR20/MH/SP8	8°
89-	20W PAR20/MH/FL25	25°
70-	39W PAR20/MH/SP10	10°
71-	39W PAR20/MH/FL30	30°
PAR-3		
72-	39W PAR30/MH/SP10	10°
73-	39W PAR30/MH/FL30	30°
74-	70W PAR30/MH/SP10	10°
75-	70W PAR30/MH/FL40	40°
PAR-3	- March	
76-	70W PAR38/MH/SP15	15°
77-	70W PAR39/MH/FL25	25°
78-	70W PAR38/MH/WFL60	60°
79-	100W PAR3B/MH/SP15	15°
80-	100W PAR38/MH/FL25	25°
81-	100W PAR3B/MH/WFL60	60°
82-	150W PAR38/MH/SP20	20°
83-	150W PAR3B/MH/FL35	35°
84-	150W PAR38/MH/WFL65	65°
T-4/T-4		
125-	CMH20/T4.5/MH	N/A
126-	CDM39/T4.5/MH	N/A
127-	CDM70/T4.5/MH	N/A
T-6 M	•	
85-	CMD39/T6/MH	N/A
86-	CMD70/T6/MH	N/A
87-	CMD150/T6/MH	N/A

LIGHT SOURCE	DESCRIPTION	BEAM SPREAD
XXXX-	Custom Light Source	
LED-11		
Warm White,	3000K, 120 lumen	
1002-	2.5W/10° SP/WW LED	10°
1003-	2.5W/20° NFL/WW LED	20°
1004-	2.5W/36° FL/WW LED	36°
Cool White, 6	5500K, 150 lumen	
1005-	2.5W/10° SP/CW LED	10°
1006-	2.5W/20° NFL/CW LED	20°
1007-	2.5W/36° FL/CW LED	36°
LED-16		
Warm White,	3000K, 360 lumen	
3002-	7.5W/10° SP/WW LED	10°
3003-	7.5W/20° NFL/WW LED	20°
3004-	7.5W/36° FL/WW LED	36°
Cool White, 6	5500K, 450 lumen	
3005-	7.5W/10° SP/CW LED	10°
3006-	7.5W/20° NFL/CW LED	20°
3007-	7.5W/36° FL/CW LED	36°

	FINISH		
Aluminum	BKS-	Black Smooth	
Finish	BKT-	Black Textured	
	BRS-	Bronze Smooth	
	BRT-	Bronze Textured	
	WHS-	White Smooth	
	WHT-	White Textured	
	SIS-	Silver Smooth	
	IVS-	Ivory Smooth	
	CHS-	Chrome Smooth	
	NBS-	Natural Bronze	
	VET-	Verde Textured	
	SAT-	Sand Textured	
	BAL-	Brushed Aluminum	
	CPF-	Custom Finish	
Brass	POL-	Polished Brass w/ Gloss Clear	
Finish	NAT-	Natural Brass w/ Satin Clear	
	BRZ-	Satin Bronze w/ Satin Clear	
	CPF-	Custom Finish	
Stainless	PSS-	Polished Stainless	
Steel	NSS-	Natural Stainless	
Finish	BSS-	Brushed Stainless	
vanovane.	CPF-	Custom Finish	

F0-	None		
FM-	Mercury Vapor		
FR-	Red		
FRD-	Red Dichroic		
FP-	Pink		
FA-	Amber		
FG-	Green		
FGD-	Green Dichroic		
FLB-	Light Blue		
FMB-	Medium Blue		
FMBD-	Medium Blue Dichroic		

CAP STYLE		
C1-	Short Flush	
C2-	Lens Recessed	
C3-	45° Cutoff	
C4-	Long Flush	
C5-	45° Scalloped	

REFLECTOR		
SP8°-	Spot 8°	
NF23°-	Narrow Flood 23°	
FL30°-	Flood 30°	
WF50°-	Wide Flood 50°	

BALLAST OPTIONS		
0-	None	
PC-	Concrete Pour Collar (B1 & B4 only)	

B3-	Remote Wall Mount
B4-	Remote Ingrade
B4PC-	Remote Ingrade w/ Pour Colla

Fixture Type X3

INVUE®

DESCRIPTION

Entri LED features a classic and stylish design with the added benefits of solid state lighting technology, offering outstanding uniformity and energy savings. Using Cooper Lighting's proprietary LED LightBAR™ technology and AccuLED optical systems, Entri LED offers designers vast versatility in system design, function and performance. Use Entri LED for wall mount architectural lighting applications and egress lighting requirements. UL and cUL listed for use in wet locations.

Catalog #	Туре
Project	
Comments	Date
Prepared by	

SPECIFICATION FEATURES

Construction

HOUSING: Heavy wall, one piece die-cast aluminum construction for precise tolerance control and repeatability in manufacturing. Integral extruded aluminum heat sink provides superior thermal heat transfer in +40°C ambient environments. Housing and heat sink are designed to offer various options for down lighting, up lighting or a combination of both up and down. FACEPLATE / DOOR: One-piece die-cast aluminum construction. Captive, side hinged faceplate swings open via release of one (1) flush mount die-cast aluminum latch on housing side panel. Door closure and seal is ensured through a robust and positive retention bale latch which upon closing can be heard through distinct sound. GASKET: One-piece molded silicone gasket mates perfectly between the door and housing for repeatable seal. Silicone wire way plug on housing back wall seals incoming electrical leads to prevent moisture and dust entry. LENS: Uplight lens is impact resistant, 5/32" thick tempered frosted glass sealed to housing with continuous bead silicone gasket. Downlight lens is LED board integrated acrylic over-optics, each individually sealed for IP66 rating. HARDWARE: Stainless steel mounting screws and latch hardware allow access to electrical components for installation and servicing.

Optics

DISTRIBUTION: Primary downlight distribution offers a choice of eight (8) high efficiency AccuLED optical systems, featuring patented designs that maximize light collection and directional distribution onto the application region. Each optical lens is precision manufactured via injection molding then precisely arranged and sealed on the board media. Optional uplight LED distribution features a diffuse soft glow for enhancing architectural scenes or accentuating structural features. LED's: High output LED's, 50,000+ hours life at >70% lumen maintenance, offered standard in 4000°K (+/- 275K) CCT and >70 CRI.

Electrical
DRIVER: LED drivers are potted and heat sunk for optimal performance and prolonged life. Standard drivers feature electronic universal voltage (120-277V/50-60hz), greater than 0.9 power factor, less than 20% harmonic distortion and feature ambient temperature range of +40°C (104°F) down to minimum starting temperature of -30°C (-22°F). Shipped standard with Cooper Lighting proprietary circuit module designed to withstand 10kV of transient line surge. Options to control light levels, energy savings and egress capabilities (battery pack and separate circuit) are available. All LED LightBARS™ and drivers are mounted to a primary mounting plate and are easily replaced by use of quick disconnects for ease of wiring.

Mounting
JUNCTION BOX: Standard with zinc plated quick-mount junction box plate that mounts directly to 4" J-Box. LightBARS mount facing downward. Fixture slides over mounting plate and is secured with two (2) stainless steel fasteners Mounting plate features a onepiece EPDM gasket on back side of plate to firmly seal fixture to wall surface, forbidding entry of moisture and particulates. Optional mounting arrangements utilize a die-cast mounting adaptor box to allow for LED battery pack, surface conduit and through branch wiring. Entri LED is approved for mounting on combustible surfaces.

Finish

Housing is finished in 5 stage super premium TGIC polyester powder coat paint, 2.5 mil nominal thickness for superior protection against fade and wear. LightBAR™ cover plates are standard white and may be specified to match finish of luminaire housing. Standard colors include black, bronze, grey, white, dark platinum and graphite metallic. RAL and custom color matches available. Consult Outdoor Architectural Colors brochure for a complete selection.

Warranty Entri LED features a 5 year limited warranty.

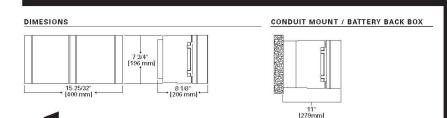
ENTRI LED TRIANGLE **REVEALS**

1 - 2 LightBARS Solid State LED

ARCHITECTURAL WALL LUMINAIRE

CERTIFICATION DATA

40°C Ambient Temperature Rating U.L. and cUL Listed IP66 LightBARS ARRA Compliant LM79 / LM80 Compliant

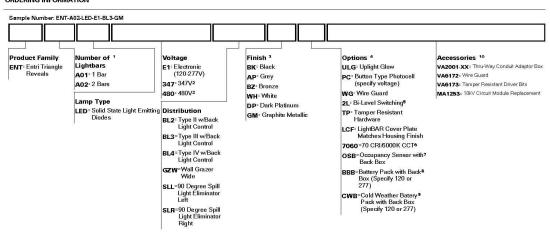

ENERGY DATA Electronic LED Driver

>0.9 Power Factor <20%Total Harmonic Distortion 120-277V/50 & 60hz, 347V/60hz, 480V/60bz 30°C Minimum Temperature

SHIPPING DATA Approximate Net Weight: 16 lbs. (7.3 kgs.)

AVI 1092077

Fixture Type X4


COOPER Lighting

ENT ENTRI LEDTRIANGLE REVEALS

POWER AND LUMENS BY BAR COUNT

# of Bars	System Watts	Type BL2 Lumens	Type BL3 Lumens	Type BL4 Lumens	Ambient Temperature	Lumen Multiplie
1 Bar	26	1,626	1,724	1,677	10°C	1.04
2 Bars	53	3,252	3,447	3,354	15°C	1.03
	System	(TATION)			25°C	1.00
Options	Watts	Lumens			40°C	0.96
ULG	8	315				

ORDERING INFORMATION

- Standard 4000 K CCT and greater than 70 CRL LightBARS for downlight use only Consult factory for availability.

 - Custom and RAL color matching available upon request. Consult your customer service representative for further information.
 - Add as suffix in the order shown
 - Low-level output varies by bar count, consult factory. Not available with 347V or 480V. Available with 2 Bars (A02) only.
 - Consult customer service for lead times and lumen multiplier.

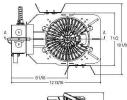
 - Available with Al2, only (1) LightBAR on streat side will be wired to sensor. Time Delay factory setting 15 minutes. When ordered with Option PC, both light bars will connected to photocell as primary switching means. Standard sensor lens covers 8-floot mount height, 360-degree coverage, maximum 48-foot diameter. Not available in all configurations or with BBB or CWB options.

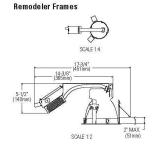
 Specify 120 or 277V. LED standard integral battery pack is rated for minimum operating temperature 32°F (0°C). Operates (1) lightbar for 90 minutes, minimum 1300 initial lumens. Not available in all configurations or with 05B option. Consult factory.
 - Specify 120 or 277V. LED cold weather integral battery pack is rated for minimum operating temperature 4°F (-20°C). Operates (1) lightbar for 90 minutes, minimum 1300 initial lumens. Not available in all configurations or with OSB option.
 - Order separately, replace XX with color suffix.

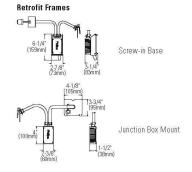
NOTE: Specifications and dimensions subject to change without notice.

Visit our web site at www.cooperlighting.com

Customer First Center 1121 Highway 74 South Peachtree City, GA 30269 770.486.4800 FAX 770.486.4801


AVU092077 2010-06-25 10:13:39 2010-08-12 10:08:16


Calculite LED Frame-In Kit C6L20/CUL20


Page 1 of 1

2000 Lumen, 6" Aperture Remote Phosphor LED

New Construction Frames

Ordering Guide: Frame-in Kits

Frame-in Kit Series	Installation Options	Input Voltage	Options
C6L20 (2000 Lumen)	N (New construction) R (Remodeler)	1 (120V) 2 (277V)	Blank (0-10 volt dimming) EM (Emergency)
CUL20 (2000 Lumen)	J (J-box mount retrofit) S (Screw-in base retrofit (120V only))	1 (120V) 2 (277V)	Blank (0-10 volt dimming)

Example: C6L15N1EM

Features

Ceiling Cutout: 6 9/16" (167mm)

Depth (including Light Engine): See Light Engine specification sheet for

Power Connection: Attaches to light engine via push-in connector (on frame). Removable cover provides access.

Junction Box: UL listed for 8 No. 12 AWG, 90°C through branch circuit connectars. Allows inspection from below

Thermal Protector: Meets NEC & UL requirements. Do not install insulation above nor within 3" of any part of luminaire.

New Construction Frame:

Mounting Frame: Galvanized stamped steel for dry or plaster ceilings. Vertical Adjustment: Light engine adjusts in frame below ceilings up to 1 1/8". Mounting Brackets: Galvanized Steel. Adjustable through aperture. Use 3/4" or 1 1/2" lathing channel, 1/2" EMT or optional mounting bars.

Remodeler Frame:

Power Pack: Swivel junction box for tight plenum spaces. Snap-off covers permits wiring from top.

Spring Holder: Galvanized steel. Accepts up to 2 1/2" (64mm) ceiling thickness.

Retrofit Frame:

Capability: Converts 6" (153mm) or 7" (178mm) Lightolier incandescent frame-in kit without additional wiring using existing Calculite E26 base.

Socket Cup Support: Spun steel. Holds Calculite incandescent socket cup. Socket Extender: Phenolic E26 base. Connect to existing lampholder.

Electrical

Electronic Power Supply: 120 or 277V, 50/60Hz, encased, overload and short circuit protected, thermal regulation to protect against overheating, sound rating "A", -20°C minimum starting temperature, 70°C maximum operating temperature, dimmable with 0-10V dimmer. Dimming compatibility: See LED-DIM

631 Airport Road, Fall River, MA 02720 • (508) 679-8131 • Fax (508) 674-4710 We reserve the right to change details of design, materials and finish, www.lightolier.com © 2010 Philips Group • C0710

Electrical (continued)

Input Voltage	Input Frequency	5220 COSE	LED Drive Current	Input Power	LED Power	THD	Power Factor
120V	50/60Hz	0.36	520m A	39W	35.4W	<1%	>0.9
277V	50/60Hz	0.17	520m A	39W	35.4W	<1%	>0.9

Rated Life: 100,000 hours

Options and Accessories

Dimming Capability: 0-10V, See LED-DIM specification sheet

Emergency Capability (Integral): Add "EM" suffix. See LED-EM spec sheet. Emergency Capability (Inverter): See LED-LMI specification sheet

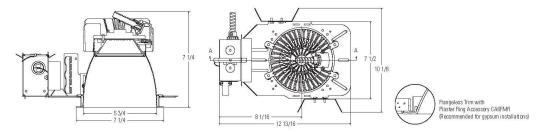
Sloped Ceilings: See specification sheet SCA. Mounting Bars: 1950-18" Set of (2)

1951-27" Set of (2)

T-Bar Anchor Clips: 1956-Set of (4), for use with above

Labels

UL, cUL, I.B.E.W. 5 Year Warranty


Job Information	Туре:
Job Name:	
Cat. No.:	
Lamp(s): Notes:	

PHILIPS LIGHTOLIER

C6L1520WW Calculite LED Open Wall Washer

Page 1 of 2

1500/2000 Lumen, 6" Aperture Remote Phosphor LED

Ordering Guide: Light Engines

Light Engine Series	Style	Color Temperature	Reflector Finish	Flange	Options
C6L1520	ww (Open Wall Washer)	27K (2700K) 30K (3000K) 35K (3500K) 40K (4000K)	CL (Clear) CCL (Comfort Clear) CCD (Comfort Clear Diffuse) CCZ (Champagne Bronze) WH (Painted White)	W (Painted white) P (Aperture-matching/polished) FT (Flush-mount/flangeless) ¹	EM (Integral emergency test switch)
Example: C6L1520WW35KCCLWEM	¹Accessory C	A6FMR recommended fo	rgypsum applications. Reflectorf	ange is 1/8".	

Ordering Guide: Frame-in Kits

Frame-in Kit Series	Installation Options	Input Voltage	Options
C6L15 (1500 Lumen) C6L20 (2000 Lumen)	N (New construction) R (Remodeler)	1 (120V) 2 (277V)	Blank (0-10 volt dimming) EM (Emergency)
CUL15 (1500 Lumen) CUL20 (2000 Lumen)	J (J-box mount retrofit) S (Screw-in base retrofit (120V only))	1 (120V) 2 (277V)	Blank (0-10 volt dimming)

Features

Aperture: 5 3/4" (146mm) I.D., 7 1/4" (184mm) O.D. Input Wattage: 27W (1500 Lumens), 39W (2000 Lumens).

Reflector Cone: Aluminum. Provides 50° cutoff to source & source image.

Depth (including Frame-in kit): 6 5/8" (168mm)

Power Connection: Attaches to frame-in kit via push-in connector (on frame). Removable cover provides access.

Technology

LED Board: Array of high brightness royal blue LED's

Remote Phosphor Technology: Patented remote phosphor technology provides increased efficiency and color consistency. Phosphor lens assembly positioned in front of LED array converts blue light to white. Color shift will not exceed +/- 100K over life.

Optical Mixing Chamber: Lightolier-specific mixing chamber redirects backreflected light through aperture resulting in 20% increase in efficiency.

Thermal Management: Proprietary heat sink and thermal design along with clean room assembly ensures specified performance.

Rated Life: Based on IESNA LM-80-2008 1500 Lumen - 60,000 hours at 70% lumen maintenance.

2000 Lumen - 57,000 hours at 70% lumen maintenance

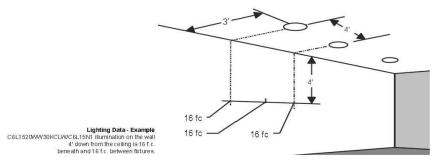
Photometric Performance: Tested in accordance to IESNA LM-79-2008

631 Airport Road, Fall River, MA 02720 • (508) 679-8131 • Fax (508) 674-4710 We reserve the right to change details of design, materials and finish, www.lightolier.com © 2010 Philips Group • C0710

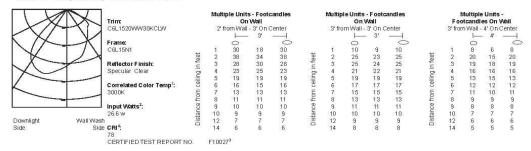
Options

Dimming Capability: 0-10V. See LED-DIM specification sheet Emergency Capability (Integral): Add "EM" suffix. See LED-EM spec sheet. Emergency Capability (Inverter): See LED-LMI specification sheet

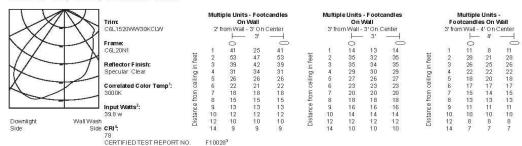
UL (suitable for wet locations), cUL, I.B.E.W. 5 Year Warranty


Job Information	ı ype:
Job Name:	
Cat. No.:	
Lamp(s):	
Notes:	

PHILIPS LIGHTOLIER


Calculite LED Open Wall Washer C6L1520WW

Page 2 of 2


1500/2000 Lumen, 6" Aperture Remote Phosphor LED

1500LM LED, 3000K, CL FINISH TRIM

2000LM LED, 3000K, CL FINISH TRIM

Onnelated Color Temperature within specs as defined in ANSI_NEMA_ANSLG C78.377-2008; Specifications for the Chromaticity of Solid-State Lighting Products.

Job Information

Type:

631 Airport Road, Fall River, MA 02720 • (508) 679-8131 • Fax (508) 674-4710 We reserve the right to change details of design, materials and finish. www.lightolier.com © 2010 Philips Group ◆ C0710

PHILIPS LIGHTOLIER.

Fixture Type X6

^{*} Tested using absolute photometry as specified in LM 78: IESNA Approved Method for the Electrical and Photometric Measurements of Solid-State Lighting Products

* Color Rendering Index within 4/- 2%.

Floodlights for linear fluorescent lamps

Housing: Die-cast aluminum end caps and an aluminum extrusion. The end caps are gasketed to provide a watertight housing. All aluminum used in the construction is marine grade and copper free.

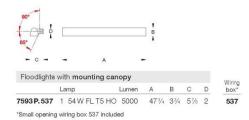
Mounting: Canopy mount fixtures are yoke mounted to a fully gasketed mounting canopy. The housing is connected to the canopy with cable. The canopy mounts over a BEGA 537 box.

Enclosure: Faceplate is constructed of die-cast aluminum secured to the housing with captive stainless steel fasteners. Tempered glass, $^3/_{16}$ " thick. Fully gasketed with a molded silicone gasket.

Electrical: Lampholders; Fluorescent T5 HO, G5 miniature bi-pin. Ballasts; integral electronic, universal voltage 120 V through 277 V. Class P. HPF, program start, minimum start temperature of $0\,^\circ\mathrm{F}$ (-20 $^\circ\mathrm{F}$ start temperature available with the 54 W lamp, consult factory). Ballasts have circuitry to reliably shut down the system at the end of lamp life. Standard T5 lamping available on request.

Finish: These luminaires are available in four standard BEGA colors: Black (BLK); White (WHT); Bronze (BRZ); Silver (SLV). To specify, add appropriate suffix to catalog number. Custom colors supplied on special order.

UL listed, suitable for wet locations. Protection class: IP65.


Type:
BEGA Product:
Project:
Voltage:
Color:
Options:
Modified:

These luminaires mount over a custom BEGA recessed box. This box can be shipped ahead of the luminaire.

BEGA-US 1000 BEGA Way, Carpinteria, CA 93013 (805) 684-0533 FAX (805) 566-9474 www.bega-us.com ©copyright BEGA-US 2010 Updated 9/10

Fixture Type X7

3-1/4" 5/6" 5/6" 5/6" 16mm 3/6" 10mm 4-3/4"

3.5W / 6.5W Walkway

L36

SPEC SHEET

Application: Wall, stair, and walkway illumination for indoor and outdoor applications.

Electrical: 3.5W LED powered by 120V, 350mA non-dimmable integral driver, or 6.5W LED powered by 120V, 700mA non-dimmable integral driver.

Input Current: 350mA (3.5W) / 700mA (6.5W)

Input Voltage: 12V DC Power Consumption: 3.5W / 6.5W

Recommended Dimmable Driver, TLDAV60W9 with TLC010i dimming

controller. Dimmable driver not included. Consult factory.

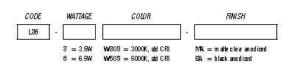
Weight: 1, 4lbs (0.636kg).

Material: Anodized aluminum and polycarbonate lens.

Mounting: Face plate mounts vertically or horizontally to single gang switch box (not included). Comes with flush mounted tamper proof

Approval: Wet and dry locations. Approved to US and Canadian standards by CSA.

Note: Focture may require remote driver for use in cold weather applications. Can be used as emergency backup lighting in conjunction with Bodine emergency LED driver (sold separately). Consult MP Lighting factory.


Type:

Project:

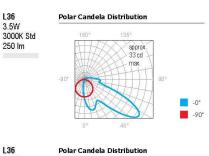
Modified:

Quantity:

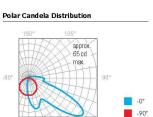
Notes:

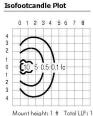
Copyright © MP Lighting. All technical information in this document is subject to change.

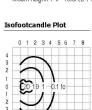
01-2011


Fixture Type X8

3.5W / 6.5W Walkway


L36


SPEC SHEET


Photometric Data

Mount height: 1 ft Total LLF: 1

Height Conversion Formula

Step 1 Existing Mounting Height² CCF)

New Mounting Height² (CF)

Step 2 CF x Footcandle = New Mounting Height FC

Note: Information is based on the most current data available; however, various operating factors such as reflectances and application type may cause differences between the and field results. Due to continuous improvements, specifications may change without notice. Consult www.mpfighting.com for the most current information.

Note: Various operating factors may cause differences between lab and field results. As specifications may change without notice, please refer to the LED Lamp Index located in the "Downloads" section of each product webpage for the most current information.

Copyright @ MP Lighting. All technical information in this document is subject to change.

01-2011

Fixture Type X8

81522 - F54T5841HOECO/CT

GE Ecolux® Starcoat® T5 - Cold Temperature

· Passes TCLP, which can lower disposal costs.

GENERAL CHARACTERISTICS

Lamp Type Linear Fluorescent - Straight

Linear Bulb T5

Miniature Bi-Pin (G5) Base

Rated Life 30000 hrs Soda lime

Bulb Material LEED-EB MR Credit 35 picograms Hg per mean lumen hour

Cold Temperature

Additional Info Cold Temperature/TCLP

compliant

PHOTOMETRIC CHARACTERISTICS

Initial Lumens 4500 Mean Lumens Nominal Initial Lumens per Watt 4275 83 4100 K Color Temperature Color Rendering Index (CRI) S/P Ratio (Scotopic/Photopic 1.7 Ratio)

ELECTRICAL CHARACTERISTICS

Primary Application

Wattage Voltage Cathode Resistance Ratio - Rh/ 117 4.25 Rc (MIN) Cathode Resistance Ratio - Rh/ 6.5 Rc (MAX) Lamp Current 460 A Current Crest Factor 1.7

DIMENSIONS

Maximum Overall Length 45.8 cm (MOL) Nominal Length 45.2 cm Bulb Diameter (DIA) 0.625 cm Bulb Diameter (DIA) (MAX) Max Base Face to Base Face 0.67 cm 45.24 cm Face to End of Opposing Pin 45.42 cm (B) (MIN)
Face to End of Opposing Pin 45.52 cm (B) (MAX)

PRODUCT INFORMATION

Product Code 81522 F54T5841HOECO/CT Description Standard Package Case Standard Package GTIN 10043168815229 Standard Package Quantity Sales Unit Unit

No Of Items Per Sales Unit No Of Items Per Standard 36 Package

UPC 043168815222

NOTES

- Blocks 100% of UV-B and UV-C. Blocks from 75 to 99% of UV-A.depending on lamp type.
- Jacketed "Cold Temperature" lamps (as indicated by -CT) are designed for use where ambient temperatures do not rise above 32°F (0°C).
- · Lumen rating based on approximate 3% reduction in light output with jacket.

Mar 2, 2011 1:52:43 PM For additional information, visit www.gelighting.com

Page 1

46706 - F28W/T5/841/ECO

GE Ecolux® Starcoat® T5

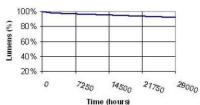

· Passes TCLP, which can lower disposal costs

a product of

ecomagination

CAUTIONS & WARNINGS

Caution


- · Lamp may shatter and cause injury if broken
- Wear safety glasses and gloves when handling lamp.
- Do not use excessive force when installing lamp.

Warning

- Risk of Electric Shock
- Turn power off before inspection, installation or removal.

GRAPHS & CHARTS

Lumen Maintenance

Lamp Mortality

For additional information, visit www.gelighting.com

GENERAL CHARACTERISTICS

Bulb

Lamp Type Linear Fluorescent - Straight

Linear T5

Base Miniature Bi-Pin (G5)

Rated Life 30000 hrs

Rated Life (rapid start) @ Time 30000.0 @ 3.0/36000.0 @

120 h

Bulb Material Soda lime Starting Temperature -20 °C (-4 °F)

LEED-EB MR Credit 31 picograms Hg per mean

lumen hour
Additional Info TCLP compliant

PHOTOMETRIC CHARACTERISTICS

 Initial Lumens
 2900

 Mean Lumens
 2660

 Nominal Initial Lumens per Watt
 103

 Color Temperature
 4100 K

 Color Rendering Index (CRI)
 85

 S/P Ratio (Scotopic/Photopic Ratio)
 1.3

ELECTRICAL CHARACTERISTICS

 Wattage
 28

 Voltage
 167

 Open Circuit Voltage (rapid
 425

Open Circuit Voltage (rapid 425 V @ 10 °C start) Min @ Temperature

Cathode Resistance Ratio - Rh/ 4.25

Rc (MIN)
Cathode Resistance Ratio - Rh/ 6.5

Rc (MAX)
Current Crest Factor 1.7

DIMENSIONS

 Maximum Overall Length (MOL)
 45.8000 in(1163.3 mm)

 Nominal Length
 45.200 in(1148.1 mm)

 Bulb Diameter (DIA)
 0.625 in(15.9 mm)

 Bulb Diameter (DIA) (MAX)
 0.670 in(17.0 mm)

 Max Base Face to Base Face (A)
 45.240 in(1149.1 mm)

(B) (MIN)
Face to End of Opposing Pin
(B) (MIN)
Face to End of Opposing Pin
45.420 in(1153.7 mm)
45.520 in(1156.2 mm)

(B) (MAX)

PRODUCT INFORMATION

 Product Code
 46706

 Description
 F28W/T5/841/ECO

 Standard Package
 Case

 Standard Package GTIN
 10043168467060

 Standard Package Quantity
 40

 Sales Unit
 Unit

Sales Unit Uni
No Of Items Per Sales Unit 1
No Of Items Per Standard 40

Package UPC 043168467063

Page 1

Spectral Power Distribution

Spectral Power Distribution

Spectral Power Distribution

Spectral Power Distribution

Spectral Power Distribution

Spectral Power Distribution

Spectral Power Distribution

Spectral Power Distribution

Mar 2, 2011 1:47:47 PM For additional information, visit www.gelighting.com

Page 2

Philips - MasterColor CDM-T Elite 70W/930 T6 1CT

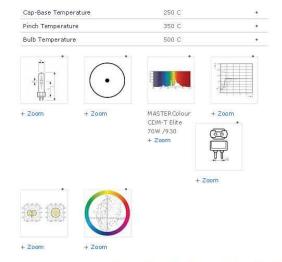
Page 1 of 3

 $http://www.ecat.lighting.philips.com/1/catalog/catalog.jsp? \& userLanguage = en \& userCountr... \\ 4/2/2011$

Philips - MasterColor CDM-T Elite 70W/930 T6 1CT

Page 2 of 3

Lamp Wattage	75 W	3		
Lamp Wattage EL	73 W	-		
Lamp Voltage	87 V	4		
Lamp Current EM	0.840 A			
Lamp Current EL	0.840 A	3		
Ignition Time	30 s			
Run-up time 90%	3 min	9		
Ignition Peak Voltage	3500 V	3		
Re-ignition Time [min]	15 min	à		
Dimmable	No			
Environmental Characteristics				
Mercury (Hg) Content	8.5 mg	3		
Light Technical Characteristics				
Color Code	930 [CCT of 3000K]	9		
Color Rendering Index	90 Ra8	3		
Color Designation	Warm White	ô		
Color Temperature	3000 K	10000		
Color Temperature technical	3000 K	0		
Chromaticity Coordinate X	0.434 -	3		
Chromaticity Coordinate Y	0.395 -	3		
Initial Lumens	7300 Lm			
Luminous Efficacy Lamp EM	98 Lm/W	9		
Luminous Efficacy Lamp EL	100 Lm/W	3		
Lumen Maintenance EM 2000h	95 %	0.00		
Lumen Maintenance EL 2000h	95 %	2000		
Lumen Maintenance EM 5000h	88 %	9		
Lumen Maintenance EL 5000h	88 %			
Lumen Maintenance 10000h	83 %			
Lumen Maintenance 12000h	80 %	0.50		
+ Zoom MASTERColour CDM-T Elite 70W /930 + Zoom				
UV-related Characteristics	64 h.klx			
	0.22 -	0.0		
PET (NIOSH) Damage Factor D/fc		0.0		
PET (NIOSH) Damage Factor D/fc Product Dimensions				
PET (NIOSH)	0.22 -	0.000		
PET (NIOSH) Damage Factor D/fc Product Dimensions Reference Length A	0.22 - 90 mm	0.50 0.50		
PET (NIOSH) Damage Factor D/fc Product Dimensions Reference Length A Overall Length C	0.22 - 90 mm 103 mm	0.50 0.50		
PET (NIOSH) Damage Factor D/fc Product Dimensions Reference Length A Overall Length C Diameter D	90 mm 103 mm 20 mm 55 (min), 56 (nom), 57 (max)	0.50 0.50		
PET (NIOSH) Damage Factor D/fc Product Dimensions Reference Length A Overall Length C Diameter D Light Center Length L	90 mm 103 mm 20 mm 55 (min), 56 (nom), 57 (max) mm	0.000 0.000 0.000		
PET (NIOSH) Damage Factor D/fc Product Dimensions Reference Length A Overall Length C Diameter D Light Center Length L Arc Length O	90 mm 103 mm 20 mm 55 (min), 56 (nom), 57 (max) mm 6 mm	0.000 0.000 0.000		


 $http://www.ecat.lighting.philips.com/l/catalog/catalog.jsp? \& userLanguage = en \& userCountr... \\ 4/2/2011$

Luminaire Design Requirements

04/07/2011

Philips - MasterColor CDM-T Elite 70W/930 T6 1CT

Page 3 of 3

Careers | Contact | Philips | Privacy policy | Terms of use | Site Map @ 2004-2011 Koninklijke Philips Electronics N.V. All rights reserved.

http://www.ecat.lighting.philips.com/l/catalog/catalog.jsp?&userLanguage=en&userCountr... 4/2/2011

Philips - MasterColor CDM-T Elite 35W/930 T6 1CT

Page 1 of 3

 $http://www.ecat.lighting.philips.com/1/catalog/catalog.jsp? \& userLanguage = en \& userCountr... \\ 4/2/2011$

Page 2 of 3

04/07/2011

Philips - MasterColor CDM-T Elite 35W/930 T6 1CT

Damage Factor	D/fc	0.27 -	
PET (NIOSH)		44 h.klx	×
UV-related	Characteristics		
	+ Zoom		
	CDM-T Elite 35W /930		
Zoom	MASTERColour		
Lumen Mainter	• •	80 %	•
	nance EL 10000h	80 %	*
Lumen Mainter		83 %	*
	nance EL 5000h	88 %	•
	nance EL 2000h	95 %	*
Lumen Mainter		95 %	*
Luminous Effic		90 Lm/W	
Initial Lumens		3500 Lm	•
Chromaticity C	oordinate Y	0.396 -	
Chromaticity C		0.432 -	*
Color Tempera		3000 K	
Color Tempera		3000 K	*
Color Designat	ion	Warm White	*
Color Renderin	g Index	90 Ra8	
Color Code		930 [CCT of 3000K]	
Light Techn	ical Characteristics		
Mercury (Hg) (3.5 mg	
Environme	ntal Characteristics		
Dimmable		No	•
Re-ignition Tim	e [min]	15 min	•
Ignition Peak V	oltage	3500 V	
Run-up time 90	1%	3 min	
Ignition Time		30 s	
Lamp Current I	EL	0.45 A	*

http://www.ecat.lighting.philips.com/l/catalog/catalog.jsp?&userLanguage=en&userCountr... 4/2/2011

90 mm 103 mm

Light Center Length L 55 (min), 56 (nom), 57 (max) •

4 mm 2.2 in

4.055 in

0.75 in

350 C 500 C

* * * *

Reference Length A

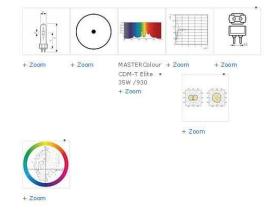
Overall Length C

Arc Length O
Light Center Length L

Diameter D

Pinch Temperature

Bulb Temperature


Max Overall Length (MOL) - C

Luminaire Design Requirements

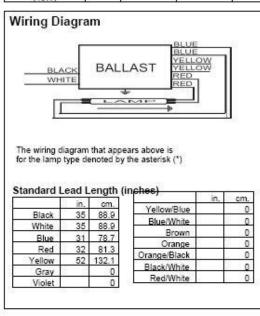
04/07/2011

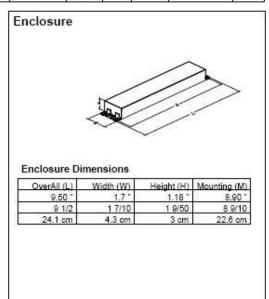
Philips - MasterColor CDM-T Elite 35W/930 T6 1CT

Page 3 of 3

Careers | Contact | Philips | Privacy policy | Terms of use | Site Map @2004-2011 Koninklijke Philips Electronics N.V. All rights reserved.

 $http://www.ecat.lighting.philips.com/l/catalog/catalog.jsp? \& userLanguage = en \& userCountr... \\ 4/2/2011$




Electrical Specifications

ICN2S5490CSC@277				
Brand Name	CENTIUM T5			
Ballast Type	Electronic			
Starting Method	Programmed Start			
Lamp Connection	Series			
Input Voltage				
Input Frequency	50/60 HZ			
Status	Active			

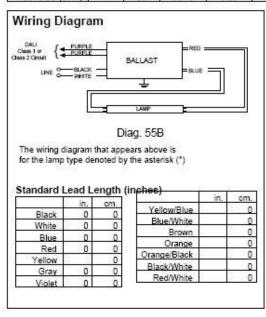
Click to show one page at a time

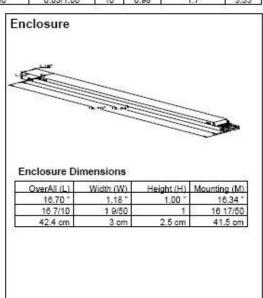
Lamp Type	Num. of Lamps	Rated Lamp Watts	Min. Start Temp (°F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD %	Power Factor	MAX Lamp Current Crest Factor	B.E.F
* F54T5/HO	1	54	-20/-29	0.23	62	1.02	10	0.96	1.7	1.65
F54T5/HO	2	54	-20/-29	0.43	117	1.00	10	0.98	1.7	0.85
F54T5/HO/ES (49W)	1	49	-20/-29	0.23	58	1.02	10	0.98	1.7	1.76
F54T5/HO/ES (49W)	2	49	-20/-29	0.43	108	1.00	10	0.98	1.7	0.93

Revised 03/02/2010

Data is based upon tests performed by Philips Lighting Electronics N.A. In a controlled environment and is representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

PHILIPS LIGHTING ELECTRONICS N.A.


10275 WEST HIGGINS ROAD · ROSEMONT, IL 60018
Tel: 800-322-2086 · Fax: 888-423-1882 · www.philips.com/advance
Customer Support/Technical Service: 800-372-3331 · OEM Support: 866-915-5886



Electrical Specifications

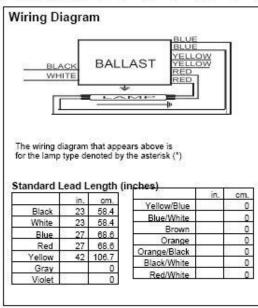
IDA-128-	D@120V
Brand Name	ROVR
	Electronic Dimming
Starting Method	Programmed Start
Lamp Connection	Series
Input Voltage	
Input Frequency	
Status	Active

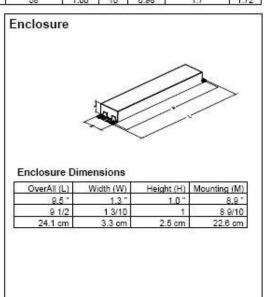
Lamp Type	Num. of Lamps	Rated Lamp Watts	Min. Start Temp (°F/C)	Input Current (Amps)	Input Power (Watts) (min/max)	Ballast Factor (min/max)	MAX THD %	Power Factor	Lamp Current Crest Factor	B.E.F
F14T5	1	14	50/10	0.15	06/19	0.03/1.00	10	0.98	1.7	5.26
F21T5	1	21	50/10	0.20	06/25	0.03/1.00	10	0.98	1.7	4.00
* F28T5	1	28	50/10	0.27	07/32	0.03/1.00	10	0.98	1.7	3.13
28T5/ES (25W)	1	25	50/10	0.25	07/30	0.03/1.00	10	0.98	1.7	3.33

Revised 01/18/2011

Data is based upon tests performed by Philips Lighting Electronics N.A. in a controlled environment and is representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

PHILIPS LIGHTING ELECTRONICS N.A.


10275 WEST HIGGINS ROAD · ROSEMONT, IL 60018
Tel: 800-322-2086 · Fax: 888-423-1882 · www.philips.com/advance
Customer Support/Technical Service: 800-372-3331 · OEM Support: 866-915-5886

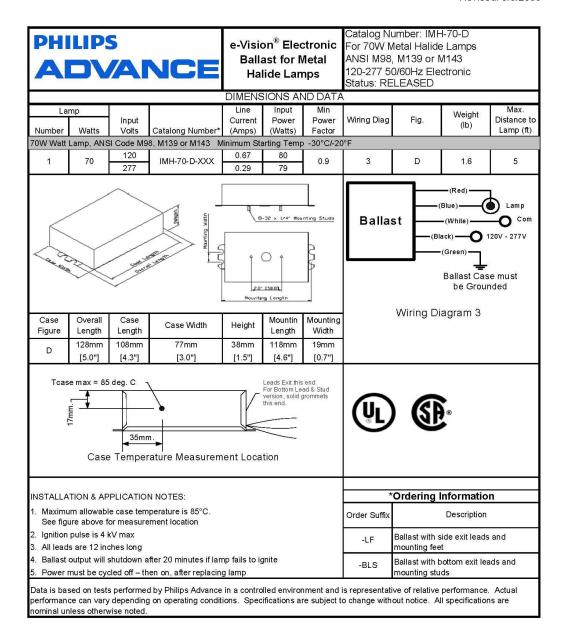


Electrical Specifications

ICN-2S2	8-N@120
Brand Name	CENTIUM T5
Ballast Type	Electronic
Starting Method	Programmed Start
Lamp Connection	Series
Input Voltage	120-277
Input Frequency	50/60 HZ
	Active

Lamp Type	Num. of Lamps	Rated Lamp Watts	Min. Start Temp (°F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD %	Power Factor	MAX Lamp Current Crest Factor	B.E.F
F14T5	1	14	0/-18	0.14	17	1.07	10	0.98	1.7	6.29
F14T5	2	14	0/-18	0.28	33	1.04	10	0.98	1.7	3.15
F21T5	1	21	0/-18	0.22	25	1.06	10	0.98	1.7	4.24
F21T5	2	21	0/-18	0.39	49	1.02	10	0.98	1.7	2.08
* F28T5	1	28	0/-18	0.29	31	1.05	10	0.98	1.7	3.39
F28T5	2	28	0/-18	0.53	62	1.00	10	0.98	1.7	1.61
F28T5/ES (25W)	1	25	32/00	0.25	30	1.00	10	0.98	1.7	3.33
F28T5/ES (25W)	2	25	32/00	0.49	58	1.00	10	0.98	1.7	1.72

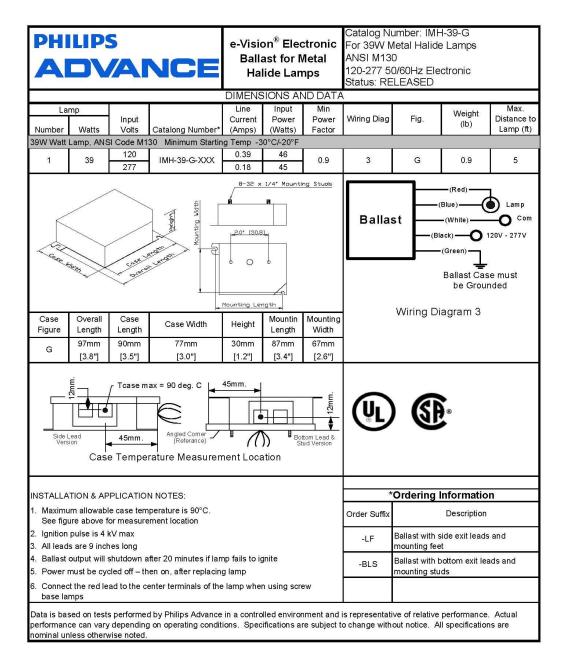
Revised 09/07/2010



Data is based upon tests performed by Philips Lighting Ejectronics N.A. In a controlled environment and is representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

PHILIPS LIGHTING ELECTRONICS N.A.

10275 WEST HIGGINS ROAD - ROSEMONT, IL 60018
Tel: 800-322-2086 - Fax: 888-423-1882 - www.philips.com/advance
Customer Support/Technical Service: 800-372-3331 - OEM Support: 886-915-5886


Revised: 3/5/2009

Philips Lighting Electronics N.A.

10275 West Higgins Road • Rosemont, IL 60018 • www.philips.com/advance Tel: 800-322-2086 • Fax: 800-423-1882 • Customer Support: 800-372-3331 • OEM Support: 866-915-5886

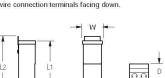
Revised: 3/5/2009

Philips Lighting Electronics N.A.

10275 West Higgins Road • Rosemont, IL 60018 • www.philips.com/advance
Tel: 800-322-2086 • Fax: 800-423-1882 • Customer Support: 800-372-3331 • OEM Support: 866-915-5886

TRANSFORMERS

MAGNETIC TRANSFORMER (100W or less)


SERIES	L1 *	L2 *	D *	W *
TM40	5-1/4"	6"	2"	2-1/4"
TM100	6-1/4"	6.5"	2-1/4"	2-5/8"

Construction: All STEEL construction. Magnetic transformer completely encased in waterproof potting compound.

Finishes: All transformers come in black powdercoat finish only.
Features: Each circuit has a resetable internal circuit breaker in case of overload. All housings feature two 3/4* "knock-outs", one in each side. Housing is built to "NEMA 3R" specification.

General: It is recommended that these transformers are only loaded to 85% of their maximum capacity. These recommendations will allow the transformer to function at its optimum level. All "TM" series transformers must be mounted a minimum of 12" above finished

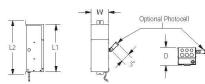
transformers must be mounted a minimum of 12" above finished grade with wire connection terminals facing down

TM SERIES TM - Magnetic Transformer 40 - 40VA 100 - 100VA VOLTAGE

120V - 120 Volt Primary 277V - 277 Volt Primary

MAGNETIC TRANSFORMER (200W and above)

SERIES	L1 *	L2 *	D *	W *
TM200	15-3/16"	17-1/8"	5-3/4"	5-5/8"
TM300	15-3/16"	17-1/8"	5-3/4"	5-5/8"
TM600	15-3/16"	17-1/8"	5-3/4"	6-5/8"
TM900	17-3/16"	19-1/8"	5-3/4"	6-5/8"


AOUNTING & ACCESSORIE

*All dimensions are subject to change without prior notice

Construction: All STAINLESS STEEL construction. Magnetic transformer completely encased in waterproof potting compound. Finishes: Transformers come in brushed stainless only. Custom 'wet' paint finishes are available (contact factory for more information). Features: "TM" series transformers have multi-tap secondary output, 12V (11.8V), 13V (12.8V) and 15V (14.5V). Each 300VA circuit has a conference of the property internal gircuit by texture in second content.

an on/off switch to reset internal circuit breaker in case of overload. All housings feature six "knock-outs" in bottom cover plate (3-1/2", 3-3/4"). Housing is built to "NEMA 3R" specification.

General: It is recommended that these transformers are only loaded reneral: It is recommended that these transformers are only loaded to 85% of their maximum capacity (i.e. 200VA = 170W max. load, 300VA = 255W max. load). It is also recommended that the minimum load should be greater than 40% of the total capacity of transformer (i.e. 200VA = 80W min. load, 300VA = 120W min. load). These recommendations will allow the transformer to function at its optimum level. All "TM" series transformers must be mounted a minimum of 10% of the first had greater than 100 min. 12" above finished grade with wire connection terminals facing down.

SERIES TM - Magnetic Transformer

> WATTAGE 200 - 200VA

201 - 200VA w/ Timer

202 - 200VA w/ Timer & Photocell

300 - 300VA

301 - 300VA w/ Timer 302 - 300VA w/ Timer & Photocell 600 - 2 x 300VA

601 - 2 x 300VA w/ Timer 602 - 2 x 300VA w/ Timer & Photocell

900 - 3 x 300VA

901 - 3 x 300VA w/ Timer

902 - 3 x 300VA w/ Timer & Photocell

TMI - Magnetic Ingrade Transformer

VOLTAGE

120V - 120 Volt Primary 277V - 277 Volt Primary

SERIES

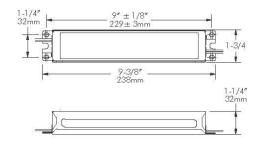
MAGNETIC INGRADE TRANSFORMER (Direct Burial Rated)

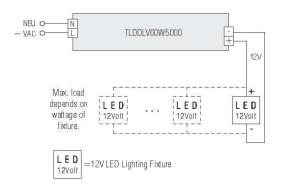

SERIES	L*	D*	W *
TMI300	10-1/4"	4-3/4"	5-3/4"
TMI600	10-1/4"	4-3/4"	5-3/4"

*All dimensions are subject to change without prior notice.

Construction: All STAINLESS STEEL construction. Magnetic Construction: All STAINLESS STEEL construction. Magnetic transformer completely encased in waterproof potting compound.
Finishes: Transformers come in brushed stainless only. Custom "wet" paint finishes are available (contact factory for more information).
Features: "TMI" series transformers have a secondary output of 12V (11.8V). Each 300VA circuit has an internal circuit breaker in case of overload (power to transformer must be cycled to reset circuit breaker). All housings feature two 3/4" "knock-outs" in end plate and one 1/2" "knock-out" on each side plate. Transformer includes two 3/4" "knock dight by 50" conduit adapters, two straight 1/2" liquid tight conduit adapters, six silicone filled waterproof wirenuts, and a tube of silicone for the cover.

contain adapters, six sincore linear water proof when this, and a tible of silicone for the cover.


General: It is recommended that these transformers are only loaded to 85% of their maximum capacity (i.e. 300VA = 255W max. load). It is also recommended that the minimum load should be greater than 40% of the total capacity of transformer (i.e. 300VA = 120W min. load). These recommendations will allow the transformer to function at its optimum level. All "TMI" series transformers are suitable for direct incremental burief when property incredible. Also proposed for places. inground burial when properly installed. Also approved for above ground use within 1' above ground.



WINSCAPE" www.winonalighting.com 128

^{*}All dimensions are subject to change without prior notice

[✓] MPLIGHTING

t 604.708.1184 † 604.708.1185 www.mplighting.com
16 West 4th Avenue, Vancouver BC V5Y 163, Canada

High Power Constant Voltage LED Driver

TLDDLV60W5000

SPEC SHEET

Features:

- UL Class 2, limited output and current with isolation for safe operation.
- Multiple voltage from 120 to 277 volts.
- Tight regulated output (1% line, 5% load) to maximize LED performance.

AC Input Voltage: 120 ~ 277V, 50/60Hz DC Output Voltage: 12V Constant DC Output Current: 0.1...5.00A Max Output Wattage: 60W Max Power Factor: 90% Min Typical Efficiency: 90% Short Circuit Protection: Yes Overload Protection: Yes

Over-voltage Protection: Yes
Dimming Function: With TLC010i Dimming
Controller (sold separate

 $\begin{array}{c} \text{Controller (sold separately)} \\ \text{Operating Temperature:} & -40 \sim 60 ^{\circ}\text{C (-40} \sim 140 ^{\circ}\text{F)} \\ \text{Maximum Case Temperature:} & 90 ^{\circ}\text{C (194 ^{\circ}\text{F})} \end{array}$

Total Harmonic Distortion: 20% Max

Case Material: Steel

Weight: 635g (1.40 lbs)

Approval: 1966 outdoor rated.
Approved to UL by CSA/CUS

UL Listed

Note: Consult factory for wiring length and details.

ORDER CODE
TLDDLV60W5000

[Project]

[Quantity]

[Notes]

Electrical

CUPANCY SENSORS

BZ-100 Dual Voltage Power Pack

Hold ON and Hold OFF

Overcurrent protection (low voltage)

Dual 120/277 VAC

Product Overview

Description

The BZ-100 is a full-featured power pack, providing 24 VDC operating voltage to Watt Stopper's low voltage occupancy sensors. In addition, the BZ enables special hold-0N, hold-0FF and load shed applications when used with lighting control panels or building management systems.

Operation

The BZ consists of a transformer and a high-current relay. The transformer has a primary high voltage input of 120 or 277 VAC. The secondary output, which provides the operating power for Watt Stopper occupancy sensors, is 24 VDC, 150 mA. This 150 mA output is available with the power pack's relay connected. The power packs receive input from occupancy sensors or light level sensors and switch lighting on and off. For example, when an occupancy sensor detects motion, it electrically closes an internal circuit which sends 24 VDC to the power pack. This closes the power pack relay and turns the lights on.

Features

- · Self-contained transformer relay system
- Primary high voltage input of 120 or 277 VAC
- LED indicates status of relay or if there is a low voltage overcurrent
- Hold-ON and hold-OFF inputs integrate with lighting control panels, BMS and other building systems
- Hold-OFF input can provide load shedding function

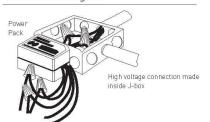
Plenum Rated

The BZ is UL 2043 plenum rated with teflon coated low voltage leads and plenum rated plastic. This means that the power packs do not need to be installed in the junction box, but can be installed in the plenum. They are housed in ABS, UL-rated 94V-0 plastic enclosures.

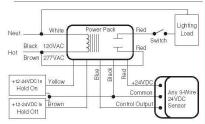
Applications

BZ power packs can control lighting circuits, self-contained air conditioners, pumps, fans, motors, VAV systems, motorized damper controls and setback thermostats. The hold-OFF input can be used to perform load shedding. During a power alert or during peak demand, a signal from a BMS or utility meter triggers the BZ to shed non-critical lighting loads. The hold-OFF function also works with a security system to hold some lights off during a security walk-through. The hold-ON input is ideal for retail and commercial facilities that want to hold certain lighting ON during normal business hours. After-hours, a time clock signals the BZ to no longer hold lights ON, allowing occupancy sensors to resume control.

- Hold-ON input enables method to override occupancy sensor and hold lighting ON
- Zero crossing circuitry for reliability and increased product life
- UL 2043 plenum rated
- Can be installed directly in plenum for cost-effective installation
- 1/2 inch snap-in nipple attaches to standard electrical enclosures through 1/2 inch knockouts

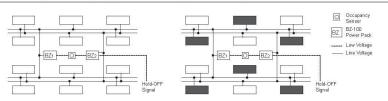

**WattStopper | Ongone | Www.wattstopper.com | 8 0 0 . 8 7 9 . 8 5 8 5

Specifications


- 120/277 VAC voltage input
- · Secondary voltage of 24 VDC
- Secondary output of 150 mA (with relay connected)
- Low voltage leads are rated for 300 volts
- Hold-ON and hold-OFF inputs for integration with lighting control panels, BMS, and other building systems 12-24 VDC)
- UL-rated 94 V-0 plastic enclosure; units are
- UL 2043 plenum rated
- Dimensions: 1.6" x 2.75" x 1.6" (40.6mm x 69.9mm x 40.6mm) with a 1/2 inch snap-in ningle
- · UL and CUL listed; Five year warranty

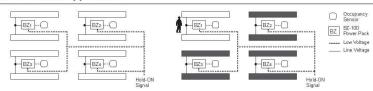
System Layout & Wiring

Installation Diagram



Wiring with Occupancy Sensor

Hold-OFF & Hold-ON Applications


Load Shed (Hold-OFF) Application for Open Office Spaces

The occupancy sensor, connected to each BZ, keeps all lights on when the space is occupied.

When the load shed command is given (by utility meter, BMS, etc.), lights connected to the BZ2 are held off. Remaining lights, (BZ1) are controlled by occupancy sensor.

Hold-ON Retail Application

During store hours, a signal from a time clock to the BZ holds lights on, regardless of occupancy.

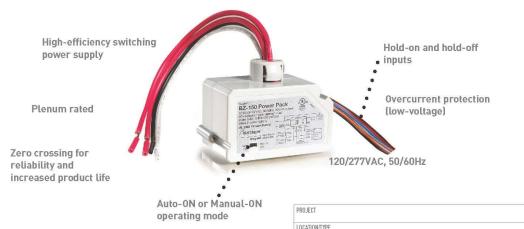
After hours, the clock schedule cancels the hold on and occupancy sensor control takes over.

Ordering Information

			Load Rating		
Catalog No.	Input Voltage	Ballast (A)	Incan (A)	Motor (HP)	Output
☐ BZ-100	120/277 VAC; 60 Hz	20	20	1*	24 VDC; 150 mA**

^{* 1} Hp rated at 120/250 VAC. ** Output is 150 mA with relay connected.

Installation Notes


- All Watt Stopper power packs should be installed in accordance with state, local, and national electrical codes and requirements.
- 2 Power packs are designed to attach to existing or new electrical enclosures with .5" (25.40mm) knockouts. [Check electrical codes in your area.]
- Most applications require UL listed, 18-22 AWG, 3-conductor, Class 2 cable for low voltage wiring. For plenum return ceitings use UL listed plenum-approved cables.

www.wattstopper.com

Pub. No. 14406

BZ-150 Universal Voltage Power Pack

Product Overview

Description

The BZ-150 Universal Voltage Power Pack is full featured and can provide 24 VDC operating voltage to WattStopper's low-voltage occupancy sensors. In addition, the BZ-150 enables manual-on, holdon, hold-off and load shed applications when used with lighting control panels or building management systems. This device is constructed with environmentally friendly materials and is RoHS-compliant.

Operation

The BZ-150 consists of a high-efficiency switching power supply and a high-current relay. It has an input of 120/277 VAC, 50/60Hz, and an output of 24VDC, 225mA. It turns the connected load on and off automatically based on occupancy sensor input, or manually with a low-voltage momentary switch. The dip switch setting allows the user to select Auto 0N or Manual 0N as the operating mode. Additional low-voltage inputs provide hold-on and hold-off features for broader applications.

Features

- Self-contained power supply relay system
- Efficient switching power supply providing optimized current output based on number of sensors
- LED indicates status of relay or if there is a low-voltage overcurrent
- Hold-on and hold-off inputs integrate with BMS, lighting control panels & other building systems
- Integrates with low-voltage momentary switch to control any 24VDC occupancy sensor
- RoHS-compliant

Manual On and Bi-level Switching

Energy codes require automatic off. Some codes and EPAct require bi-level switching. The BZ-150 meets both of these requirements, while seamlessly integrating manual on for maximum energy savings. When used with a low-voltage wall switch, Auto ON and Manual ON can be selected while in the field by using the conveniently located dip switch on the front. Combining switches, power packs and sensors provides easy and cost-effective code-compliant solutions.

Applications

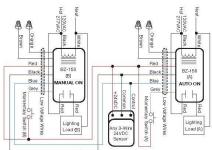
The BZ-150 can control lighting circuits, self-contained air conditioners, pumps, fans, motors, VAV systems, motorized damper controls and setback thermostats. By using two low-voltage switches, a ceiling sensor and two BZ-150s (one set to Auto ON and one set to Manual ON) bi-level switching with manual-on operation can be achieved. The hold-on input is ideal for retail and commercial facilities that want to override an occupancy sensor and force lighting on during normal business hours. After hours, a time clock signals the BZ-150 to cancel the hold-on lighting mode, allowing the sensor to resume control. The hold-off input can be used for load shedding or security systems.

- Provides auto-on or manual-on field-selectable operating mode
- Zero crossing circuitry for reliability and increased product life
- UL 2043 plenum rated for cost-effective installation
- 1/2" snap-in nipple attaches to standard electrical enclosures through 1/2" knockouts
- 14 AWG wires on the relay for 20A operation
- · Qualifies for ARRA-funded public works projects

Watt Stopper*
www.wattstopper.com
8 0 0 . 8 7 9 . 8 5 8 5

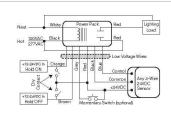

CONTROLS

Specifications


- 120/277VAC, 50/60Hz voltage input
- · Secondary voltage of 24 VDC
- Secondary output of 225 mA (with relay connected)
- Low-voltage leads are rated for 300 volts
- UL-rated 94 V-0 grey plastic enclosure
- Dimensions: 1.6" x 2.75" x 1.6" (40.6mm x 69.9mm x 40.6mm) H x W x D with a 1/2" (12.7mm) snap-in nipple
- UL and cUL listed
- Five year warranty

System Layout & Wiring

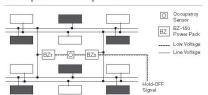
Installation Diagram



Manual-on & Bi-level Switching

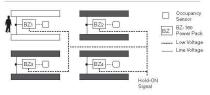
By using two low-voltage switches, a ceiling sensor and two BZ-150s (one set to Auto ON and one set to Manual ON) bi-level switching with manual-on operation can be achieved.

Wiring with Occupancy Sensor



Low-voltage Momentary Switch Options

Two-wire Switch	Three-wire Switch	Multibutton Switch Do not use pilot or locator light connects
Grey Manual ON O Red 24VDC	Grey Manual ON Red 24VDC United State of State o	Grey Manual ON S(x) Fled 24VDC Corr


Hold-off & Hold-on Applications

Load Shed (Hold-off) Application for Open Office Spaces

The occupancy sensor connected to each BZ-150 keeps all lights on when the space is occupied. When the load shed command is given (by utility meter, BMS, etc.), lights connected to BZ $_2$ are held off. Remaining lights (connected to BZ $_1$) are still controlled by occupancy sensor.

Retail (Hold-on) Application

During store hours, a signal from a time clock to the BZ-150 holds lights on, regardless of occupancy. After hours, the clock schedule cancels the hold-on and occupancy sensor control takes over.

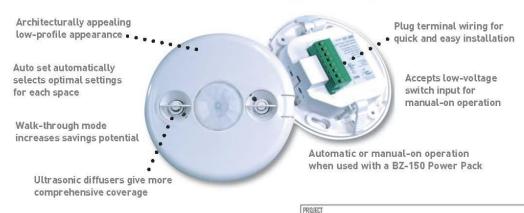
Load Ratings

Ordering Information

Catalog No.	Input Voltage	Ballast(A)	Incan(A)	Motor	Output	
BZ-150 BZ-150-U	120/277VAC; 50/60Hz	20	20	1 HP 120/250 VAC-rated	24 VDC 225 mA w/relay	
BZ-150-FTA					connected	

For a complete listing of Multibutton Low-voltage and Momentary Toggle Switches that will provide manual-on switching with the BZ-150, please refer to the product cut sheets in the section on Lighting Control Systems.

Installation Notes


1) All WattStopper power packs should be installed in accordance with state. local, and national electrical codes and requirements.
2) Power packs are designed to attach to existing or new electrical enclosures with .5"125.40mmJ knockout [check electrical codes in your area].
3) Most applications require UL-listed, 18-22 AWG, 3-conductor, Class 2 cables for low-voltage wiring. For plenum return ceilings use UL-listed plenum-approved cables.

Pub. No. 27404 rev. 11/2010

www.wattstopper.com | 8 0 0 . 8 7 9 . 8 5 8 5

DT-300 Series Dual Technology Ceiling Sensors

Product Overview

Description

The DT-300 Series Dual Technology Ceiling Sensors combine the benefits of passive infrared (PIR) and ultrasonic technologies to detect occupancy. Sensors have a flat, unobtrusive appearance and provide 360 degrees of coverage.

Operation

Low voltage DT-300 Series sensors utilize a WattStopper power pack to turn lights on when both PIR and ultrasonic technologies detect occupancy. They can also work with a low voltage switch for manual-on operation. PIR technology senses motion via a change in infrared energy within the controlled area, whereas ultrasonic uses 40KHz high frequency ultrasound. Once lights are on, detection by either technology holds them on. When no occupancy is detected for the length of the time delay, lights turns off. DT-300 Series Sensors can also be set to trigger lights on when either technology or both detect occupancy, or to require both technologies to hold lighting on.

Features

- Advanced control logic based on RISC microcontroller provides:
- Detection Signature Processing eliminates false triggers and provides immunity to RFI and EMI
- Walk-through mode turns lights off three minutes after the area is initially occupied – ideal for brief visits such as mail delivery
- Available with built-in light level sensor featuring simple, one-step setup
- Sensors work with low-voltage momentary switches to provide manual control

Auto Set

LOCATION/TYPE

The DT-300 requires no adjustment at installation. Auto set continuously monitors the controlled space to identify usage patterns. Based on these patterns, the unit automatically adjusts time delay and sensitivity settings for optimal performance and energy efficiency. Sensors assigns short delays (as low as five minutes) for times when the space is usually vacant, and longer delays (up to 30 minutes) for busier times.

Application

DT-300 Series Dual Technology Sensors have the flexibility to work in a variety of applications, where one technology alone could cause false triggers. Ideal applications include classrooms, open office spaces, large offices and computer rooms. The DT-300 Series mounting system makes them easy to install in ceiling tiles or to junction boxes, providing the flexibility to be used in a wide range of spaces.

- Patented ultrasonic diffusion technology spreads coverage to a wider area
- · LEDs indicate occupancy detection
- Uses plug terminal wiring system for quick and easy installation
- Eight occupancy logic options provide the ability to customize control to meet application needs
- Available with isolated relay for integration with BAS or HVAC
- Qualifies for ARRA-funded public works projects

DW-100 Dual Technology Wall Switch Sensor

PROJECT
LOCATION/TYPE

Product Overview

Description

The DW-100 dual technology wall switch sensor combines the benefits of passive infrared (PIR) and ultrasonic technologies, and can turn lights OFF and ON based on occupancy. It is characterized by high sensitivity to small and large movements, appealing aesthetics, and a variety of features.

Operation

The DW-100 fits in a single gang junction box. Once the lights are ON, detection by either technology holds lights ON until occupancy is no longer detected and the time delay elapses. DIP switch settings allow for a variety of control options including Auto-ON operation, walk-through and test mode. By default, Auto-ON turns lighting on when both PIR and ultrasonic technologies detect occupancy. Additional DIP switch settings allow the user to choose which sensing technologies turn-ON and hold-ON the lighting.

Features

- Detection Signature Processing eliminates false triggers and provides immunity to RFI and EMI
- Zero-crossing for long relay life
- Vandal resistant lens combines precise coverage with durability
- Choice of Manual-ON or Auto-ON operation
- Selectable walk-through mode turns lights off three minutes after the room is initially occupied if no motion is detected after the first 30 seconds
- · Test mode allows quick and easy adjustments
- Selectable audible alert for impending shutoff

Manual-on Control

Factory default operation is for Manual-ON, so that users turn lights on only when needed. This control strategy is proven to save more energy than Auto-ON, and will be required where the ASHRAE 90.1-2010 energy code is adopted. If desired, the DW-100 may be reconfigured to turn lights on automatically.

Applications

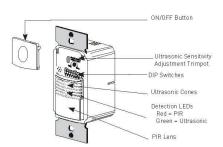
WattStopper's dual technology has the flexibility to work in a variety of applications where one technology alone may not be sufficient. Common applications include small and executive offices, small and medium conference rooms and lunch/break rooms. In addition, dual technology sensors are the perfect choice for ADA-compliant buildings due to lower mounting height requirements.

- In automatic mode, sensor returns automatically to Auto-ON after lights are turned off manually; ideal for presentations
- Four occupancy logic options give users the ability to customize control to meet application needs
- Optional light level sensing with simple setup
- Service mode allows sensor to operate as a service switch in the unlikely event of a failure
- Sensor coverage tested to NEMA Guide Publication WD 7-2000
- · Compatible with decorator wall plates
- Qualifies for ARRA-funded public works projects

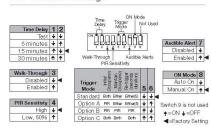
Watt Stopper*
www.wattstopper.com
8 0 0 . 8 7 9 . 8 5 8 5

COMMERCIAL OCCUPANCY

Specifications

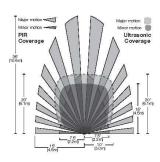

- DW-100: 120/277 VAC; 50/60 Hz
 120 VAC, 0-800 W ballast or tungsten,1/6 hp
 277 VAC, 0-1200 W ballast
- DW-100-347: 347 VAC; 50/60Hz, 0-1500 W ballast
- Time delays: 5, 15 or 30 minutes, walk-through, test-mode
- Coverage:

Major motion, PIR 35' x 30', Ultrasonic 20' x 20' Minor motion, PIR 20' x 15', Ultrasonic 15' x 15'

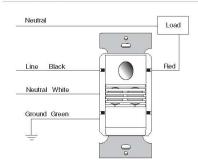

- Sensitivity adjustment: PIR (high/low), Ultrasonic (fully variable)
- Dimensions: 2.73" x 1.76" x 1.83"
 [69.3mm x 44.7mm x 46.5mm] L x W x D
- UL and cUL listed
- Five year warranty

Controls & Settings

Product Controls



DIP Switch Settings


Coverage & Wiring

Coverage Pattern

Wiring Diagram

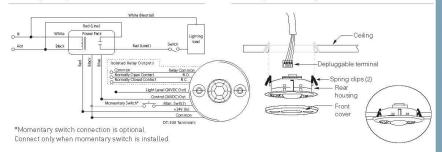
For best performance, WattStopper recommends using this sensor in spaces no larger than 18' x 15'.

Ordering Information

Catalog No.	Color	Voltage	Load Rating
DW-100-W DW-100-W-U DW-100-W-FTA	White	120/277 VAC; 50/60 Hz	@ 120 VAC, 0-800 W ballast or tungsten,1/6 hp @ 277 VAC, 0-1200 W ballast
☐ DW-100-LA	Lt. Almond		
DW-100-I DW-100-I-U DW-100-I-FTA	Ivory		
☐ DW-100-G	Grey	-	
☐ DW-100-B	Black		
DW-100-347-W	White	347 VAC; 50/60 Hz	0-1500 W ballast
☐ DW-100-347-LA	Lt. Almond	70	
DW-100-347-I	Ivory		
DW-100-347-G	Grey		
DW-100-347-B	Black		

Order wall plate separately.

Pub. No. 22305 rev. 9/2010

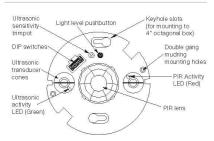

www.wattstopper.com | 8 0 0 . 8 7 9 . 8 5 8 5

Specifications

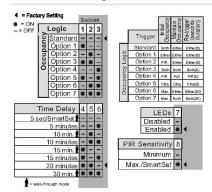
- 24 VDC/VAC
- Ultrasonic frequency: 40kHz
- Time delays: Auto set, fixed (5, 10, 15, 20, or 30 minutes), Walk-through/Test Modes
- · Sensitivity adjustment: Auto set; reduced sensitivity (PIR); variable with trim pot (ultrasonic)
- Built-in light level sensor: 10 to 300 footcandles (107.6 to 3,229.2 lux)
- Low-voltage, momentary switch input for manual on or off operation

Wiring Diagram

- DT-300 contains an isolated relay with N/O and N/C outputs; rated for 1 Amp @ 30 VDC/VAC
- · Multi-level Fresnel lens provides 360° coverage
- · Mounting options: ceiling tile; 4" octagonal J-box, 1.5" deep
- Max DT-300s per power pack: B=2, BZ=3 Max DT-305s per power pack: B=3, BZ=4
- Dimensions: 4.50" diameter x 1.02" deep [114.3mm x 25.9mm]
- UL and cUL listed
- Five year warranty Ceiling Mounting



Controls & **Settings**


Wiring &

Mounting

Product Controls

DIP Switch Settings

Coverage

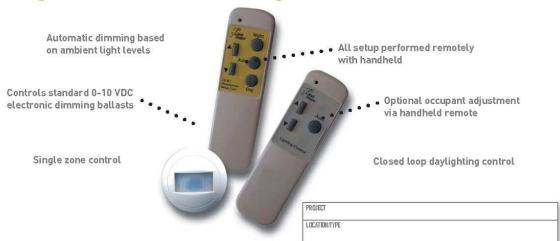
Coverage Pattern

The technology control (occupancy logic) options are adjustable by user. The standard setting recommended for most applications requires both technologies to trigger on, either to hold on.

Coverage shown is maximum and represents half-step walking motion. Under ideal conditions, coverage for half-step walking motion can reach up to 1000 ft².

Ordering Information

Catalog No.	Voltage	Current	Coverage	Features
☐ DT-300 ☐ DT-300-U	24 VDC/VAC	43 mA	up to 1000 ft² (92.9 m²)	Isolated relay, light level
DT-305 DT-305-U	24 VDC/VAC	35 mA	up to 1000 ft ² (92.9 m ²)	


Sensors are white and use WattStopper power packs. Current consumption can be slightly higher when only one sensor per power pack is used

www.wattstopper.com | 8 0 0 . 8 7 9 . 8 5 8 5

Pub. No. 14907 rev.10/2009

LightSaver® LS-301 Dimming Photosensor

Product Overview

Description

The LightSaver LS-301 is a closed loop, ceiling mount, low voltage indoor photosensor that works with standard, 0-10 VDC electronic dimming ballasts to dim lighting as daylight increases.

Operation

The LS-301 mounts on a ceiling and utilizes a spectral filtering system to measure daylight and electric light levels. A closed loop daylighting system, the LS-301 measures the total light level from daylight and electric light in the controlled area to adjust electric lighting levels. As the daylight contribution increases, the lights dim down. The photosensor utilizes sliding setpoint control, which responds to the different spatial distribution qualities of electric light and daylight. The LS-301 calculates the required light level for current daylight contribution based on two setpoints. One represents the target level when no daylight is present (night setpoint) and the other when significant daylight is present (day setpoint).

Features

- Provides precise control of lighting to maintain desired light level
- Extremely linear photocell response with greater than 1% accuracy
- Designed to measure light as the human eye perceives it, eliminating "overreporting" illumination levels provided by daylight
- California Title 24-2008 compliant

Adjustment via Handheld Remote Control

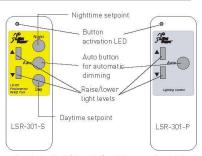
All LS-301 adjustments are made with one of two handheld remotes. The FDR-301-S provides five buttons for initial set-up, which is easily completed by first raising or lowering electric light levels to desired levels, then programming this target level into the photosensor. The LSR-301-P provides three buttons for occupants to adjust light levels. With this optional tool, users can increase target light levels by up to 25% or reduce them to the lamp/ballast minimum level. Pressing the "Auto" button returns the control to programmed levels.

Applications

The LS-301 is designed to blend into its surroundings when installed in any environment. It provides one zone of daylighting control in a private office or classroom. In these applications, the LS-301 can be combined with an occupancy sensor. Often, it is possible for the LS-301 to share a single power pack with occupancy sensor(s).

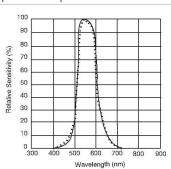
- Separate handheld remote controls for setup and occupant adjustment to prevent tampering
- Boosts energy savings by reducing maximum lamp output, often resulting in a 20% reduction or more compared with lights at full output
- Achieves lumen maintenance by holding target light level as lamp output decreases over time
- Qualifies for use on ARRA-funded public works projects

Specifications


- Full range dimming: .2 VDC (minimum) to 10 VDC (100% lighting) output voltage
- Current consumption: 30 mA @ 24 VDC
- In typical applications, setpoints are adjustable from 20-60 footcandles (210-640 lux)
- Controls up to 50 standard dimming ballasts in one zone
- Sensor leads: gray and violet to ballast, red

and black to 24 VDC

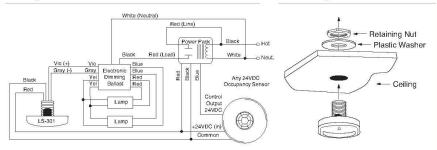
- Dimensions: 2.35" diameter. x 0.875" depth (60mm x 22mm), threaded piece extends 1.25" (31.8mm) from back, fits .5" knockout
- · Five year warranty


Product Controls

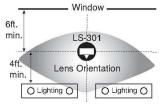
Remote Controls

Remote handheld (above left) enables easy set-up while optional occupant remote provides adjustability for individual lighting preferences.

Spectral Response Curve



The spectral response of the LS-301 photocell closely matches the sensitivity of the human eye.


Wiring & Installation

Wiring

Mounting and Installation

Coverage

Placement Guidelines

- Mount photocell between 6 and 12 feet (1.8m - 3.7m) from window.
- Do not mount directly above direct/indirect pendant fixtures.
 Mount at least 4 feet (1.2m) from pendant fixtures.

Ordering Information

Catalog No.	Description	Input Voltage
☐ LS-301	Dimming Photosensor	24 VDC
LS-301-U	Dimming Photosensor, ARRA-compliant	24 VDC
LS-301-FTA	Dimming Photosensor, ARRA-compliant (FTA exception)	24 VDC
☐ LSR-301-S	Setup Remote Control (2 AAA batteries included)	
☐ LSR-301-P	Occupant Remote Control (2 AAA batteries included)	

LS-301 works with WattStopper power packs

Pub. No. 17506 rev. 09/2009

www.wattstopper.com | 8 0 0 . 8 7 9 . 8 5 8 5

FACEN

Cutler-Hammer

June 2006 Sheet 0821

Panelboards Pow-R-Line 1a

22.1-1

22

General Description - Pow-R-Line 1a

Pow-R-Line 1a

Pow-R-Line 1a

General Description

Panelboard Ratings

Voltage:

■ 240 Vac maximum.

Main Lugs:

■ 100 - 400 amperes.

Main Breakers:

■ 100 – 400 amperes.

Branch Breakers:

■ 15 – 100 amperes (Bolt-on or plug-on chassis).

Short Circuit Current Ratings (Symmetrical)

- 240 Vac: 10 kA and 22 kA fully rated.
- 240 Vac: 22 200 kA series rated.

Service

- 3-phase, 4-wire 208Y/120 V and 240/120 V Delta.
- Single-phase, 3-wire 120/240 V.
- Single-phase, 2-wire 120 V.
- 3-phase, 3-wire 208 and 240 V.

Suitable for service entrance applications when specified.

Maine

For available mains, refer to **Table 22.1-1**.

Main breakers, 100 amperes, Types BAB and QBH are horizontally mounted, same as branch breakers. All other main breakers are vertically mounted

Branch Circuits

For available branch devices, refer to **Table 22.1-2**.

Main Lugs Only

The short circuit rating of the MLO assembled panelboard will be fully rated based upon the lowest rated branch device or may be series rated with an approved upstream device.

Main lugs only ampere ratings: 100, 225 and 400.

Main Circuit Breakers

The short circuit rating shown is that of the main breaker only. The short circuit rating of the assembled panel-board is the rating of the lowest fully rated main or branch device or the rating of an approved series rated combination

Table 22.1-1. Main Circuit Breakers

Breaker Frame Amperes	Breaker Type	Interrupting Rating (kA Symmetrical) at 240 V
100 100 100	BAB QBHW EHD	10 22 18
150	FDB	18
225 225 225 225 225 225 225 225 225 225	FD HFD FDC EDB EDS ED EDH EDC	65 100 200 22 42 65 100 200
250 250 250	JD HJD JDC	65 100 200
400 400 400 400 400	DK KD HKD KDC	65 65 100 200

Table 22.1-2. Branch Circuit Breakers

Breaker	Ampere	Number	Interruptir	ng Rating (kA Symmetrical)		
Туре	Rating	of Poles	120 V	120/240 V	240 V	
BAB, HQP BAB, HQP BAB, HQP	15 – 70 15 – 100 15 – 100	1 2 2,3	10	10	<u>-</u>	
BAB-D®, HQP-D® BAB-C®, HQP-B® BABRP® BABRSP®	15 – 60 15 – 30 15 – 30 15 – 30	1,2 1,2 1,2 1,2	10 10 10 10	10 10 10 10		
QBGF, QBGFEP, QPGF, QPGFEP QBAF ®, QBAG ®	15 – 50 @ 15 – 50 @ 15 – 20	1,2 1,2 1,2	10 10 10	10 10 10	_	
QBHW QBHW QBHW	15 – 70 15 – 100 15 – 100	1 2 2,3	22 	22	<u>-</u>	
QBHGF, QBGFEP QPHGF, QPHGFEP QBHAF @, QBHAG ®	15 – 30 15 – 30 15 – 20	1,2 1,2 1,2	22 22 22 22	22 22 22		

- 1 HID (High Intensity Discharge) rated breaker.
- Switching Neutral breaker. 1-pole device requires 2-pole space, 2-pole device requires 3-pole space.
- Solenoid operated breaker.
- § 50 ampere is 2-pole only.
- Arc fault breaker.
 Arc fault breaker with GFCI.

Series Rated Combinations

Refer to series rating tables beginning on Page 22.0-11 for the approved series rated combinations available for the branch circuit breakers listed in Table 22.1-2.

CA08104001E

For more information visit: www.EatonElectrical.com

22.1-2 Panelboards Pow-R-Line 1a

E T • **N** Cutler-Hammer

June 2006 Sheet 0822

22

Technical Data — Pow-R-Line 1a

Pow-R-Line 1a Specifications

Russina

100 – 400 amperes: Tin-plated aluminum is standard, copper is available as an option.

Boxes

Boxes are made from code-gauge galvanized steel.

Blank ends are supplied as standard, knockouts are available upon request.

EZ Trim

Trims are made from code-gauge steel and painted ANSI 61 gray.

All panelboards have door-in-door as standard with multi-point catch and lock, and concealed mounting hardware.

Modifications

Table 22.1-3. Sub-Feed Lugs (Main Lugs Only)

Amperes	Panel Height Addition		
100	0 Inches (0 mm)		
225	0 Inches (0 mm) 0 Inches (0 mm)		

Table 22.1-4. Through-Feed Lugs

Amperes	Information	
100	See Table 22.1-6	
225	See Table 22.1-6	
400	See Table 22.1-6	

Table 22.1-5. Sub-Feed Breakers (One Per Panel)

Ampere Rating	Breaker Type	Interrupting Rating (kA Symmetrical) at 240 V
150	FDB	18
225	FD	65
225	HFD	100
225	FDC	200
225	EDB	22
225	EDS	42
225	ED	65
225	EDH	100
225	EDC	200
250	JD	65
250	HJD	100
250	JDC	200
400	DK	65
400	KD	65
400	HKD	100
400	KDC	200

Shunt Trips

Shunt trips are available on breakers. BAB, HQP, QBHW and QPHW require one additional pole space for shunt trip, i.e., 1-pole is 2-pole size, 2-pole is 3-pole size and 3-pole is 4-pole size.

Ground Bar

Standard bolted in box. Aluminum is standard. Copper is available as an option.

Enclosure

Types 1, 12, 3R, 4 and 4X.

TVSS

Integrated onto panelboard chassis. For complete product description and available ratings, refer to **Section 36**.

Box Sizing and Selection

Box size for all Type 1 panelboards are available from **Table 22.1-6**.

Instructions

- 1. Select the rating and type of mains required.
- Count total number of branch circuit poles (including spaces) required in the panelboard. Do not count main breaker poles. Convert 2- or 3-pole branch breakers to single-poles, i.e., 3-pole breaker, count as three poles.

Note: For horizontal mounted mains (BAB Type), use main lug table, include space in branch section for mains.

 Using correct table, type of mains and ampere rating per Step 1, find total number of poles.

Note: Where total number of poles (Step 2) fall between number in table, use the next higher number.

 Read box size across columns to the right.

Top and Bottom Gutters (minimum)

5-1/2 inches (139.7 mm).

Side Gutters

20-inch (508.0 mm) wide box: 6-1/2 inches (165.1 mm).

Table 22.1-6. Type 1 Panelboards — Dimensions in Inches (mm)

Ampere	Main Breaker	Гуре	Maximum	Box Dimens	sions 👓	
Rating of Mains	Mounting Position		Number of Branch Circuits Including Provisions	Height	Width	Depth
100 Amperes	10					
100 A ③ Main Lugs or Main Breaker	EHD, FDB, FD, HFD, FDC Vertical		18 30 42 48	36 (914.4) 48 (1219.2) 48 (1219.2) 60 (1524.0)	20 (508.0) 20 (508.0) 20 (508.0) 20 (508.0)	5.75 (146.1 5.75 (146.1 5.75 (146.1 5.75 (146.1
100 A ® Main Lugs or Main Breaker with 100 A Through-Feed Lugs or Sub-Feed Breaker	EHD, FDB, FD, HFD, FDC Vertical		18 30 42 48	48 (1219.2) 48 (1219.2) 60 (1524.0) 60 (1524.0)	20 (508.0) 20 (508.0) 20 (508.0) 20 (508.0)	5.75 (146.1) 5.75 (146.1) 5.75 (146.1) 5.75 (146.1)
225 Amperes						
225 A ^④ Main Lugs or Main Breaker	EDB, EDS, ED, EDH, EDC, FD, HFD, FDC Vertical		18 30 42 48	36 (914.4) 48 (1219.2) 48 (1219.2) 60 (1524.0)	20 (508.0) 20 (508.0) 20 (508.0) 20 (508.0)	5.75 (146.1 5.75 (146.1 5.75 (146.1 5.75 (146.1
225 A ^① Main Lugs or Main Breaker with 225 A or 100 A Sub-Feed Lugs or Breaker	EHD, FDB, FD, HFD, FDC, EDB, EDS, ED, EDH, EDC Vertical		18 30 42 48	48 (1219.2) 48 (1219.2) 60 (1524.0) 60 (1524.0)	20 (508.0) 20 (508.0) 20 (508.0) 20 (508.0)	5.75 (146.1 5.75 (146.1 5.75 (146.1 5.75 (146.1
100 Amperes						
400 A Main Lugs or Main Breaker	DK, KD, HKD, KDC Vertical	E.	18 30 42 48	60 (1524.0) 60 (1524.0) 72 (1828.8) 72 (1828.8)	20 (508.0) 20 (508.0) 20 (508.0) 20 (508.0)	5.75 (146.1 5.75 (146.1 5.75 (146.1 5.75 (146.1
400 A Main Lugs or Main Breaker with 225 A or 100 A Sub-Feed Lugs or Breaker	DK, KD, HKD, KDC Vertical	Mains	18 30 42	60 (1524.0) 72 (1828.8) 72 (1828.8)	20 (508.0) 20 (508.0) 20 (508.0)	5.75 (146.1 5.75 (146.1 5.75 (146.1
	EHD, FDB, FD, HFD, FDC, EDB, EDS, ED, EDH, EDC Vertical	Sub- Feed Breakers	48	90 (2286.0)	20 (508.0)	5.75 (146.1

- ① Smaller panelboard box sizes are available if required. Contact Eaton for application information.
- ② Add 8 inches (203.2 mm) for TVSS.
- For horizontal mounted mains (BAB Type), use main lug table, include space in branch section for mains.
- JD, HJD, JDC is same space requirement as 400 ampere DK, HKD, KDC.

For more information visit: www.EatonElectrical.com

CA08104001E

22

June 2006 Sheet 0823

General Description - Pow-R-Line 2a

Pow-R-Line 2a

Pow-R-Line 2a

General Description

Panelboard Ratings

Voltage:

- 240 Vac maximum.
- 480Y/277 Vac maximum.

Note: PRL2a panelboards are suitable for use on 3-phase, 3-wire applications when derived from a 3-phase, 4-wire 480Y/277 Vac service where the neutral is not brought to the panelboard. For 3-phase, 3-wire 480 Vac Delta services use a PRL3a panelboard.

■ 250 Vdc maximum.

Main Lugs

■ 100 - 400 amperes.

Main Breakers:

■ 100 - 400 amperes.

Branch Breakers:

■ 15 – 100 amperes (bolt-on).

Short Circuit Current Ratings (Symmetrical)

- 240 Vac: 65 kA fully rated.
- 240 Vac: 100 200 kA series rated.
- 480Y/277 Vac: 14 kA fully rated.
- 480Y/277 Vac: 22 150 kA series rated.
- 250 Vdc: 10 kA and 14 kA fully rated.

Service

- 3-phase, 4-wire 208Y/120 V and 240/120 V Delta and 480Y/277 V.
- Single-phase, 3-wire 120/240 V.
- Single-phase, 2-wire 120 V.
- \blacksquare 3-phase, 3-wire 208 and 240 V.
- 2-wire 125 Vdc.
- 2-wire 250 Vdc.

Suitable for service entrance applications when specified.

Mains

For available mains, refer to Table 22.2-1.

The GHB main breaker is horizontally mounted, same as branch breakers. All other main breakers are vertically mounted.

Branch Circuits

For available branch devices, refer to Table 22.2-2.

Main Lugs Only

The short circuit rating of the MLO assembled panelboard will be fully rated based upon the lowest rated branch device or may be series rated with an approved upstream device.

Main lugs only ampere ratings: 100, 225 and 400.

Main Circuit Breakers

The short circuit rating shown is that of the main breaker only. The short circuit rating of the assembled panel-board is the rating of the lowest fully rated main or branch device or the rating of an approved series rated combination.

Table 22.2-1. Main Circuit Breakers

Breaker Frame	Breaker	Interrupting	Interrupting Rating (kA Symmetrical)			
(Amperes)	Туре	240 V	480Y/277 V	125/250 V dc		
100 100	GHB⊕ EHD	65 18	14 14	14 10		
150	FDB	18	14	10		
225 225 225 225 225	FD HFD FDC ED	65 100 200 65	35 65 100	10 22 22 22		
250 250 250 250 250 250	EDH EDC JD HJD JDC	100 200 65 100 200				
400 400 400 400	DK KD HKD KDC	65 65 100 200	— 35 65 100	10 10 22 22		

At 480 V, use on 480Y/277 V systems only.

Table 22.2-2. Branch Circuit Breakers

Breaker Type	Ampere	Number of Poles	Interrupting Rating (kA Symmetrical)					
	Rating		120 V	240 V	277 V	480Y/277 V	125/250 Vdc	
GHB @ GHB @ GHQ	15 – 100 15 – 100 15 – 20	1 2,3 1	65 — 65	65 —	14 - 14	14	14 14 —	
HGHB GHQRSP@@ GHBS@ GHBGFEP	15 – 30 15 – 20 15 – 30 15 – 60	1 1,2 1,2 1	65 65 65	65 65 —	25 14 14 14	14 14		

② At 480 V, use on 480Y/277 Vac systems only.

Series Rated Combinations

Refer to series rating tables beginning on Page 22.0-11 for the approved series rated combinations available for the branch circuit breakers listed in Table 22.2-2.

CA08104001E

For more information visit: www.EatonElectrical.com

³ Solenoid operated breaker.

22.2-2 Panelboards Pow-R-Line 2a

E T • **N** Cutler-Hammer

June 2006 Sheet 0824

22

Technical Data

Bussing

100 – 400 amperes: Tin-plated aluminum is standard, copper is available as an option.

Technical Data — Pow-R-Line 2a

Rovo

Boxes are made from code-gauge galvanized steel.

Blank ends are supplied as standard, knockouts are available upon request.

F7 Trin

Trims are made from code-gauge steel and painted ANSI 61 gray.

All panelboards have door-in-door as standard with multi-point catch and lock, and concealed mounting hardware.

Modifications

Table 22.2-3. Sub-Feed Lugs (Main Lugs Only)

Amperes	Panel Height Addition			
100	0 Inches (0 mm)			
225	0 Inches (0 mm)			

Table 22.2-4. Through-Feed Lugs

Amperes	Information		
100	See Table 22.2-6		
225	See Table 22.2-6		
400	See Table 22.2-6		

Table 22.2-5. Sub-Feed Breakers (One Per Panel)

Ampere Rating	Breaker Type	Interrupting Rating (kA Symmetrical)		
		240 V	480Y/277 V	
150	FDB	18	14	
225	FD	65	35	
225	HFD	100	65	
225	FDC	200	100	
225	ED	65	_	
225	EDH	100	.—	
225	EDC	200	-	
250	JD	65	35	
250	HJD	100	65	
250	JDC	200	100	
400	KD	65	35	
400	HKD	100	65	
400	KDC	200	100	

Shunt Trips

Shunt trips are available on breakers. GHB breakers with shunt trips require 3-pole frame.

Ground Bar

Standard bolted in box. Aluminum is standard. Copper is available as an option.

Enclosures

Types 1, 12, 3R, 4/4X.

TVSS

Integrated onto panelboard chassis. For complete product description and available ratings, refer to **Section 36**.

Box Sizing and Selection

Box size for all Type 1 panelboards are available from **Table 22.2-6**.

Instructions

- Using description on the required panelboard, select the rating and type of mains required.
- Count total number of branch circuit poles (including spaces) required in the panelboard. Do not count main breaker poles. Convert 2- or 3-pole branch breakers to single-poles. i.e., 3-pole breaker, count as three poles.

Note: For horizontal mounted mains (GHB Type), use main lug table, include space in branch section for mains.

 Using correct table, type of mains and ampere rating per Step 1, find total number of poles.

Note: Where total number of poles (Step 2) fall between number in table, use the next higher number.

4. Read box size across columns to the right.

Top and Bottom Gutters (minimum)

5-1/2 inches (139.7 mm).

Sida Guttare

20-inch (508.0 mm) wide box: 5-1/2 inches (139.7 mm).

Table 22.2-6. Type 1 Panelboards — Dimensions in Inches (mm)

Ampere	Main Breaker Type Mounting Position		Maximum	Box Dimensions ®		
Rating of Mains			Number of Branch Circuits Including Provisions	Height	Width	Depth
100 A Panelboards				N. Committee		
100 A ^③ Main Lugs or Main Breaker	EHD, FDB, FD, HFD, FDC Vertical		18 30 42 48	36 (914.4) 48 (1219.2) 48 (1219.2) 60 (1524.0)		5.75 (146.1
100 A ^③ Main Lugs or Main Breaker with 100 A Through-Feed Lugs or Sub-Feed Breaker	EHD, FDB, FD, HFD, FDC Vertical		18 30 42 48	48 (1219.2) 48 (1219.2) 60 (1524.0) 60 (1524.0)	20 (508.0)	5.75 (146.1 5.75 (146.1 5.75 (146.1 5.75 (146.1
225 A Panelboards				10	10 0	
225 A ⊕ Main Lugs or Main Breaker	ED, EDH, EDC, FD, HFD, FDC Vertical		18 30 42 48	36 (914.4) 48 (1219.2) 48 (1219.2) 60 (1524.0)	20 (508.0)	5.75 (146.1 5.75 (146.1
225 A ⁽³⁾ Main Lugs or Main Breaker with 225 A or 100 A Through-Feed Lugs or Sub-Feed Breaker	EHD, FDB, FD, HFD, FDC, ED, EDH, EDC Vertical		18 30 42 48	48 (1219.2) 48 (1219.2) 60 (1524.0) 60 (1524.0)	20 (508.0) 20 (508.0)	5.75 (146.1 5.75 (146.1 5.75 (146.1 5.75 (146.1
400 A Panelboards			199		· ·	
400 A Main Lugs or Main Breaker	DK, KD, HKD, KDC Vertical		18 30 42 48	60 (1524.0) 60 (1524.0) 72 (1828.8) 72 (1828.8)	20 (508.0)	5.75 (146.1 5.75 (146.1 5.75 (146.1 5.75 (146.1
400 A Main Lugs or Main Breaker with 225 A or	DK, KD, HKD, KDC Vertical	Main	30 72 (1828.8 42 72 (1828.8 48 90 (2286.6	60 (1524.0) 72 (1828.8) 72 (1828.8)	20 (508.0) 20 (508.0)	5.75 (146.1 5.75 (146.1 5.75 (146.1
100 A Through-Feed Lugs or Sub-Feed Breaker	EHD, FDB, FD, HFD, FDC, ED, EDH, EDC Vertical	Sub- Feed Breaker		90 (2286.0)	20 (508.0)	5.75 (146.1

- ① Smaller panelboard box sizes are available if required. Contact Eaton for application information.
- Add 8 inches (203.2 mm) for TVSS
- ⑤ For horizontal mounted mains (GHB Type), use main lug table, include space in branch section for mains.
- ① JD, HJD, JDC is same space requirement as 400 ampere DK, HKD, KDC.

For more information visit: www.EatonElectrical.com

CA08104001E

June 2006

Sheet 0829

Cutler-Hammer

Panelboards Pow-R-Line 4

22.4-1

General Description — Pow-R-Line 4

Pow-R-Line 4

PRL4B Circuit Breaker Panelhoard

PRL4F Fusible Panelboard

General Description

Panelboard Ratings

Voltage

- 240 V, 480 V or 600 Vac maximum.
- 250 Vdc maximum.

Main Lugs:

■ 250 – 1200 amperes.

Main Breakers:

■ 250 - 1200 amperes.

Main Switches:

■ 200 – 1200 amperes.

Branches (Bolt-on):

- Breakers 15 1200 amperes.
- Fusible switches
 30 1200 amperes.

Short Circuit Current Ratings (Symmetrical)

- 240 Vac: 10 200 kA fully rated.
- 240 Vac: 22 200 kA series rated.
 480 Vac: 14 200 kA fully rated.
- 480 Vac: 22 150 kA series rated.
- 250 Vdc: 10 22 kA fully rated.

Service

- 3-phase, 4-wire 208Y/120 V, 240/120 V Delta and 480Y/277 V.
- Single-phase, 3-wire 120/240 V.
- Single-phase, 2-wire 120 V.
- 3-phase, 3-wire 120, 240, 480 and 600 V.
- 2-wire 125 Vdc.
- 2-wire 250 Vdc.

Suitable for service entrance applications when specified.

Bussina

250 – 1200 amperes tin-plated aluminum is standard, copper is available as an option. Density rated bus is also available as an option.

Main Lugs Only

The short circuit rating of the MLO assembled panelboard will be fully rated based upon the lowest rated branch device or may be series rated with an approved upstream device.

Main lugs only ampere ratings: 250, 400, 600, 800 and 1200.

Main Circuit Breakers

The short circuit rating shown is that of the main breaker only. The short circuit rating of the assembled panel-board is the rating of the lowest fully rated main or branch device, or the rating of an approved series rated combination.

22

Table 22.4-1. Main Circuit Breakers — Type PRL4B

Breaker Frame	Breaker	Interrupting Rating (kA Symmetrical)				
Amperes	Туре	240 V	480 V	600 V	250 V dc	
250 250 250 250 250	JD HJD JDC LCL	65 100 200 200	35 65 100 200	18 25 35 —	10 22 22 22	
400 400 400 400 400 400 400 400 400	DK KD Ø CKD Ø Ø HKD Ø CHKD Ø Ø KDC Ø LCL Ø LA-P	65 65 65 100 100 200 200 200 200	35 35 65 65 100 200 200	25 25 25 35 35 65 —	10 10 10 22 22 22 22 —	
600 600 600 600 600 600 600 600	LGE LGH LD® CLD®® HLD® CHLD®® LDC® CLDC®	65 100 65 65 100 100 200 200	35 65 35 35 65 65 100 100	18 35 25 25 35 35 35 50	22 22 22 22 25 25 25 25	
800 800 800 800 800 800 800 800 800 800	MDL 0 CMDL 00 HMDL 00 CHMDL 00 ND 0 ND 0 CND 00 HND 0 CHND 00 CHND 00 NDC 0 CNDC 00 NB-P	65 65 100 100 65 65 100 100 200 200 200	50 50 65 65 50 50 65 65 100 100 200	25 25 35 35 25 25 25 35 35 65 65 65	22 22 25 25 26 — — — — —	
1200 1200 1200 1200 1200 1200 1200	ND ® CND ® HND ® CHND ©® NDC © CNDC ®	65 65 100 100 200 200	50 50 65 65 100 100	25 25 35 35 65 65		

- ① Available with integral ground fault protection.
- @ 100% rated circuit breaker.
- 3 100,000 AIC based on NEMA test procedure.

Main Fusible Switches

The short circuit rating shown is that of the main switch only. The short circuit rating of the assembled panel-boards is the rating of the lowest fully rated main or branch device or the rating of an approved series rated combination. (Fuses are not included.)

400 and 600 ampere switches with shunt trip will be rated 100 kA.

Note: Circuit breaker panelboards are designated PRL4B. Fusible Switch panelboards are designated PRL4F.

Table 22.4-2. Main Fusible Switches
Switch Fuse Interrupting Rating

Rating	Class	(kA Symmetrical)			
Amperes		240 V	600 V	250 Vdc	
Switches Ra	ted 240 V	ac, 250 Ve	lc		
200	R,T	200		10	
400	R,T	200	-	10	
600	R,T	200	_	_	
800	L	200	_	1000	
1200	L	200	-	_	
Switches Ra	ted 600 V	ac			
200	R,J,T	200	200	_	
400	R, J, T	200	200		

CA08104001E

For more information visit: www.EatonElectrical.com

FATON

Sheet 0863

Cutler-Hammer

Lighting Control System Pow-R-Command Pow-R-Command 1000

23.2-1

General Description

Pow-R-Command 1000

Pow-R-Command 1000 Panel

General Description

Eaton's Cutler-Hammer Pow-R-Command 1000 is a microprocessorbased programmable lighting control system. The PRC1000 can be used as a stand-alone panelboard or networked as a system.

Components

- Intelligent power switching equipment.
- LCD programming display and keypad.
- Application Specific Controllers (ASCs)
- Software and support.
- Integration components.

Intelligent Power Switching Equipment

Pow-R-Command 1000 Panelboards

Pow-R-Command 1000 Panelboards are offered from 100 through 225 amperes in main lug and main breaker configurations. Available voltages are 120/240, 208Y/120 and 480Y/277, single-phase and 3-phase. The panelboard utilizes both branch mounted standard breakers through 100 amperes, and controllable thermal-magnetic breakers which are controlled by the Pow-R-Command 1000 System Controller. The Pow-R-Command 1000 controllers provide the ability to directly operate up to eight breaker control buses. Such a capability allows a single controller to directly operate up to 168 GHQRSP and BABRSP controllable circuit breakers, with individual control and status feedback of each controllable breaker.

The System Controller also includes load override, holiday scheduling, one-shot or event schedules, off warning to tenants by blinking lights, memory loss protection, power failure/brownout protection, hardware diagnostics, a real-time clock and 16 dry contact switch inputs.

Equipment within the Pow-R-Command 1000 System may be networked. Up to 120 panelboards may be networked over a shielded twisted pair network cable without the need for a personal computer in the system.

The Pow-R-Command 1000 Panelboard is listed UL® 67 for panelboards and UL 916 for energy management equipment. 23

23.2-2 Lighting Control System Pow-R-Command Pow-R-Command 1000

Operational Description

Pow-R-Command 1000

PRC1000 LCD Display

System Description

23

The PRC1000 system contains networkable intelligence and provides automated switching of branch circuit breakers.

Distributed Intelligence

The system is distributed intelligent and operates as a stand-alone device that can control its own circuits. A personal computer is not required for the system to operate.

Main Network

The Pow-R-Command System is capable of globally communicating over the main RS-485 network with up to 120 controllers over an end-to-end distance of 4,000 feet (1,219 m) using a shielded twisted pair network cable. It is also possible to place all controllers or clusters of controllers onto the facility's Ethernet network.

LCD Display and Keypad

The PRC1000 LCD display and keypad provides local programming, override and diagnostic functions.

Memory Loss Protection

Time schedules, time-of-day clock, day/date, and system configuration parameters are protected from memory loss if there is a power failure. The memory loss protection is rated for 10 years.

Power Failure/Brownout Recovery

When system input power drops below normal, the system will not lose its programmed information. Upon return of normal power, breaker positions scheduled during the power failure period are immediately updated. No operator interaction is required.

Astronomical Real-Time Clock

Time-of-day, day/date, automatic leap year and daylight savings time adjustments are provided as standard.

Control Software

It is possible to program the panelboard directly through its local RS-485 maintenance port with a hand-held programmer or with the lighting management software over a shielded twisted pair cable by way of a central operator's station.

Time Scheduling

Pow-R-Command 1000 supports 75 schedules as local control functions. Any of the 75 local time schedules in a controller can be designated as a back-up schedule to execute only if the master schedules fail or cease execution.

Holiday Scheduling

Pow-R-Command 1000 supports 16 system holidays through the Network Access Device and, additionally, each controller can execute 30 local holiday definitions.

Input to Output Switch Matrix

The input to output switch matrix feature allows any breaker connected to any panel to be controlled by any switch or any group of switches connected to any panel on the same network.

Messages/Alarms

The system will maintain an alarm log. The log will record where the alarm occurred, alarm reason, date and time of the alarm. The log is maintained in non-volatile memory. The alarm log can store up to 300 alarms.

Daylighting Optimization

Daylighting optimization is available using a combination of inputs on the PRC1000 controller or a Switch Override Controller and dimming cable.

F_**T**•**N** | Cutler-Hammer

June 2006 Sheet 0864

Application Specific Controllers

Optional Application Specific Controllers expand the PRC1000 System through the network to customize the system to meet the needs of the tenant.

Switch Override Controller (SOC)

Switch Override Controller (SOC)

- Provides the ability to connect and monitor up to 48 additional 2-wire dry contact closures from wall switches, occupancy sensors, photocells, building automation system relay contacts or any remotely mounted device with a dry contact.
- Input connections to the controller are self-powered.
- It is possible to program any input to the switch override controller to control any breaker or group of breakers in the system.
- Inputs are capable of being individually time-schedule enabled for different days of the week.

Telephone Override Controller (TOC)

- Provides a voice prompted method for ON/OFF override control of lighting. It is possible to override an individual breaker or group of breakers ON or OFF during scheduled or nonscheduled hours using any touch-tone analog telephone.
- The Telephone Override Controller allows voice prompted control of lighting circuits for up to 1,000 individual users. It is possible to program any of the 1,000 users to control any breaker or group of breakers in the panelboard or system.

For more information visit: www.EatonElectrical.com

Cutler-Hammer

Lighting Control System Pow-R-Command Pow-R-Command 1000

23.2-3

23

June 2006 Sheet 0865

Technical Data

Technical Data

Panelboard Ratings

- Voltage:
- □ 240 Vac
- □ 480Y/277 Vac
- Main lugs:
- □ 100 through 225 amperes
- Main breakers:
- □ 100 through 225 amperes
- Branches:
- □ 15 through 100 amperes □ Controllable from 15 through

Interrupting Capacity (Symmetrical)

- 240 Vac: 65 kA maximum fully rated.
- 240 Vac: 100 kA maximum series rated.
- 480Y/277 Vac

Service

- 3-phase, 4-wire 208Y/120 V, 480Y/277 Vac and 240/120 V Delta.
- Single-phase, 3-wire, 120/240 V.

For available mains, refer to Table 23.2-1.

Branch Circuits

For available branch circuit devices, refer to Table 23.2-2.

Main Lugs Only

The short circuit rating of the MLO assembled panelboard will be fully rated based upon the lowest rated branch device or may be series rated with an approved upstream device.

■ Main lugs only ampere ratings: 100 and 225.

Main Circuit Breakers

The short circuit rating shown is that of the main breaker only. The short circuit rating of the assembled panelboard is the rating of the lowest fully rated main or branch device or the rating of an approved series rating combination.

Table 23.2-1. Main Circuit Breakers

Breaker Type	Type Ampere (kA Symmetrical)		
50.00	Rating	240 V	480Y/277 V
EHD	100	18	14
FDB	150	18	14
FD	225	65	35
HFD	225	100	65
FDC	225	200	100
ED	225	65	
EDH	225	100	—
EDC	225	200	
JD	250	65	35
HJD	250	100	65
JDC	250	200	100

Branch Circuit Breakers

The type GHQRSP and BABRSP are the controllable circuit breakers. Controllable breakers are available in 1- and 2-pole styles, from 15 through 30 amperes. Non-controlled circuit breakers can be located within the panelboard chassis

Table 23.2-2. Branch Circuit Breakers

Breaker	Ampere	Number	Interrup	ting Rating (k	A Symme	etrical)	
Туре	Rating	of Poles	120 V	120/240 V	240 V	277 V	480 V
BAB	15 – 70	1	10	_	_	_	-
BAB	15 - 100	2		10		r	r—-8
BAB	15 – 100	2, 3		-	10	-	
BAB-D ①	15-60	1. 2	10	10	:=:	-	::
BAB-C ②	15 - 30	1, 2	10	10	_	-	2 <u></u> 2
BABRSP ®	15 - 30	1, 2	10	10	-	-	-
GHQRSP®	15 – 20	1, 2	1-1	-	65	14	14
QBGF ⊕, QBGFEP ⊚	15 - 50 ®	1, 2	10	10		.—8	1.—1

- ① HID (High Intensity Discharge) rated breaker.
- ② Switching neutral breaker. 1-pole device requires 2-pole space; 2-pole device requires 3-pole space.
- © Controllable breaker.
- GFCI for 5 mA personnel protection.
 GFP for 30 mA equipment protection
- © 50 ampere devices are available as 2-pole only.

Eaton has tested the GHQRSP and BABRSP controllable circuit breakers for Series Rated Combinations up to 200 kAIC with breakers or fuses. For a complete listing of available series ratings, see Section 22 (Panelboards) Series Ratings Tables 22.0-6 through 22.0-16.

CA08104001E

For more information visit: www.EatonElectrical.com

23.2-4 Lighting Control System Pow-R-Command Pow-R-Command 1000

10 CL + CL

EAT-N Cutler-Hammer

June 2006 Sheet 0866

Layout

23

skt	ckt 2 4 4 6 8 8 100 112 114 116 118 200 222 244 228 330 32 34 34 34 40 42	14 in 18 Ckt. Chassis Includes PRC1000 Controller 20 in 30 Ckt. Chassis Includes PRC1000 Controller 26 in 42 Ckt. Chassis Includes PRC1000 Controller Note: PRC1000 Controller Note: PRC1000 Chassis is located at the Top of the panel-board immediately above the breakers.
Main Lug Section	on	2 in. — 100 Amp MLO 4 in. — 225 Amp MLO
Vertically Moun	ted	8 in. — 100 Ampere Frame EHD, EDB, EDS, ED, EDH, FD, HFD
		9 in. — 225 Ampere Frame EDB, EDS, ED, EDH, FD, HFD, FDC

Figure 23.2-1. Pow-R-Command PRC1000 Layout

PRC1000 Panel Layout Instructions

- Select PRC1000 Panelboard Chassis from Figure 23.2-1.
 - a. Determine required mains (lugs or breaker)
 - b. Select appropriate Main Lug
 - c. Select appropriate Main Device
 - d. Select appropriate branch breakers
- Layout panel as shown in Figure 23.2-1. Total "in." determine box height shown in Table 23.2-3. (When total "in." units exceeds the number shown, use next size box size.

Layout Example

- 1. Panel Description:
 - a. PRC1000, 3-phase 4-wire, 208Y/ 120 Vac, interrupting rating of 10,000 AIC symmetrical: 225 ampere main lugs only at bottom, surface mounted and the following branch breakers
 - b. 36 20 ampere, 1-pole BABRSP
 - c. 6 20 ampere, 1-pole BABRSP spaces
- 2. Layout information from Figure 23.2-1.
 - a. PRC1000 with 42-circuit Interior 26 in.
 - b. 225 ampere Main Lugs Section 4 in.
 - c. Total Panelboard Height 30 in.
- 3. From Table 23.2-3:
 - Panel Height: 30 in.20 in. wide x 5.75 in. deep
 - Box Height: 48 in.
 - Box Catalog Number: YS2048 or EZB2048R
 - Trim Catalog Number: LT2048S or EZT2048S

Table 23.2-3. Box Selection — Dimensions in Inches (mm)

Maximum Box Height,		Catalog Number					
Panel Height	Inches	YS Box	LT Trim	EZ Box	EZ Trim		
0-Inch Wide x 5.	75-Inch Deep Boxe	s					
0 - 22.00 23.00 - 28.00 29.00 - 34.00	36.00 42.00 48.00	YS2036 YS2042 YS2048	LT2036S or F LT2042S or F LT2048S or F	EZB2036R EZB2042R EZB2048R	EZT2036S or F EZT2042S or F EZT2048S or F		
35.00 - 46.00 47.00 - 58.00	60.00 72.00	YS2060 YS2072	LT2060S or F LT2072S or F	EZB2060R EZB2072R	EZT2060S or F EZT2072S or F		

Cabinets

Trims are code gauge steel, ANSI 61 light gray painted finish. Boxes are code gauge galvanized steel without knockout. Standard size is 20 in. wide x 5.75 in. deep.

Top and Bottom Gutters

6.38 in.

Minimum Side Gutters

4 in. (minimum) on 20 in. wide box size.

For more information visit: www.EatonElectrical.com

Uninterruptible Power Supplies — Powerware

FAT-N Cutler-Hammer

June 2006

Powerware 9390

3-Phase Units

41.3-16

Powerware 9390 Uninterruptible Power System

Powerware 9390

Description

The Powerware 9390 Uninterruptible Power System (UPS) is a double-conversion UPS that resolves all utility power problems and supplies clean, continuous, uninterruptible power to connected equipment. Whether you're selecting a UPS for a branch office, manufacturing floor, medical facility, or a large data center, there's a Powerware 9390 model that delivers just the right combination of performance and price for your needs.

Features and Benefits

- Provides unmatched power performance for efficiency, input current harmonic distortion (THD), and power factor.
- Scalable for capacity and redundancy to meet present and future power needs.
- Provides peace-of-mind that your batteries will be ready when you need them with innovative three-stage charging, battery health-checks, optional temperature-compensated charging, and remote monitoring.
- Lowers installation time and costs with small footprint and the flexibility to install against walls, using topor bottom-entry cabling.
- Provides a one-year, limited factory warranty* on parts and labor, Start-up service, one year of remote monitoring, on-site preventive maintenance, and optional service plans.

Advanced Design Delivers Unequaled Power Performance

The innovative design of the Powerware 9390 delivers the industry's best performance combination of efficiency, input current distortion and power factor.

The Powerware 9390 operates at a high efficiency of up to 94 percent, reducing utility costs and extending battery run times. Higher system efficiency produces cooler operating conditions, which reduces facility air conditioning cost, extends the life of UPS components, and increases overall reliability, availability and performance.

A new input circuit design keeps input current THD low and input power factor near unity without compromising overall efficiency. As a result, the Powerware 9390 allows maximum transfer of power between power source and protected load and is exceptionally compatible with multiple power sources, especially auxiliary generators.

On the output side, the ultra high speed switching Pulse Width Modulation (PWM) inverter enables the Powerware 9390 to provide its full rated power capability to the load whether the load power factor is 0.9 lagging, unity or 0.9 leading.

Double-Conversion Design Offers the Highest Protection Possible

Unlike some other commercially available UPS technologies, the double-conversion design completely isolates output power from all input power anomalies and delivers 100-percent conditioned, perfect sine-wave output — regulating both voltage and frequency.

Powerware 9390 View Panel

Even when presented with the most severe power problems, power output remains stable. Output voltage THD is held within two percent of nominal specification for linear loads, within five percent for non-linear loads — making the Powerware 3390 ideal for supporting equipment that is sensitive to a distorted voltage input as a result of harmonic loads. In the event of a utility power failure, there is no delay transferring to backup power.

UPS Control Innovations Optimize Battery Performance and Service Life

Eaton's ABM (Advanced Battery Management) technology uses a unique three-stage charging technique that significantly extends battery service life and optimizes recharge time, compared to traditional trickle charging. An integrated battery management system tests and monitors battery health and remaining lifetime, and provides advance notification to guide preventive maintenance. The temperature-compensated charger monitors temperature changes and adjusts the charge rate accordingly to properly charge the battery and greatly extend battery life.

A variable battery bus accommodates 384 V to 480 V configurations, so the battery capacity can be matched to your exact run time requirements — either a specific run time, an extension to existing battery run time, or legacy battery installations.

With remote monitoring of the UPS and battery system, Eaton is there with you — able to respond to alarms and real-time battery data to avert potential battery problems.

Scalable Architecture Meets Your Current and Future Load Requirements

The Powerware 9390 UPS supports loads from 40 kVA to 160 kVA to deliver power protection for small branch offices to large corporate data centers and communication networks.

Up to four equivalent UPS modules can be paralleled for additional capacity or redundancy, without having to utilize a central paralleling cabinet. Up to eight UPS modules can be paralleled by utilizing a module tie cabinet. In all paralleling configurations, each UPS module operates independently yet is completely synchronized with the others. Parallel UPS modules can provide N+1, N+2, or greater redundancy.

Flexible Installation Options Expedite Deployment and Save Valuable Space

The Powerware 9390 UPS offers the smallest footprint of any UPS in its class — 35 to 50 percent smaller than competitive units. Cabling can enter the UPS from either the top or bottom of the cabinet to provide easier and flexible installation. The Powerware 9390 provides front panel access for all services and operation, increasing serviceability and reducing Mean Time to Repair (MTTR). And since the compact Powerware 9390 cabinet can be installed against back and side walls, you have more location options, installation is fast and easy, deployment cost is lower, and vou save valuable data center space for future expansion.

For more information visit: www.EatonElectrical.com

CA08104001E

41

Cutler-Hammer June 2006 Sheet 1739

Uninterruptible Power Supplies — Powerware 3-Phase Units

41.3-17

Powerware 9390

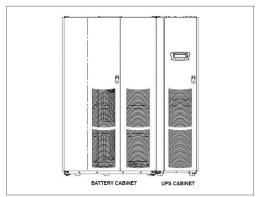


Figure 41.3-13. Powerware 9390 40/50/60/80 kVA UPS with Battery

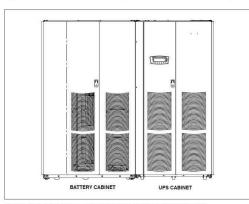


Figure 41.3-14. Powerware 9390 40/50/60/80 kVA UPS with Battery Cabinet

Voltage		Weight — k	g (lb.)	
Input	Output	Shipping	Installed	Point Loading
40/40			-	
208/220 480	208/220 480	263 (580) 231 (508)	241 (530) 208 (458)	4 at 60.3 (133) 4 at 52.2 (115)
80/40		- 4		
208/220 480	208/220 480	313 (690) 271 (618)	290 (640) 258 (568)	4 at 72.5 (160) 4 at 64.5 (142)
80/50		-		
208/220 480	208/220 480	313 (690) 271 (618)	290 (640) 258 (568)	4 at 72.5 (160) 4 at 64.5 (142)
80/60		•		
208/220 480	208/220 480	313 (690) 271 (618)	290 (640) 258 (568)	4 at 72.5 (160) 4 at 64.5 (142)
80/80				-
208/220 480	208/220 480	313 (690) 271 (618)	290 (640) 258 (568)	4 at 72.5 (160) 4 at 64.5 (142)

Table 41.3-17. Powerware 9390 (100 - 160 kVA) UPS Cabinet Weights

Voltage		Weight- k	g (lb.)	
Input	Output	Shipping	Installed	Point Loading
120/100			0	
208/220 480	208/220 480	531 (1170) 467 (1030)	504 (1110) 440 (970)	6 at 84 (185) 6 at 73 (162)
120/120				
208/220 480	208/220 480	531 (1170) 467 (1030)	504 (1110) 440 (970)	6 at 84 (185) 6 at 73 (162)
160/100				
208/220 480	208/220 480	581 (1280) 517 (1140)	553 (1220) 490 (1080)	6 at 92 (204) 6 at 82 (180)
160/120		1	8	15
208/220 480	208/220 480	581 (1280) 517 (1140)	553 (1220) 490 (1080)	6 at 92 (204) 6 at 82 (180)
160/160				
208/220 480	208/220 480	581 (1280) 517 (1140)	553 (1220) 490 (1080)	6 at 92 (204) 6 at 82 (180)

Table 41.3-18. Powerware 9390 Air Conditioning or Ventilation Requirements During Full Load Operation

Ratings	Voltage		Heat Rejection
	Input	Output	BTU/hr ¥ 1000/hr (kg-cal/hr)
10 – 80 kVA	① ·		
40 kVA	208/220	208/220	11.8 (2.98)
	480	480	10.9 (2.76)
50 kVA	208/220	208/220	14.8 (3.73)
	480	480	13.7 (3.45)
60 kVA	208/220	208/220	17.7 (4.47)
	480	480	16.4 (4.14)
80 kVA	208/220	208/220	23.6 (5.96)
	480	480	21.9 (5.52)

100 kVA	208/220 480	208/220 480	29.6 (7.45) 27.4 (6.90)	
120 kVA	208/220 480	208/220 480	35.5 (8.94) 32.8 (8.28)	
160 kVA	208/220 480	208/220 480	47.3 (11.9) 43.8 (11.0)	

⁴⁸⁰

CA08104001E

For more information visit: www.EatonElectrical.com

41

Ventilation required for cooling air exhaust: approximately 4.72 liter/sec (1000 cfm).

Ventilation required for cooling air exhaust: approximately 9.44 liter/sec (2000 cfm).

41.3-18 Uninterruptible Power Supplies — Powerware 3-Phase Units

FAT-N Cutler-Hammer

June 2006 Sheet 1740

Powerware 9390

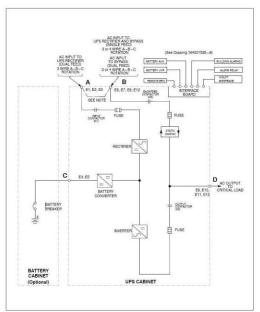


Figure 41.3-15. 9390 UPS with Battery — Single or Dual Feed

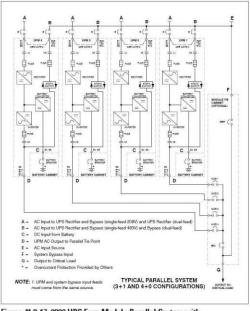


Figure 41.3-17. 9390 UPS Four-Module Parallel System with Remote Tie Cabinet

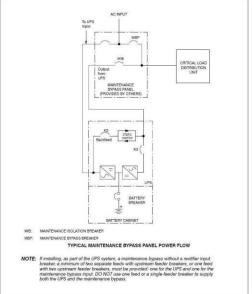


Figure 41.3-16. 9390 UPS with External Maintenance Bypass

For more information visit: www.EatonElectrical.com

Rating 50/60 Hz

BIMception - IPD/BIM Thesis

Cutler-Hammer

Uninterruptible Power Supplies — Powerware 3-Phase Units

41.3-19

June 2006 Sheet 1741

Powerware 9390

Read and understand the following notes while planning and performing the installation:

- Refer to national and local electrical codes for acceptable external wiring practices.
- Material and labor for external wiring requirements are to be provided by designated personnel.
- For external wiring, use 90° C copper wire. See the appropriate information in the tables. Wire sizes are based on using the specified breakers.
- Wire ampacities are chosen from Table 310–16 of the NEC. Wire is 90°C specification.
- 5. If installing, as part of the UPS system, a maintenance bypass without a rectifier input breaker, a minimum of two separate feeds with upstream feeder breakers, or one feed with two upstream feeder breakers, must be provided: one for the UPS and one for the maintenance bypass input. DO NOT use one feed or a single feeder breaker to supply both the UPS and the maintenance bypass.
- The bypass feed into this equipment uses three or four wires. The rectifier feed into this equipment uses three wires. The phases must be symmetrical about ground (from a Wye source) for proper equipment operation.
- 7. If the load requires a neutral, a bypass source neutral must be provided. If the load does not require a neutral and there is no neutral conductor connected at the bypass input, a neutral to ground bonding jumper must be installed. DO NOT install both a source neutral and a bonding jumper. See tables for neutral bonding jumper wire sizes. Bonding jumper must be copper wire.
- The UPS cabinet is shipped with a debris shield covering the ventilation grill on top of the unit. Do not remove the debris shield until installation is complete. However, remove the shield before operating the UPS. Once the debris shield is removed, do not place objects on the ventilation grill.
- 9. Refer to the UPS manual for installation instructions.
- Terminals are UL and CSA rated at 90°C. Refer to the tables for power cable terminations and conduit requirements.

Note: Callout letters A, B, C and D map to (9390-7).

Table 41.3-19. Input/Output Ratings and External Wiring Requirements for the Powerware 9390-40/40 and 9390-80/40

Units

Description	Units	Hating 50/60 Hz		
Basic Unit Rating at 0.9 lagging pF load	kVA kW	40 36	40 36	
Input and Bypass Input Output	Volts Volts	208/220 208/220	480 480	
A — AC Input to UPS Rectifier (0.98 mi	in. pF)			
Full Load Current plus Battery Recharge Current (3) Phases, (1) Ground	Amps	125	55	
Minimum Conductor Size Number per Phase	AWG or kcmil (each)	2/0 (1)	4 (1)	
B — AC Input to UPS Bypass				
Full Load Current — (3) Phases, (1) Neutral-if required, (1) Ground	Amps	111/105	48	
Minimum Conductor Size Number per Phase	AWG or kcmil (each)	2/0 (1)	4 (1)	
C — DC Input from Battery to UPS				
(1) Positive, (1) Negative	Vdc Amps at (2.0 V/cell)	384 - 480 101	432 – 480 101	
Minimum Conductor Size Number per Pole	AWG or kcmil (each)	1/0 (1)	1/0 (1)	
D — AC Output to Critical Load	70	(0)	20	
Full Load Current — (3) Phases, (1) Neutral-if required, (1) Ground	Amps	111/105	48	
Minimum Conductor Size Number per Phase	AWG or kcmil (each)	2/0 (1)	4 (1)	
Neutral Bonding Jumper			D.	
Minimum Conductor Size Number per Phase	AWG or kcmil (each)	4 (1)	6 (1)	

Table 41.3-20. Input/Output Ratings and External Wiring Requirements for the Powerware 9390-80/50

Description	Units	Rating 50/60 Hz		
Basic Unit Rating at 0.9 lagging pF load	kVA kW	50 45	50 45	
Input and Bypass Input Output	Volts Volts	208/220 208/220	480 480	
A — AC Input to UPS Rectifier (0.98 mi	in. pF)			
Full Load Current plus Battery Recharge Current (3) Phases, (1) Ground	Amps	155	67	
Minimum Conductor Size Number per Phase	AWG or kcmil (each)	4/0 (1)	2 (1)	
B — AC Input to UPS Bypass				
Full Load Current — (3) Phases, (1) Neutral-if required, (1) Ground	Amps	139/131	60	
Minimum Conductor Size Number per Phase	AWG or kemil (each)	4/0 (1)	2 (1)	
C — DC Input from Battery to UPS		0		
(1) Positive, (1) Negative	Vdc Amps at (2.0 V/cell)	384 - 480 126	432 - 480 126	
Minimum Conductor Size Number per Pole	AWG or kcmil (each)	1/0 (1)	1/0 (1)	
D — AC Output to Critical Load		0	Ni.	
Full Load Current — (3) Phases, (1) Neutral-if required, (1) Ground	Amps	139/131	60	
Minimum Conductor Size Number per Phase	AWG or kcmil (each)	4/0 (1)	2 (1)	
Neutral Bonding Jumper		,		
Minimum Conductor Size Number per Phase	AWG or kcmil (each)	2 (1)	6 (1)	

CA08104001E

For more information visit: www.EatonElectrical.com

FATON

Cutler-Hammer

June 2006 Sheet 1742

41.3-20 Uninterruptible Power Supplies — Powerware 3-Phase Units

Powerware 9390

Table 41.3-21.	Input/Output	Ratings and	External	Wiring	Requirements
for the Power	ware 9390-80	1/60			

Description	Units	Rating 50/60 Hz		
Basic Unit Rating at 0.9 lagging pF load	kVA kW	60 54	60 54	
Input and Bypass Input Output	Volts Volts	208/220 208/220	480 480	
A — AC Input to UPS Rectifier (0.98 mi	in. pF)			
Full Load Current plus Battery Recharge Current (3) Phases, (1) Ground	Amps	185	80	
Minimum Conductor Size Number per Phase	AWG or kcmil (each)	250 (1)	1 (1)	
B — AC Input to UPS Bypass				
Full Load Current — (3) Phases, (1) Neutral-if required, (1) Ground	Amps	167/158	72	
Minimum Conductor Size Number per Phase	AWG or kcmil (each)	250 (1)	1 (1)	
C — DC Input from Battery to UPS				
(1) Positive, (1) Negative	Vdc Amps at (2.0 V/cell)	384 - 480 151	432 - 480 151	
Minimum Conductor Size Number per Pole	AWG or kcmil (each)	2/0 (1)	2/0 (1)	
D — AC Output to Critical Load				
Full Load Current — (3) Phases, (1) Neutral-if required, (1) Ground	Amps	167/158	72	
Minimum Conductor Size Number per Phase	AWG or kcmil (each)	250 (1)	1 (1)	
Neutral Bonding Jumper	10			
Minimum Conductor Size Number per Phase	AWG or kcmil (each)	2 (1)	6 (1)	

Table 41.3-22. Input/Output Ratings and External Wiring Requirements for the Powerware 9390-80/80 $\,$

Description	Units	Rating 50	/60 Hz
Basic Unit Rating at 0.9 lagging pF load	kVA kW	80 72	80 72
Input and Bypass Input Output	Volts Volts	208/220 208/220	480 480
A — AC Input to UPS Rectifier (0.98 mi	n. pF)	*	
Full Load Current plus Battery Recharge Current (3) Phases, (1) Ground	Amps	240	105
Minimum Conductor Size Number per Phase	AWG or kcmil (each)	2/0 (1)	1/0 (1)
B — AC Input to UPS Bypass			
Full Load Current — (3) Phases, (1) Neutral-if required, (1) Ground	Amps	222/210	96
Minimum Conductor Size Number per Phase	AWG or kemil (each)	2/0 (2)	1/0 (1)
C — DC Input from Battery to UPS			
(1) Positive, (1) Negative	Vdc Amps at (2.0 V/cell)	384 - 480 203	432 - 480 203
Minimum Conductor Size Number per Pole	AWG or kcmil (each)	3/0 (2)	3/0 (1)
D — AC Output to Critical Load	**	4	
Full Load Current — (3) Phases, (1) Neutral-if required, (1) Ground	Amps	222/210	96
Minimum Conductor Size Number per Phase	AWG or kcmil (each)	2/0 (2)	1/0 (1)
Neutral Bonding Jumper			
Minimum Conductor Size Number per Phase	AWG or kcmil (each)	1/0 (1)	6 (1)

Table 41.3-23. Input/Output Ratings and External Wiring Requirements for the Powerware 9390-120/100 and 9390-160/100

Description	Units	Rating 50	/60 Hz
Basic Unit Rating at 0.9 lagging pF load	kVA kW	100 90	100 90
Input and Bypass Input Output	Volts Volts	208/220 208/220	480 480
A — AC Input to UPS Rectifier (0.98 mi	n. pF)		
Full Load Current plus Battery Recharge Current (3) Phases, (1) Ground	Amps	300	130
Minimum Conductor Size Number per Phase	AWG or kemil (each)	3/0 (2)	4/0 (1)
B — AC Input to UPS Bypass			
Full Load Current — (3) Phases, (1) Neutral-if required, (1) Ground	Amps	278/262	120
Minimum Conductor Size Number per Phase	AWG or kcmil (each)	3/0 (2)	4/0 (1)
C — DC Input from Battery to UPS			
(1) Positive, (1) Negative	Vdc Amps at (2.0 V/cell)	384 - 480 252	432 – 480 252
Minimum Conductor Size Number per Pole	AWG or kcmil (each)	2/0 (2)	2/0 (2)
D — AC Output to Critical Load			
Full Load Current — (3) Phases, (1) Neutral-if required, (1) Ground	Amps	278/262	120
Minimum Conductor Size Number per Phase	AWG or kcmil (each)	3/0 (2)	4/0 (1)
Neutral Bonding Jumper	TF.		9
Minimum Conductor Size Number per Phase	AWG or kcmil (each)	1/0 (1)	2 (1)

Table 41.3-24. Input/Output Ratings and External Wiring Requirements for the Powerware 9390-120/120 and 9390-160/120

Description	Units	Rating 50	/60 Hz
Basic Unit Rating at 0.9 lagging pF load	kVA kW	120 108	120 108
Input and Bypass Input Output	Volts Volts	208/220 208/220	480 480
A — AC Input to UPS Rectifier (0.98 mi	in. pF)		į.
Full Load Current plus Battery Recharge Current (3) Phases, (1) Ground	Amps	360	160
Minimum Conductor Size Number per Phase	AWG or kcmil (each)	4/0 (2)	4/0 (1)
B — AC Input to UPS Bypass			
Full Load Current — (3) Phases, (1) Neutral-if required, (1) Ground	Amps	333/315	120
Minimum Conductor Size Number per Phase	AWG or kcmil (each)	4/0 (2)	4/0 (1)
C — DC Input from Battery to UPS	10		
(1) Positive, (1) Negative	Vdc Amps at (2.0 V/cell)	384 - 480 302	432 – 480 302
Minimum Conductor Size Number per Pole	AWG or kcmil (each)	3/0 (2)	3/0 (2)
D — AC Output to Critical Load	9		6
Full Load Current — (3) Phases, (1) Neutral-if required, (1) Ground	Amps	333/315	120
Minimum Conductor Size Number per Phase	AWG or kemil (each)	4/0 (2)	4/0 (1)
Neutral Bonding Jumper			
Minimum Conductor Size Number per Phase	AWG or kcmil (each)	1/0 (1)	2 (1)

For more information visit: www.EatonElectrical.com

FATON

Cutler-Hammer

Uninterruptible Power Supplies — Powerware 3-Phase Units

41.3-21

June 2006 Sheet 1743

Powerware 9390

Table 41.3-25. Input/Output Ratings and External Wiring Requirements for the Powerware 9390-160/160

Description	Units	Rating 50,	/60 Hz
Basic Unit Rating at 0.9 lagging pF load	kVA kW	160 144	160 144
Input and Bypass Input Output	Volts Volts	208/220 208/220	480 480
A — AC Input to UPS Rectifier (0.98 mi	n. pF)		
Full Load Current plus Battery Recharge Current (3) Phases, (1) Ground	Amps	480	210
Minimum Conductor Size Number per Phase	AWG or kcmil (each)	400 (2)	1/0 (2)
B — AC Input to UPS Bypass			
Full Load Current — (3) Phases, (1) Neutral-if required, (1) Ground	Amps	444/420	192
Minimum Conductor Size Number per Phase	AWG or kcmil (each)	400 (2)	1/0 (2)
C — DC Input from Battery to UPS			
(1) Positive, (1) Negative	Vdc Amps at (2.0 V/cell)	384 - 480 403	432 - 480 403
Minimum Conductor Size Number per Pole	AWG or kcmil (each)	250 (2)	250 (2)
D — AC Output to Critical Load			
Full Load Current — (3) Phases, (1) Neutral-if required, (1) Ground	Amps	444/420	192
Minimum Conductor Size Number per Phase	AWG or kcmil (each)	400 (2)	1/0 (2)
Neutral Bonding Jumper			
Minimum Conductor Size Number per Phase	AWG or kcmil (each)	1/0 (2)	2 (2)

Table 41.3-26. UPS Cabinet Power Cable Terminations for the Powerware 9390-40/40, 9390-80/40, 9390-80/50, 9390-80/60, and 9390-80/80 (208 V/220 V Input and 208 V/220 V Output)

Terminal	Function	Size of Pressure Termination	Tightening Torque Nm (lb. in)	Screw Type
AC Input to	UPS Rectifi	er and Bypass (Sin	gle Input)	
E6	Phase A	2 - #6-250 kcmil	42.4 (375)	5/16 in. Hex
E7	Phase B	2 - #6-250 kcmil	42.4 (375)	5/16 in. Hex
E8	Phase C	2 - #6-250 kcmil	42.4 (375)	5/16 in. Hex
AC Input to	UPS Rectifi	er (Dual Input)		
E1	Phase A	2 - #6-250 kcmil	42.4 (375)	5/16 in. Hex
E2	Phase B	2 - #6-250 kcmil	42.4 (375)	5/16 in. Hex
E3	Phase C	2 - #6-250 kcmil	42.4 (375)	5/16 in. Hex
AC Input to	Bypass (Du	al Input)		
E6	Phase A	2 - #6-250 kcmil	42.4 (375)	5/16 in. Hex
E7	Phase B	2 - #6-250 kcmil	42.4 (375)	5/16 in. Hex
E8	Phase C	2 - #6-250 kcmil	42.4 (375)	5/16 in. Hex
Single-Fee	d Jumper fr	om Rectifier Input To	erminals to Bypass Inj	out Terminals
_	Phase A	N/A	22.6 (200)	M10 Hex Bolt
1 <u>1-12</u>	Phase B	N/A	22.6 (200)	M10 Hex Bolt
-	Phase C	N/A	22.6 (200)	M10 Hex Bolt
AC Output t	o Critical L	oad		
E9	Phase A	2 - #6-250 kcmil	42.4 (375)	5/16 in. Hex
E10	Phase B	2 - #6-250 kcmil	42.4 (375)	5/16 in. Hex
E11	Phase C	2 - #6-250 kcmil	42.4 (375)	5/16 in. Hex
DC Input fro	om Battery t	o UPS		
E4	Positive	1 - #6-350 kcmil	31.1 (275)	5/16 in. Hex
E5	Negative	1 - #6-350 kcmil	31.1 (275)	5/16 in. Hex
Input and O	utput Neutr	al		
E12	Neutral	8 - #6-250 kcmil	42.4 (375)	5/16 in. Hex
Customer 6	iround			
Ground	Ground	8 - #14-1/0	5.6 (50)	Slotted

41

CA08104001E

For more information visit: www.EatonElectrical.com

41.3-22 Uninterruptible Power Supplies — Powerware 3-Phase Units

FACN

Cutler-Hammer

June 2006 Sheet 1744

Powerware 9390

Table 41.3-27. UPS Cabinet Power Cable Terminations for the Powerware 9390-120/100, 9390-120/120, 9390-160/100, 9390-160/101, 120 and 9390-160/160 (208 V/220 V Input and 208 V/220 V Output)

Terminal	Function	Size of Pressure Termination	Tightening Torque Nm (lb. in)	Screw Type
AC Input to	UPS Rectifi	er and Bypass (Sing	le Input)	
E1 E2 E3	Phase A Phase B Phase C	2 - 2/0-500 kcmil 2 - 2/0-500 kcmil 2 - 2/0-500 kcmil	31.1 (275) 31.1 (275) 31.1 (275)	4 mm Hex 4 mm Hex 4 mm Hex
1700	0.0000000000000000000000000000000000000	er (Dual Input)	2117 (272)	1111111111
E1 E2 E3	Phase A Phase B Phase C	2 - 2/0-500 kcmil 2 - 2/0-500 kcmil 2 - 2/0-500 kcmil	31.1 (275) 31.1 (275) 31.1 (275)	4 mm Hex 4 mm Hex 4 mm Hex
AC Input to	Bypass (Du	al Input)		
E6 E7 E8	Phase A Phase B Phase C	2 - #2-600 kcmil 2 - #2-600 kcmil 2 - #2-600 kcmil	56.5 (500) 56.5 (500) 56.5 (500)	1/2 in. Hex 1/2 in. Hex 1/2 in. Hex
		ed Wire Transfer fro Is to Bypass Input T		
Rectifier Bypass Rectifier	Phase A Phase A Phase B	N/A N/A N/A	12.5 (110) 12.5 (110) 12.5 (110)	M8 Hex Bo M8 Hex Bo M8 Hex Bo
Bypass Rectifier Bypass	Phase B Phase C Phase C	N/A N/A N/A	12.5 (110) 12.5 (110) 12.5 (110)	M8 Hex Bo M8 Hex Bo M8 Hex Bo
AC Output t	o Critical Lo	oad		
E9 E10 E11	Phase A Phase B Phase C	2 - 2/0-500 kcmil 2 - 2/0-500 kcmil 2 - 2/0-500 kcmil	31.1 (275) 31.1 (275) 31.1 (275)	4 mm Hex 4 mm Hex 4 mm Hex
DC Input fro	m Battery t	o UPS		
E4 E5	Positive Negative	2 - #2-600 kcmil 2 - #2-600 kcmil	56.5 (500) 56.5 (500)	1/2 in. Hex 1/2 in. Hex
Input and O	utput Neutr	al		
E 12	Neutral	8 - #2-600 kcmil	56.5 (500)	1/2 in. Hex
Customer G	round			
Ground	Ground	8 - # 14-1/0	5.6 (50)	Slotted

Table 41.3-28. UPS Cabinet Power Cable Terminations for the Powerware 9390-40/40, 9390-80/40, 9390-80/50, 9390-80/60, and 9390-80/80 (480 V Input and 480 V Output)

Terminal	Function	Size of Pressure Termination	Tightening Torque Nm (lb. in)	Screw Type
AC Input to	UPS Rectifi	er and Bypass (Sir	igle Input)	
E6	Phase A	1 - #14-2/0	13.5 (120)	3/16 in. Hex
E7	Phase B	1 - # 14-2/0	13.5 (120)	3/16 in. Hex
E8	Phase C	1 - #14-2/0	13.5 (120)	3/16 in. Hex
AC Input to	UPS Rectifi	ier (Dual Input)		
E1	Phase A	1 - #14-2/0	13.5 (120)	3/16 in. Hex
E2	Phase B	1 - #14-2/0	13.5 (120)	3/16 in. Hex
E3	Phase C	1 - #14-2/0	13.5 (120)	3/16 in. Hex
AC Input to	Bypass (Du	al Input)		
E6	Phase A	1 - #14-2/0	13.5 (120)	3/16 in. Hex
E7	Phase B	1 - #14-2/0	13.5 (120)	3/16 in. Hex
E8	Phase C	1 - #14-2/0	13.5 (120)	3/16 in. Hex
Rectifier In	put Termina	ed Wire Transfer f Is to Bypass Input	Terminals	
-	Phase A	N/A	5.6 (50)	1/4-20 Hex Nut
_	Phase B	N/A	5.6 (50)	1/4-20 Hex Nut
_	Phase C	N/A	5.6 (50)	1/4-20 Hex Nut
AC Output t	o Critical L	oad		
AC Output t	o Critical Lo	oad 1 - #14-2/0	13.5 (120)	3/16 in. Hex
COLUMN TO THE PROPERTY OF THE PARTY OF THE P		92.50	13.5 (120) 13.5 (120)	3/16 in. Hex 3/16 in. Hex
E9	Phase A	1 - #14-2/0		
E9 E10 E11	Phase A Phase B	1 - #14-2/0 1 - #14-2/0 1 - #14-2/0	13.5 (120)	3/16 in. Hex
E9 E10 E11	Phase A Phase B Phase C	1 - #14-2/0 1 - #14-2/0 1 - #14-2/0	13.5 (120)	3/16 in. Hex
E9 E10 E11 DC Input fro	Phase A Phase B Phase C om Battery t	1 - #14-2/0 1 - #14-2/0 1 - #14-2/0 o UPS	13.5 (120) 13.5 (120)	3/16 in. Hex 3/16 in. Hex
E9 E 10 E 11 DC Input fro E4 E5	Phase A Phase B Phase C om Battery t Positive	1 - #14-2/0 1 - #14-2/0 1 - #14-2/0 o UPS 1 - #6-350 kemil 1 - #6-350 kemil	13.5 (120) 13.5 (120) 31.1 (275)	3/16 in. Hex 3/16 in. Hex 5/16 in. Hex
E9 E 10 E 11 DC Input fro E4 E5	Phase A Phase B Phase C om Battery t Positive Negative	1 - #14-2/0 1 - #14-2/0 1 - #14-2/0 o UPS 1 - #6-350 kemil 1 - #6-350 kemil	13.5 (120) 13.5 (120) 31.1 (275)	3/16 in. Hex 3/16 in. Hex 5/16 in. Hex
E9 E10 E11 DC Input fro E4 E5 Input and O	Phase A Phase B Phase C DM Battery t Positive Negative utput Neutral	1 - #14-2/0 1 - #14-2/0 1 - #14-2/0 0 UPS 1 - #6-350 kcmil 1 - #6-350 kcmil	13.5 (120) 13.5 (120) 31.1 (275) 31.1 (275)	3/16 in. Hex 3/16 in. Hex 5/16 in. Hex 5/16 in. Hex

41

For more information visit: www.EatonElectrical.com

04/07/2011

FACON

Cutler-Hammer

Uninterruptible Power Supplies — Powerware 3-Phase Units

41.3-23

June 2006 Sheet 1745

Powerware 9390

Table 41.3-29. UPS Cabinet Power Cable Terminations for the Powerware 9390-120/100, 9390-120/120, 9390-160/100, 9390-160/120 and 9390-160/160 (480 V input and 480 V Output)

Terminal	Function	Size of Pressure Termination	Tightening Torque Nm (lb. in)	Screw Type
AC Input to	UPS Rectifi	er and Bypass (Sin	gle Input)	n
E6	Phase A	A 2 - #6-250 42.4 (375)		5/16 in. Hex
E7	Phase B	2 - #6-250	42.4 (375)	5/16 in. Hex
E8	Phase C	2 - #6-250	42.4 (375)	5/16 in. Hex
AC Input to	UPS Rectifi	er (Dual Input)		
E1	Phase A	2 - #6-250	42.4 (375)	5/16 in. Hex
E2	Phase B	2 - #6-250	42.4 (375)	5/16 in. Hex
E3	Phase C	2 - #6-250	42.4 (375)	5/16 in. Hex
AC Input to	Bypass (Du	al Input)	20	
E6	Phase A	2 - #6-250	42.4 (375)	5/16 in. Hex
E7	Phase B	2 - #6-250	42.4 (375)	5/16 in. Hex
E8	Phase C	2 - #6-250	42.4 (375)	5/16 in. Hex
	d to Jumper nput Termin	Bus from Rectifier als	Input Terminals	
Rectifier	Phase A	N/A	12.5 (110)	M8 Hex Bolt
Bypass	Phase A	N/A	22.6 (200)	M10 Hex Bolt
Rectifier	Phase B	N/A	12.5 (110)	M8 Hex Bolt
Bypass	Phase B	N/A	22.6 (200)	M10 Hex Bol
Rectifier	Phase C	N/A	12.5 (110)	M8 Hex Bolt
Bypass	Phase C	N/A	22.6 (200)	M10 Hex Bol
AC Output t	o Critical Lo	oad		
E9	Phase A	2 - #6-250	42.4 (375)	5/16 in. Hex
E 10	Phase B	2 - #6-250	42.4 (375)	5/16 in. Hex
E11	Phase C	2 - #6-250	42.4 (375)	5/16 in. Hex
DC Input fro	om Battery t	o UPS	0.	0.
E4	Positive	2 - #2-600 kcmil	56.5 (500)	1/2 in. Hex
E5	Negative	2 - #2-600 kcmil	56.5 (500)	1/2 in. Hex
Input and O	utput Neutr	al		
E12	Neutral	8 - #6-250 kcmil	42.4 (375)	1/2 in. Hex
Customer G	iround			
Ground	Ground	8 - #14-1/0	5.6 (50)	Slotted

41

Uninterruptible Power Supplies — Powerware 3-Phase Units

FAT-N Cutler-Hammer

June 2006 Sheet 1746

Powerware 9390

41.3-24

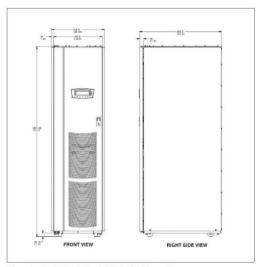


Figure 41.3-18. 9390 (40 to 80 kVA) UPS Dimensions

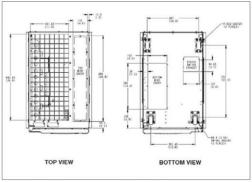


Figure 41.3-19. 9390 (40 to 80 kVA) UPS Dimensions

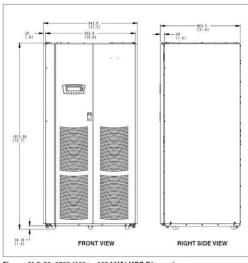


Figure 41.3-20. 9390 (100 to 160 kVA) UPS Dimensions

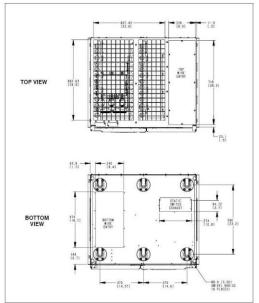


Figure 41.3-21. 9390 (100 to 160 kVA) UPS Dimensions

For more information visit: www.EatonElectrical.com

CA08104001E

/11

(5.5) (6.5) (6.5) (6.5) (6.5) (6.5) (6.5) (6.5)

Figure 41.3-22. 9390 (40 to 80 kVA) UPS Floor Mounting Dimensions

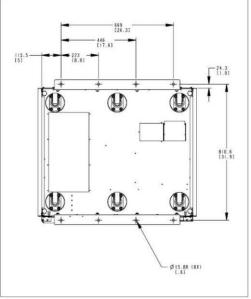


Figure 41.3-23. 9390 (100 to 160 kVA) UPS Floor Mounting Dimensions

41

36.1-18 Surge Protection (TVSS) & Power Conditioning Products Power Conditioning Products

E T • **N** Cutler-Hammer

June 2006 Sheet 1618

SRT

Sag Correction Using the Sag Ride Through

Sag Ride Through

The Cutler-Hammer Sag Ride Through (SRT) Power Conditioner prevents expensive, electrical downtime. It is a state-of-the-art solution to today's power conditioning challenges.

The Sag Ride Through (SRT) is a high performance, inverter-based voltage conditioning device developed to provide protection to sensitive loads against commonly occurring voltage sags.

The SRT monitors the incoming supply voltage and when it deviates from the nominal voltage level, the SRT achieves voltage conditioning by injecting the appropriate correction voltage in series with the power supply. The SRT provides an extremely fast reaction time and subcycle response to sag events that would otherwise cause loads to drop out.

The SRT is designed for low voltage systems (600 – 208, 3-phase) and is also offered in medium voltage applications from 25 kVA – 6 MVA. Installation is simple and the SRT provides customers with a new solution to improve productivity and reduce downtime for sag-related problems.

The SRT monitors the incoming supply voltage and when it deviates from the nominal voltage level, the SRT inserts an appropriate compensating voltage using the IGBT inverter and series injection transformer. Energy is sourced from the supply during this time. This regulates the load voltage to its nominal value, thus eliminating voltage disturbances from the utility supply affecting the load. See **Figure 36.1-17**.

Continuous SAG Regulation

The Sag Ride Through is an active voltage conditioner. This means it will constantly respond to voltage sags in the -10% range with a regulated output in the ±1% range. The SRT can be applied to the main service entrance, at branch locations or in front critical loads. The Cutler-Hammer SRT provides an outstanding return on investment. It delivers operation productivity

that is just not possible with traditional tap switching or ferroresonant technologies. The SRT consists of a voltage source inverter, bypass circuit and an injection transformer connected in series between the incoming utility supply and the load (see Figure 36.1-17). For the standard sag correcting SRT model, the injection transformer consists of a boost component.

Industries and Applications Affected by Sags

Key Industries

- Semi-conductor manufacturers.
- Communications.
- Steel mills.
- Petroleum and chemical processing.
- Health care.
- Paper mills.
- Automotives.
- Textile.
- Printing.Plastics.
- Other manufacturing.

Equipment or Processes

- Manufacturing process controllers.
- Variable speed drives.
- Robotics.
- Motor conductor.
- Telephone systems.
- HID lighting.
- HVAC controls.Medical equipment.
- Computers.

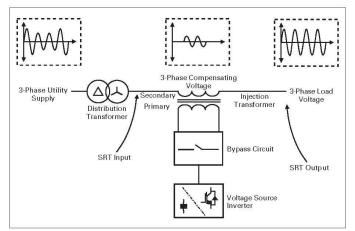


Figure 36.1-17. Block Diagram of the SRT Active Voltage Conditioner Note: Fan cooling if it is in normal operating mode.

36

For more information visit: www.EatonElectrical.com

		475	
100			
			100
	-	_	

Cutler-Hammer

Surge Protection (TVSS) & Power Conditioning Products Power Conditioning Products 36.1-19

June 2006 Sheet 1619

SRT

Features	Specifications
Load Capacity	
Capacity (kVA)	25 kVA - 6 MVA (as specified per model)
Displacement Power Factor of Connected Load	0 – 1, leading or lagging
Crest Factor for Rated kVA	1.63 at 100% of rated load for continuous operation (including up to 10% voltage correction)
Overload - 30 Seconds	150% with up to 10% of voltage correction
nput Supply	
Nominal Supply Voltage	208/480/600 V, 60 Hz 3-phase, 3-wire plus ground (higher system voltages supplied to
	requirement up to 36 kV)
Maximum Supply Voltage	110% of nominal supply voltage
Minimum 3-Phase Supply Voltage	
- Running	50% of nominal supply voltage
- Starting ①	75% of nominal supply voltage
Minimum Single-Phase-to-Ground Supply Voltage @	02 42 N
– Running	25% of nominal supply voltage
– Starting ①	63% of nominal supply voltage
Efficiency of System	98 – 99%
Output Supply	
Nominal Voltage (V)	208/480/600 V, 60 Hz; 3-phase, 3-wire plus ground (higher system voltages supplied to
	requirement up to 36 kV)
3-Phase Balanced Correction	+30% for at least 30 sec. for 100% correction
Single-Phase-to-Ground Correction @	+45% for at least 30 sec.; +10% continuous 3-phase correction (all models).
and a second of the second of	Consult factory for specialist correction requirements.
Voltage Regulation	±1% up to 10% continuous 3-phase correction ±2.5% at 30% 3-phase correction
Response (to Sag Event)	Initial sag correction applied within 1 ms, remainder over the next cycle
Bypass	
Nominal Power	SRT rating (kVA)
Maximum Overload Capacity (in Bypass):	30.400
- For 10 Minutes (%)	125
- For 1 Minute (%)	150
- For 600 Milliseconds (%)	700
- For 100 Milliseconds (%)	1000
Transfer Time ®	0.5
- Inverter to Bypass (ms)	< 0.5
- Bypass to Inverter (ms)	< 40 – 750
Environmental	
Operating Temperature	0 – 40°C; 50°C maximum with 20% load derating
Cooling	Forced ventilation
Capacity Derating with Elevation	-1.2% every 100 m above 1000 m
Humidity	< 95%, non-condensing
Warranty	1 year

- Off SRT has tripped (off-line) due to below threshold input voltages, it cannot be restarted until the system voltage is at least this % of the nominal.

 Single-phase-to-ground fault occurring on the utility side of a delta-wye distribution transformer.

 The SRT provides continuous correction and only transitions to and from bypass when manually starting and stopping or under fault or overload conditions. The transition from bypass to inverter takes up to 750 ms. The autoresettable bypass mode of operation includes an additional 5-second delay, allowing time for the fault to clear.

36

CA08104001E

For more information visit: www.EatonElectrical.com

Surge Protection (TVSS) & Power Conditioning Products

FATON

Cutler-Hammer

June 2006 Sheet 1620

SRT

36.1-20

Table 36.1-14. SRT Controller Cabinet Dimensions

Power Conditioning Products

Frame Size	Load Capacity (kVA)	Controller Cabinet Dimensions H x W x D Inches (mm)	Controller Weight Lbs. (kg)	Controller Dissipation (Worst Case)		Airflow m ³ /min
	380/400 V 50/60 Hz	208 ①/480/600 V 60 Hz			%	kW	
1S	20	25	35.43 x 23.62 x 27.56 (900 x 600 x 700)	551 (250)	1.8	0.5	2
2S	40	50	35.43 x 23.62 x 27.56 (900 x 600 x 700)	727 (330)	1.8	0.9	2
3S	60	75	35.43 x 23.62 x 27.56 (900 x 600 x 700)	881 (400)	1.8	1.4	2
2M	140	175	84.84 x 31.50 x 31.69 (2155 x 800 x 805)	1674 (760)	1.8	3.2	4
3M	200	250	84.84 x 31.50 x 31.69 (2155 x 800 x 805)	2070 (940)	1.8	4.5	6
1L	300	350	84.84 x 31.50 x 31.69 (2155 x 800 x 805)	1542 (700)	0.8	2.8	6
2K	400	500	84.84 x 55.12 x 31.69 (2155 x 1400 x 805)	1982 (900)	0.8	4.0	12
2L	500	650	84.84 x 55.12 x 31.69 (2155 x 1400 x 805)	2093 (950)	0.8	5.2	12
3L	750	1000	84.84 x 63.00 x 31.69 (2155 x 1600 x 805)	2423 (1100)	0.8	8.0	18
4L	1000	1250	84.84 x 78.74 x 31.69 (2155 x 2000 x 805)	2753 (1250)	0.8	10.0	24
5L	1250	1500	84.84 x 78.74 x 31.69 (2155 x 2000 x 805)	3084 (1400)	0.8	12.0	30
6L	1500	2000	84.84 x 94.49 x 31.69 (2155 x 2400 x 805)	3634 (1650)	0.8	16.0	36

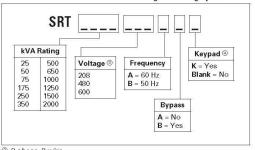
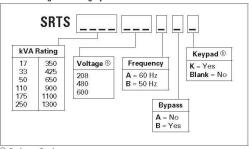

^{1 208} V models are available in 25 - 250 kVA only.

Table 36.1-15. SRT Transformer Cabinet Dimensions

Inverter Frame	Transformer [⊚]	Transformer Weight ②	Transformer Dissipation (Worst Case)	
Size	Cabinet Dimensions	Lbs. (kg)		
	H x W x D Inches (mm)	N 000	%	kW
1S 2S 3S	In Controller Cabinet In Controller Cabinet In Controller Cabinet	=	=	
2M 3M 1L	In Controller Cabinet In Controller Cabinet 35.43 x 32.48 x 27.95 (900 x 825 x 710)		 <1.0	3.0
2K	39.37 x 35.43 x 35.43 (1000 x 900 x 900)	1762 (800)	<1.0	4.0
2L	39.37 x 39.37 x 37.40 (1000 x 1000 x 950)	1982 (900)	<1.0	5.0
3L	43.30 x 39.37 x 37.40 (1100 x 1000 x 950)	2423 (1100)	<1.0	6.0
4L	51.18 x 55.12 x 47.24 (1300 x 1400 x 1200)	3084 (1400)	<1.0	7.0
5L	51.18 x 55.12 x 47.24 (1300 x 1400 x 1200)	3744 (1700)	<1.0	8.0
6L	55.12 x 59.06 x 47.24 (1400 x 1500 x 1200)	4405 (2000)	<1.0	9.0

② Nominal dimensions and weights. Consult factory for precise values.

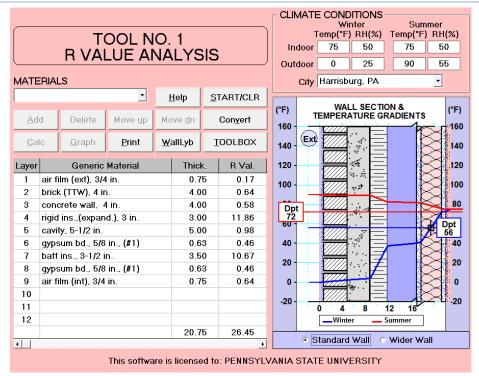

Table 36.1-16. 30% Correction Model Catalog Numbering System

^{3 3-}phase, 3-wire.

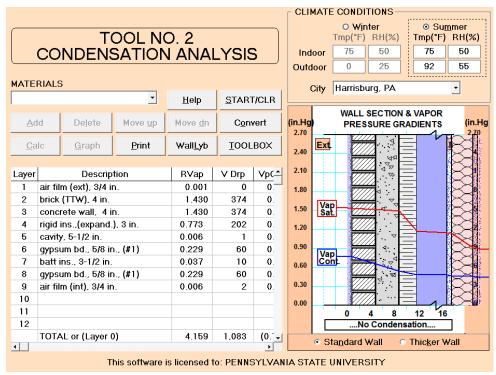
36

Table 36.1-17. SRTS — SEMI F47 Compliant Version 40% Correction Model Catalog Numbering System

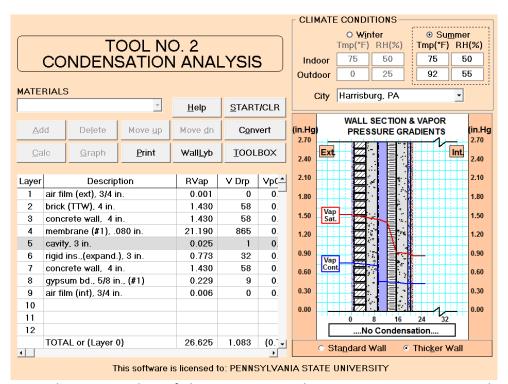
³⁻phase, 3-wire.


For more information visit: www.EatonElectrical.com

Keypad is standard on 175 kVA and larger.


[®] Keypad is standard on 110 kVA and larger.

APPENDIX F: Mechanical


Thermal and Moisture Performance

HAM R Value Analysis of Existing Wall Condition

H.A.M. Condensation Analysis of Existing Façade Composition – Summer Conditions

H.A.M. Condensation Analysis of Alternate PCM Façade Composition – Summer Conditions

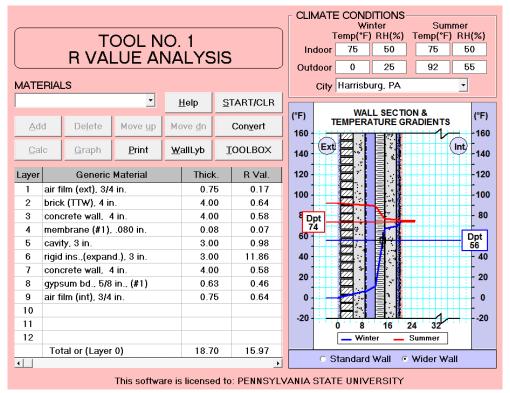


Figure 150: Temperature Analysis of Redesigned Wall Assembly

260

B. Zalba et al. | Applied Thermal Engineering 23 (2003) 251–283

Table 4 Organic substances with potential use as PCM

Compound	Melting tem- perature (°C)	Heat of fu- sion (kJ/kg)	Thermal conductivity (W/m K)	Density (kg/m³)
Paraffin C ₁₄	4.5 [1]	165 [1]	n.a.	n.a.
Paraffin C ₁₅ -C ₁₆	8 [1]	153 [1]	n.a.	n.a.
Polyglycol E400	8 [4,11]	99.6 [4,11]	0.187 (liquid, 38.6 °C) [4,11]	1125 (liquid, 25 °C) [4,11]
	.,,,	.,,	0.185 (liquid, 69.9 °C) [11]	1228 (solid, 3 °C) [4,11]
Dimethyl-sulfoxide (DMS)	16.5 [28]	85.7 [28]	n.a.	1009 (solid and liquid) [28]
Paraffin C ₁₆ -C ₁₈	20-22 [29]	152 [29]	n.a.	n.a.
Polyglycol E600	22 [4,11]	127.2 [4,11]	0.189 (liquid, 38.6 °C) [4,11]	1126 (liquid, 25 °C) [4,11]
D	22 24 511	100 (11	0.187 (liquid, 67.0 °C) [11]	1232 (solid, 4 °C) [4,11]
Paraffin C ₁₃ -C ₂₄	22-24 [1]	189 [1]	0.21 (solid) [1]	0.760 (liquid, 70 °C) [1]
1.00	26.503	200 503		0.900 (solid, 20 °C) [1]
1-Dodecanol	26 [9]	200 [9]	n.a.	n.a.
Paraffin C ₁₈	28 [1]	244 [1]	0.148 (liquid, 40 °C) [30]	0.774 (liquid, 70 °C) [1]
	27.5 [30]	243.5 [30]	0.15 (solid) [1] 0.358 (solid, 25 °C) [30]	0.814 (solid, 20 °C) [1]
1-Tetradecanol	38 [9]	205 [9]		
Paraffin C ₁₆ –C ₂₈	42-44 [1]	189 [1]	0.21 (solid) [1]	0.765 (liquid, 70 °C) [1]
				0.910 (solid, 20 °C) [1]
Paraffin C ₂₀ –C ₃₃	48-50 [1]	189 [1]	0.21 (solid) [1]	0.769 (liquid, 70 °C) [1]
				0.912 (solid, 20 °C) [1]
Paraffin C ₂₂ –C ₄₅	58-60 [1]	189 [1]	0.21 (solid) [1]	0.795 (liquid, 70 °C) [1]
				0.920 (solid, 20 °C) [1]
Parffin wax	64 [4,11]	173.6 [4,11]	0.167 (liquid, 63.5 °C) [4,11]	790 (liquid, 65 °C) [4,11]
		266 [6]	0.346 (solid, 33.6 °C) [4,11]	916 (solid, 24 °C) [4,11]
			0.339 (solid, 45.7 °C) [11]	
Polyglycol E6000	66 [4,11]	190.0 [4,11]	n.a.	1085 (liquid, 70 °C) [4,11]
	,			1212 (solid, 25 °C) [4,11]
Paraffin C ₂₁ -C ₅₀	66-68 [1]	189 [1]	0.21 (solid) [1]	0.830 (liquid, 70 °C) [1]
		. ,		0.930 (solid, 20 °C) [1]
Biphenyl	71 [4,11]	119.2 [4,11]	n.a.	991 (liquid, 73 °C) [4,11]
-1				1166 (solid, 24 °C) [11]
Propionamide	79 [11]	168.2 [11]	n.a.	n.a.
Naphthalene	80 [4,11]	147.7 [4,11]	0.132 (liquid, 83.8 °C) [4,11]	976 (liquid, 84 °C) [4,11]
			0.341 (solid, 49.9 °C) [4,11]	1145 (solid, 20 °C) [4,11]
			0.310 (solid, 66.6 °C) [11]	
Erythritol	118.0 [31]	339.8 [31]	0.326 (liquid, 140 °C) [31]	1300 (liquid, 140 °C) [31]
,	. 1010 [01]	23310 [01]	0.733 (solid, 20 °C) [31]	1480 (solid, 20 °C) [31]
HDPE	100-150 [32]	200 [32]	n.a.	n.a.
Trans-1,4-polybuta-	145 [33]	144 [33]	n.a.	n.a.
diene (TPB)	. 40 [00]	.44 [55]	11.75	22.104

n.a.: not available.

Thermal Properties of organic PCM materials from Zalba, see Appendix C: Citations

Energy Analysis of Alternative Façade Compositions

	L													
			MO	ITHLY	MONTHLY ENERGY CONSUMPTION By ACADEMIC	ERGY CON By ACADEMIC	ISUMP	TION						
				1	Mont	hly Energy	Monthly Energy Consumption	tion						
Jan		Feb	Mar	Apr	Мау	June	July	Aug	Sept	Oct	Nov	Dec	Total	
Existing	_													
45,559 4	4	40,279	50.548	48,075	52,975	52,663	53,895	56,438	52,321	51,455	48.736	45,744	598,688	
2,992 2. 7	Ci .	2,780	2,082	1,510	1,142	1,003	1,060	1,064	1,127	1,558	1,819	2,637	20,753	
456 3	60	381	851	1,340	2,962	4,416	5,963	4,748	3,343	1,610	1,077	486	27,612	
mand (therms/hr) 6		9	7	ω	13 15 17 Environmental Innerest Amelyais	15 Impact	17 Analysis	16	4	5	œ	ω	17	
155,480 Btu/(ft2-year) 249,083 Btu/(ft2-year)		ı	•	CO2 SO3	2	2,451,630 lbm/year 18,955 gm/year	year year							
				NOX	· ×	3,810 gm/year	ar							
44,249 ft2														
				0										
Millennium Science Complex									TRA	CE® 700 v8.	2 8.5 calculate	TRACE® 700 v8 2 8 5 calculated at 02:53 PM on 03/19/2011	00 03/19/2011	

Trane Trace Monthly Energy Report– Existing Facade

Millennium Science Complex PSU MSC-wall comp analysis.TRC

Project Name: Mille Dataset Name: PSU Total

Dec

è

Oct

Sept

Aug

July

June

May

Apr

Mar

Feb

Jan

PCM Panel

Alternative: 4

Utility

Electric

On-Pk Cons. (kWh) On-Pk Demand (kW)

Monthly Energy Consumption

MONTHLY ENERGY CONSUMPTION

By ACADEMIC

Alternative - 4 Monthly Energy Consumption report Page 3 of 3 TRACE® 700 v6.2.6.5 calculated at 02:53 PM on 03/19/2011 594,032 20,274 26,769 238 18 45,634 151 439 5 9 48,382 1.007 189 S 51,089 1,528 10 208 3,256 13 4.650 3 5 5,871 Environmental Impact Analysis 1,004 18,546 gm/year 3,728 gm/year 4,331 942 2,889 1,073 m S02 N0X N0X 47,907 1,281 1,471 m 50,123 2,036 788 2,781 323 5 152,133 Btu/(ft2-year) Btu/(ft2-year) 45,027 2,989 149 5 Energy Consumption

Trane Trace Monthly Energy Report – Alternate PCM Facade

On-Pk Cons. (therms) On-Pk Demand (therms/hr)

On-Pk Demand (therms/hr) On-Pk Cons. (therms)

Purchased Steam

Purchased Chilled Water

245,097

Building Source

PSU MSC-wall comp analysis.TRC Millennium Science Complex

Project Name: Dataset Name:

Floor Area

MONTHLY ENERGY CONSUMPTION

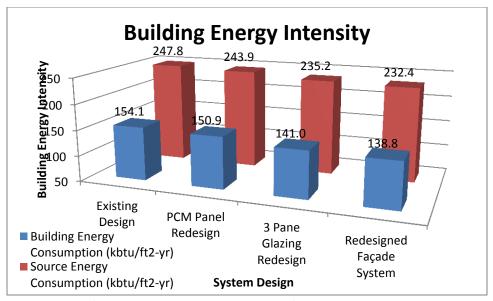
	_												
					- Month	Monthly Energy Consumption	Consump	otion	ı				
Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Alternative: 3	3 Pane	ne Glass											
Electric On-Pk Cons. (kWh) On-Pk Demand (kW)	45,461	40,718	50,635	48,024	53,518 225	53,548 234	54,848	57,357 241	52,581 230	51,515 212	48,569	46,489 162	603,262 242
Purchased Steam On-Pk Cons. (therms) On-Pk Demand (therms/hr)	2,680	2,508 6	1,794	1,250	970	867	955	911	949	1,287	1,546	2,365 5	18,082 6
Purchased Chilled Water On-Pk Cons. (therms)	410	336	888	1,067	2,559	3,933	5,401	4,198	2,868	1,304	868	444	24,076
On-Pk Demand (therms/hr) 5 Fnerray Consumption	5 otion	4	9	7 Fnv	11 Ironment	11 13 15 Environmental Impact Analysis	15 Analysis	14	12	<u></u>	7	o.	15
Building 141,806 Source 235,947	141,806 Btu/(ft2-year) 235,947 Btu/(ft2-year)	ear) sar)		SO2 NOX	2,2	2,236,015 lbm/year 17,287 gm/year 3,475 gm/year	year sar ar						
Floor Area 44,249 ft2	12												

TRACE® 700 v6.2.6.5 calculated at 03:03 PM on 03/19/2011 Alternative - 3 Monthly Energy Consumption report Page 2 of 3

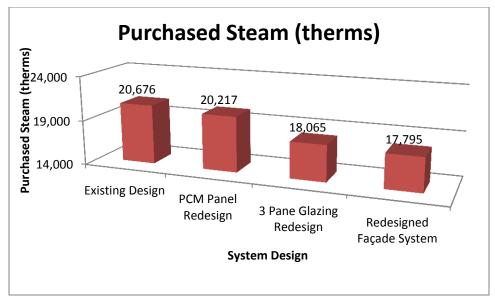
Millennium Science Complex PSU MSC-wall comp analysis.TRC Project Name: Dataset Name:

Trane Trace Monthly Energy Report – Alternate Triple Pane Facade

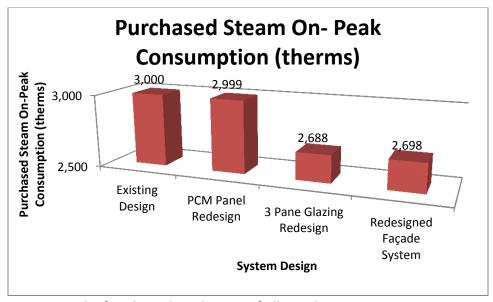
TRACE® 700 v8.2.8.5 calculated at 02:53 PM on 03/19/2011 Alternative - 3 Monthly Energy Consumption report Page 2 of 3

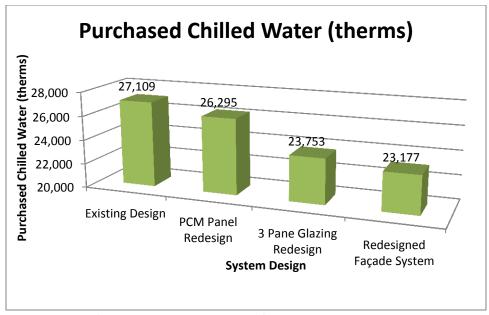

MONTHLY ENERGY CONSUMPTION

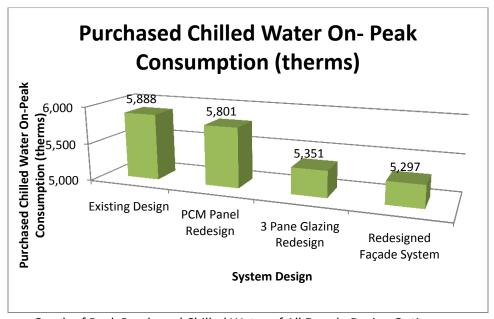
		Total		598,500	243		17,800	9		23,478	15			
		Dec		45,805	158		2,374	5		411	4			
		Nov		48,263	185		1,527	4		822	7			
		Oct		51,189	202		1,254	е		1,250	œ			
		Sept		52,132	224		899	2		2,802	12			
	Monthly Energy Consumption	Aug		56,803	238		866	2		4,120	41			
	, Consump	July		54,479	243		921	2		5,339	15	Analysis	lyear ear sar	
By ACADEMIC	thly Energy	June		53,228	231		828	2		3,875	13	Environmental Impact Analysis	2,198,834 lbm/year 17,000 gm/year 3,417 gm/year	
By AC	Mont	May		53,219	218		921	2		2,502	II.	nvironmen		
	,	Apr	nel	47,843	179		1,216	ю		1,028	7	Ш	002 802 NOX	
		Mar	Pane Glass and PCM Panel	50,302	172		1,777	4		645	0			
		Feb	ne Glass a	40,163	153		2,527	9		313	4		ar) ar)	
		Jan	3 Par	45,075	149		2,690	9		372	4	ption	139,448 Btu/(ft2-year) 232,953 Btu/(ft2-year)	9 ft2
				On-Pk Cons. (kWh)	On-Pk Demand (kW)	eam	On-Pk Cons. (therms)	On-Pk Demand (therms/hr)	hilled Water	On-Pk Cons. (therms)	On-Pk Demand (therms/hr)	Energy Consumption	139,44 232,95	44,249 ft2
		Utility	Alternative: 3	Electric	ō	Purchased Steam	-40	On-Pk D	Purchased Chilled Water	-uo	On-Pk D		Building Source	Floor Area

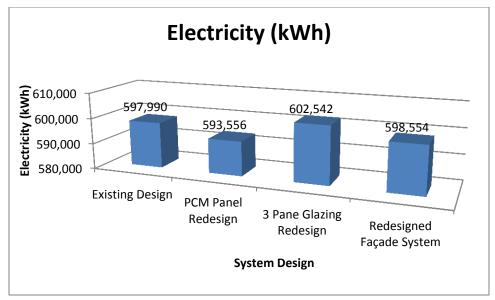

Millennium Science Complex PSU MSC-wall comp analysis.TRC

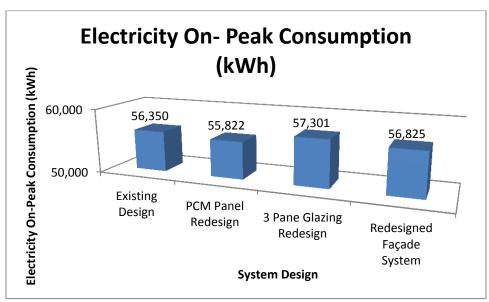
Project Name: Dataset Name:


A TWO


Graph of Total Building Energy Intensity of All Façade Design Options


Graph of Purchased Steam of All Façade Design Options

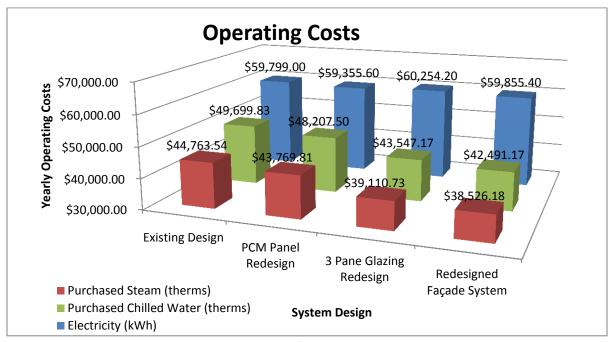

Graph of Peak Purchased Steam of All Façade Design Options


Graph of Purchased Chilled Water of All Façade Design Options

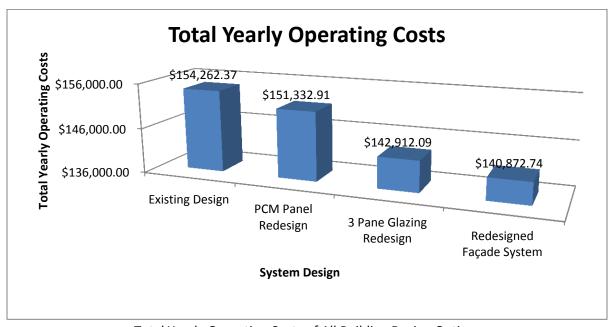
Graph of Peak Purchased Chilled Water of All Façade Design Options

Graph of Electricity of All Façade Design Options

Graph of Peak Electricity of All Façade Design Options


Operating and Life Cycle Cost Analysis

Utility Charge Rates


The following chart shows the billable rates charged as well as our avoidable costs that are used for Energy Some Departments pay the cost of their utility usage to OPP. These are Departments such as Housing and Food Service Savings Projects for FY 09-10: and Athletics.

Utility	Avoided Costs	Billable Rate	Units	Comments
Dlactricity	\$1.09	\$1.09	KW	5 sub-stations only, 1st half
Eleculcity	\$0.07781	\$0.09648	KWH	5 sub-stations only, 1st half
Dlastricity	\$1.09	\$1.09	KW	5 sub-stations only, 2 nd half
Electricity	\$0.07517	\$0.09481	KWH	5 sub-stations only, 2 nd half
Natural Gas	\$8.66	\$9.83	MCF	Blended Rate
Steam	\$8.6\$	\$21.65	1000 pounds	
Water & Wastewater	\$3.32	68.8\$	1000 gallons	
Chilled Water	\$0.22	\$0.22	Ton-Hour	Estimated Cost

Utility Cost Data from "Utility Fact Sheet University Park", see Appendix C: Citations

Utility Operation Costs of All Building Design Options

Total Yearly Operating Costs of All Building Design Options

Table 2.8b Summary of Energy Costs for Seattle

Table 2.60 Summ	Annual	Annual	Annual	%	%
	Electricity		Energy	Reduction	, , ,
	Cost	(\$/sf)	Cost	in Energy	per LEED
	(\$/sf)	(ψ/31)	(\$/sf)	Costs	per LLLD
Base Case	\$3.90	\$2.60	\$6.50		
Flow Setback (CFM21)	\$3.80	\$2.60	\$6.40	2%	2%
VAV	\$3.60	\$2.00	\$5.60	14%	22%
Supply Static Pressure of 4 in. w.g. (SP4)	\$3.60	\$2.70	\$6.30	3%	4%
Supply Static Pressure of 3 in. w.g. (SP3)	\$3.40	\$2.70	\$6.10	5%	8%
Enthalpy Wheel (Wheel)	\$4.00	\$1.30	\$5.30	18%	28%
Enthalpy Wheel w/ VAV (VWheel)	\$3.70	\$1.00	\$4.70	28%	44%
Heat Pipe (HtPipe)	\$4.10	\$1.50	\$5.60	13%	21%
Run-Around Loop (Loop)	\$4.10	\$1.50	\$5.60	13%	21%
Chiller Energy Recovery (CWER)	\$3.90	\$2.50	\$6.40	1%	2%
Direct Evap. Cooling (Evap)	\$3.80	\$2.60	\$6.40	1%	2%
Water-side Economizer (Econ)	\$3.80	\$2.60	\$6.40	1%	1%
Humidity Controls: Max 60%RH, Min 20%RH (RH26)	\$3.90	\$2.40	\$6.20	4%	6%
Humidity Controls: Max 50%RH, Min 40%RH (RH45)	\$4.00	\$3.30	\$7.30	-12%	-20%
Humidity Controls: Max 50%RH, Min 40%RH w/ Enthalpy Wheel (RH45					
Wheel)	\$4.10	\$1.90	\$5.90	8%	13%
Lab Plug Loads 8 W/sf(EPD8)	\$3.20	\$2.60	\$5.80	11%	
Lab Plug Loads 4 W/sf(EPD4)	\$2.50	\$2.70	\$5.20	19%	
Advanced w/Run-Around Loop (ALoop)	\$3.50	\$1.10	\$4.70	28%	44%
Advanced w/Enthalpy Wheel (AWheel)	\$3.50	\$1.00	\$4.50	31%	48%

Case Study of Design Option Energy Costs from "Energy Analysis", see Appendix C: Citations

Table A-1. SPV factors for finding the present value of future single costs (non-fuel)

	Single Prese	ent Value (SPV) Factors
Number of years from base date	DOE Discount rate 3.0 %	OMB Disco Short term ^b 1.9 %	unt Rates ^a Long Term ^c 2.7 %
0.25 0.50 0.75 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	0.993 0.985 0.978 0.971 0.943 0.915 0.888 0.863 0.813 0.766 0.744 0.722 0.701 0.681 0.661 0.642 0.701 0.681 0.557 0.557 0.557 0.557 0.554 0.538 0.522 0.507 0.492 0.478 0.464 0.424 0.424 0.412	0.995 0.991 0.986 0.981 0.963 0.945 0.927 0.910 0.893 0.877 0.860 0.844 0.828	0.993 0.987 0.980 0.974 0.948 0.923 0.899 0.875 0.852 0.830 0.787 0.766 0.7766 0.7766 0.726 0.707 0.689 0.671 0.653 0.653 0.653 0.653 0.653 0.653 0.653 0.653 0.653
	0.412		0.400

^{*}OMB discount rates as of February 2010.

OMB Long Term Discount Rates from "Energy Price Indices...", see Appendix C: Citations

^bShort-term discount rate based on OMB discount rate for 7-year study period.

^{*}Long-term discount rate based on OMB discount rate for 30-year study period.

Table Ca-1. Projected fuel price indices (excluding general inflation), by end-use sector and fuel type.

Census Region 1 (Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont)

	E	Project	ted Ap	ril l	Fuel Pr	rice In	ndices	(April	1 1, 2	010 = 3	1.00)				
Sector and Fuel	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
Residential															
Electricity	0.94	0.98	1.01	1.01	1.01	1.02	1.03	1.03	1.03	1.04	1.05	1.05	1.06	1.06	1.05
Distillate Oil	1.00	1.05	1.11	1.15	1.18	1.23	1.27	1.31	1.34	1.36	1.37	1.38	1.39	1.41	1.42
LPG	0.99	1.02	1.06	1.10	1.13	1.15	1.17	1.19	1.20	1.21	1.22	1.23	1.24	1.25	1.26
Natural Gas	1.05	1.07	1.06	1.04	1.04	1.05	1.05	1.05	1.05	1.06	1.07	1.08	1.09	1.09	1.10
Commercial															
Electricity	0.90	0.92	0.94	0.93	0.92	0.93	0.95	0.95	0.96	0.97	0.98	0.99	1.00	1.01	1.01
Distillate Oil	1.01	1.07	1.14	1.19	1.23	1.29	1.33	1.37	1.40	1.43	1.44	1.46	1.48	1.49	1.50
Residual Oil	1.00	1.10	1.23	1.32	1.37	1.43	1.49	1.54	1.60	1.64	1.66	1.68	1.71	1.73	1.75
Natural Gas	1.07	1.13	1.13	1.11	1.11	1.12	1.12	1.12	1.12	1.13	1.14	1.16	1.17	1.17	1.18
Coal	0.98	0.98	0.98	0.98	0.98	0.97	0.97	0.96	0.95	0.95	0.94	0.95	0.95	0.95	0.95
Industrial															
Electricity	0.85	0.88	0.90	0.87	0.87	0.88	0.90	0.91	0.91	0.92	0.93	0.94	0.96	0.97	0.97
Distillate Oil	1.03	1.10	1.16	1.22	1.26	1.32	1.36	1.41	1.44	1.47	1.48	1.50	1.52	1.53	1.54
Residual Oil	1.01	1.10	1.22	1.31	1.36	1.41	1.46	1.51	1.57	1.60	1.62	1.64	1.66	1.69	1.71
Natural Gas	1.16	1.27	1.28	1.26	1.26	1.26	1.26	1.26	1.26	1.27	1.29	1.31	1.33	1.33	1.34
Coal	0.99	0.99	0.98	0.98	0.97	0.97	0.97	0.96	0.96	0.95	0.95	0.95	0.95	0.95	0.95
Transportation															
Motor Gasoline	1.04	1.09	1.17	1.23	1.25	1.28	1.31	1.33	1.35	1.37	1.38	1.40	1.41	1.42	1.43

Fuel Price Indices page one from "Energy Price Indices...", see Appendix C: Citations

Table Ca-1, continued. Projected fuel price indices (excluding general inflation), by end-use sector and fuel type.

Census Region 1 (Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont)

	E	Project	ted Apr	il 1 i	Fuel Fr	rice In	ndices	(April	1, 20	10 = 1	.00)				
Sector and Fuel	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
Residential															
Electricity	1.06	1.06	1.07	1.09	1.10	1.11	1.12	1.12	1.13	1.13	1.14	1.15	1.15	1.16	1.17
Distillate Oil	1.44	1.45	1.46	1.49	1.50	1.52	1.54	1.56	1.59	1.61	1.63	1.65	1.66	1.68	1.70
LPG	1.26	1.27	1.28	1.29	1.30	1.31	1.33	1.34	1.35	1.37	1.38	1.39	1.40	1.41	1.43
Natural Gas	1.11	1.12	1.14	1.16	1.19	1.21	1.23	1.24	1.25	1.26	1.27	1.29	1.30	1.31	1.32
Commercial															
Electricity	1.01	1.02	1.03	1.05	1.06	1.08	1.10	1.12	1.13	1.14	1.15	1.15	1.16	1.17	1.17
Distillate Oil	1.52	1.54	1.56	1.58	1.59	1.62	1.64	1.67	1.69	1.72	1.74	1.76	1.79	1.81	1.83
Residual Oil	1.77	1.78	1.81	1.83	1.86	1.89	1.92	1.94	1.98	2.00	2.03	2.06	2.10	2.14	2.17
Natural Gas	1.19	1.20	1.22	1.25	1.28	1.31	1.33	1.33	1.35	1.36	1.38	1.39	1.41	1.43	1.44
Coal	0.95	0.95	0.95	0.96	0.97	0.97	0.97	0.97	0.97	0.98	0.98	0.98	0.98	0.99	0.99
Industrial															
Electricity	0.97	0.98	1.00	1.02	1.04	1.06	1.09	1.10	1.11	1.13	1.13	1.14	1.15	1.15	1.16
Distillate Oil	1.56	1.58	1.60	1.62	1.64	1.66	1.69	1.71	1.74	1.77	1.79	1.81	1.83	1.85	1.87
Residual Oil	1.72	1.73	1.76	1.78	1.80	1.84	1.86	1.88	1.91	1.93	1.96	1.99	2.03	2.06	2.10
Natural Gas	1.36	1.38	1.41	1.45	1.48	1.53	1.56	1.58	1.60	1.62	1.64	1.66	1.69	1.72	1.75
Coal	0.95	0.95	0.95	0.96	0.96	0.96	0.96	0.97	0.97	0.97	0.98	0.98	0.98	0.98	0.98
Transportation															
Motor Gasoline	1.45	1.46	1.48	1.50	1.51	1.52	1.54	1.56	1.58	1.60	1.62	1.63	1.65	1.66	1.68

Fuel Price Indices page two from "Energy Price Indices...", see Appendix C: Citations

				Upfront Costs																																\$0.00	Total Present Value \$1,541,063.92
																																				\$0.00	Tot
0			2	Maintenance Cost Overhaul Cost																																\$0.00	
Overhaul Cost			Fuel Cost Increase Percentage	Energy Cost M		65417.89	67269.90	65501.36	62650.48	61003.39	59934.73	58359.04	56824.77	55330.84	54357.22	53396.55	52904.90	51958.11	50592.12	49683.09	48786.88	47903.46	47421.48	47310.20	47172.00	47008.37	46471.33	45249.59	44722.53	43869.33	43344.18	42510.48	41988.46	41464.50	40656.73	\$1,541,063.92	
59799.00	-	•	2.7	Natural Gas Escalation Factor		1.07	1.13	1.13	1.11	1.11	1.12	1.12	1.12	1.12	1.13	1.14	1.16	1.17	1.17	1.18	1.19	1.2	1.22	1.25	1.28	1.31	1.33	1.33	1.35	1.36	1.38	1.39	1.41	1.43	1.44	Total:	
Electricity cost	Maintenance Cost	Maintenance cost	Discount Rate	Discount Rates	1.00000	0.97371	0.94811	0.92318	0.89891	0.87528	0.85227	0.82986	0.80805	0.78680	0.76612	0.74598	0.72636	0.70727	0.68867	0.67057	0.65294	0.63577	0.61906	0.60278	0.58694	0.57151	0.55648	0.54185	0.52761	0.51373	0.50023	0.48708	0.47427	0.46180	0.44966		
13.514	0.10	0.10	066,160			2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039		
Electricity Consumption (KWh/ft2)	Cost of Electricity (\$/kWh)	VMh of Electricity (5/KWII)	אאוו סו דוברתורול כסוופת		0	1	2	rs.	4	5	9	7	80	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30		

Example of Electricity Life Cycle Cost – Existing Façade Design

04/07/2011

Original Asset (Spirited Water (Spirite	Area (ff2)	44,250					
0.22 Maintenance Cost 0 27,109 Discount Rates 27 *Lel Cost Increase Percentage 5 Percentage 5 2010 Discount Rates Natural Gas Escalation Factor Energy Cost Maintenance Cost Overhaul Cost 2010 0.93731 110 54396.78 Average Average 2012 0.92318 111 52690.01 Average Average 2012 0.92318 111 52690.01 Average Average 2013 0.92318 111 52690.01 Average Average 2014 0.92328 111 52690.01 Average Average 2015 0.82529 111 50700.82 Average Average 2016 0.7269 112 4812.66 Average Average 2018 0.7269 111 4427.86 Average Average 2018 0.7269 111 4427.86 Average Average 2019 0.7269	illed Water Consumption (ton-h/ft2)	5.105		49699.83	Overhaul Cost	0	
27,109 Discount Rate 27 Lote Cost Increase Percentage 5 Application Forty	Cost of Chilled Water (\$/ton-h)	0.22	Maintenance Cost	0			
Discount Rate 27 Fuel Cost Increase Percentage 5 2010 Discount Rates Natural Gas Escalation Factor Fuel Cost Increase Percentage 5 2010 0.97371 107 6 2011 0.94218 113 55999 01 6 2012 0.92318 1113 55096 71 6 2013 0.87528 111 55096 71 6 2014 0.87528 111 55096 74 6 2015 0.87528 111 55096 74 6 2016 0.87528 111 55096 74 6 2017 0.88605 112 48912 64 6 2018 0.78600 112 45376 65 6 2019 0.78600 112 45376 65 6 2019 0.78600 112 45376 65 6 2018 0.78600 114 45376 65 6 2020 0.78600 112 45376 65 6 2021	Therms of Chilled Water Consumed	27,109					
Discount Rates Natural Gase Escalation Factor Energy Cost Maintenance Cost Overhaud Cost 2010 0.97371 1.13 54569.78 Maintenance Cost Overhaud Cost 2011 0.94811 1.13 55909.01 S5009.01 S5009.01 2012 0.94818 1.13 54489.15 S5009.01 S5009.01 2013 0.89821 1.11 52069.74 S5009.01 S5009.01 2014 0.89827 1.11 48500.66 S5009.01 S5009.01 2015 0.88827 1.12 48500.66 S5009.01 S5009.01 2016 0.78860 1.12 44500.66 S5009.02 S5009.02 2019 0.76810 1.12 44500.66 S5009.03 S5009.03 2019 0.76820 1.14 44518.66 S5009.03 S5009.03 2021 0.76820 1.14 44518.66 S5009.03 S5009.03 2022 0.70727 1.12 45047.56 S5009.03 S5009.03			Discount Rate	2.7	Fuel Cost Increase Percentage		
2010 1,00000 1,00000 2011 0,94811 113 55909.01 2012 0,92318 113 55909.01 2013 0,92828 113 5449.15 2014 0,8728 111 500708.2 2015 0,82928 111 500708.2 2016 0,82928 112 48503.06 2017 0,80805 112 48503.06 2018 0,75820 112 48503.06 2019 0,75820 112 44378.66 2010 0,74580 112 44378.66 2011 0,74580 114 44378.66 2012 0,74580 114 44378.66 2013 0,74580 114 44378.66 2014 0,74580 114 44378.66 2015 0,74580 115 44378.66 2016 0,74580 116 44378.66 2017 0,68877 118 44378.66 2018			Discount Rates	Natural Gas Escalation Factor	Energy Cost	Maintenance Cost Overhaul Cost	Upfront Costs
2010 0.97371 1107 54969.78 2011 0.94811 113 54969.10 2012 0.02318 113 5590901 2014 0.858291 111 57069.74 2014 0.853224 111 500682 2015 0.82896 111 4500682 2016 0.82896 112 445812.64 2017 0.82896 112 445813.66 2018 0.75812 112 44586.37 2019 0.76612 113 44377.09 2020 0.772436 114 44318.15 2021 0.772436 114 44318.15 2022 0.70727 117 40247.86 2024 0.67057 117 40247.86 2024 0.67027 111 40547.50 2024 0.67027 112 39412.64 2025 0.65294 112 39421.64 2026 0.65204 112 39421.64 <tr< td=""><td>0</td><td></td><td>1.00000</td><td></td><td></td><td></td><td></td></tr<>	0		1.00000				
2011 0.94811 113 5599901 2012 0.92318 1113 55499015 0 2014 0.88728 111 507069.74 0 2014 0.88227 111 507069.74 0 2015 0.88227 112 48911.64 0 2016 0.88267 112 48016.64 0 2017 0.88065 112 4817.66 0 2018 0.78680 112 47227.91 0 2019 0.74581 112 4437.66 0 2020 0.74582 114 4437.66 0 2021 0.74582 114 4437.66 0 2022 0.74582 114 4437.66 0 2023 0.68877 117 4407.86 0 2024 0.67057 118 4407.86 0 2024 0.67057 112 39412.69 0 2025 0.61066 123 <td< td=""><td>1</td><td>2010</td><td>0.97371</td><td>1.07</td><td>54369.78</td><td></td><td></td></td<>	1	2010	0.97371	1.07	54369.78		
2012 0.99318 113 5443915 2013 0.88981 111 570069.74 0 2014 0.87257 1112 55069.74 0 2015 0.82267 112 48812.64 0 2016 0.82266 112 48812.64 0 2017 0.88286 112 48312.64 0 2018 0.78680 112 45300.66 0 2019 0.78680 112 45300.66 0 2020 0.78680 113 45376.66 0 2021 0.78687 114 43381.5 0 2022 0.78687 117 4047.86 0 2023 0.67057 118 4129.35 0 2024 0.67057 118 4129.35 0 2025 0.65244 112 4047.50 0 2026 0.60278 1.28 39305.3 0 2028 0.66278 1.28 <	2	2011	0.94811	1.13	55909.01		
2013 0.89891 111 52069.74 6 2014 0.85288 111 49812.64 6 2015 0.85296 112 49812.64 6 2016 0.80805 112 49503.06 6 2017 0.80805 112 45727.91 6 2018 0.78680 112 45727.91 6 2019 0.78680 112 45727.91 6 2020 0.7498 112 45727.91 6 2021 0.7498 114 44778.66 6 2022 0.7498 114 44778.66 6 2021 0.7498 114 44778.66 6 2022 0.7024 114 44778.66 6 2023 0.68867 117 404786 6 2024 0.65074 113 40204.86 6 2025 0.65274 12 3961.269 6 2026 0.55648 123<	8	2012	0.92318	1.13	54439.15		
2014 0.87528 111 50700.82 2015 0.058277 11.2 48081.264 0 2016 0.02806 11.2 48081.264 0 2017 0.028086 11.2 45081.264 0 2018 0.78680 11.2 45086.88 0 2019 0.78612 11.3 44170.99 0 2020 0.74636 11.4 44378.66 0 2021 0.77651 11.4 44378.66 0 2022 0.70727 11.7 43183.15 0 2024 0.70727 11.7 43183.15 0 2025 0.68867 11.7 43183.15 0 2024 0.67024 11.7 40547.50 0 2025 0.65294 11.8 40547.50 0 2026 0.65294 11.2 39813.69 0 2027 0.65294 12.8 39613.69 0 2028 0.65294	4	2013	0.89891	1.11	52069.74		
2015 0.85227 1112 49812.64 6 2016 0.82896 11.2 45508.06 6 2018 0.78890 11.2 45508.28 6 2019 0.76612 11.3 45177.09 6 2020 0.76612 11.4 44970.04 6 2021 0.76612 11.4 44970.04 6 2022 0.70727 11.7 43183.15 6 2022 0.70727 11.7 42047.86 6 2022 0.70727 11.8 44297.04 6 2023 0.68867 1.17 42047.86 6 2024 0.67057 1.18 41202.35 6 2025 0.65274 1.18 41202.35 6 2026 0.65577 1.2 39813.28 6 2028 0.65278 1.2 39813.28 6 2029 0.56864 1.2 398205.35 6 2029 0.56768<	5	2014	0.87528	1.11	50700.82		
2016 0.82386 1.12 48503.06 2017 0.080805 1.12 45560.28 P 2018 0.76612 1.13 45470.91 P 2010 0.76612 1.13 45170.99 P 2020 0.74598 1.14 44378.66 P 2021 0.77657 1.15 44378.66 P 2022 0.70757 1.17 4338.15 P 2023 0.76857 1.17 4338.15 P 2024 0.67057 1.18 4129.35 P 2024 0.65244 1.19 4129.23 P 2024 0.65249 1.12 3941.59 P 2025 0.65249 1.12 3941.59 P 2026 0.65249 1.25 3941.59 P 2027 0.65394 1.25 3940.53 P 2028 0.56278 1.23 3940.53 P 2029 0.56634 1.24 <td>9</td> <td>2015</td> <td>0.85227</td> <td>1.12</td> <td>49812.64</td> <td></td> <td></td>	9	2015	0.85227	1.12	49812.64		
2017 0.80805 1.12 4722791 2018 0.78880 1.13 4596.28 2020 0.74596 1.13 4596.28 2020 0.74596 1.14 44378.66 2021 0.72636 1.16 44370.04 2022 0.70727 1.17 43183.15 2024 0.68867 1.17 4247.86 2024 0.65374 1.17 4054.750 2025 0.65374 1.2 39813.28 2026 0.65374 1.2 39813.28 2027 0.61906 1.25 39813.28 2028 0.65374 1.2 39813.28 2029 0.5884 1.28 39820.21 2029 0.5884 1.28 39820.21 2029 0.5884 1.28 39205.35 2029 0.5884 1.28 39206.45 2030 0.57151 1.31 39603.35 2031 0.5485 1.33 38623.01	7	2016	0.82986	1.12	48503.06		
2018 0.78680 1.12 45986.28 2020 0.76612 1.13 45177.09 2020 0.72636 1.14 45177.09 2021 0.72636 1.16 43970.04 2022 0.70727 1.17 43183.15 2023 0.68867 1.17 42047.86 2024 0.67057 1.18 4054.20 2025 0.63577 1.2 39813.28 2026 0.63577 1.2 39813.28 2026 0.63577 1.2 3941.69 2027 0.61906 1.22 3942.69 2028 0.60378 1.28 3942.69 2029 0.54048 1.28 3942.69 2030 0.57151 1.31 39069.35 2031 0.5548 1.33 37607.60 2032 0.54185 1.33 36623.01 2032 0.54185 1.33 36623.09 2034 0.5003 1.39 36640.45	8	2017	0.80805	1.12	47227.91		
2019 0.76612 1.13 4517.09 2020 0.74598 1.14 44378.66 2021 0.72656 1.16 44378.66 2022 0.70757 1.17 44318.35 2023 0.68867 1.17 4047.86 2024 0.65244 1.19 40547.50 2025 0.65244 1.19 40547.50 2026 0.63577 1.2 39813.28 2026 0.63577 1.2 39813.28 2027 0.61906 1.2 39813.28 2028 0.60278 1.2 39813.28 2029 0.63577 1.2 39813.28 2029 0.58644 1.28 39605.35 2029 0.58649 1.28 39605.35 2030 0.55648 1.38 39605.35 2031 0.55648 1.33 37607.60 2032 0.54185 1.36 36460.45 2033 0.25718 1.36 36460.45	6	2018	0.78680	1.12	45986.28		
2020 0.74598 1.14 44378.66 6 2021 0.72656 1.16 44370.04 8 2022 0.70727 1.17 4204.36 8 2024 0.65867 1.18 41292.35 8 2025 0.65524 1.19 40547.50 8 2026 0.65524 1.19 40547.50 8 2026 0.65877 1.2 39813.28 8 2027 0.61906 1.2 39813.28 8 2028 0.66377 1.2 3941.69 8 2029 0.63864 1.22 3942.69 8 2029 0.58664 1.28 3920.31 8 2030 0.5151 1.31 3969.35 8 2031 0.55648 1.33 38623.01 8 2032 0.54185 1.33 38623.01 8 2033 0.52761 1.33 3669.35 8 2034 0.50023	10	2019	0.76612	1.13	45177.09		
2021 0.72636 1.16 43970.04 0 2022 0.70727 1.17 43183.15 0 2024 0.67057 1.17 42047.86 0 2024 0.65294 1.18 40547.50 0 2025 0.65294 1.19 39813.28 0 2026 0.65294 1.2 39813.28 0 2027 0.61906 1.22 39813.28 0 2028 0.66278 1.25 39426.69 0 2029 0.58694 1.25 39320.21 0 2030 0.57151 1.31 39620.35 0 2031 0.55648 1.33 38623.01 0 2032 0.55649 1.33 38623.01 0 2033 0.55648 1.33 38623.01 0 2034 0.55648 1.35 3760.60 0 2035 0.52761 1.35 36460.45 0 2034 0.50023<	11	2020	0.74598	1.14	44378.66		
2022 0.70727 1.17 43183.15 68867 1.17 42047.86 9	12	2021	0.72636	1.16	43970.04		
2023 0.68867 1.17 42047.86 6 2024 0.67057 1.18 41292.35 6 2025 0.65294 1.19 40347.50 6 2026 0.63577 1.2 39813.28 6 2027 0.61906 1.22 39412.69 6 2028 0.60289 1.25 3942.69 6 2028 0.60894 1.28 39205.35 6 2029 0.58694 1.28 39205.35 6 2030 0.57151 1.31 3969.35 6 2031 0.55648 1.33 366.30 6 2032 0.54185 1.33 366.30 6 2033 0.52761 1.35 3760.60 6 2034 0.50023 1.38 3660.45 6 2034 0.50023 1.39 3531.09 6 2034 0.44878 1.41 34461.76 7 2038 0.44966	13	2022	0.70727	1.17	43183.15		
2024 0.67057 1.18 4129.35 6100000 2025 0.65294 1.19 40547.50 600000 2026 0.6377 1.2 39813.28 60000 2027 0.61906 1.25 3941.69 60000 2028 0.65078 1.25 39320.21 60000 2029 0.58694 1.28 39306.35 60000 2030 0.57151 1.31 39069.35 60000 2031 0.55648 1.33 38623.01 60000 2032 0.54185 1.33 38623.01 60000 2033 0.52761 1.35 3766.45 60000 2034 0.51373 1.36 36023.99 60000 2035 0.64708 1.39 36023.99 60000 2036 0.44707 1.41 34897.23 60000 2039 0.46180 1.44 33790.41 50.00 2039 0.4966 1.44 51,280,801.01 50.00 <td>14</td> <td>2023</td> <td>0.68867</td> <td>1.17</td> <td>42047.86</td> <td></td> <td></td>	14	2023	0.68867	1.17	42047.86		
2025 0.65294 1.19 40547.50 6.05377 2026 0.63577 1.2 39813.28 6.00 2027 0.61906 1.22 39412.69 6.00 2028 0.60778 1.25 39320.21 6.00 2029 0.58694 1.28 39205.35 6.00 2030 0.51548 1.31 39069.35 6.00 2031 0.55648 1.33 38623.01 6.00 2032 0.54185 1.33 38623.01 6.00 2033 0.52761 1.35 37169.55 6.00 2034 0.51373 1.36 36460.45 6.00 2034 0.51373 1.36 36023.99 6.04 2035 0.44708 1.39 36460.45 6.00 2038 0.46180 1.44 33790.41 80.00 80.00 2039 0.44806 1.44 33790.41 80.00 80.00	15	2024	0.67057	1.18	41292.35		
2026 0.63577 1.2 39813.28 600 2027 0.61906 1.22 39412.69 600 2028 0.6278 1.25 39320.21 600 2029 0.58694 1.28 39205.35 600 2030 0.5151 1.31 39069.35 600 2031 0.55648 1.33 38623.01 600 2032 0.54185 1.33 38623.01 600 2033 0.52761 1.35 37169.55 600 2034 0.51373 1.36 3660.45 600 2034 0.51373 1.36 3660.45 600 2035 0.48708 1.39 3603.99 600 2036 0.4427 1.41 34897.23 600 2038 0.46180 1.43 33790.41 50.00 50.00 2039 0.4966 1.44 51,280,801.01 50.00 50.00	16	2025	0.65294	1.19	40547.50		
2027 0.61906 1.22 39412.69 99412.69 2028 0.60278 1.25 39320.21 99320.21 2029 0.58694 1.28 39205.35 9006.35 2030 0.57151 1.31 39069.35 90 2031 0.55648 1.33 38623.01 90 2032 0.57185 1.38 3660.45 90 2033 0.52761 1.35 3766.45 90 2034 0.51373 1.36 3646.45 90 2035 0.60023 1.39 3646.045 90 2036 0.48708 1.39 3646.15 90 2037 0.4727 1.41 34897.23 90 2038 0.46180 1.43 33790.41 50.00 50.00 2039 0.4966 1.648 51,280,801.01 50.00 50.00	17	2026	0.63577	1.2	39813.28		
2028 0.60278 1.25 39320.21 99320.21 2029 0.58694 1.28 39205.35 99205.35 2030 0.57151 1.31 39069.35 99205.35 2031 0.5548 1.33 38623.01 99205.35 2032 0.52761 1.35 37607.60 99205 2034 0.52761 1.35 3646.45 99205 2034 0.50023 1.36 3646.45 99205 2035 0.48708 1.39 3646.45 99205 2036 0.44870 1.41 34897.23 99205 2038 0.46180 1.43 34461.76 9020 2039 0.44966 1.44 33790.41 50.00 50.00	18	2027	0.61906	1.22	39412.69		
2029 0.58694 1.28 39205.35 99205.35 2030 0.57151 1.31 39069.35 99205.35 2031 0.55648 1.33 38623.01 99205.35 2032 0.52761 1.33 37607.60 99205 2034 0.52761 1.35 37460.45 99205 2034 0.50023 1.36 36460.45 99205 2035 0.48708 1.39 36460.45 99205 2036 0.44870 1.41 34897.23 99205 2038 0.44860 1.44 33790.41 50.00 50.00 2039 0.4966 1.44 51,280,801.01 50.00 50.00	19	2028	0.60278	1.25	39320.21		
2030 0.57151 1.31 39069.35 906.35 2031 0.55648 1.33 38623.01 906.30 2032 0.54185 1.33 3760.60 90 2033 0.52761 1.35 37169.55 90 2034 0.51373 1.36 36460.45 90 2035 0.50023 1.38 36023.99 90 2036 0.48708 1.38 36023.99 90 2037 0.47427 141 34897.23 90 2038 0.46180 1.43 34461.76 90 2039 0.44966 1.44 33790.41 \$0.00 \$0.00	20	5029	0.58694	1.28	39205.35		
2031 0.55648 1.33 38623.01 9 2032 0.54185 1.33 37607.60 9 2033 0.52761 1.35 37169.55 9 2034 0.51373 1.36 36460.45 9 2035 0.50023 1.38 36023.99 9 2036 0.48708 1.39 35331.09 9 2037 0.47427 1.41 34897.23 9 2038 0.46180 1.43 34461.76 9 2039 0.4966 1.44 33790.41 50.00 50.00	21	2030	0.57151	1.31	39069.35		
2032 0.54185 1.33 37607.60 2033 0.52761 1.35 37169.55 87169.55 2034 0.51373 1.36 36460.45 86460.45 86460.45 2035 0.50023 1.38 36023.99 86023.99 86023.99 86023.99 86023.99 86023.99 86023.99 86023.99 86023.99 86023.99 86023.99 86023.99 86023.99 86023.99 86023.99 86023	22	2031	0.55648	1.33	38623.01		
2033 0.52761 1.35 37169.55 7169.55 2034 0.51373 1.36 36460.45 7660.45 2035 0.50023 1.38 36023.99 7670.40 2036 0.48708 1.39 35331.09 7670 2037 0.47427 1.41 34897.23 7670 2038 0.46180 1.43 34461.76 7670 2039 0.44966 1.44 33790.41 50.00 50.00	23	2032	0.54185	1.33	37607.60		
2034 0.51373 1.36 36460.45 96460.45 2035 0.50023 1.38 36023.99 96023.99 2036 0.48708 1.39 35331.09 96023.99 2037 0.47427 1.41 34897.23 9602 2038 0.46180 1.43 34461.76 960 2039 0.44966 1.44 33790.41 50.00 50.00	24	2033	0.52761	1.35	37169.55		
2035 0.50023 1.38 36023.99 86023.99 86023.99 86023.99 86023.99 86023.99 86023.99 86023.99 86023.00 86023.00 86023.00 86023.00 86023.00 86023.00 86023.00 86020.00 86020.00 86020.00 86020.00 86020.00 86020.00 86020.00 86020.00 86020.00 86020.00 86020.00 86020.00 86020.00 86020.00 860200.00 <td>25</td> <td>2034</td> <td>0.51373</td> <td>1.36</td> <td>36460.45</td> <td></td> <td></td>	25	2034	0.51373	1.36	36460.45		
2036 0.48708 1.39 35331.09 35331.09 2037 0.47427 1.41 34897.23 8 2038 0.46180 1.43 34461.76 8 2039 0.44966 1.44 33790.41 \$0.00 \$0.00	26	2035	0.50023	1.38	36023.99		
2037 0.47427 1.41 34897.23 7 2038 0.46180 1.43 34461.76 8 2039 0.44966 1.44 33790.41 \$0.00 Total: 51,280,801.01 \$0.00 \$0.00	27	2036	0.48708	1.39	35331.09		
2038 0.46180 1.43 34461.76 2039 0.44966 1.44 33790.41 \$0.00 Total: \$1,280,801.01 \$0.00 \$0.00	28	2037	0.47427	1.41	34897.23		
2039 0.44966 1.44 33790.41 \$0.00 \$0.00 Total: \$1,280,801.01 \$0.00	29	2038	0.46180	1.43	34461.76		
\$1,280,801.01 \$0.00 \$0.00	30	2039	0.44966	1.44	33790.41		
				Total:	\$1,280,801.01		\$0.00

Example of Chilled Water Life Cycle Cost – Existing Façade Design

Steam Consumption (1000 lb/ft2)	0.047	Steam cost	44763.54	Overhaul Cost	0		
Cost of Steam (\$/1000 lb)	21.65	Maintenance Cost	0				
Therms of Steam Consumed	20,676						
		Discount Rate	2.7	Fuel Cost Increase Percentage	2		
		Discount Rates	Natural Gas Escalation Factor	Energy Cost	Maintenance Cost Overhaul Cost	st Upfront Costs	
0							
1	2010	0.97371	1.07	48969.66			
2	2011	0.94811	1.13	50356.01			
33	2012	0.92318	1.13	49032.14			
4	2013	0.89891	1.11	46898.07			
5	2014	0.87528	1.11	45665.11			
9	2015	0.85227	1.12	44865.15			
7	2016	0.82986	1.12	43685.63			
80	2017	0.80805	1.12	42537.13			
6	2018	0.78680	1.12	41418.82			
10	2019	0.76612	1.13	40690.00			
11	2020	0.74598	1.14	39970.88			
12	2021	0.72636	1.16	39602.85			
13	2022	0.70727	1.17	38894.11			
14	2023	0.68867	1.17	37871.58			
15	2024	0.67057	1.18	37191.10			
16	2025	0.65294	1.19	36520.24			
17	2026	0.63577	1.2	35858.94			
18	2027	0.61906	1.22	35498.14			
19	2028	0.60278	1.25	35414.84			
20	2029	0.58694	1.28	35311.39			
21	2030	0.57151	1.31	35188.90			
22	2031	0.55648	1.33	34786.89			
23	2032	0.54185	1.33	33872.34			
24	2033	0.52761	1.35	33477.79			
25	2034	0.51373	1.36	32839.12			
26	2035	0.50023	1.38	32446.01			
27	2036	0.48708	1.39	31821.93			
28	2037	0.47427	1.41	31431.16			
29	2038	0.46180	1.43	31038.94			
30	2039	0.44966	1.44	30434.27			
			Total:	\$1,153,589.13	\$0.00	\$0.00	
						Tabel Busses Melice 64 452 500 42	52 589 13

Example of Steam Life Cycle Cost – Existing Façade Design

Electricity Cost/yr	\$59,799.00
Chilled Water Cost/yr	\$49,699.83
Steam/yr	\$44,763.54
Opperating Costs/yr	\$154,262.37
Life Cycle Cost Assessment 30 yr	
Installation Cost	\$1,912,205
Electricity Cost	\$1,541,063.92
Chilled Water Cost	\$1,280,801.01
Steam Cost	\$1,153,589.13
Present Value	
Total Life Cycle Cost	\$5,887,659

Example of Combined Energy and Installation Life Cycle Cost – Existing Façade Design

Energy Analysis of Window to Wall Ratio Alternatives

Total 18,935 6 24,635 16 234 2,496 Dec 155 5 3 Š ,629 891 50,500 1,335 342 oct Sept 2,963 969 MONTHLY ENERGY CONSUMPTION Aug 2 4 Monthly Energy Consumption July Environmental Impact Analysi 973 2 17,540 gm/year 3,526 gm/year By ACADEMIC June 899 May 995 2 \$02 NOX 218 1,313 092 Apr ,897 5 Mar 171 و 9 **Existing 50% 0306** Feb 2,649 331 ø Btu/(ft2-year) Btu/(ft2-year) 2,830 Jan م م Energy Consumption 9 143,878 236,130 On-Pk Demand (therms/hr) On-Pk Cons. (therms) On-Pk Demand (therms/hr) On-Pk Cons. (therms) Purchased Chilled Water Purchased Steam Alternative: 4 Floor Area Building Source Electric Utility

Trane Trace Monthly Energy Report from Trane Trace – Existing Façade 50% Glazing

TRACE® 700 v6.2.6.5 calculated at 01:19 PM on 03/21/2011 Alternative - 4 Monthly Energy Consumption report Page 3 of 3

Millennium Science Complex MSC-existing-706050.TRC

Project Name: Dataset Name:

TRACE® 700 v6.2.6.5 calculated at 01:19 PM on 03/21/2011 Alternative - 3 Monthly Energy Consumption report Page 2 of 3

MONTHLY ENERGY CONSUMPTION

By ACADEMIC

	•				- Month	Monthly Energy Consumption	Consum	ption					
Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Alternative: 3	Exist	Existing 60% 0367	1367										
Electric On-Pk Cons. (kWh) On-Pk Demand (kW)	45,101 152	40,068	50,094	47,507	52,276 218	51,982 228	53,133 235	55,617	51,501 223	50,821	48,164	45,554	591,818 235
Purchased Steam On-Pk Cons. (therms) On-Pk Demand (therms/hr)	2,888	2,692	1,957	1,384	1,048	934	1,002	991	1,026	1,419	1,699	2,547	19,587 6
Purchased Chilled Water On-Pk Cons. (therms) On-Pk Demand (therms/hr)	421 5	337	752	1,180	2,750	4,179	5,689	4,480	3,110 13	1,435	928	453 6	25,746 16
Energy Consumption	ption			Env	ironment	Environmental Impact Analysis	Analysis						
Building 148,097 Source 240,735	148,097 Btu/(ff2-year) 240,735 Btu/(ff2-year)	ar) ar)		SO2 NOX		2,335,207 15m/year 18,054 gm/year 3,629 gm/year	year ear ar	ı					
Floor Area 44,249 ft2	f2												

3

Project Name: Millennium Science Complex Dataset Name: MSC-existing-706050.TRC

Trane Trace Monthly Energy Report from Trane Trace – Existing Façade 60% Glazing

BIMception - IPD/BIM Thesis

Total

Dec

Š

596,494

237

161

193

48,558

20,342

2,602 6

26,968 17

471

1,035 8

51,258 213 1,549 510 ö Sept 3,265 3 8 MONTHLY ENERGY CONSUMPTION Aug 8 233 n Monthly Energy Consumption 53,643 1,040 **Environmental Impact Analysi** July 5,87 2,411,341 lbm/year 18,643 gm/year 3,747 gm/year By ACADEMIC June 229 2 May 1,111 ,891 12 221 \$02 NOX 8 1 ,467 3 Αp 2,026 5 Mar 816 17 **Existing 70% 0428** Feb 352 Btu/(ft2-year) Btu/(ft2-year) 2,956 Jan 6 44 **Energy Consumption**

On-Pk Cons. (kWh)

Alternative: 2

Utility

Electric

On-Pk Demand (kW

Alternative - 2 Monthly Energy Consumption report Page 1 of 3 TRACE® 700 v6.2.6.5 calculated at 01:19 PM on 03/21/2011

Project Name: Dataset Name:

Millennium Science Complex MSC-existing-706050.TRC

Trane Trace Monthly Energy Report from Trane Trace – Existing Façade 70% Glazing

On-Pk Demand (therms/hr)

On-Pk Cons. (therms) Purchased Chilled Water

On-Pk Demand (therms/hr)

On-Pk Cons. (therms)

Purchased Steam

152,925 246,215

Building

Source

Floor Area

BIMception - IPD/BIM Thesis

04/07/2011

MONTHLY ENERGY CONSUMPTION

		Total		88	22			12					
		To		598,688	20,753	7		27,612	17				
		Dec		45,744	2,637	9		486	9				
		Nov		48,736	1,819	Q.		1,077	00				
		Oct		51,455	1,558	4		1,610	9				
	!	Sept		52,321 229	1,127	က		3,343	4				
	ption	Aug		56,438	1,064	က		4,748	16				
	Monthly Energy Consumption	July		53,895	1,060	က	١	5,963	11	Analysis	year ear sar		
By ACADEMIC	ıly Energy	June		52,663 229	1,003	2		4,416	15	Environmental Impact Analysis	2,451,630 15m/year 18,955 gm/year 3,810 gm/year		
By AC	- Month	May		52,975 221	1,142	က		2,962	13	ironment			
		Apr		48,075	1,510	4		1,340	00	En	SO2 NOX		
		Mar	0458	50,548	2,062	o Q		851	7				
		Feb	ing 75% 0458	40,279	2,780	7		361	9		ar) ar)		
		Jan	Existil	45,559	2,992	7		456	9	ption	155,480 Btu/(ff2-year 249,083 Btu/(ff2-year	달	
				ns. (kWh) tand (kW)	n . (therms)	therms/hr)	d Water	. (therms)	therms/hr)	Energy Consumption	155,480 249,083	44,249 ft2	
		Utility	Alternative: 2	Electric On-Pk Gons. (kWh) On-Pk Demand (kW)	Purchased Steam On-Pk Cons. (therms)	On-Pk Demand (therms/hr)	Purchased Chilled Water	On-Pk Cons. (therms)	On-Pk Demand (therms/hr)	Energ	Building Source	Floor Area	

TRACE® 700 v6.2.6.5 calculated at 01:49 PM on 03/21/2011 Alternative - 2 Monthly Energy Consumption report Page 1 of 3

Millennium Science Complex MSC-existing-908075.TRC

Project Name: Dataset Name:

Trane Trace Monthly Energy Report from Trane Trace – Existing Façade 75% Glazing

Alternative - 3 Monthly Energy Consumption report Page 2 of 3 TRACE® 700 v6.2.6.5 calculated at 01:49 PM on 03/21/2011 Millennium Science Complex MSC-existing-908075.TRC

Total 600,973 28,298 21,193 238 45,901 မ္မ 9 48,912 <u>%</u> 1,121 1,674 99 oct 51 3,424 Sept 4 MONTHLY ENERGY CONSUMPTION Aug Monthly Energy Consumption ig ig July Environmental Impact Analys 2,494,522 Ibm/year 19,286 gm/year 3,877 gm/year By ACADEMIC June 1,030 53,198 May \$02 802 NOX 48,244 555 Ap Mar 887 **Existing 80% 0489** Feb 374 Btu/(ft2-year) Btu/(ft2-year) an Energy Consumption 158,201 252,130 On-Pk Demand (therms/hr) On-Pk Demand (therms/hr) On-Pk Demand (kW) On-Pk Cons. (therms) On-Pk Cons. (therms) Purchased Chilled Water Purchased Steam Alternative: 3 Floor Area Building Source Ctility

Trane Trace Monthly Energy Report from Trane Trace – Existing Façade 80% Glazing

Project Name: Dataset Name:

TRACE® 700 v6.2.6.5 calculated at 01:49 PM on 03/21/2011 Alternative - 4 Monthly Energy Consumption report Page 3 of 3

MONTHLY ENERGY CONSUMPTION

By ACADEMIC

				•	Mor	Montrily Energy Consumption	y consum	uond					
Utility	Jan	n Feb) Mar	r Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Alternative: 4		Existing 90% 055	0% 055										
Electric On-Pk Cons. (kWh)	45,987	87 40,745	46 50,762	32 48,586	53,639	53,362	54,709	57,236	53,092	52,023	49,262	46,174	605,576
On-Pk Demand (kW)) 165	5 159	179	181	223	231	239	238	236	216	207	164	239
Purchased Steam													
On-Pk Cons. (therms)	3,117	17 2,878	8 2,186	6 1,645	1,243	1,086	1,136	1,156	1,233	1,711	1,957	2,769	22,115
On-Pk Demand (therms/hr)		7	9	4	က	က	6	33	က	4	9	9	7
Purchased Chilled Water													
On-Pk Cons. (therms)	512	2 400	696	1,515	3,185	4,681	6,259	5,026	3,588	1,801	1,215	561	29,713
On-Pk Demand (therms/hr)	7 (9	00	0	13	15	11	16	15	=	6	7	17
Energy Consumption	umption		ı		nvironme	Environmental Impact Analysis	Analysis						
Building 163,838	838 Btu/	Btu/(ft2-year)				2,583,413 lbm/year	ı/year						
Source 258,	258,434 Btu/(ff2-year)	(ft2-year)		ωZ	SO2 NOX	19,973 gm/year 4,015 gm/year	/ear ear						
Floor Area 44,	44,249 ft2												
				ľ									

Trane Trace Monthly Energy Report from Trane Trace – Existing Façade 90% Glazing

Millennium Science Complex MSC-existing-908075.TRC

Project Name: Dataset Name: BIMception – IPD/BIM Thesis

TRACE® 700 v6.2.6.5 calculated at 03:11 PM on 02/14/2011 Alternative - 4 Monthly Energy Consumption report Page 3 of 3 Total 606,587 25,057 18 245 Dec 188 5 48,936 è 202 933 352 1,387 ö 1,012 Sept 3,002 MONTHLY ENERGY CONSUMPTION Aug 4,346 ťΩ 962 2 ---- Monthly Energy Consumption 5,551 July 992 By ACADEMIC June 4,073 911 2,879 May 1,031 002 002 003 1,134 1,312 Apr 50,877 1,853 Mar 732 3pane 90% 055 Feb 341 145,774 Btu/(ft2-year) 240,415 Btu/(ft2-year) Jan 2,738 425 5 Energy Consumption Millennium Science Complex MSC-4pcm-908075.TRC On-Pk Demand (kW) On-Pk Cons. (therms) On-Pk Cons. (kWh) On-Pk Cons. (therms) On-Pk Demand (therms/hr) Purchased Chilled Water Purchased Steam Alternative: 4 Floor Area Building Project Name: Dataset Name: Electric Utility

Trane Trace Monthly Energy Report from Trane Trace – Alternate Triple Pane Façade 90% Glazing

TRACE® 700 v6.2.8.5 calculated at 03:11 PM on 02/14/2011 Alternative - 3 Monthly Energy Consumption report Page 2 of 3

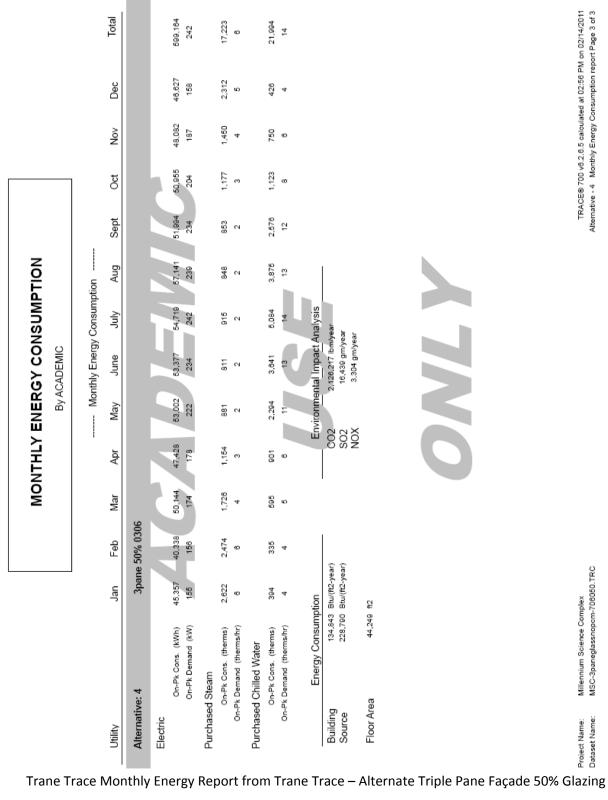
			MO	ITHLY	ENER(By AC	MONTHLY ENERGY CONSUMPTION By ACADEMIC	ISUME	NOIL					
				'	Mon	Monthly Energy Consumption	Consump	tion					
Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Alternative: 3	3par	3pane 80% 0489											
Electric On-Pk Cons. (kWh)	45,550	40,696	50,703,	48,074	53,609	53,652	54,984	57,508	52,764	51,643	48,704	46,339	604,226
On-Pk Demand (kW)	163	162	181	184	228	236	245	243	233	214	196	164	245
Purchased Steam													
On-Pk Cons. (therms)	2,703	2,530	1,815	1,269	985	876	961	922	963	1,304	1,564	2,386	18,278
On-Pk Demand (therms/hr)	9	9	co	ю	2	2	2	2	2	е	4	2	9
Purchased Chilled Water													
On-Pk Cons. (therms)	410	333	688	1,070	2,571	3,946	5,415	4,215	2,885	1,315	878	445	24,171
On-Pk Demand (therms/hr)	S	9	9	7	II.	2	16	41	13	G	7	S	15
Energy Consumption	mption			Ш	nvironmen	Environmental Impact Analysis	Analysis						
Building 142,5	142,537 Btu/(ft2-year)	ar)		000	2 2	2,247,538 lbm/year	year						
	236,924 Btu/(ft2-year)	ar)		SO2 NOX	~ ×	17,377 gm/year 3,493 gm/year	ear ar						
Floor Area 44,2	44,249 ft2												
								١					

Trane Trace Monthly Energy Report from Trane Trace – Alternate Triple Pane Façade 80% Glazing

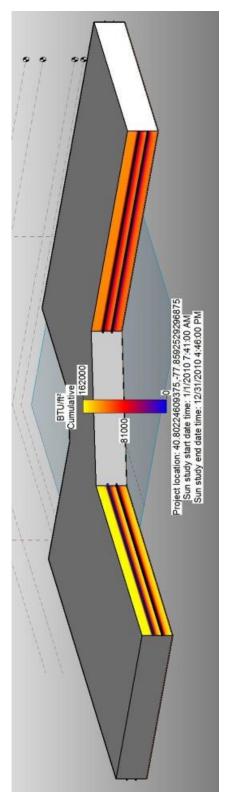
BIMception – IPD/BIM Thesis

MONTHLY ENERGY CONSUMPTION By ACADEMIC	Monthly Energy Consumption	Feb Mar Apr May June July Aug Sept Oct Nov Dec Total	3pane 75% 0458	2 40,634 50,544, 47,619 53,404 53,476 54,782 57,301 52,534 51,469 48,531 48,508 602,542 181 180 184 228 238 245 242 231 212 185 182 245	2,519 1,798 1,248 962 860 950 904 940 1,280 1,543 2,372 18,065 6 4 3 2 2 2 2 3 4 5 6		352 670 1,040 2,519 3,889 5,351 4,151 2,828 1,280 851 440 23,753 4 6 7 11 13 15 14 12 8 7 5 15 15	Environmental Impact Analysis	-year) CO2 2,222,956 lbmlyear SO2 17,187 gmlyear NOX 3,455 gmlyear		
		Jan	35.	45,442	2,688		5 5	nption	140,980 Btu/(ft2-year) 235,185 Btu/(ft2-year)	44,249 ft2	-
		Utility	Alternative: 2	Electric On-Pk Cons. (KWh) On-Pk Demand (KW)	Purchased Steam On-Pk Cons. (therms) On-Pk Demand (therms/hr)	Purchased Chilled Water	On-Pk Cons. (therms) On-Pk Demand (therms/hr)	Energy Consumption	Building 140,9 Source 235,1	Floor Area 44.2	

Trane Trace Monthly Energy Report from Trane Trace – Alternate Triple Pane Façade 75% Glazing

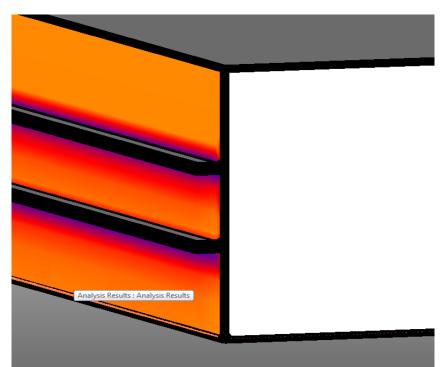

sumption report Page 1 of 3 TRACE® 700 v8.2.8.5 calculated at 02:56 PM on 02/14/2011 Total 601,313 17,867 23,356 15 244 9 160 Dec 435 5 è 9 828 7 Öct Sept 2,774 919 MONTHLY ENERGY CONSUMPTION Aug 4,090 888 4 --- Monthly Energy Consumption July Environmental Impact By ACADEMIC June 3,834 May 2,469 2 8 S02 NOX 1,010 Apr 50,434 Mar 850 3pane 70% 0428 Feb 139,541 Btu/(ft2-year) 233,595 Btu/(ft2-year) Jan Energy Consumption Millennium Science Complex #2 On-Pk Cons. (kWh) On-Pk Demand (kW) On-Pk Demand (therms/hr) On-Pk Cons. (therms) On-Pk Demand (therms/hr) Purchased Chilled Water Purchased Steam Alternative: 2 Floor Area Building Electric Dataset Name: Project Name: Utilit₹

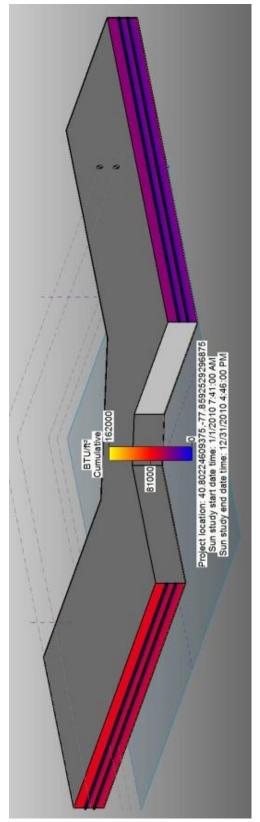
Trane Trace Monthly Energy Report from Trane Trace – Alternate Triple Pane Façade 70% Glazing

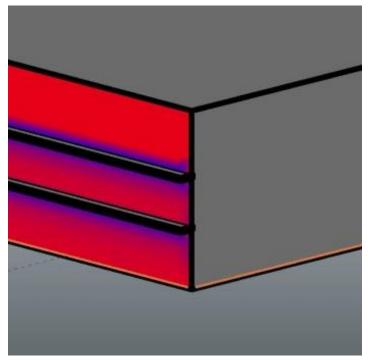

BIMception - IPD/BIM Thesis

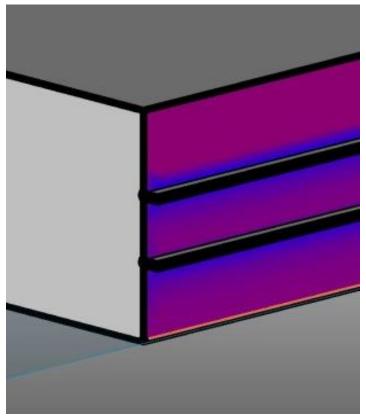
TRACE® 700 v6.2.6.5 calculated at 02:56 PM on 02/14/2011 Total 599,798 22,616 15 243 Dec 159 430 48,241 è 191 786 51,135 Ö 1,183 2,889 Sept MONTHLY ENERGY CONSUMPTION Aug 3,967 4 Monthly Energy Consumption DNC July By ACADEMIC June 2,375 May 907 S02 N0X Apr 954 7 Mar 820 5 3pane 60% 0367 Feb 136,933 Btu/(ft2-year) 230,865 Btu/(ft2-year) MSC-3paneglassnopcm-708050.TRC Jan 394 Energy Consumption Millennium Science Complex On-Pk Cons. (kWh) On-Pk Demand (therms/hr) On-Pk Demand (kW) On-Pk Cons. (therms) On-Pk Demand (therms/hr) On-Pk Cons. (therms) Purchased Chilled Water Purchased Steam Alternative: 3 Floor Area Building Source Dataset Name: Project Name Utility

Trane Trace Monthly Energy Report from Trane Trace – Alternate Triple Pane Façade 60% Glazing

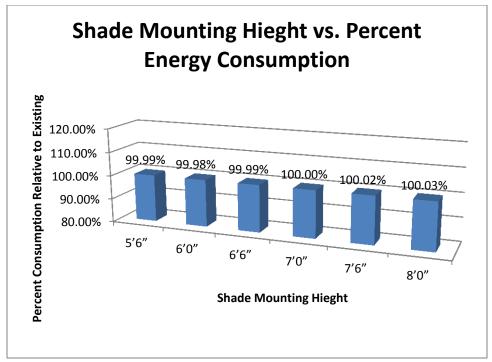

Project Vasari Shading Analysis


Project Vasari Total Cumulative Solar Radiation – South and East Facades

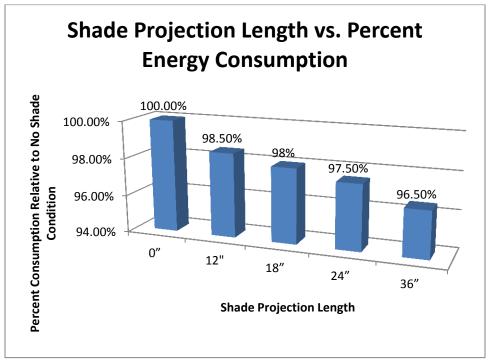

Project Vasari Total Cumulative Solar Radiation –East Facade


Project Vasari Total Cumulative Solar Radiation – South Facade

Project Vasari Total Cumulative Solar Radiation – North and West Facades



Project Vasari Total Cumulative Solar Radiation – North Facade



Project Vasari Total Cumulative Solar Radiation – East Facade

BIMception - IPD/BIM Thesis

Graph of Project Vasari Shading Mounting Height Analysis

Graph of Project Vasari Shading Length Analysis

MONTHLY ENERGY CONSUMPTION
By ACADEMIC

Total 17,759 6 22,514 15 237 2,372 5 Dec 55 430 46,802 δ 1,511 186 781 6 1,175 8 1,241 3 Oct 2,656 12 Sept 2 3,944 Aug 868 2 Monthly Energy Consumption 5,155 Environmental Impact Analysis July 925 16,562 gm/year 51,528 228 3,708 June 830 2 2,359 May 916 2 S02 N0X 1,209 3 953 Apr 48,753, Mar 1,782 5 Lighting Redesign 2,528 6 Feb 336 135,853 Btu/(ft2-year) 227,185 Btu/(ft2-year) 2,683 6 Jan 395 Energy Consumption 달 On-Pk Demand (therms/hr) On-Pk Cons. (kWh) On-Pk Demand (kW) On-Pk Demand (therms/hr) On-Pk Cons. (therms) On-Pk Cons. (therms) Purchased Chilled Water Purchased Steam Alternative: 3 Floor Area Building Source Electric Utility

TRACE® 700 v6.2.6.5 calculated at 03:42 PM on 03/21/2011 Alternative - 3 Monthly Energy Consumption report Page 1 of 1

Millennium Science Complex MSC-daylighting study.TRC

Trane Trace Monthly Energy Report – Lighting Redesign

Energy Analysis of Alternative Duct Systems

Section	Component		<u>Length</u> (ft)	Airflow (cfm)	Width (in)	Height (in)	Hydraulic Diameter (in)	Round Diameter (in)	Max Diameter (in)	Area (in^2)	Velocity (fpm)	Absolute Roughness (ft)
1			4.00	600.00	1.00	1.00	1	12.00	12.00	113.10	7 63.9	0.0100
D	iffuser 0 Diverging Tee	SR4-1 SR5-11									7 63.9 7 63.9	
2	turn) w words		5.00	600.00	14.00	10.00	11.66666667		11.67	106.90	808.2	0.0005
9	0 Rounded Elbow	CR3-1									808.2	
3 Ti	ransition	SR5-13	6.00	600.00	14.00	10.00	11.66666667		11.67	106.90	80 8.2 80 8.2	0.0005
4			10.00	2000.00	18.00	14.00	15.75		15.75	194.83	1478.2	0.0005
9	0 Diverging Tee	SR5-13									1478.2	
Fi	ire Damper	CR9-6									1478.2	
9	0 Rounded Elbow	CR3-1									1478.2	
5			9.00	2000.00	18.00	14.00	15.75		15.75	194.83	1478.2	0.0005
	ransition Diverge	SR4-1									1478.2	
	eating Coil ransition Converge	SR4-1									1478.2	
S	upply Valve	-										
9	0 Rounded Elbow	CR3-1									1478.2	
6			5.00	2000.00	18.00	14.00	15.75		15.75	194.83	1478.2	0.0005
	ire Damper	CR9-6									1478.2	
9	0 Converging Tee	SR5-13									1478.2	
7			40.00	6650.00	30.00	16.00	20.86956522		20.87	342.07	2799.4	0.0005
D	iverging Tap	SR5-11									2799.4	
	iverging Tap	SR5-11									2799.4	
Ti	ransition	SR4-1									2799.4	
8			17.00	8800.00	40.00	16.00	22.85714286		22.86	410.33	3088.2	0.0005
	iverging Tap	SR5-11									3088.2	
	iverging Tap 5 Elbow	SR5-11 CD3-3									3088.2 3088.2	
	S LIBOTE	200										
9 .	I	CD 2 2	9.00	8800.00	40.00	16.00	22.85714286		22.86	410.33	3088.2 3088.2	0.0005
4	5 Elbow	CD3-3									3088.2	
10			9.00	8800.00	40.00	16.00	22.85714286		22.86	410.33	3088.2	0.0005
	ire Damper	CR9-6									3088.2	
9	0 Elbow	CR3-12									3088.2	
11			16.00	8800.00	40.00	16.00	22.85714286		22.86	410.33	3088.2	0.0005
9	0 Elbow	CR3-9									3088.2	
12			8.00	8800.00	40.00	16.00	22.85714286		22.86	410.33	3088.2	0.0005
9	0 Elbow	CR3-9									3088.2	
13			22.00	8800.00	40.00	16.00	22.85714286		22.86	410.33	3088.2	0.0005
	0 Elbow	CR3-9									3088.2	
15			9.00	8800.00	40.00	16.00	22.85714286		22.86	410.33	3088.2	0.0005
	ullhead Tee	SR5-15	5.50		. 5.00				22.00	-10.00	3088.2	5.5553
16			75.00	14855.00	54.00	20.00	29.18918919		29.19	669.17	3196.7	0.0005
	iverging Tap	SR5-13	73.00	14033.00	34.00	20.00	25.10518919		25.19	005.17	3196.7	0.0003
	iverging Tap	SR5-13									3196.7	
	0 Elbow	CR3-9									3196.7	
16			6.00	5000.00	54.00	20.00	29.18918919		29.19	669.17	1076.0	0.0005
	0 Elbow	CR3-9	5.00						22122	555,27	1076.0	
17			4.00	5000.00	E4.00	20.00	29.18918919		29.19	669.17	1076.0	0.0005
	brupt Opening		4.00	5000.00	34.00	20.00	23.10318913		29.19	009.17	1076.0	0.0005
	and the second s											

Example of Hand Static Pressure Loss Calculations Page One – Existing Design

Relative Roughness (e/D)	Kinematic Viscosity (ft^2/s)	Density (lb/ft^3)	Reynolds Number (Re)	Friction Factor (f)	Pressure Drop Per 100ft (in wg per 100ft)	<u>Velocity Pressure</u> (in wg)	Loss Coefficient (Co)	Pressure Drop (in wg)
0.0100000	0.0001580	0.0750000	80584.84938	0.038929176	0.141595			0.0057
01020000	010002000	3107 300 00	0.00 1.0 1.5 00	310 303 23 27 0	01211200	0.036384669	11.2	0.4075
						0.036384669	1.58	0.0575
0.0005143	0.0001580	0.0750000	82887.27365	0.020990578	0.087896			0.0044
0.0003143	0.0001380	0.0730000	62667.27303	0.020330376	0.067650	0.040724546	0.19	0.0077
0.0005143	0.0001580	0.0750000	82887.27365	0.020990578	0.087896			0.0053
0.0005145	0.0001380	0.0750000	82887.27303	0.020990578	0.087896	0.040724546	0.49	0.0200
0.0003810	0.0001580	0.0750000	204659.9349	0.018233722	0.189194	0.400004050	4.40	0.0189
						0.136231856	1.12	0.1526
						0.136231856	0.19	0.0259
						0.136231856	0.19	0.0259
0.0003810	0.0001580	0.0750000	204659.9349	0.018233722	0.189194			0.0170
						0.136231856	1.52	0.2071
								0.3000
						0.136231856	0.12	0.0163
						0.130231030	0.12	0.3000
						0.136231856	0.19	0.0259
0.0003810	0.0001580	0.0750000	204659.9349	0.018233722	0.189194			0.0095
						0.136231856	0.19	0.0259
						0.136231856	0.35	0.0477
0.0002875	0.0001580	0.0750000	513560.5297	0.01624232	0.456141			0.1825
0.0002075	0.0001500	0.0750000	515500.5257	0.01024232	0.430141	0.488574279	0.07	0.0342
						0.488574279	0.07	0.0342
						0.488574279	0.07	0.0342
						31100311273		373 12
0.0002625	0.0001580	0.0750000	620503.3402	0.015826449	0.493872			0.0840
						0.594591215	0.07	0.0416
						0.594591215	0.07	0.0416
						0.594591215	0.07	0.0416
0.0002625	0.0001580	0.0750000	620503.3402	0.015826449	0.493872			0.0444
0.0002023	0.0001360	0.0730000	020303.3402	0.013620443	0.453672	0.594591215	0.07	0.0416
						0.05-051210	0.07	0.0410
0.0002625	0.0001580	0.0750000	620503.3402	0.015826449	0.493872			0.0444
						0.594591215	0.19	0.1130
						0.594591215	0.33	0.1962
0.0000000	0.0004.500	2.2750222	500 500 0400	2.245025442	2 100070			
0.0002625	0.0001580	0.0750000	620503.3402	0.015826449	0.493872	0.594591215	0.11	0.0 7 90 0.0654
						0.354351213	0.11	0.0054
0.0002625	0.0001580	0.0750000	620503.3402	0.015826449	0.493872			0.0395
						0.594591215	0.11	0.0654
-010000000001	0.000,000	1010000000	100000000000	121211222222				
0.0002625	0.0001580	0.0750000	620503.3402	0.015826449	0.493872	0.594591215	0.11	0.108 7 0.0654
						0.594591215	0.11	0.0654
0.0002625	0.0001580	0.0750000	620503.3402	0.015826449	0.493872			0.0444
						0.594591215	1.48	0.8800
-0100000000	0.202000	10100000000	2000000000	NOTON DOCUMENT	(2)200223411			
0.0002056	0.0001580	0.0750000	820226.9202	0.015006419	0.392905	0.637006050	0.31	0.2947
						0.637086058		0.1975
						0.637086058	0.31	0.1975
						0.637086058	0.11	0.0701
0.0002056	0.0001580	0.0750000	276077.7247	0.016507002	0.048964			0.0029
						0.072175998	0.11	0.0079
0.0002056	0.0001580	0.0750000	276077.7247	0.016507002	0.048964			0.0020
						0.072175998	1	0.0722
								4.81
								4.51

Example of Hand Static Pressure Loss Calculations Page Two – Existing Design

04/07/2011

TRACE® 700 v6.2.6.5 calculated at 11:17 AM on 03/09/2011 Alternative - 2 Monthly Energy Consumption report Page 1 of 3

MONTHLY ENERGY CONSUMPTION

By ACADEMIC

					- Monti	Monthly Energy Consumption	Consum	ption	ļ				
Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Alternative: 2	ũ	Existing Static - 481	ıtic - 481										
Electric On-Pk Cons. (kWh) On-Pk Demand (kW)	h) 45,487 N) 156	7 40,469	50,384	47,729	53,169	53,284 233	54,585	56,988	52,149 229	51,193 205	48,293	46,816	600,535
Purchased Steam On-Pk Cons. (therms)	2,	2,	1,745	1,187	914	826	919	985	688	1,222	1,484	2,328	17,496
On-Pk Demand (therms/hr)	hr) 6	9	4	က	2	2	2	2	2	က	4	9	9
Purchased Chilled Water	<u></u>												
On-Pk Cons. (therms)	s) 409	346	652	666	2,440	3,800	5,242	4,040	2,733	1,226	817	447	23,153
On-Pk Demand (therms/hr)	hr) 4	4	9	7	11	13	15	4	12	60	7	4	15
Energy Consumption	sumption			EM	ironmen	Environmental Impact Analysis	Analysis	ľ					
Building 138 Source 231	138,184 Btu/(ff2-year) 231,943 Btu/(ff2-year)	2-year) 2-year)		SO2 NOX		2,178,897 Ibm/year 16,846 gm/year 3,386 gm/year	year ear ar						
Floor Area 44	44,249 ft2												

Trane Trace Monthly Energy Report – Existing Design

Millennium Science Complex MSC-Existing_-2_2.TRC Project Name: Dataset Name:

404 | Page

TRACE® 700 v6.2.6.5 calculated at 11:17 AM on 03/09/2011 Alternative - 3 Monthly Energy Consumption report Page 2 of 3

MONTHLY ENERGY CONSUMPTION

By ACADEMIC

					- Month	Monthly Energy Consumption	Consum	ption	ı				
Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Alternative: 3	Decr	rease 2 In	rease 2 Inches - 660	0									
Electric On-Pk Cons. (kWh) On-Pk Demand (kW)	45,667	40,561	50,560	47,902	53,338 224	63,457 233	54,765	57,167 240	52,322 229	51,372 205	48,466	47,030	602,608
Purchased Steam On-Pk Cons. (therms) On-Pk Demand (therms/hr)	2,594	2,439 6	1,718	1,174	914	826	918	861	889	1,209	1,465	2,286	17,291 6
Purchased Chilled Water On-Pk Cons. (therms) On-Pk Demand (therms/hr)	436	363	9	1,064	2,555	3,937	5,383	4,183	2,857	1,300	872	475	24,126 15
Energy Consumption	nption			Em	ironment	Environmental Impact Analysis	Analysis	1					
Building 140,081 Source 233,499	140,081 Btu/(ff2-year) 233,499 Btu/(ff2-year)	ear) ear)		SO2 NOX		2,208,817-lbm/year 17,077 gm/year 3,433 gm/year	year ear sar						
Floor Area 44,249 ft2	12												

Trane Trace Monthly Energy Report – Decrease Duct Size 2 Inches

Millennium Science Complex MSC-Existing_-2_2.TRC

Project Name: Dataset Name:

MONTHLY ENERGY CONSUMPTION By ACADEMIC

Total 17,625 22,675 15 241 ø 46,668 Dec 2,352 5 159 431 48,191 Š 1,496 786 51,088 205 1,183 330 oct Sept 2,660 889 56,883 Aug 866 Monthly Energy Consumption 54,480 July Environmental Impact Analysi 923 16,738 gm/year 3,364 gm/year 53,182 June 233 828 53,054 May 223 914 \$02 NOX ,627 181 1,195 960 Αp Increase 2 Inches - 375 ,763 4 Mar 625 Feb 2,506 336 ₉ Btu/(ft2-year) Btu/(ft2-year) 156 Jan 2,661 396 **Energy Consumption** ဖွ 4 137,298 231,209 On-Pk Demand (therms/hr) On-Pk Demand (therms/hr) On-Pk Cons. (therms) On-Pk Cons. (therms) On-Pk Cons. (kWh) Purchased Chilled Water Purchased Steam Alternative: 4 Floor Area Building Source Electric Utility

Trane Trace Monthly Energy Report – Increase Duct Size 2 Inches

Alternative - 4 Monthly Energy Consumption report Page 3 of 3 TRACE® 700 v6.2.6.5 calculated at 11:17 AM on 03/09/2011

Millennium Science Complex MSC-Existing_-2_2.TRC Project Name: Dataset Name:

406 | Page

MONTHLY ENERGY CONSUMPTION

By ACADEMIC

Total 17,711 22,332 14 598,547 241 ø 46,610) ၂ 2,368 159 421 48,127 <u>}</u> 505 767 51,022 1,235 1,157 8 oct 2,615 12 Sept 889 Aug 867 2 Monthly Energy Consumption July Environmental Impact Analysi 93 16,660 gm/year 3,349 gm/year June 233 829 May 223 \$02 802 NOX ,563 33 936 Apr 176 908 Mar Increase 4 Inches Feb 2,522 330 Btu/(ft2-year) Btu/(ft2-year) 2,678 an 388 **Energy Consumption** 136,663 230,706 On-Pk Demand (therms/hr) On-Pk Demand (therms/hr) On-Pk Demand (kW) On-Pk Cons. (therms) On-Pk Cons. (therms) Purchased Chilled Water Purchased Steam Alternative: 2 Floor Area Building Source Electric Utility

Trane Trace Monthly Energy Report – Increase Duct Size 4 Inches

407 | Page

Alternative - 2 Monthly Energy Consumption report Page 1 of 3 TRACE® 700 v6.2.6.5 calculated at 11:40 AM on 03/09/2011

Millennium Science Complex MSC-4_6_8.TRC Project Name: Dataset Name:

4/0//2011

MONTHLY ENERGY CONSUMPTION

By ACADEMIC

Total 22,099 598,016 241 ဖွ Dec 46,518 415 159 48,085 1,510 Š 755 6 50,978 1,139 8 Ö 2,585 12 Sept 889 Aug 867 2 Monthly Energy Consumption Environmental Impact Analysis
CO2 2.147,907 Ibm/year
SO2 16,606 gm/year
NOX 3,338 gm/year 54,368 July 932 241 June 2 83 May 914 223 ,520 1,204 Apr 921 50,171 Mar ,781 597 5 Increase 6 Inches Feb 2,532 326 Btu/(ft2-year) Btu/(ft2-year) Jan 2,689 381 **Energy Consumption** 136,219 230,342 On-Pk Demand (therms/hr) On-Pk Demand (therms/hr) On-Pk Cons. (kWh) On-Pk Demand (kW) On-Pk Cons. (therms) On-Pk Cons. (therms) Purchased Chilled Water Purchased Steam Alternative: 3 Floor Area Building Source Electric Utility

Trane Trace Monthly Energy Report – Increase Duct Size 6 Inches

TRACE® 700 v6.2.6.5 calculated at 11:40 AM on 03/09/2011 Alternative - 3 Monthly Energy Consumption report Page 2 of 3

408 | Page

Millennium Science Complex MSC-4_6_8.TRC

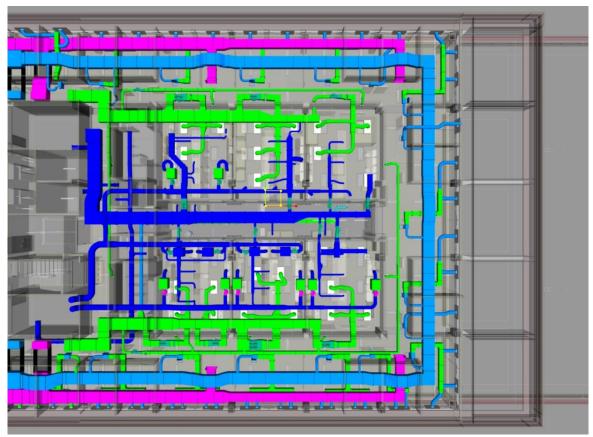
Project Name: Dataset Name:

04/07/2011

MONTHLY ENERGY CONSUMPTION

By ACADEMIC

					- Month	Monthly Energy Consumption	Consum	ption	ı				
Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	g	Nov	Dec	Total
Alternative: 4	Inch	ncrease 8 Inches	ches										
Electric On-Pk Gons. (kWh) On-Pk Demand (kW)	45,266	40,343	50,140	47,490	52,912 223	53,045 233	54,309	56,743	51,910 228	50,947	48,054	46,437	597,596
Purchased Steam On-Pk Cons. (therms) On-Pk Demand (therms/hr)	2,697	2,540	1,786	1,207	914	831	933	869	889	1,241	1,514	2,386	17,806
Purchased Chilled Water													
On-Pk Cons. (therms) On-Pk Demand (therms/hr)	378	323 4	5 5	910	2,282	3,630 13	6,110 14	3,866	2,563 11	1,125 8	746	410	21,934 14
Energy Consumption	iption			Env	ironment	Environmental Impact Analysis	Analysis						
Building 135,904 Source 230,080	135,904 Btu/(ff2-year) 230,080 Btu/(ff2-year)	ear) ear)		SO2 NOX		2,142,948 lbm/year 16,568 gm/year 3,330 gm/year	year ear sar						
Floor Area 44,249 ft2	42												
					6								


Trane Trace Monthly Energy Report – Increase Duct Size 8 Inches

TRACE® 700 v6.2.6.5 calculated at 11:40 AM on 03/09/2011 Alternative - 4 Monthly Energy Consumption report Page 3 of 3

Millennium Science Complex MSC-4_6_8.TRC

Project Name: Dataset Name:

Modeling of Duct Systems

Navisworks Model of Existing Duct Systems in Material Science Third Floor Wing

Complete Energy Analysis of All Design Alternatives

			MOM	ITHLY	ENER(MONTHLY ENERGY CONSUMPTION By ACADEMIC	SUMP	NOIT					
				i	Mon	Monthly Energy Consumption	Consump	tion]			
Utility	Jan	Feb	Mar	Apr	Мау	June	July	Aug	Sept	Oct	Nov	Dec	Total
Alternative: 3	Trip,	60%, LTG,	Trip, 60%, LTG, and Duct Redesigns	Redesigns									
Electric On-Pk Cons. (kWh) On-Pk Demand (kW)	43,117	38,424	47,644,	45,022	49,528	49,369	50,307	52,482	48,305	48,110	45,642	44,356 142	562,305 208
Purchased Steam On-Pk Cons. (therms) On-Pk Demand (therms/hr)	2,737	2,578	1,817	1,227	916	832	934	868	893	1,257	1,538	2,422	18,019 6
Purchased Chilled Water	00	ç	900	o o	c c	0	200	0	903	6	100	909	147
On-Pk Demand (therms/hr)	0 4	3.28 4	8 4 4	9 9	10	3,532	3,072	3,826	1,336		8 9	50 4	14
Energy Consumption	mption			Ш	nvironmen	Environmental Impact Analysis	Analysis						
Building 133,17 Source 222,17	133,173 Btu/(ft2-year) 222,177 Btu/(ft2-year)	ar) ar)		C02 S02 N0X		2,099,890 lbm/year 16,235 gm/year 3,263 gm/year	year sar ar						
Floor Area 44,24	44,249 ft2												
				0									
Project Name: Millennium Science Complex Dataset Name: Complete Energy Savings.trc	omplex vings.trc								TRAC	E® 700 v6.2 e - 3 Month	.6.5 calculate ly Energy Cor	TRACE® 700 v6.2.6.5 calculated at 08:38 PM on 04/03/2011 Alternative - 3 Monthly Energy Consumption report Page 1 of 1	on 04/03/2011 rt Page 1 of 1

Trane Trace Monthly Energy Report Including All Design Alternatives – Triple Pan Glazing, 60% Glazing, Lighting Redesigns, and Duct Size Increase

BIMception – IPD/BIM Thesis

04/07/2011

APPENDIX G: Structural

Façade Redesigns

Existing Designs

Self Weight Calculation

	width(in)	thickness(in)	length(in)	Vol(cf)	pcf	Weight
Top Return	22.75	6	264	20.9	150	3.13
Bott Return	22.75	6	264	20.9	150	3.13
Front Panel	5	125.25	264	95.7	150	14.35
Side Returns	16.75	125.25	8	9.7	150	1.46
Brick	141.75	2	264	43.3	120	5.20
			Totals	7.1	CY	27.26

Wind Load Calculations

Panel Dimensions/

Spans

length: 22 ft width: 10.44 ft

length-to-width ratio ≥ 2

- assume one-way span between top and bottom flanges.

Minimum Thickness- One ft. strip

$$Fr = 7.5sq(f'c) = 530.33 psi$$

Wind Pressures = w

windward: 18.45 psf leeward 31.87 psf

w= 51.0 plf

Max Moment:

 $wl^2/8 = 694.4$ lb-ft

Max Stress at extreme fiber

1)
$$f = MC/I$$
 2) $f = Fr$ 3) $I = MC/Fr$

4)
$$C = t/2$$
 3) $I = bt^3/12$

Allowable Thicknesses: Assuming Uncracked Section

Thickness (in)	I (in4)	C (in)	Fr (psi)	ØM _{cap} (lb-ft)	Mu(SW)	Mu(wind)
2	8	1	530	318	858	694
3	27	1.5	530	716	1096	694
4	64	2	530	1273	1335	694
4.25	77	2.125	530	1437	1394	694
5	125	2.5	530	1989	1573	694
6	216	3	530	2864	1811	694

^{*}Note: Moment due to wind and self-weight are separate cases

Minimum Reinforcing: ACI 318-08, 10.5.1

 $As_{min} = 0.0018*bwd$

Thickness (in)	As _{min} (in2)	Reinforcing
2	0.037	6x6 W2.1/2.1
3	0.056	6x6 W2.9/2.9
4	0.074	6x6 W4.0/4.0
5	0.108	6x6 W6.3/6.3
6	0.130	6x6 W7.4/7.4

Deflection Check

- assume simply supported one-foot section of panel

Thickness			$\Delta = 5 wl^4/(384 El)$	Δ _{all =}	
(in)	E (psi)	I (in4)	(in)	I/360	
2	4030508.7	8	2.64E-04	0.261	ok
3	4030508.7	27	7.82E-05	0.261	ok
4	4030508.7	64	3.30E-05	0.261	ok
5	4030508.7	125	1.69E-05	0.261	ok
6	4030508.7	216	9.78E-06	0.261	ok

Top/Bottom Return- Stress Check

- Lateral bending due to wing using entire c-section

Wu = Mu =	301.2 18221	lb/ft lb-ft	
beff <	41.75 68.625 143		
$A_{top} =$ $A_{bott} =$ $A_{front} =$ $N.A. =$	131 131 251 5.87	in2 in2 in2 in	-within beff -from front of panel
$I_{tot} =$ $f = Fr =$ $c =$ $M_{cap} =$	12421 530.3 16.88 32526	in4 psi in lb-ft	

Final Redesign- 60% Window to Wall Ratio

Self Weight Calculation- 60%

Con troigne cancalation Co70						
	width(in)	thickness(in)	length(in)	Vol(cf)	pcf	Weight
Top Return	14	6	264	12.8	150	1.93
Bott Return	14	5.5	264	11.8	150	1.76
Front Panel	6	141.25	264	129.5	150	19.42
Brick	157.25	2	264	48.0	120	5.77
			Totals	7.5	CY	28.88

%increase 6.15%

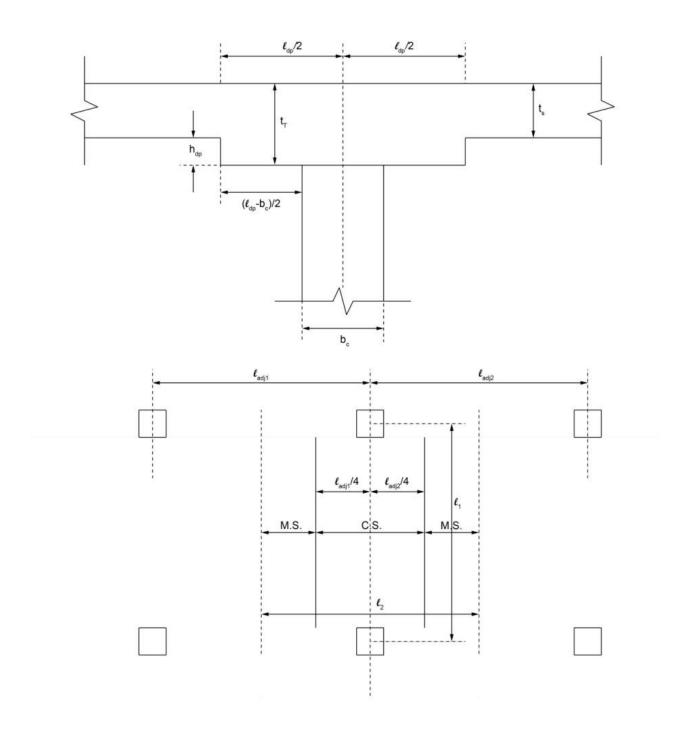
Allowable thickn						
		С				
Thickness (in)	I (in4)	(in)	Fr (psi)	M _{cap} (lb-ft)	Mu(SW)	Mu(wind)
2	8	1	530.33	318.2	1091.101	883.1
3	27	1.5	530.33	715.9	1394.185	883.1
4	64	2	530.33	1272.8	1697.268	883.1
5	125	2.5	530.33	1988.7	2000.352	883.1
5.5	166.375	2.75	530.33	2406.4	2151.894	883.1
6	216	3	530.33	2863.8	2303.436	883.1

Κ

Window-	to-Wall Ratio Results			
Ratio (%)	Minimum Thickness (in)	M _{cap} (lb-ft)	M _{sw} (lb-ft)	M _{wind} (lb-ft)
50	6	2864	2819	1081
60	5.5	2406	2152	883
70	4.5	1611	1477	706
80	4	1273	1058	550

Plenum Investigation

Waffle Slab Design


	<u>Direct Design Requirements</u>
ОК	1) 3 or more continuous spans
ОК	2) Panel Proportions of 2:1 long side to short side or less
OK	3) Regular Spacing; Adjacent spans do not differ by more than 1/3 the longer span
ОК	4) Uniformly distributed gravity load LL/DL < 2 (unfactored)
ОК	5) Maximum column offset: 10% of width of panel

I ₁ =	22	ft.
I ₂ =	22	ft.
I _{adj} =	22	ft.
No. Spans:	5	
Adjacent		
Span (ft.)	22	
Live Load	150	psf
Dead Load	148.8	psf
Column		
Offset (%)	0	

f' _c (psi)	4000
I _{adj1} (ft.)	22
I _{adj2} (ft.)	22
column strip	
(ft.)	11
middle strip	
(ft.)	11
l _{dp} (in.)	90
w _{dp} (in.)	90
t _s (in.)	4.5
h _{dp} (in.)	8
t _⊤ (in.)	12.5
h _c (in.)	24
b _c (in.)	24
E _{cb} (psi)	0
E _{cbDP} (psi)	0
E _{cs} (psi)	4E+06
I _b (in.^4)	3840
I _s (in.^4)	1002.4
A _{CS DP} (in.^2)	1314
A _{CS slab} (in.^2)	594

Self Weight

area	484	SF
slab depth	4.5	in
pan depth	8	in
concrete den	150	pcf
# pans	2 9	
pan size	30	in
rib width	6	in
joist spacing	36	in
total weight	118.8	psf

ACI Table 9.5c - Minimum Thickness Without Interior Beams (ft)							
	Without Drop Panels			With Drop Panels			
	Exterior Panels		Interior	Exterior Panels		Interior	
Fy (ksi)		With	Panels	Without	With	Panels	
	Without	Edge		Edge	Edge		
	Edge Beam	Beam		Beam	Beam		
40	0.621	0.569	0.569	0.569	0.513	0.513	
60	0.683	0.621	0.621	0.621	0.569	0.569	
75	0.732	0.661	0.661	0.661	0.603	0.603	

M ₀ =	483.73	k*ft.
α_f =	0.000	
l ₂ /l ₁ =	1	
$\alpha_{f}^{*} _{2}/ _{1}=$	0.000	

C _{dp} =	18423	β _t =	0.00
C _{slabCS} =	3923	β _t =	0.00
C _{slabMS} =	3923	β _t =	0.00

Interior Span

Negative Factored Moment: 314.42 k*ft.

Positive Factored Moment: 169.30 k*ft.

End Span

	1	2	3	4	5
			Without Beams		
(ft*k)			Between Int. Supports		
(it it)	Exterior	Beams		With	Exterior
	Edge	Between all	Without	Edge	Edge Fully
	Unrestrained	supports	Edge Beam	Beam	Restrained
Int. Negative					
Factored					
Mom.	362.80	338.61	338.61	338.61	314.42
Positive					
Factored					
Mom.	304.75	275.72	251.54	241.86	169.30
Ext. Negative		·			
Factored					
Mom.	0.00	77.40	125.77	145.12	314.42

Column Strip Moments(K-ft)

Int. Negative					
I ₂ /I ₁ =	0.5	1	1	0	2
$\alpha_{f}^{*}I_{2}/I_{1}=0$	0.75	0.75	0.75	0.75	0.75
0.000	0.75	0.75	0.75	0.75	0.75
α _f *l ₂ /l ₁ ≥1	0.9	0.75	0.75	1.05	0.45

	1					
Ext. Negative						
l ₂ /l ₁ =		0.5	1	1	0	2
	$\beta_t=0$	1	1.00	1	1.00	1
$\alpha_{f}^{*}I_{2}/I_{1}=0$	0.00	1.00	1.00	1.00	1.00	1.00
	β _t ≥2.5	0.75	0.75	0.75	0.75	0.75
0.000	β_t =	1.00	1.00	1.00	1.00	1.00
	$\beta_t=0$	1	1.00	1	1.00	1
α _f *I ₂ /I ₁ ≥1	0.00	1.00	1.00	1.00	1.00	1.00
	β _t ≥2.5	0.9	0.75	0.75	1.05	0.45

Pos. Moment					
I ₂ /I ₁ =	0.5	1	1	0	2
$\alpha_{f}^{*} _{2}/ _{1}=0$	0.6	0.60	0.6	0.60	0.6

Design Moment Summary

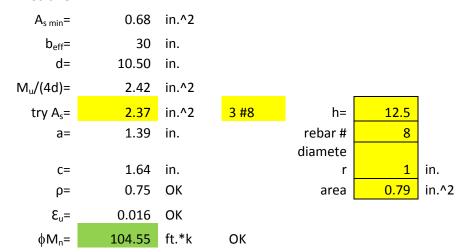
		Int.	Ext.	
ft.*k	Moments:	Negative	Negative	Positive
Interior Span	M.S.	78.61		67.72
interior Span	C.S.	235.82		101.58
Futorior Coop	M.S.	84.65	0.00	100.62
Exterior Span	C.S.	253.96	125.8	150.92

90 in

BIMception – IPD/BIM Thesis

04/07/2011

Column Strip Reinforcement


Interior Span

Int. Negative

A _{s min} =	1.49	in.^2			162	in
b _{eff} =	66	in.		b _{eff} ≤	336.00 66	in
d=	10.5	in.			66	in
$M_u/(4d)=$	5.61	in.^2				
try A _s =	6.32	in.^2	8 #8	h=	12.5	<- adjust for b _{eff}
a=	1.69	in.		rebar#	8	
				diamete		
c=	1.99	in.		r	1	in.
ρ=	0.91	OK		area	0.79	in.^2
ε _u =	0.013	ОК				
$\phi M_n =$	274.59	ft.*k	ОК			

bw=

Positive

BIMception – IPD/BIM Thesis

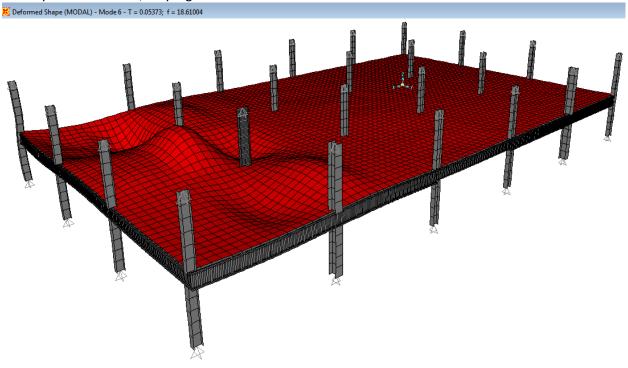
04/07/2011

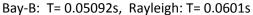
Middle Strip Reinforcement

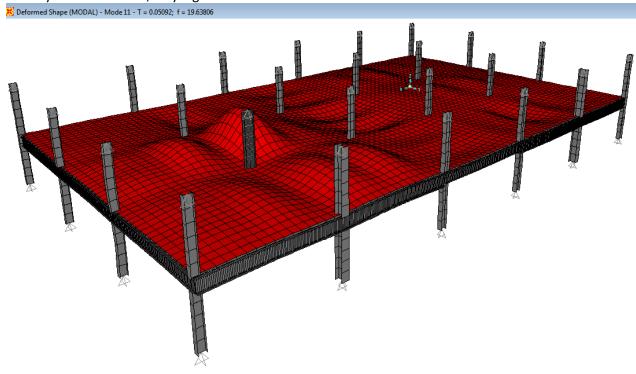
Interior Span

Int. Negative

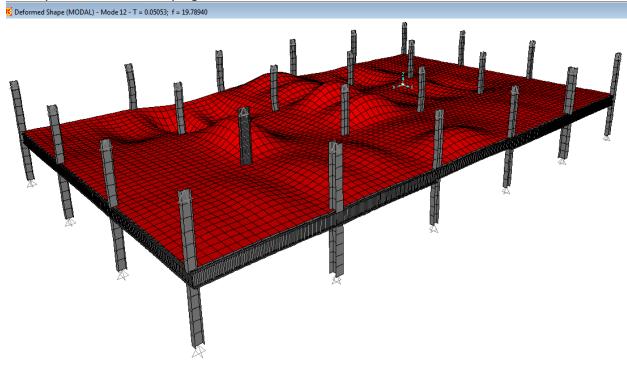
$A_{s min} =$	0.54	in.^2				
b _{eff} =	24	in.	- 4*rib w	idth		
d=	10.5625	in.				
$M_u/(4d)=$	1.86	in.^2		ı ı		
try A _s =	1.76	in.^2	4 #7	h=	12.5	<- adjust for b_{eff}
a=	1.29	in.		rebar#	7	
C=	1.52	in.		diameter	0.875	in.
ρ=	0.69	OK		area	0.44	in.^2
ϵ_u =	0.018	ОК				
$\phi M_n =$	78.53	ft.*k	FAIL			

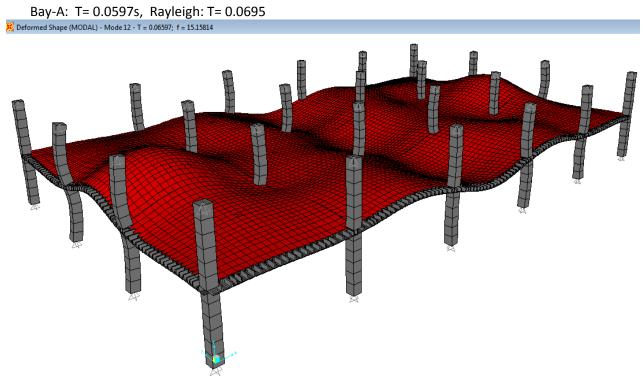

Positive


A _{s min} =	0.81	in.^2					
b _{eff} =	36	in.	- joist spacing				
d=	10.56	in.					
$M_u/(4d)=$	1.60	in.^2					1
try A _s =	1.76	in.^2		4 #7	h=	12.5	
a=	0.86	in.			rebar#	7	
c=	1.01	in.			diameter	0.875	in.
ρ=	0.46	OK			area	0.44	in.^2
ε _u =	0.028	ОК					
$\phi M_n =$	80.24	ft.*k		OK			

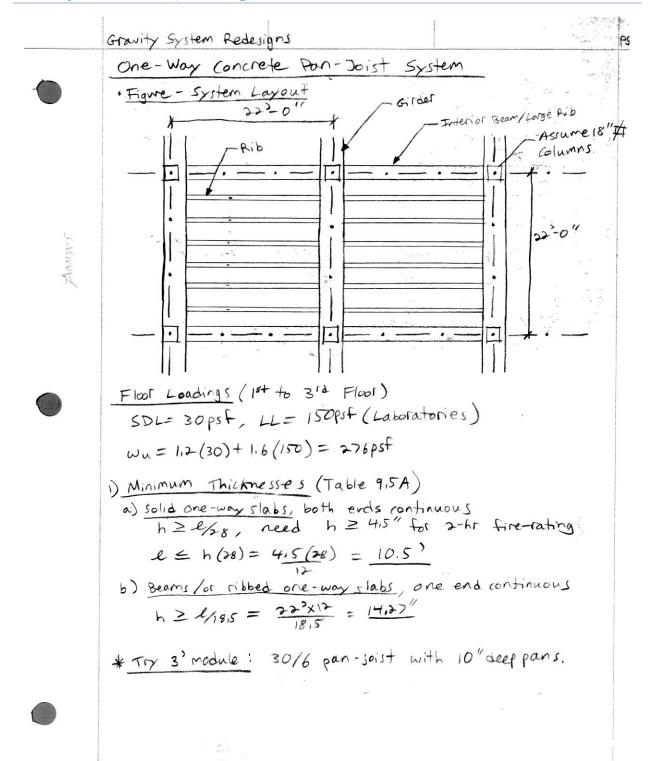

Existing Conditions Vibration Modeling

Modal Analysis Results


Bay-A: T=0.05373s, Rayleigh: T=.0639s



Bay-C: T= 0.05053s, Rayleigh: T= 0.0649s



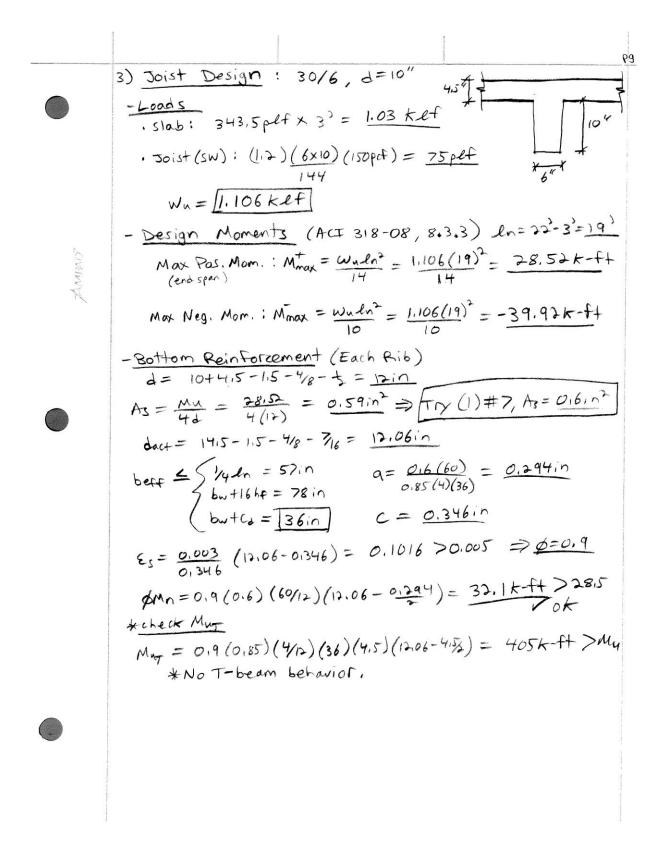
Waffle Slab Vibration Modeling

Modal Analysis Results Example

One Way Concrete Pan-Joist Designs

19

- reinforced @ h/s


$$\omega_{N} = 276 psf(1') = 276 pef$$

 $\omega_{N} = 276 psf(1') = 276 pef$
 $\omega_{N} = 276 psf(1') = 276 psf(1) = 67.5 pef/ff$
 $\omega_{N} = 276 psf(1') = 276 psf(1) = 67.5 psf(1) = 67$

· Positive - interior spans: Waln (ACT 318-08, 8:3:3) Mtmax = 343,5plf, A+ (30)2 = 134.2 16-F+

· Negative -interior spans: wuln? (en = 10ft) Mmax = -343,5p4/f+ (32) = -178,9 16-f+

- Reinforcement . Minimum: 0.0018(415)(17) (17) = 0.0972in2 -use 1)#3 @12"=0.11in=/f+ $a = \frac{Asty}{0.85 + Cb} = \frac{0.11(60)}{0.185(4)(12'/4)} = 0.162 \text{ in, } c = \frac{9}{0.85} = 0.19 \text{ in}$ $E_{s} = \frac{0.003}{0.119} (2.25 - 0.119) = 0.098 > 0.005 \implies 6 = 0.19$

 $\phi_{\text{Mnslab}} = 0.9 (0.11) (60ksi/p) (2.25 - 0.162) = 1.07 k-ft$ >> 0.18 k-ft

Pg.

- Top Reinforcement

$$A_S = \frac{MN}{4d} = \frac{39.92}{4(12.25)} = 0.815 \text{ in}^2 = 0.815 \text{ in}^2 = 0.815 \text{ in}^2$$

$$a = \frac{1.00(60)}{0.85(4)(6)} = 2.94in c = 3.46in$$

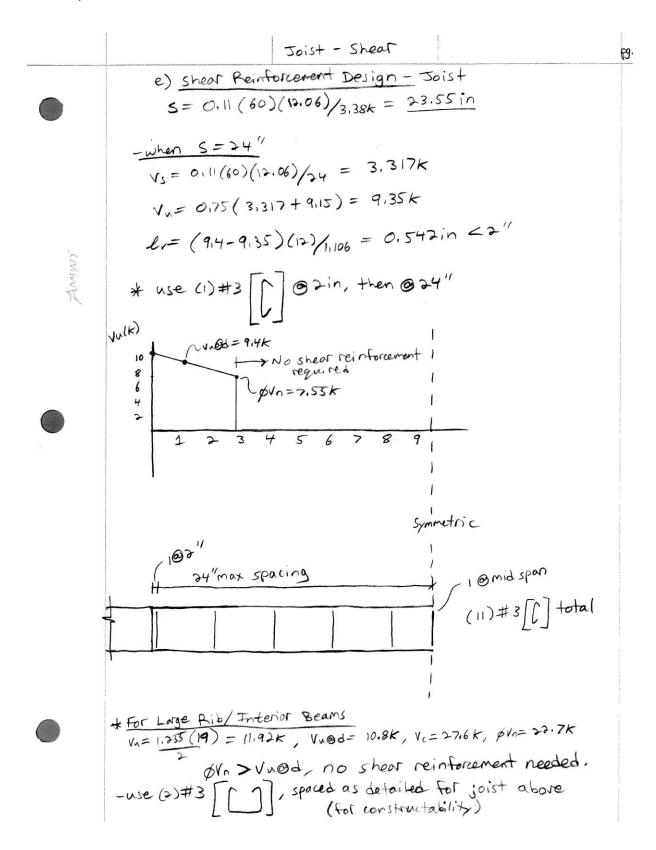
$$\varepsilon_{s} = \frac{0.003}{3.46} (12.25 - 3.46) = 0.0076 > 0.005 =) \phi = 0.9$$

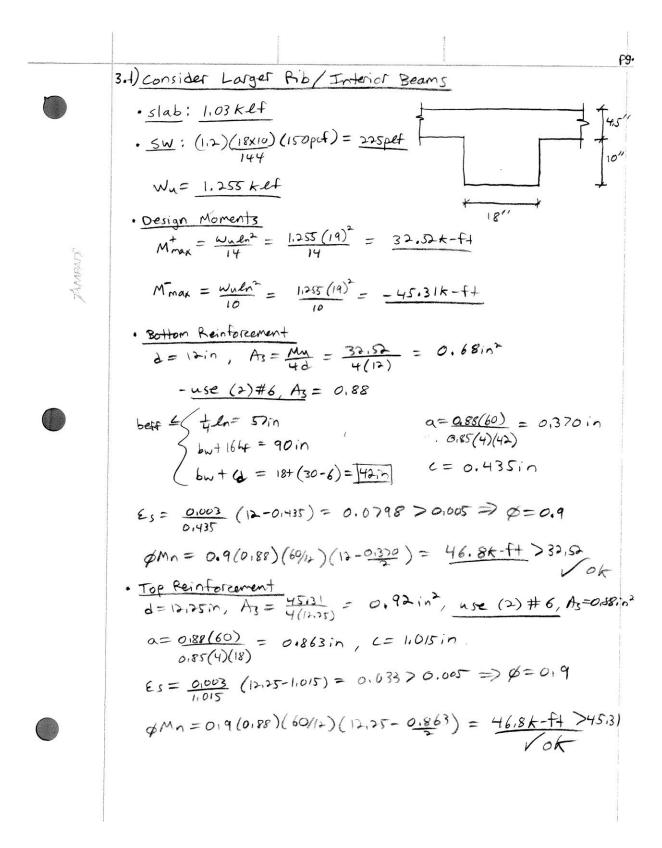
$$\phi_{Mn} = 0.9(1.00)(69/1)(12.75 - 2.94) = 48.5k-ft>39.9$$

4) Joist Shear Design

a) Determine shear strength
$$w/o$$
 stirrups $V_c = 2\lambda\sqrt{F_c}$; $bwid = 2(10)\sqrt{4000}$ (6)(12.06) = $9.15K$ $9/n = 1.19/c = 1.1(0.75)(9.15k) = $7.55k$$

b) Vu @d

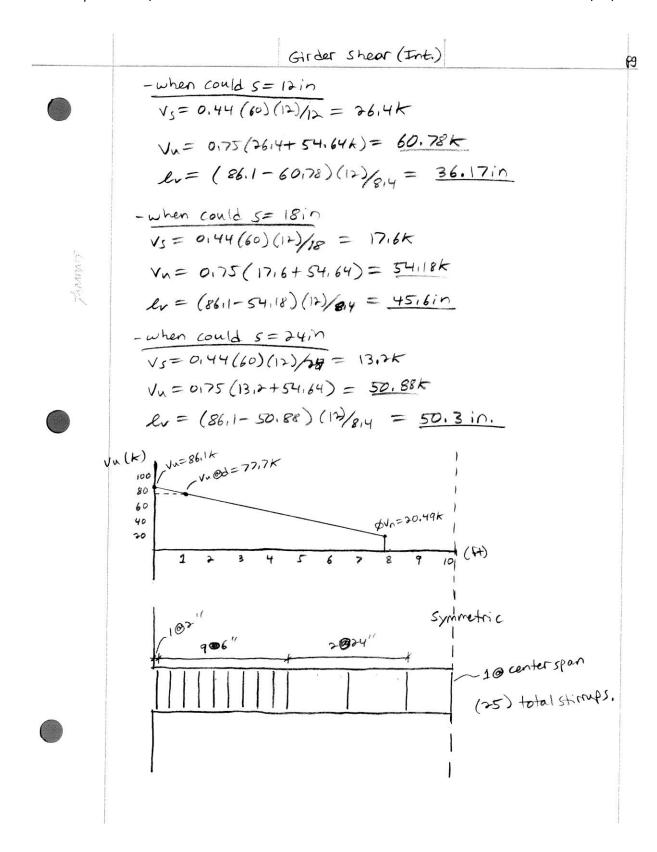

-what distance:
$$x$$
, is $\phi v_n \Rightarrow 7.53 = 10.51 - $\frac{x}{12}(1.106)$
 $x = 32.1 \text{ in}$$


c) shear strength required by reinforcement

$$V_S = \frac{V_W}{\phi} - V_C = \frac{914}{0.75} - 9.15 = 3.38 K$$

d) Minimum Shear Reinforcement

Armin = max
$$\begin{cases} 0.75\sqrt{4000} & (6)(6)/60i000 = 0.0285 \text{ in}^2 \\ 50(6)(6)/60i000 = \boxed{0.03in^2} \end{cases}$$



19

P9 Bottom Reinforcement 1 = 14.5 - 1.5 - 4/p - + = 12in A3 = Mu = 252.15 = 5.25in2 = use (6)#9 A3 = 6.00in2 - Exterior span bmin = 2(115) +2(4/8)+6(8)+6(1133) = 1875in < 36 in Vok best $\leq (14(2015)(12) = 61.5 \text{ in})$ q = .6.0(60) = 1.72 n 36 + 16(4.5) = 108 in c = 2.02 in 36 + 19(12) = 264 in c = 2.02 in $\varepsilon_s = \frac{0.003}{2.02} (12-2.02) = 0.0148 > 0.005 \Rightarrow \phi = 0.9$ \$ Mn = 0,9 (6,0) (69/2) (12-1.72) = 300.8 + Ft > 252 Vok * use (6)#9 in Exterior span Vok * use (5) #9 in Interior span, Mu = 232.8 k-ft > 220 -Top Reinforcement $A_5 = \frac{27816}{4/12} = 5.8in^2 \implies use \frac{(6)\#9}{-Ext.Fale,15tInt.supp.}$ best = $\frac{36in}{a=(6)(60)} = 2.94in, c = 3.46in$ $E_{S} = \frac{0.003}{3.46} (12-3.46) = 0.0074 > 0.005 \Rightarrow \emptyset = 0.9$ pmn=019(6)(69/2)(12-2194)= 284.3 K-f+ > 278 Vok * use (6)#9@ Ext. Face, 1st Int. Supp. Vok * use (4) #9 @ Int. Face, Ext. Supp., Mu= 198k-ft > 150 /sk * we (6)#9 @ All other Int. Faces, Jok

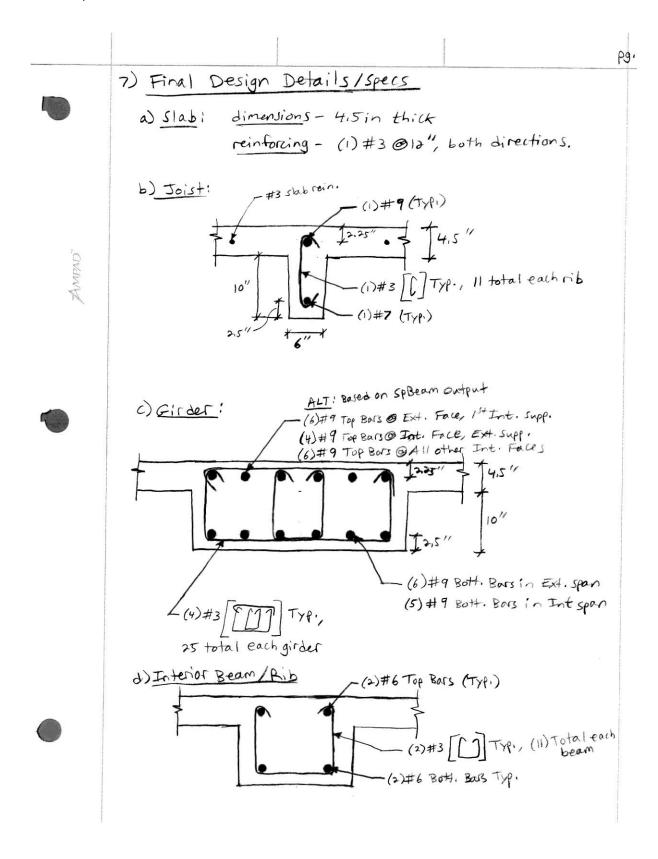
```
P3.7
5.1) Gilder Design: (Exterior Frame)
     Wu = 4.95kef
   - Design Moments : en = 20,5)
     . positive Moments
       -End span: 148.64-f+
       - Int. span: 130. K-ft
    . Negative Moments
      - Int. Face, Ext. Sup: - 130k-f+
        M(9") = -130+ 4.95 x (22 x) + (208-130) x/22
               = -87.9x-f+
      - Ext. Face, 1st Int. supp: -208K-ft
         M(9") = -165.9K-ft
     -All other Int. Faces: - 1894-ft
        M(9'') = -110t-f+
 -Bottom Peinforcement
  d = p_1 in, A_3 = \frac{148.6}{(4)(12)} = 3.1 in^2 \Rightarrow use (5) #7, <math>A_3 = 3.0 in^2
   a = 0.86 lin, pmn=0.9(3)(60/12)(12-0.861) = 158K-F+>148
   - use (5) #7 in Ext. span. and Int. Span
- Top Reinforcement
d= 12.25 in, As= 166
(4)#7, As= 3.6 in2
 a= 1,76in, &Mn=0,9(3,6)(60/12)(12,25-1,76/2)=-184K-ft>166
 -use (4) #7, Int. Face, Ext. Supp.
 - use (6) #7, Ext. Face, 1st Int. Supp.
 - use (4) #2, All other Int. Faces
```

19 6) Girder Shear Design (Interior Frame) a) Determine shear strength w/o stirrups Vc = 2/1/2 · bu.d = 2(10) 1/4000 (36)(12) = 54.64k 0.50 Vn = 0.5 (0.75) (54.64k) = 20.49 K b) Vu@d Vu= wuln = 8.4klf (2015') = 86.1k Vu@d= 86.1k - 12 (8.4) =]77.7k] -what distix, is pun = 20.49 = 86.1k - x (8.4) c) shear strength required by reinforcement $Vsreq = \frac{Vu}{p} - Vc = \frac{7717}{0.75} - 54.64 = \frac{48.96k}{0.75}$ 4 \(\frac{100}{100}\) (36)(12) = 109.3k > Vsreg => Smax = Min \(\frac{4}{5} = \frac{6}{10}\) d) Minimum Shear Reinforcement Avmin = max \$ 0.75 N4000 (36×6)/60,000 = 0.17112 \$50(36)(6)/60,000 = 0.1812 - use (2) #3 [] at 6 in as max reinforcing $Av = 0.11x2 = 0.22in^2 > 0.18$ e) shear reinforcing design S= 0.22(60)(12)/48,96K = 3,23" <4" X DNW * Need more shear reinforcement -use (4) #3 [[]]] at 6 in as max reinforcing AJ = 0.11×4 = 0.44 5= 0.44(60)(12)/48,96 = 6,47 in = 6in

29

Girder Shear (Ext.)
6.1) Girder Shear Design (Exterior Frame)

a)
$$V_c = 54.64k$$
, $\phi V_n = \frac{30.49k}{11+115} + \frac{35(6)(19)}{11+115} = \frac{4.52k}{11+115}$


$$\omega_{\text{u}} = (343.5)(11+115) + \frac{75(6)(19)}{(2)(2015)} = \frac{4.5 \text{ kef}}{(2)(2015)}$$

S.w. = 450plf

b)
$$V_{n} = \frac{4.95(20.5)}{2} = \frac{50.74k}{2}$$
, $V_{n} = \frac{45.79k}{2}$
- what dist: X_{n} is $pV_{n} = \frac{20.49}{2} = \frac{50.74 - \frac{1}{12}(4.95)}{2}$

c)
$$Vsreg = \frac{45.79}{0.75} - 54.64 = \frac{6.41}{6.41}$$

e) Shear Reinforcing Design

$$5 = 0.22(60)(12)/6.41 = 24.7 \text{ in}$$

7.1) Bar Development Lengths, Anchorage (Girder-Interior) a) Exterior span (#9) -Positive Rein. cut-offs: le=47,46=53in · center Span: (6)#9 at bottom * Must continue (4)#9 into supports 6"(Ext.) - For (4)#9, a= 1.15in, &Mn= 205.65 K-f+ 205.65 = 8.4× (2015-x) - 353+ (353-220.63)×/2015 0 = -412x2 + 8611x - 538.65+ 6,46x n=4,7x2+ 92,56x-558,65 x = 4.93 Ft = 60in (from C.F.R) XQ = [2015 - 4.93] 12 = 64in -> (right from Mid) 205.65= 814x (2015-x)-220163+ (353-220163)x/20,5 $0 = 412x^2 + 92.56x - 426.28$ x = 3,91 = 47in (from C.F.L) XL = [2015 - 3,91] 12 = 76,08m=> 72in (Left from Mid) -Negative Rein. cut-offs: la = 61.7ds = 70in Left: (4)#9 => No cut-offs Right: (6)#9 - For (4)#9, a = 1,96in, omn = 202. k-ft 202 = 814x (2015-x)-353 + (353-220163) x/2015 0 = 412x2 + 8611x - 555 x = 4,9) = 58,8 in = 59 in < ld = use 70 n from C.F.

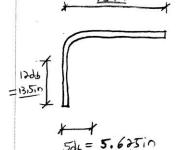
pg.10.2

b) First Interior Span:
- Positive Rein Cut offs: le = 53in, (5) #9 cut to (4)#9
- Positive Rein Cut offs: le = 53in, (5) #9 cut to (4)#9
- Negative Rein Cut offs: le = 62in

Left: (6)#9, Right: (6)#9
- For (4)#9, a = 1.96in, pMn = 202 t - ft

202 = 814x (2015-x) - 254

0 = 4.2x² + 86.1x - 456


x = 4.37 ft = 52.44" < 62", use 62" from C.F.

* Left and right

7,2) Anchorage At Exterior Columns (All Girder Ends: Int./Ext.)

Lah = (0.02 Ve fr/Affe) db = 0.02(1.0)(60,000) (g) = 19db

-assume 90° hook with cover on bar extension beyond
hook = 2 in, use 0.7 lah = 13.3 db = 15 in

- Note: For Full Details of Anchorage and Development Length refer to AntoCAD Details.

Pg.10.3

7,3) Bar Development Lengths, Anchorage (Girder-Exterior)

- For (2)#7,
$$a = 0.344$$
in, $a = 63.87k-f+$

$$0 = -2.48x^2 + 50.74x - 193.87 + 3.8x$$

$$0 = -2.48x^2 + 54.54x - 193.87$$

$$0 = -2.48x^2 + 54.74x - 194.56$$

$$0 = -7.48x^2 + 54.74x - 272.56$$

Pg.10.

b) Interior span (#7): la = 42in

Positive: center span: (5)#7 at bottom

cut to (2)#7, continue to supports

- For (2)#7, a=0,344in, pm=63,87 k-ft

63,87= 4,95x (20,5-x)-110

0=-2.48x² + 50,84x-173,87

x=4,34ft, 20,5-4,34=5,91ft=71in>ed

(Left and Right)

- Negative Rein: la=54in

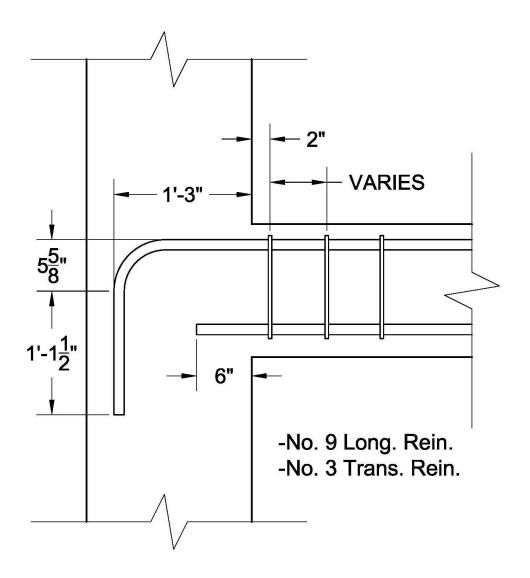
- For (2)#7, a=0,588in, pm=64,54k-ft

64,54=4,95x (20,5-x)-110

0=-2,48x² + 50,84x-174,54

x=4,36ft,=53in < la>= 0,586 in (Left and Right)

(Left and Right)


Interior Span

- 2'-10" -5'-2" Interior Girder- Rebar Cut-off/ Development Lengths 6# (9) 6# (9) (4) #8 (4) #8 5-4 **Exterior Span** (4) #9 (4) #9 6# (9) 6# (9) 6'-5" (4) #8 (4) #8 6# (9) (4)#8

Exterior Girder- Rebar Cut-off/ Development Lengths 2# (9) (2) #7 (4) #7 (2) #7 7-9" 3-6" **Exterior Span** (2) #1 (2) #7 (2) #7 (2) #1 4'-6" — (2) #7 (2) #2

Interior Span

Girder Anchorage Into Typical Column

Pg

8) Column Designs

- For atypical gravity column consider stenderness a) calculate K using nomograph (10,10,1)

-For 1st story columns, the = 0,

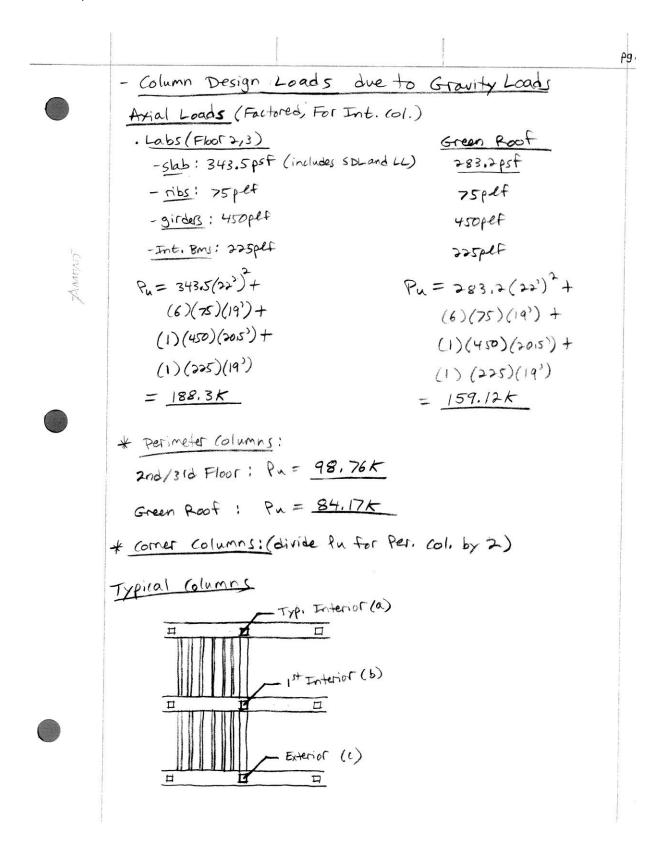
$$V = 4 E I / e = 2 I col / e c$$

$$I(0) = \frac{18(18)^3}{12} = 8748in4$$

Igm = 6665 in4 (includes slab within beff)

$$\psi_{g} = \frac{2(8748)/20^{3}}{2(6665)/22^{3}} = 1,44$$

$$r = 0.3(18) = \frac{5.4 \text{ in}}{5.4/2} = \frac{0.64(18.79)}{5.4/2} = 26.72$$


$$34-12 (M_1/M_2) \leq 40$$
 $\frac{M_1}{M_2} = \frac{0}{43,3k+1} = 0$

26.72 \le 34 \le 40 (assuming frames are braced against side sway)

$$\frac{-Non-Sway Moments}{Sns} = \frac{Cm}{1-\frac{Pn}{0.75}Rc} \ge 1.0 , Rc = \frac{\pi^2 ET}{(k Lu)^2}$$

- refer to flexural design for design moments.

BIMception - IPD/BIM Thesis

P9

- Column Design Moments Due to Interior Beams ** ** Summary of moments from previous calculations.

· Beam Moments (Girder Moments will cancel for Int. locations)
Wu= 1,255 Kef, ln= 19>

Ext. Supp., Int. Face: Mu = -28.32 K.ft

1st Int. Supp, Ext. Face: Mu = - 45.31k-ft

All other Int. Supp: Mu= -41,19k-ft

- Design Typical 1st Story Columns (Interior Frame)

a) Typ. Interior Column

 $P_{N} = 18813(2) + 159, 12 = 536k$

Mu = 0, All interior moments cancel.
- spColumn Design: (4)#9 bors, p=1,235%, #3 ties

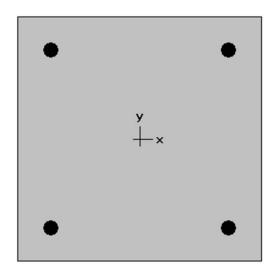
b) 1st Interior Column

Pu= 536K, Mu=-45.31+41,19=-4.12K-f+

- SpColumn Design: (4) #9 bas, p=1,235%, #3 ties

c) Exterior Column

 $P_{\text{N}} = 98.76(2) + 84.17 = 281.7k$


 $M_{\rm H} = -28.32$

- Sp Column Design: (4) #9 bors, p=1,235%, #3 ties

* Column size were chosen based on the interior beam width of 18". This was dictated by the left over width due to fitting a 3ft pan-Joist Module. For constructability issues if smaller columns were to be used, 18" columns will be used although slightly over designed. 16" columns are a minimum size for the axial loads given.

spColumn Output- Column Design

- 1st Floor TYP. Column Col. Grids: 13-20, and N-BB.
- -All Columns are 18 x 18 with (4) No. 9
- -Provide #3 Rectangular Ties/Hoops @ 18in along entire column height.
- Controlling factor for design is the 1% minimum reinforcing ratio

18×18 in 1.23% reinf.

MATERIAL:

f'c = 4 ksi

Ec = 3605 ksi

fc = 3.4 ksi

Beta1 = 0.85

fy = 60 ksi

És = 29000 ksi

SECTION:

=======

Ag = 324 in^2

 $1 \times = 8748 \text{ in}^4$

 $ly = 8748 in^4$

Xo = 0 in

Yo = 0 in

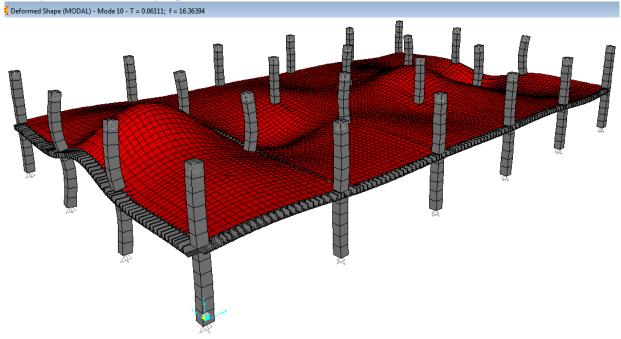
REINFORCEMENT:

4 #0 bass @ 1 2250/

4 #9 bars @ 1.235%

 $As = 4 in^2$

Confinement: Tied


Clear Cover = 1.88 in

Min Clear Spacing = 11.99 in

Pan-Joist Vibration Model

Modal Analysis Results Example

Bay-A: T=0.06111, Rayleigh: T= 0.0695s

Lateral System Redesigns

Existing Wind Calculations

MWFRS Wind Analysis (ASCE7-05)- MSC Complex

Location: University Park, PA

Topography: Campus Setting. Buildings to North, North West, West, and South.

Mostly open terrain to East with small obstructions

Bulding Dimensions: L-Shaped. North Wing outside dimension = 550 ft,

West Wing outside dimension = 440 ft.

Building Heights (From Pollock Road): 85'-6" ft to Roof level,

66 ft to Mechanical Penthouse, 48 ft to Third Floor, 30 ft to second floor,

10 ft to first floor.

Roof Step Backs: Roof steps to: North Wing- Steps Down to Mech.

Penthouse level at 220 ft, Third Floor at 330 ft, and Second Floor at 440 ft.

- Same on West Wing except the last step down does not exist

Framing: Primarily Steel Framing- W-Flange columns, beams, and cross-bracing.

The floor system is a composite beam and concrete slab on metal deck.

Cladding: Alternate horizontal strips of precast concrete panels and exterior

glazing for each floor of elevation. Assume no debris resistant glazing.

Roof Top: Primary Roof consists of EPDM Walkway Pads and EODM Fooring

Membrane tapered. The lower roofs are all green roofs. All roofs flat.

a) Basic Wind Speed (Fig. 6-1): V = 90mph

b) Exposure: (6.5.2.3) Exposure B: Urban/Suburban, wooded, numerous closely

spaced obstructions- single family dwellings and larger.

c)Building

Construction Type IIIB, Occ. Cat: B with special Occ. areas of H-5

d) Velocity Pressure: qz = 0.000256kzkztkdV2I

kz (Table 6-3) = 15 20 39 57 75.75 87 (ft) 0.575 0.624 0.755 0.842 0.913 0.950

BIMception – IPD/BIM Thesis

04/07/2011

	20.27
I (Table 6-1) =	1.15
$V^2 = 90^2 =$	8100
kd (Table 6-4) =	0.85
kzt (Fig. 6-4) =	1

, assume homo-topo

psf

, buildings

qz = 20.27 *kz

*depends on height

e) Gust Effect

Factor:

(Rigid Structure T< 1.0s, refer to Seismic Analysis)

f) Internal Pressure Coefficient:

0.18

(assume Enclosed Building)

g) Design Wind Pressures:

$$P = qGCp - qi(Gcpi)$$

q = qz (windward, depends on height)

q = qh (leeward, taken at height-h)

G = 0.85

qi = qh (windward, leeward, and roofs for enclosed buildings)

GCpi = +/-0.18

Cp values

determined:

i) Roof Cp:

(Fig. 6-6 cont'd)

angle < 10deg., h/L

< 0.5

Hor. Dist. From		Ср	
Wind. Edge		(1st)	Cp (2nd)
0-h/2, h/2-h		-0.9	-0.18
h-2h		-0.5	-0.18
> 2h		-0.3	-0.18

j) MWFRS Pressures

P = qGCp - qi(Gcpi)

Terrain Exposure Constants

Exposure	α	Zg(ft)	â	b^	α-	b-	С
В	7.00	1200.00	0.14	0.84	0.25	0.45	0.30

l (ft)	8	Zmin (ft)
320.00	0.33	30.00

Windward Walls

Height	qz	G	Ср	qzGCp
z= 15ft	11.65	0.85	0.8	7.92
z= 20ft	12.65	0.85	0.8	8.60
z= 39ft	15.31	0.85	0.8	10.41
z= 57ft	17.06	0.85	0.8	11.60
z= 75.75ft	18.50	0.85	0.8	12.58
z= 87ft	19.25	0.85	0.8	13.09

Leeward Walls

ECCVAIA VVAIIS				
	qh	G	Ср	qhGCp
Wind- short side	19.25	0.85	-0.2	-3.27
Wind-Long Side	19.25	0.85	-0.5	-8.18
Side Walls	19.25	0.85	-0.7	-11.45

Roof- First Value

Length	qh	G	Ср	qzGCp
0-h	19.25	0.85	-0.9	-14.73
h-2h	19.25	0.85	-0.5	-8.18
>2h	19.25	0.85	-0.3	-4.91

Roof- Second Value

	qh	G	Ср	qzGCp
all lengths	19.25	0.85	-0.18	-2.95

Wall Areas					
					Leeward-Short
	Windwar	d	Leeward-	Long Side	Side
Height	E/W(SF)	N/S(SF)	E/W(SF)	N/S(SF)	E/W=N/S(SF)
z= 0-15ft	6398	8335	4638	6571	1760
z= 15-20ft	2136	2778	1549	2195	587
z= 20-39ft	8444	10141	6215	7911	2229
z= 39-57ft	7564	7564	5452	5452	2112
z= 57-75.75ft	5753	5753	3553	3553	2200
z= 75.75-87ft	2740	2740	1420	1420	1320

Floor Loads by Area					
	Windwar	d	Leeward-	Long Side	Leeward-Short Side
Floor Level	E/W(K)	N/S(K)	E/W(K)	N/S(K)	E/W=N/S(SK)
First Floor	52.2	67.9	38.0	53.8	5.8
Second Floor	87.9	105.5	50.8	64.7	7.3
Third Floor	87.7	87.7	44.6	44.6	6.9
Mech. Pent.	72.4	72.4	29.1	29.1	7.2
Roof	35.9	35.9	11.6	11.6	4.3

Final Story Forces	у	Х				
	Load		Shear		Moment	
					E/W(K-	N/S(K-
Floor Level	E/W(K)	N/S(K)	E/W(K)	N/S(K)	ft)	ft)
First Floor	153	204	867	968	1534	2040
Second Floor	234	284	713	764	7009	8523
Third Floor	223	223	480	480	10694	10694
Mech. Pent.	174	174	257	257	11473	11473
Roof	83	83	83	83	7087	7087
	867	968	37798	39817		

Components an	Components and Cladding		Wall Panels		p = q(GCp) - qh (GCpi) (lb/ft2)		
Windward					Area 4/5		
Floor Level	Wall Area	h	qz	qh	GCp	Gcpi	P(psf)
First Floor	440	20	12.65	19.25	0.638	0.18	11.53
Second Floor	418	39	15.31	19.25	0.651	0.18	13.43
Third Floor	396	57	17.06	19.25	0.665	0.18	14.81
Mech. Pent.	412.5	75.75	18.50	19.25	0.655	0.18	15.58
Roof	214.5	87	19.25	19.25	0.778	0.18	18.45

Leeward					Area 4	Area 5			
Floor Level	Wall Area	h	qz	qh	GCp	GCp	Gcpi	P4(psf)	P5(psf)
First Floor	440	20	12.65	19.25	-0.725	-1.100	0.18	-17.42	-24.64
Second Floor	418	39	15.31	19.25	-0.734	-1.137	0.18	-17.60	-25.35
Third Floor	396	57	17.06	19.25	-0.743	-1.173	0.18	-17.77	-26.05
Mech. Pent.	412.5	75.75	18.50	19.25	-0.736	-1.146	0.18	-17.64	-25.52
Roof	214.5	87	19.25	19.25	-0.819	-1.476	0.18	-19.23	-31.87

Existing Seismic Calculations

Design Seismic Base Shear (ASCE7-05)

V= CsW 12.8-1

W: Effective Weight- 12.7.2 Cs: Seismic Coeff.- 12.8.1.1

Cs= Min
$$S_{ds}/(R/I)$$
 > 0.01 $S_{D1}/(T*R/I)$ $S_{D1}*TI/(T^2*R/I)$

In addition, where S1 > 0.6

 $Cs > 0.5S_1/(R/I)$ Eq. 12.8-6

Fa,Fv- Table 11.4-1, 11.4-2

Ss, S1- USGS website, using long./lat. of site location

R: Response Mod. Coeff.- Table 12.2-1

I: Importance Factor- 11.5

Occ. Cat.- Table

1-1

T = Min Cu*Ta
$$S_{ds}$$
 = 2/3(S_{MS}) S_{MS} = Fa*Ss S_{D1} = 2/3(S_{M1}) S_{M1} = Fv*S1

BIMception – IPD/BIM Thesis

04/07/2011

Design Seismic Base Shear- MSC Complex, University Park, PA

Latitude: 40.802 Site Class: D Longitude: -77.86 Occ. Cat: III

> Ss = 0.147 g (Site Class B) S1= 0.049 g (Site Class B)

Fa= 1.6 Fv= 2.4

 S_{MS} = 0.2352 g S_{DS} = 0.1568 g S_{M1} = 0.1176 g S_{D1} = 0.0784 g

Lateral Force Resisting System: Ordinary Steel Concentrically Braced Frames

R= 3.25 I= 1.25

SDC: B (No Limitations)
TI= 6 s (Fig. 22-15)

Design Base Shear

Ta= 0.512 s Cs= Min 0.0603 = 0.0346 Cu= 1.7 0.0346 Cu*Ta= 0.871 s 0.38 0.2386

Building Weight Calculation (above ground)

Frame Weights

	Columns	Beams	Braces	
	Weight(K)	W (K)	# braces	W (K)
1st Floor	503.31	770.26	32	358.35
2nd Floor	440.87	889.46	72	806.28
3rd Floor	325.36	1011.99	95	1063.84
Mech.	234.69	762.95	88	985.45
Roof	59.93	481.01	24	268.76
		Total	311	3482.68

Frame Weights

	Columns	Beams	Braces	
	Weight(K)	W (K)	# braces	W (K)
1st Floor	503.31	770.26	32	358.35
2nd Floor	440.87	889.46	72	806.28
3rd Floor	325.36	1011.99	95	1063.84

04/07/2011

Mech.	234.69	762.95	88	985.45
Roof	59.93	481.01	24	268.76
		Total	311	3482.68

Precast Panels- Unit Weight						
	t (in)	width (ft)	length(ft)	pcf	W(K)	
Returns(x2)	6	2.00	unit/ft	150	unit/ft	
Side Ret(x2)	6	2.00	-	150		
Level-2	7	11.72	1811.33	150	2264.30	1.25
Level-3	7	9.72	1650.00	150	1770.12	1.07
Mech.	7	9.72	1496.00	150	1604.91	1.07
Roof	7	9.72	968.00	150	1038.47	1.07
				Total=	6677.79	~15% BLDG

1.25 k/ft 1.07 k/ft 1.07 k/ft 1.07 k/ft
 W(K)

 Roof
 1331

 Pent
 1890

 Third
 2213

 Second
 2590

 First
 0

Revised Loads

8024 ~23%BLDG

Superimposed Dead Load	5
------------------------	---

- apoint poor			
	psf	Area (SF)	W (K)
Roof	25	33202.82	830.07
Pent	25	40174.27	1004.36
Third	30	53742.49	1612.27
Second	30	64818.42	1944.55
Green Roofs	120	63584.00	7630.08
	Total	255522.00	13021.33

Floor Weights (slabs, beams, columns, façade)

in factor								
	slabs(K)	columns(K)	beams(K)	braces(K)	façade(K)	W(K)	Mass	Area(ft2)
Level-2	4186.6	472.09	889.46	582.3126	1331	7461.03	1.73E-06	77440
Level-3	4670.6	383.12	1011.99	935.0597	1890	8890.80	1.98E-06	80828
Mech.	6258.12	280.02	762.95	1024.646	2213	10538.70	2.94E-06	64372
Roof	1771.44	147.31	481.01	761.4857	2590	5751.22	2.85E-06	36300
					Total	32642		258940

V= CS*W

Cs= 0.0346

W= 45663 K

V= 1581 K

04/07/2011

Seismic Load Distribution- Existing Steel

X/Y-Direction Loading

T=	0.871	S
k=	1.185	
V _b =	1581	kips

i (Level)	Story Height h _i (ft)	Effective Height h (ft)	Story Weight w (K)	w*h ^k	C _{vx}	Lateral Force $f_i(K)$	Story Shear V _i (K)	Moment M _i (K-ft)
Roof	19.5	75.5	5751	968094	0.309	488	488	36849
Mech.	18.0	56.0	10539	1244874	0.397	628	1116	35146
3	18.0	38.0	8891	663207	0.211	334	1450	12706
2	20.0	20.0	7461	260056	0.083	131	1581	2622.1
Totals	75.5	75.5	32642	3136231	1.000	1581	1581	87323

Impacts of Concrete Pan Joist/Girder System on Weights

Typical Weight per Bay

New Concrete System

	Width(in)	Depth(in)	Length(in)	lb/cf	Count	Weight(K)
slab	264	4.5	264	150	1	27.2
Ribs	6	10	228	150	6	7.1
Interior						
Bm	18	10	228	150	1	3.6
Girders	36	10	264	150	1	8.3
Columns	18	18	240	150	1	6.8

Total = 52.9 K/bay

Existing Steel System

	W-Shape	Unit \	Veight	Length(ft)	Width(ft)	Count	Weight(K)
slab		48.8	psf	22	22	1	23.6
Beams	18x76	76	plf	22		2	3.3
Girders	24x84	84	plf	22		1	1.8
Columns	14x62	62	plf	20		1	1.2

Total = 30.1 K/bay

Weight Change per Floor

Floor	No. Bays Weight Difference(K)		New Weight(K)	Mass
Level-2	65	1486	8947.01	2.076E-06
Level-3	40	914	9805.26	2.180E-06
Mech.	15	343	10881.62	3.038E-06
Roof	0	0	5751.22	2.847E-06

Total 35385

V= CS*W

Cs= 0.0346

W= 48406 K

V= 1676 K

Seismic Load Distribution- New Concrete

X/Y-Direction Loading

T=	0.871	S
k=	1.185	
V _b =	1676	kips

i (Level)	Story Height h _i (ft)	Effective Height h (ft)	Story Weight w (K)	w*h ^k	C _{vx}	Lateral Force $f_i(K)$	Story Shear V _i (K)	Moment M _i (K-ft)
Roof	19.5	75.5	5751	968094	0.294	492	492	37161
Mech.	18.0	56.0	10882	1285381	0.390	654	1146	36597
3	18.0	38.0	9805	731421	0.222	372	1518	14131
2	20.0	20.0	8947	311850	0.095	159	1676	3171.0
Totals	75.5	75.5	35385	3296746	1.000	1676	1676	91059

Check of Existing Lateral System

Base Shear Contributions- Seismic Loads

NS-Load Direction

	N3-LOAG DITECTION				
Frame	Total	Col	Brace	Wall	
Α	0	0	0	0	
В	395.0119	5.6586	30.3466	359.0067	
С	0.0457	0.0457	0	0	
D	0.1928	0.1928	0	0	
E	352.1036	5.5897	31.4656	315.0483	
F	0.132	0.0335	0	0.0985	
G	0	0	0	0	
Н	0.429	0.429	0	0	
J	0.48	0.48	0	0	
K	687.2726	4.686	6.271	676.3156	
L	11.2206	0.031	0	11.1896	
М	6.6218	0.2942	0	6.3276	
N	0.1065	0.0102	0	0.0963	
Р	0.0675	0.0675	0	0	
Q	0.6474	0.6474	0	0	
R	0.5752	0.0027	0	0.5725	
S T	0	0	0	0	
Т	0.0023	0.0023	0	0	
U	0.0178	0.0178	0	0	
V	106.8865	1.8679	0	105.0186	
W	0.022	0.022	0	0	
Χ	0.0005	0.0005	0	0	
Υ	0.0003	0.0003	0	0	
Z	0	0	0	0	
AA	5.6249	0.5613	5.0637		
ВВ	0	0	0	0	
Radial	0.7654	0.7654	0	0	

Total 1568.2263 Applied 1581 % diff 0.81 **EW-Load Direction**

Frame	Total	Col	Brace	Wall
1	0.4053	0.1355	0	0.2698
2	393.6461	5.2453	13.1252	375.2756
3	0.0374	0.0374	0	0
4	0.2228	0.2228	0	0
5	316.6231	4.9592	28.0517	283.6122
6	4.6241	0.0207	0	4.6034
7	0	0	0	0
8	0.1356	0.1356	0	0
9	0.3765	0.3765	0	0
10	666.1471	4.8363	5.5675	655.7433
11	7.4544	0.4752	6.9792	0
12	3.2325	0.0622	3.1703	0
13	0.0201	0.001	0	0.0191
14	0.0285	0.0285	0	0
15	83.525	2.2138	0	81.3112
16	0.07	0.07	0	0
17	0.00833	0.00833	0	0
18	0.00078	0.00078	0	0
19	0.0012	0.0012	0	0
20	15.7909	0.1521	0	15.6388
21	0	0	0	0
Radial	21.9897			21.9897

Total 1514.34 Applied 1581 % diff 4.22

Check for Torsional Irregularity

Roof

Quake (0,0) (2640,0)

East- 0.041235 0.067931

West 0.054583 1.244545 Torsional Irregularity avg. max/avg.

Quake (0,2640) (0,0)

North- 0.067717 0.042757 South 0.055237 1.225936 Torsional Irregularity

Mech. Penthouse

(0,0) (3960,0) 0.027331 0.027255 0.027293 1.001392 OK avg. max/avg. (0,3960) (0,0) 0.026746 0.028852 0.027799 1.037879 OK

Check of Wall on Frame 15

Check Concrete

Wall

$$Vu = 81 \text{ K}$$
 $Iw = 22 \text{ ft}$
 $Vc = 481 \text{ K}$
 $hw = 20 \text{ ft}$
 $Ø = 0.75$
 $tw = 18 \text{ in}$

Check Columns

Vu = 2.21 K

ØVn W14X99 206 K W14X99 206 K

Total = 412 > **Vu, OK**

04/07/2011

Check of Wall on Frame 10

Check Concrete Wall

 Vu =
 666
 K
 Iw =
 66
 ft

 Vc =
 1282
 K
 hw =
 56
 ft

 Ø =
 0.75
 tw =
 16
 in

ØVc = 962 **>Vu,OK**

Check Braces

Vu = 5.57 K

Ø۷n

Check Columns

Vu = 4.84 K

 ØVn

 W14x283
 648
 K

 W14x283
 648
 K

 W14x90
 185
 K

 W14x90
 185
 K

Total = 1666 **>Vu,OK**

04/07/2011

Check of Wall on Frame 2

Check Concrete Wall

 Vu = 375 K
 Iw = 44 ft

 Vc = 1603 K
 hw = 56 ft

 Ø = 0.75 tw = 30 in

ØVc = 1202 **>Vu, OK**

Check Braces

Vu = 13.13 K ØVn

W14x90 185 K W14x99 206 K W14x120 256 K

Total = 647 **> Vu, OK**

Check Columns

Vu = 5.25 K

 ØVn

 W14X550
 1450
 K

 W14X550
 1450
 K

 W14x283
 648
 K

 W14x283
 648
 K

 W14x283
 648
 K

 Total =
 4844
 > Vu, OK

Check of Proposed Lateral System Redesigns

Proposed Lateral System- Element Check

Etabs Output

Period of Vibration

Tb = 0.264s mode-1

LS Wing- E/W Loads

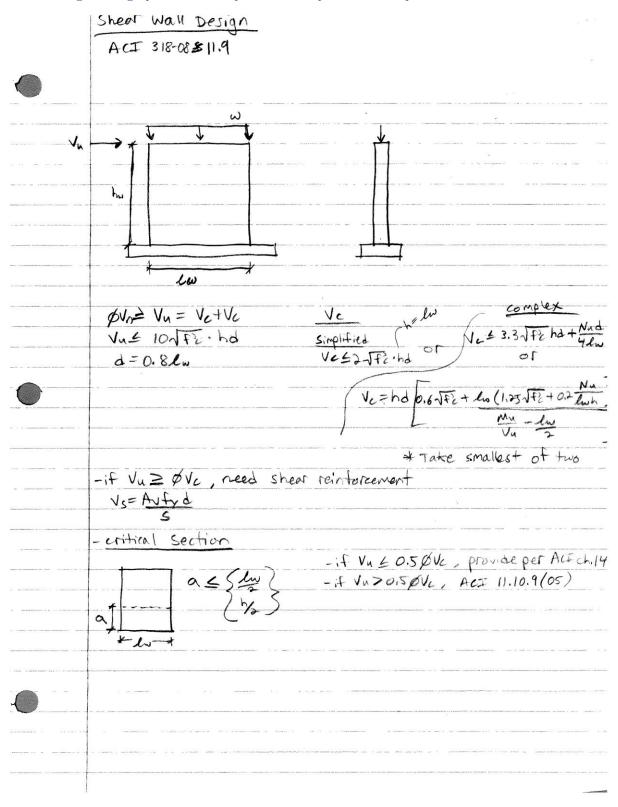
Frame-15: 18in NWC Wall

$$Vu =$$
 52 K
 $Iw =$
 22 ft

 $Vc =$
 $Vc =$
 $(2*sqrt(f'c)*t*d)$
 $(2*sqrt(f'$

*use minimum reienforcement

Horizontal Reinforcement


$$p_{l}$$
 = 0.0025
 s_{t} = 18 in
 Av_{min} = 0.165 in2/18in
*use (1) #4 @ 18in

Vertical Reinforcement

$$p_{l}$$
 = 0.0025 + .5(2.5-h_w/l_w)(p_t..0025)
 s_{t} = 18 in
 Av_{min} = 0.165 in2/18in
*use (1) #4 @ 18in

Note: This design is typical for all proposed concrete shear walls within the updated lateral system.

Shear Wall Design- Design procedures, equations, and practice example

	Sheat frainforcement Design Vu > pVc, Vs = Artyd/s, Av = Vs For
	Limits Spacing Horizontal: Pt Pt = Ay = 0.0025, St = (Lw
	\frac{3h}{18''}
	Vertical! Pe $pe = \frac{AV}{sh} \ge 0.0025 + 0.5(2.5 - \frac{hw}{Lw})(p_{L} - 0.0025)$ ≥ 0.0025
	$ \begin{array}{c} $
an ya samarandadan a a	<u></u>

Cantilever Redesigns

Steel Cost Savings

Existing Cantilever Design Exterior Frame-B

Chords	Size(W14)	Length(ft)	Weight(lb)	Braces	Size(W14)	Length(ft)	Weight(lb)	
B-Chord-1	311	22	6842	B-Brace-1	455	28	12740	
B-Chord-2	211	22	4642	B-Brace-2	193	24	4632	
B-Chord-3	211	22	4642	B-Brace-3	193	27	5211	
B-Chord-4	257	11	2827	B-Brace-4	193	27	5211	
B-Chord-5	257	11	2827	B-Brace-5	311	27	8397	
B-Chord-6	257	11	2827	B-Brace-6	193	27	5211	
B-Chord-7	257	11	2827	B-Brace-7	61	29	1769	
B-Chord-8	257	11	2827	B-Brace-8	145	29	4205	
B-Chord-9	257	11	2827	B-Brace-9	145	29	4205	
B-Chord-10	211	22	4642	B-Brace-10	145	29	4205	
B-Chord-11	211	22	4642	B-Brace-11	145	29	4205	
B-Chord-12	211	22	4642	B-Brace-12	145	29	4205	
B-Chord-13	211	11	2321	B-Brace-13	145	29	4205	
B-Chord-14	211	11	2321	B-Brace-14	145	29	4205	
B-Chord-15	211	11	2321	B-Brace-15	145	29	4205	
B-Chord-16	211	11	2321	B-Brace-16	145	29	4205	
B-Chord-17	211	11	2321	B-Brace-17	145	29	4205	
B-Chord-18	211	11	2321					
B-Chord-19	211	11	2321					
B-Chord-20	211	11	2321		Total W	/eight =	208311	lb
B-Chord-21	211	11	2321				104.2	ton
B-Chord-22	211	11	2321					
B-Chord-23	211	11	2321					
B-Chord-24	211	11	2321					
B-Chord-25	211	11	2321					
B-Chord-26	211	11	2321					
B-Chord-27	283	11	3113					
B-Chord-28		11	3113					
B-Chord-29		11	3113					
B-Chord-30		11	3113					
B-Chord-31		11	3113					
B-Chord-32		11	3113					
B-Chord-33		11	3113					
B-Chord-34		11	3113					
B-Chord-35		11	3113					
B-Chord-36		11	3113					
B-Chord-37		11	3113					
B-Chord-38		11	3113					
B-Chord-39		11	3113					
B-Chord-40	283	11	3113					

Existing Cantilever Design Interior Frame-B

Chords	Size(W14)	Length(ft)	Weight(lb)	Braces	Size(W14)	Length(ft)	Weight(lb)	
B-Chord-1	370	22	8140	B-Brace-1	283	28	7924	
B-Chord-2	370	22	8140	B-Brace-2	90	24	2160	
B-Chord-3	370	22	8140	B-Brace-3	90	27	2430	
B-Chord-4	211	11	2321	B-Brace-4	90	27	2430	
B-Chord-5	211	11	2321	B-Brace-5	90	27	2430	
B-Chord-6	211	11	2321	B-Brace-6	90	27	2430	
B-Chord-7	211	11	2321	B-Brace-7	90	27	2430	
B-Chord-8	211	11	2321	B-Brace-8	145	27	3915	
B-Chord-9	211	11	2321	B-Brace-9	193	27	5211	
B-Chord-10		22	4642	B-Brace-10	90	29	2610	
B-Chord-11		22	4642	B-Brace-11	90	29	2610	
B-Chord-12		22	4642	B-Brace-12	90	29	2610	
B-Chord-13		11 11	2321	B-Brace-13 B-Brace-14	90	29 20	2610	
B-Chord-14 B-Chord-15		11	2321 2321	B-Brace-14 B-Brace-15	90 109	29 29	2610 3161	
B-Chord-16		11	2321	B-Brace-16	109	29 29	3161	
B-Chord-17		11	2321	B-Brace-17	159	29	4611	
B-Chord-18		11	2321	B-Brace-18	176	29	5104	
B-Chord-19		11	2321	B-Brace-19	193	29	5597	
B-Chord-20		11	2321	D Didec 15	133		3337	
B-Chord-21		11	2321					
B-Chord-22		11	2321		Т	otal Weight =	179731	lb
B-Chord-23		11	2321			J	89.9	ton
B-Chord-24	211	11	2321					
B-Chord-25	211	11	2321					
B-Chord-26	211	11	2321					
B-Chord-27	211	11	2321					
B-Chord-28	211	11	2321					
B-Chord-29		11	2321					
B-Chord-30		11	2321					
B-Chord-31		11	2321					
B-Chord-32		11	3113					
B-Chord-33		11	3113					
B-Chord-34		11	3113					
B-Chord-35		11	3113					
B-Chord-36 B-Chord-37		11 11	3113					
B-Chord-38		11 11	3113 3113					
B-Chord-39		11	3113					
B-Chord-40		11	3113					
B-Chord-40		11	3113					
B-Chord-42		11	3113					
B-Chord-43		11	3113					
B-Chord-44		11	3113					
B-Chord-45		11	3113					

Final Cantilever Redesigns with Added Brace Frame-B

Chords	Size(W14)	Length(ft)	Weight(lb)
B-Chord-1	211	22	4642
B-Chord-2	211	22	4642
B-Chord-3	211	22	4642
B-Chord-4	211	11	2321
B-Chord-5	211	11	2321
B-Chord-6	211	11	2321
B-Chord-7	211	11	2321
B-Chord-8	211	11	2321
B-Chord-9	211	11	2321
B-Chord-10	193	22	4246
B-Chord-11	193	22	4246
B-Chord-12	193	22	4246
B-Chord-13	211	11	2321
B-Chord-14	211	11	2321
B-Chord-15	211	11	2321
B-Chord-16	211	11	2321
B-Chord-17	211	11	2321
B-Chord-18	211	11	2321
B-Chord-19	211	11	2321
B-Chord-20	211	11	2321
B-Chord-21	211	11	2321
B-Chord-22	211	11	2321
B-Chord-23	211	11	2321
B-Chord-24	211	11	2321
B-Chord-25	211	11	2321
B-Chord-26	211	11	2321
B-Chord-27	211	11	2321
B-Chord-28	211	11	2321
B-Chord-29	211	11	2321
B-Chord-30	211	11	2321
B-Chord-31	211	11	2321
B-Chord-32	211	11	2321
B-Chord-33	211	11	2321
B-Chord-34	211	11	2321
B-Chord-35	211	11	2321
B-Chord-36	211	11	2321
B-Chord-37	211	11	2321
B-Chord-38	211	11	2321
B-Chord-39	211	11	2321
B-Chord-40	211	11	2321

Braces	Size(W14)	Length(ft)	Weight(lb)	
B-Brace-1	311	28	8708	
B-Brace-2	193	24	4632	
B-Brace-3	145	27	3915	
B-Brace-4	193	27	5211	
B-Brace-5	311	27	8397	
B-Brace-6	193	27	5211	
B-Brace-7	61	29	1769	
B-Brace-8	132	29	3828	
B-Brace-9	132	29	3828	
B-Brace-10	145	29	4205	
B-Brace-11	145	29	4205	
B-Brace-12	145	29	4205	
B-Brace-13	145	29	4205	
B-Brace-14	145	29	4205	
B-Brace-15	145	29	4205	
B-Brace-16	145	29	4205	
B-Brace-17	193	29	5597	
B-Brace-Add	311	33	10263	
	Tota	al Weight =	196372	lb
			98.2	ton
	Weig	sht Saved =	6.0	ton
	Cost/to	on (steel) =	1328.8	dollars

Total Cantilever Savings

Cost Savings=

Exterior Trusses	15983	dollars
Interior Trusses	36929	dollars
Total Savings	52911	dollars

7991

dollars

Final Cantilever Redesigns with Added Brace Frame-E

Chords	Size(W14)	Length(ft)	Weight(lb)
E-Chord-1	159	22	3498
E-Chord-2	159	22	3498
E-Chord-3	159	22	3498
E-Chord-4	145	11	1595
E-Chord-5	145	11	1595
E-Chord-6	145	11	1595
E-Chord-7	145	11	1595
E-Chord-8	145	11	1595
E-Chord-9	145	11	1595
E-Chord-10	145	11	1595
E-Chord-11	145	11	1595
E-Chord-12	145	11	1595
E-Chord-13	145	11	1595
E-Chord-14	145	11	1595
E-Chord-15	145	11	1595
E-Chord-16	145	11	1595
E-Chord-17	145	11	1595
E-Chord-18	145	11	1595
E-Chord-19	145	11	1595
E-Chord-20	145	11	1595
E-Chord-21	145	11	1595
E-Chord-22	145	11	1595
E-Chord-23	145	11	1595
E-Chord-24	145	11	1595
E-Chord-25	145	11	1595
E-Chord-26	145	11	1595
E-Chord-27	145	11	1595
E-Chord-28	145	11	1595
E-Chord-29	145	11	1595
E-Chord-30	145	11	1595
E-Chord-31	145	11	1595
E-Chord-32	145	11	1595
E-Chord-33	145	11	1595
E-Chord-34	145	11	1595
E-Chord-35	145	11	1595
E-Chord-36	145	11	1595
E-Chord-37	145	11	1595
E-Chord-38	145	11	1595
E-Chord-39	145	11	1595
E-Chord-40	145	11	1595
E-Chord-41	145	11	1595
E-Chord-42	145	11	1595
E-Chord-43	145	11	1595
E-Chord-44	145	11	1595
E-Chord-45	145	11	1595

Braces	Size(W14)	Length(ft)	Weight(lb)
E-Brace-1	283	28	7924
E-Brace-2	90	24	2160
E-Brace-3	90	27	2430
E-Brace-4	90	27	2430
E-Brace-5	90	27	2430
E-Brace-6	90	27	2430
E-Brace-7	90	27	2430
E-Brace-8	145	27	3915
E-Brace-9	193	27	5211
E-Brace-10	90	29	2610
E-Brace-11	90	29	2610
E-Brace-12	90	29	2610
E-Brace-13	90	29	2610
E-Brace-14	90	29	2610
E-Brace-15	109	29	3161
E-Brace-16	109	29	3161
E-Brace-17	159	29	4611
E-Brace-18	176	29	5104
E-Brace-19	193	29	5597
B-Brace-Add	257	33	8481

Weight Saved =	13.9	ton
Cost/ton (steel) =	1328.8	dollars

76.0

lb

ton

Total Weight = 152009

Cost Savings= 18464 dollars

Total Cantilever Savings

Exterior Trusses	15983	dollars
Interior Trusses	36929	dollars
Total Savings	52911	dollars

APPENDIX H: BIM Execution Planning

BIM Goals

Priority (1-3)	Goal Description	Potential BIM Uses
1- Most Important	Value added objectives	
1	Life Cycle Cost / Value Engineer all design decisions	Cost Estimation, Engineering Analysis, Building System Analysis, Design Reviews, Existing Conditions Modeling
1	Optimize Building Performance	Engineering Analysis, Building System Analysis, Design Reviews, Existing Conditions Modeling, Site Analysis
1	Eliminate Field Conflicts	3D Coordination, Design Reviews, Existing Conditions, Modeling, Design Authoring
1	Improve Energy Efficiency	Engineering Analysis, Building System Analysis, Design Reviews, Site Analysis, Existing Conditions Modeling, Design Authoring
1	Improve Daylighting	Engineering Analysis, Building System Analysis, Design Reviews, Site Analysis, Existing Conditions Modeling, Design Authoring
1	Optimize Sequence and Schedule	4D Modeling

BIM Software

Revit Architecture 2011

Revit MEP 2011

Revit Structure 2011

Trane Trace 700

Daysim

Navisworks Manage

AGi32

ETABS

SAP2000

spColumn

3ds Max Design

AutoCAD 2011

Project Vasari

Quantity Take-Off - QTO

BIM Uses

	11		T.V. I	671		-	A .1 .1:1:		
BIM Use*	Value to	Responsible	Value to Resp		pab		Additio nal	Notes	Proceed
Biiii GGC	Project	Party	Party	Rating		g	Resour	Notes	with Use
	High / Med /		High / Med	Sc	ale	1-3	rtooodi		YES/NO/
	Low		/ Low		= Lo				MAYBE
				es	Competency	8			
				Resources	ete	Experience			
				los	ᇤ	bei			
				Re	ဝိ	ŭ			
Maintenance Scheduling	Low	2							NO
Duilding Customs Anglusia	Llink	MEP	Llimb	1 2	2	1 2			VEC
Building Systems Analysis	High	STR	High Med	3	3	2		×	YES
		L/E	High	3	3	2			-
			1g			_			-
Record Modeling	Low								NO
		10000000				V			
Cost Estimation	High	СМ	High	3	3	2			YES
4D Mandalina	T teat	lova	I NAI	-		-			VEO
4D Modeling	High	CM	Med	3	3	2			YES
Site Utilization Planning	Low	I	Ī			ı			NO
One Guilzadon Flamming					4				1,0
Layout Control & Planning	Low		Ī .						NO
	Association and the second sec								
3D Coordination (Construction)	Low								NO
		I							
Engineering Analysis	High	MEP	High	3	3	2			YES
		STR L/E	High High	3	3	2			-
		LVE	I High	3	٥				J
Site Analysis	Med	MEP	Med	3	3	2			YES
,		L/E	Med	3	3	2			
	,xa==							<i>h</i>	
Design Reviews	High	MEP	High	3	3	2			YES
		STR	High	3	2	2			
		CM	High	3	2	1			
		L/E	High	3	2	1			_
3D Coordination (Design)	High	MEP	High	3	3	2			YES
CD Coordination (Design)	ı riigii	STR	High	3	2	2	j= Y		123
		CM	Med	3	2	1			
		L/E	Low	3	2	1			_
Existing Conditions Modeling	Low	MEP	Low	3	3	2			YES
		STR	Med	3	3	3			
		CM	Low	3	3	2			
		L/E	High	3	3	3	<u> </u>		
Design Authoring	Med	MEP	Low	3	3	2			YES
	1	STR	High	2	2	2			
		L/E	Med	2	3	3			
	1900								
Programming	Low								NO
Energy Analysis	High	MEP	High	3	3	2			YES
		L/E	Med	3	3	2			