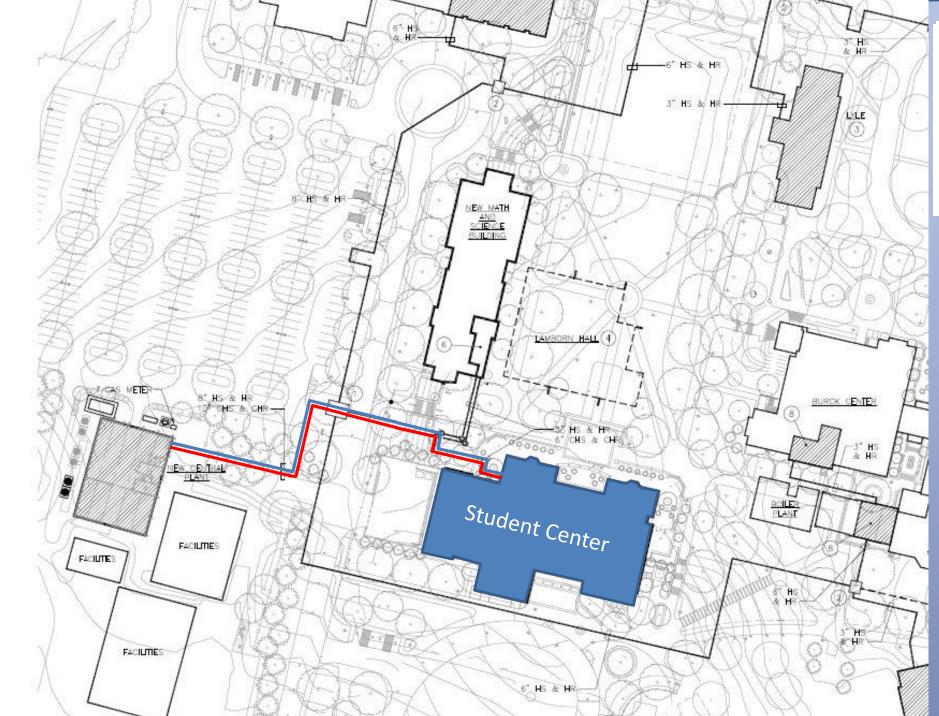


Zachary Haupt

Faculty Advisor: Dr. William Bahnfleth 11 April 2011

Project Background Existing Mechanical Summary > Design Objectives > Alternative Descriptions Ground Source Heat Pumps Enthalpy Wheel Solarban 70XL Glass > System Comparison > Final Recommendations


Project Background Existing Mechanical Summary Design Objectives Alternative Descriptions Ground Source Heat Pumps Enthalpy Wheel Solarban 70XL Glass System Comparison Final Recommendations

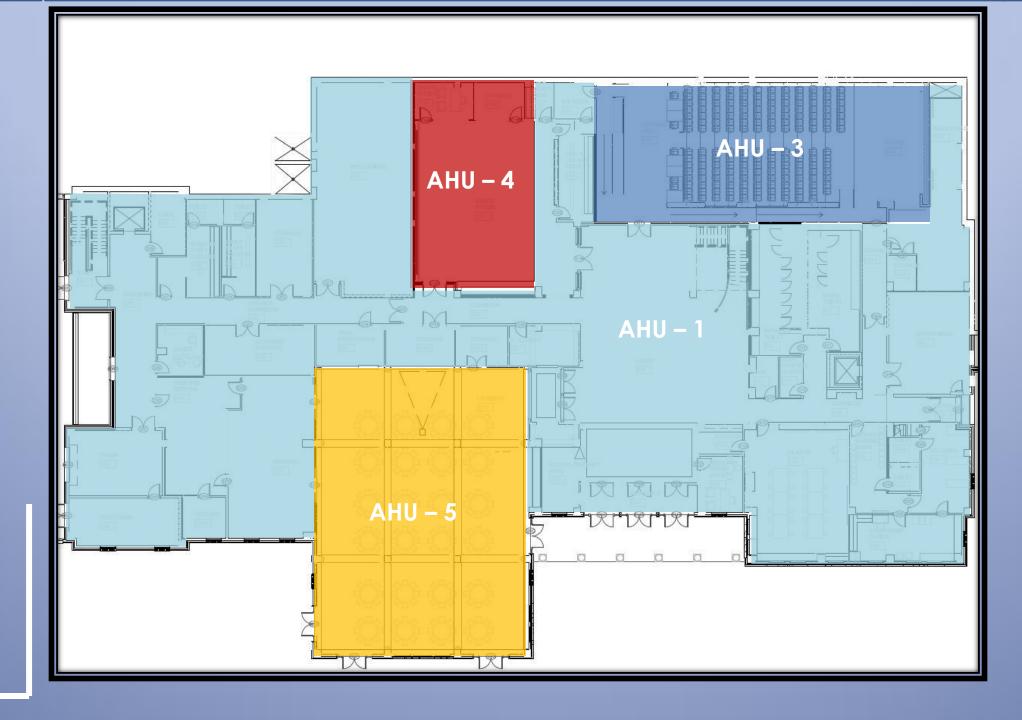
Project Information: Delivery Method - Design-Bid-Build Operational Date - September 2012 Occupancy - K-12 Boarding School Size - 68,000 SF Cost - \$16,000,000

> Primary Project Team: Owner - McDonogh School Architect - Bowie Gridley Architects Civil Engineer - Matis Warfield MEP Engineer - James Posey Associates, Inc Structural Engineer - Linton Engineers, LLC

Project Background **Existing Mechanical Summary Design Objectives** Alternative Descriptions Ground Source Heat Pumps Enthalpy Wheel Solarban 70XL Glass System Comparison Final Recommendations

Mechanical System:8 indoor AHUs

- 7 VAV units
 - 5 single zone VAV units
 - 2 multizone VAV units
- 1 single zone CAV unit

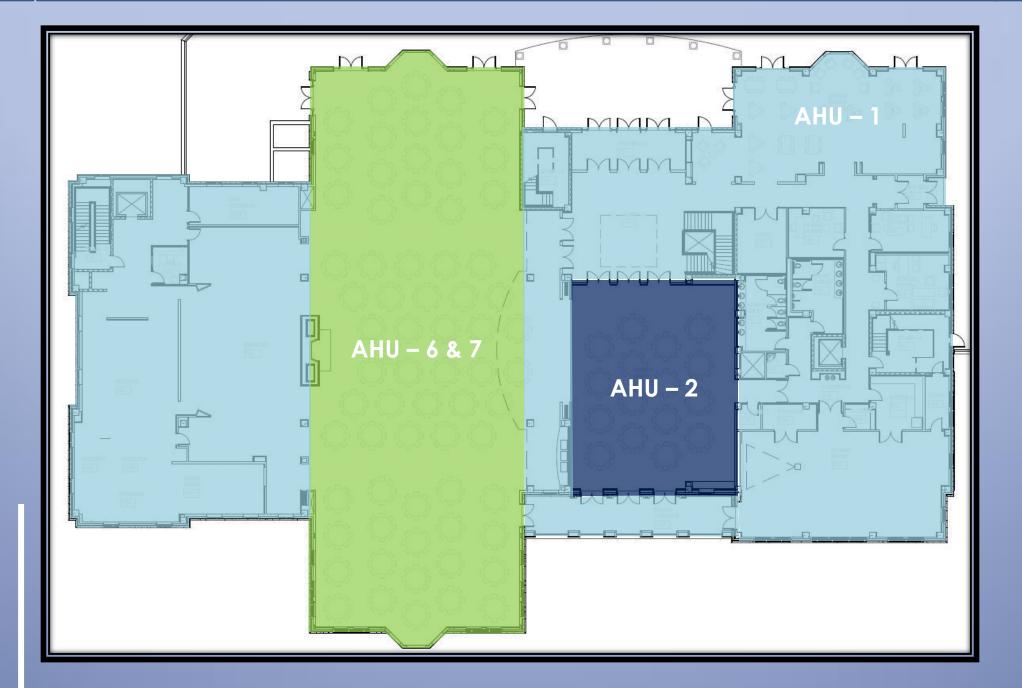

/ units Units nit

Central Plant: Located on campus 3 Boilers 2 Chillers

Building Layout

Lower Level

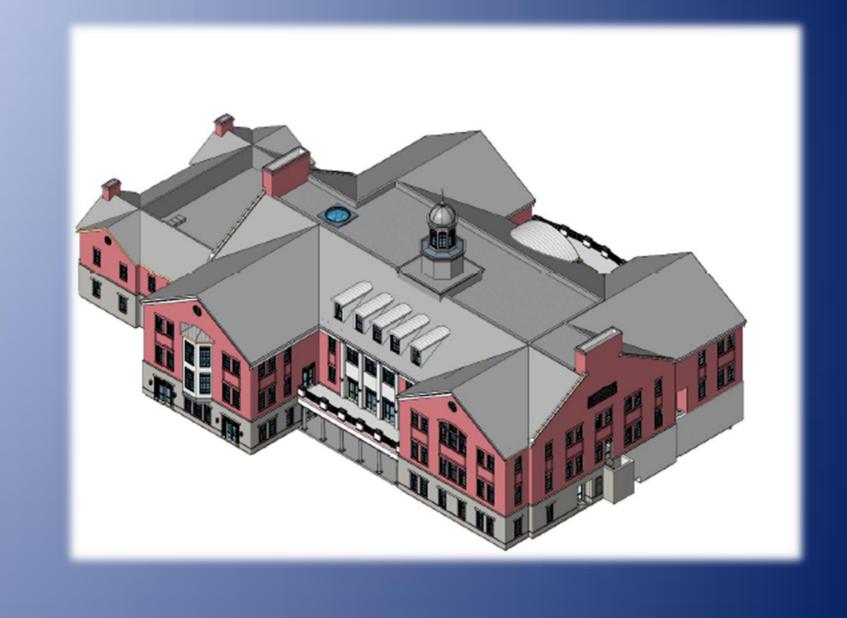
- AHU 3 Serves Lecture Hall
- AHU 4 Serves Dance Studio
- AHU 5 Serves LS Dining
- AHU 1 Serves Lower & Quad Levels



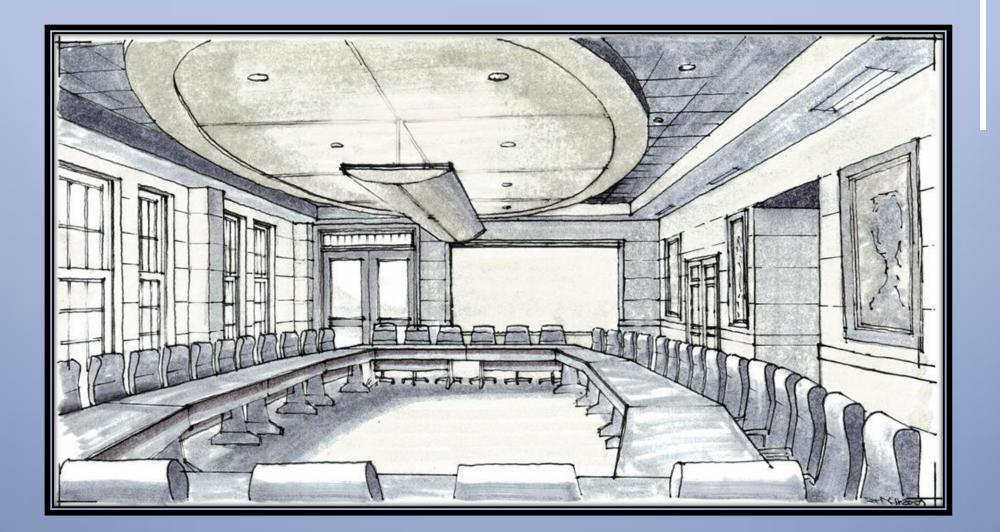
Building Layout

Quad Level

- AHU 6 & 7 Serve US Dining
- AHU 2 Serves Senior Dining
- AHU 1 Serves Lower & Quad Levels



Building Layout


Upper Level

• AHU – 8 Serves Entire Floor

Project Background **Existing Mechanical Summary Design Objectives** Alternative Descriptions Ground Source Heat Pumps Enthalpy Wheel Solarban 70XL Glass System Comparison Final Recommendations

Improve System Performance Energy Consumption

- Emissions
- Total System Costs
- Minimize Payback Periods

Groun**Enstante**Pumps

The Good

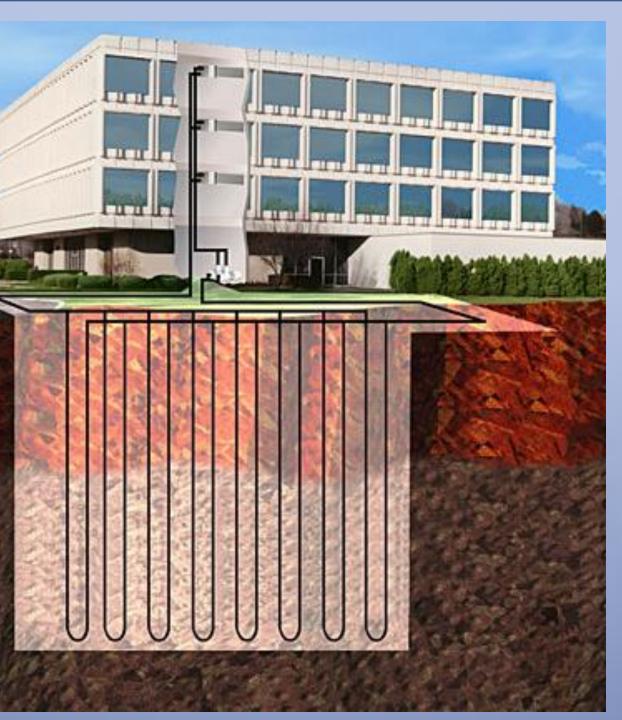
Plightersystema Efficiencies

✓ baved death £41 dright streamace Emissions

Lange/Aginatentiableediags@haiseions

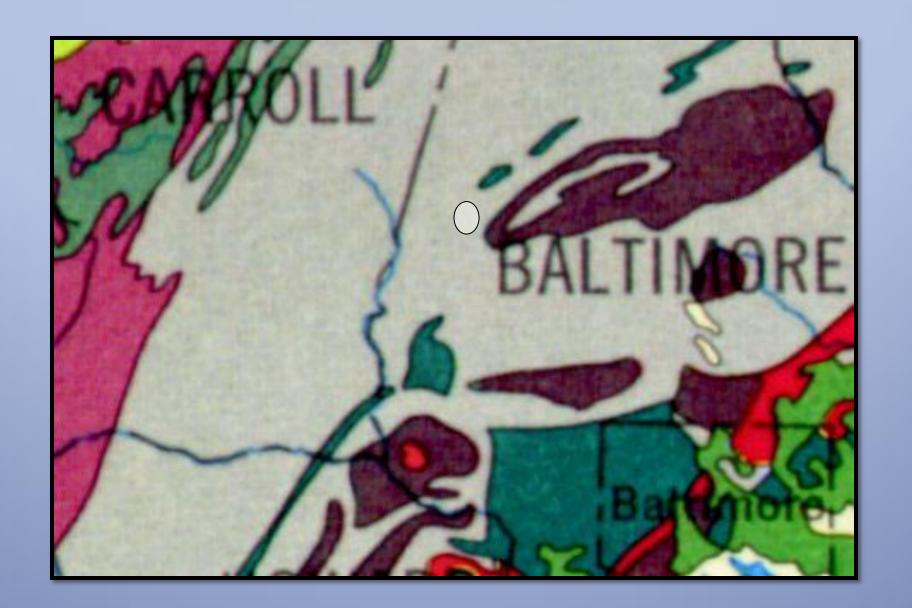
✓ Low Air Pressure Drop

Increased Constartuctions Costs


Highera Beed reise an and Washight togAHU

Impact of Loop on Ecosystem

Project Background **Existing Mechanical Summary Design Objectives** Alternative Descriptions Ground Source Heat Pumps Enthalpy Wheel Solarban 70XL Glass System Comparison Final Recommendations



Implementing a GSHP

- Site Geology Study
- Calculations
- Pipe Sizing
- Pump & System Layout
- Results

- Site Geology Study
- Calculations
- Pipe Sizing
- Pump & System Layout
- Results

Located in Baltimore County

- Precambrian Soil Type
- 15% Water and Sandstone
- Soil Resistivity ≈ 0.6 BTU/hr·ft·°F

- Site Geology Study
- Calculations
- Pipe Sizing
- Pump & System Layout
- Results

Proj Job Num

Cooling Length

Heating Length

> 90/95 85/90 80/85 75/80 70/75 65/70

oject: St. John Student Center nber:			
Date: 04/04/11			
User: Haupt			
INPUT DAT	A		
Total Building Load (Ton)= 247.4	Bldg Area	68000	Sq Ft
Outdoor Design Temp. (°F)= 95	Sq. Ft / Ton	275	
Indoor Design Temp. (°F)= 75			
Balance Temp. (°F)= 65			

$$L_{C} = \frac{q_{c}R_{a} + (q_{lc} - 3.41W_{c})(R_{b} + PLF_{m}R_{m} + R_{gm} + R_{gd}F_{sc}}{t_{g} - \frac{t_{wi} - t_{wo}}{2} - t_{p}}$$

$$L_{C} = \frac{q_{c}R_{a} + (q_{lc} - 3.41W_{c})(R_{b} + PLF_{m}R_{m} + R_{gm} + R_{gd}F_{sc}}{t_{g} - \frac{t_{wi} - t_{wo}}{2} - t_{p}}$$

333.99	8.11	nd Loop Heat Exchanger Length(Ft/Ton)=	201.71	
272.14	15.42	Total Ground Loop Length=	49904.02	
210.29	75.77			
148.44	58.90	Bores Required: Depth (Ft)	Number	
86.59	43.82	400	125	
24.74	14.02	375	133	
	216.05	350	143	
		325	154	
		300	166	
		250	200	
		200	250	
		600	83	

McClure Company Spreadsheet & ASHRAE

- Vertical Loop Analysis
- Used to Determine # of Bores + Depths
- Cross Checked With ASHRAE

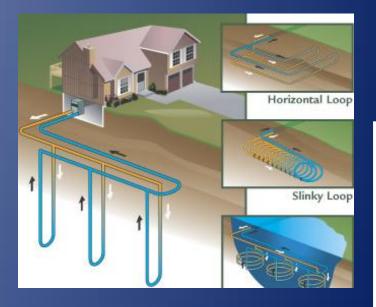
- Site Geology Study
- Calculations
- Pipe Sizing
- Pump & System Layout
- Results

an		
an	 e r	
	6	96

Carrie

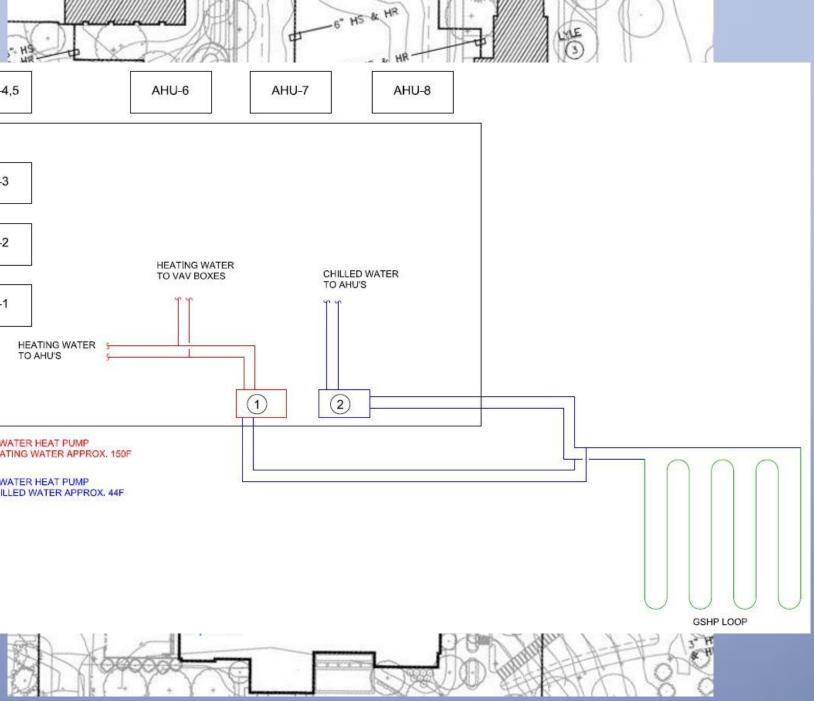
Selected Pump Model

turer	Model	TC (MBtuh)	Power (kW)	THR (MBtuh)	LWT	EER
er	50PSW360	313	16.08	367.9	61.1	19.5


Bores Per Pump

• 750 Total GPM – 125 Total Bores

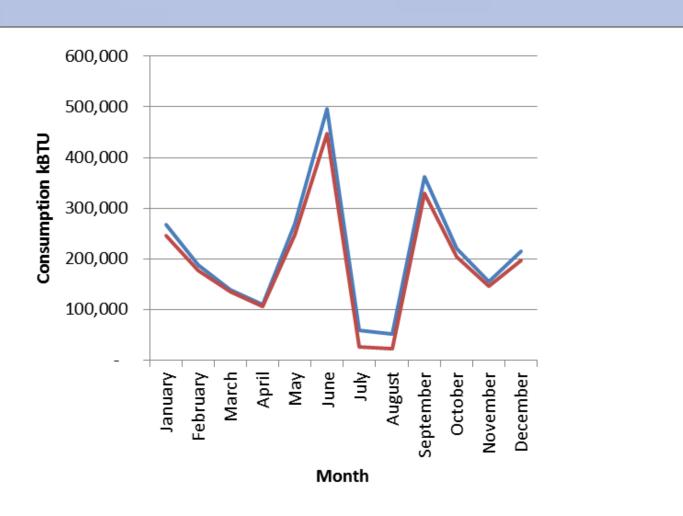
• 6 GPM Per Bore


Cost Of Pipe

pe Size	Length Of Pipe	Cost	Of Pipe/Ft	Cost Of Pipe
3	64000	\$	0.033	\$2,112
2	16000	\$	0.0275	\$440
1.5	8000	\$	0.0165	\$132
1.25	16000	\$	0.0125	\$200
				\$2,884

- Site Geology Study
- Calculations
- Pipe Sizing
- Pump & System Layout
- Results

	- H9	D	
 AHU-4	5		
AHU-3			
AHU-2			
AHU-1			
L	HEATI TO AH	NG WA IU'S	TER



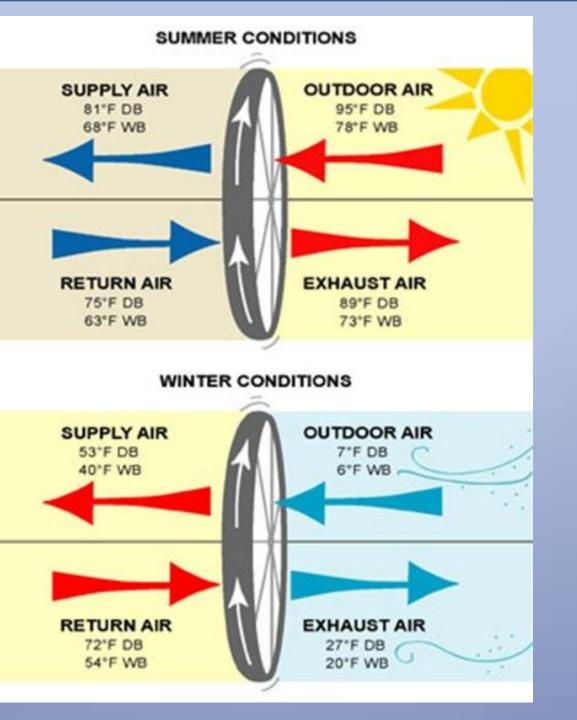
Layout of System

- 5 Pumps
 - Each Pump Serves 12 Bores
- 5 Pumps
 - Each Pump Serves 13 Bores

- Site Geology Study
- Calculations
- Pipe Sizing
- Pump & System Layout
- Results

Annual Energy Consumption (Existing vs. GSHP)

-----Existing Loads


-GSHP

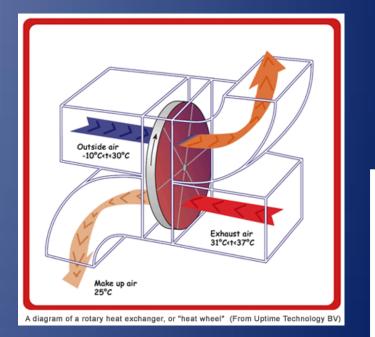
Energy Savings

- 5.7 % Annual Heating Savings
- 12.4 % Annual Cooling Savings
- 9.9 % Total Annual Energy Savings

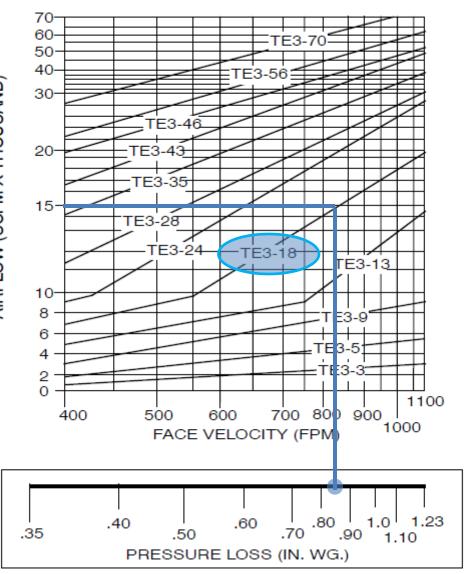
Project Background **Existing Mechanical Summary Design Objectives** Alternative Descriptions Ground Source Heat Pumps Enthalpy Wheel Solarban 70XL Glass System Comparison Final Recommendations

Selecting a Wheel

- Determine supply air total flow (CFM)
- Use SEMCO wheel chart
- Calculate unit effectiveness
- Results


• Keep face velocity ≈ 800 (FPM)

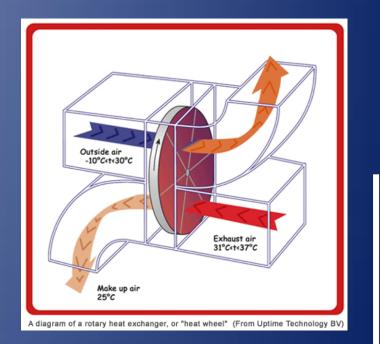
- Determine supply air total flow (CFM)
- Use SEMCO wheel chart
 - Keep face velocity $\approx 800 (FPM)$
- Calculate unit effectiveness
- Results



AHU - 8

- Serves art classrooms
- Scheduled at 15,000 CFM

- Determine supply air total flow (CFM)
- Use SEMCO wheel chart
 - Keep face velocity \approx 800 (FPM)
- Calculate unit effectiveness
- Results


TOTAL ENERGY RECOVERY WHEEL SIZE

AHU - 8

- Find desired CFM
- Read directly right u (closest to 800 FPM)
- Mark model # down
- Read directly down to find associated
 pressure loss

Read directly right until model intersection

n n to find associated

- Determine supply air total flow (CFM)
- Use SEMCO wheel chart
 - Keep face velocity ≈ 800 (FPM)
- Calculate unit effectiveness
- Results

The exchanger heat transfer effectiveness e is defined as the amount of energy recovered, e.g. sensible or latent, divided by the maximum amount of energy that could theoratically be recovered.

The supply air volume heat transfer effectiveness es is defined as

The return air volume heat transfer effectiveness er is defined as

Based on the above definitions, the supply air condition X₂ can be calculated from

and the exhaust air condition X₃ can be calculated from

where $V_S =$ Supply air volume, scfm V_r = Return air volume, scfm

The indices refer to the following airstreams, as indicated in the figure below: 1 = Outdoor air condition

$$\mathbf{e_s} = \frac{V_s (X_1 - X_2)}{V_{min} (X_1 - X_3)}$$

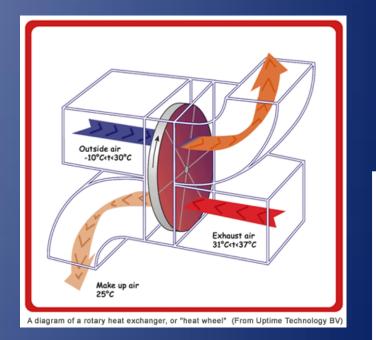
$$\mathbf{e}_{r} = \frac{V_{r} (X_{4} - X_{3})}{V_{min} (X_{1} - X_{3})}$$

$$X_2 = X_1 - e_s \frac{V_{min}}{V_s} (X_1 - X_3)$$

$$X_4 = X_3 + e_s \frac{V_{min}}{V_r}(X_1 - X_3)$$

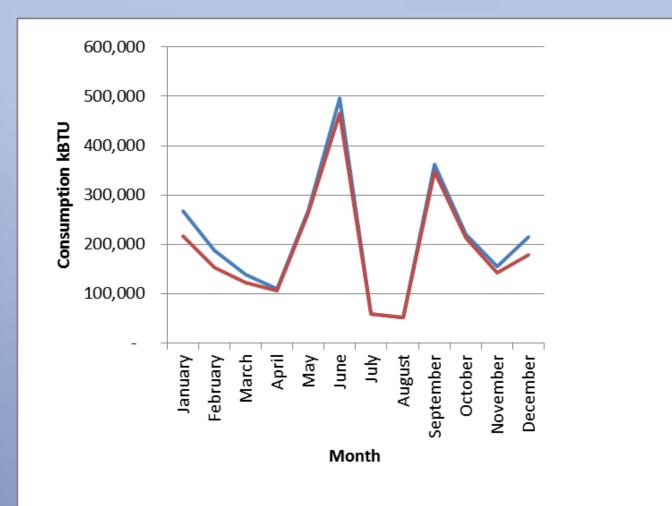
 $V_{min} = V_r$ if V_r is smaller than V_s or $V_{min} = V_s$ if V_s is smaller than V_r X = dry bulb temperture (°F) or moisture content (gr/lb) or enthalpy (Btu/lb)

2 =Supply air condition


3 = Return air condition

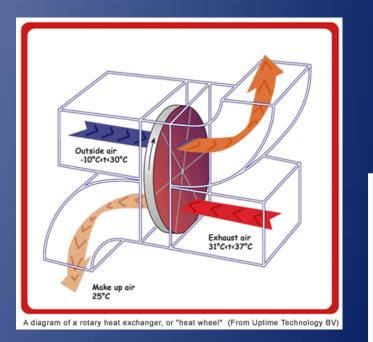
4 = Exhaust air condition

AHU - 8


• Use calculations to determine unit effectiveness

• ≈ 80% Good

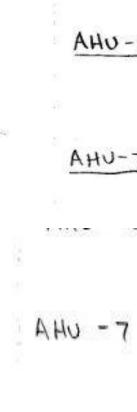
Annual Energy Consumption (Existing vs. Wheel)


- Determine supply air total flow (CFM)
- Use SEMCO wheel chart
 - Keep face velocity ≈ 800 (FPM)
- Calculate unit effectiveness
- Results

-----Existing Loads

Energy Savings

- 17.0 % Annual Heating Savings
- 3.4 % Annual Cooling Savings
- 8.4 % Total Annual Energy Savings


Project Background Existing Mechanical Summary Design Objectives Alternative Descriptions Ground Source Heat Pumps Enthalpy Wheel Structural Breadth Solarban 70XL Glass System Comparison Final Recommendations

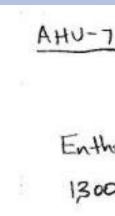
Structural Check

- Calculate Ib/ft² for each AHU
- Calculate new Ib/ft² for AHU 8
- Check slab strength
- Adjust accordingly Check beam strength Adjust accordingly

- Calculate Ib/ft² for each AHU \bullet
- Calculate new lb/ft² for AHU 8
- Check slab strength
 - Adjust accordingly
- Check beam strength
 - Adjust accordingly

$$\frac{AHU-6}{B} \frac{16}{442} = (4,200)/(5.125)(12) = \frac{68.3^{16}/442}{15025190}$$

$$\frac{AHU-728}{5} = (7,600)/(8.3)(15) = \frac{61^{16}/442}{15}$$


$$AHU - 7 \rightarrow 7,600 \text{ lbs} \qquad W = 8.3' \qquad H = 5.6' \qquad L = 15'$$

$$AHU - 8 \rightarrow 7,600 \text{ lbs} \qquad W = 8.3' \qquad H = 5.6' \qquad L = 15'$$

- Locate AHU Schedule
- Mark Weight, Width, & Length of each AHU Located in Room
- Calculate Ib/ft² of Each AHU

- Calculate Ib/ft² for each AHU
- Calculate new lb/ft² for AHU 8
- Check slab strength
 - Adjust accordingly
- Check beam strength
 - Adjust accordingly

AHU-B

Enthalpy wheel will add 2' in length &

$$\frac{b \ w/\ wheel}{b \ w/a2} = (8,9001b)/(8.3')(17') = \frac{63.1'b/A2}{L_3 \ 65^{1b}/A2}$$

$$\frac{L_3 \ 65^{1b}/A2}{(safety)}$$

- AHU 6 Dropped
- Wheel Adds
 2' in Length
 1,300 lbs

- Calculate Ib/ft² for each AHU
- Calculate new lb/ft² for AHU 8
- Check slab strength \bullet
 - Adjust accordingly
- Check beam strength •
 - Adjust accordingly

Structural	Breadth	Final	Report
	ASCE 7-10		
Slab Check			
$F_{Y} = 60$ $f_{c} = 5000 \text{ ps};$			
live load = 40 11 Slab load = 87.5			
AHU - 8 = 63.			32
Load = 1.2(0) +	1.6(1) => (65+87	1.5)(1.2)+(4	10)(1.6) = 247 10
<u> </u>	<u>o.c.</u>] _{14"}	(247 15/4)(-	$\frac{14}{12} = 288^{10}/4$
	- 7- 3/4 - 1/2. 5/8 = 5	.94"	
$M = \frac{\omega L^2}{8} = 7$	0.288 k16/ft)(16) ² =	9.216 ft1	k
$A_s = 0.31 \text{ in}^2$ D=			
$A = \frac{A_s \times F_y^{00}}{0.85 \times F_z^{1} \times b} = 7 (0.1)$	$\frac{31}{60} = 0.3126$ 85/(5)(14)	,	
\$Mn = 0.9 (A3) (Fy)	$(d^{-\alpha/2})/_{12} = 8.0$	75+K	
	ftk < 9.216ftk ~		.15

- Rebar Spaced Every 14" O.C.
- Slab Fails Under New Load
- Space Rebar Every 12" O.C.
- Recheck Slab

- Calculate Ib/ft² for each AHU
- Calculate new lb/ft² for AHU 8
- Check slab strength
 - Adjust accordingly
- Check beam strength
 - Adjust accordingly

Breadth Final REport Structural

Slab Check

- Reposition bars every 12" on Center
- load = 247 16/4
- (247 10/A) (12) = 247 10/F+ $M = \frac{WL^2}{B} = \frac{(.247 \text{ kib/f4})(16)^2}{2} = 7.904 \text{ ftk}$ $a = \frac{A_{s}(F_{t})^{60}}{0.85(F_{c})^{6}} = \frac{(0.31)(60)}{(0.85)(5)(12)} =$ = 0.3647 ØM_ = 0.9(As)(Fy)(d-a/2)/12 = 8.031
 - 18.031AK17.904Ftk

- Slab Does Not Fail
- Adjust Rebar Spacing
- Analyze Beam

- Calculate Ib/ft² for each AHU
- Calculate new lb/ft² for AHU 8
- Check slab strength
 - Adjust accordingly
- Check beam strength Adjust accordingly

Top Reinford _____

Units: W: Span Zone ____ ___ 1 Left Mide

Righ NOTES: *3 - Des: *5 - Numb

Top Bar Deta _____

Units: Le Span

-----1

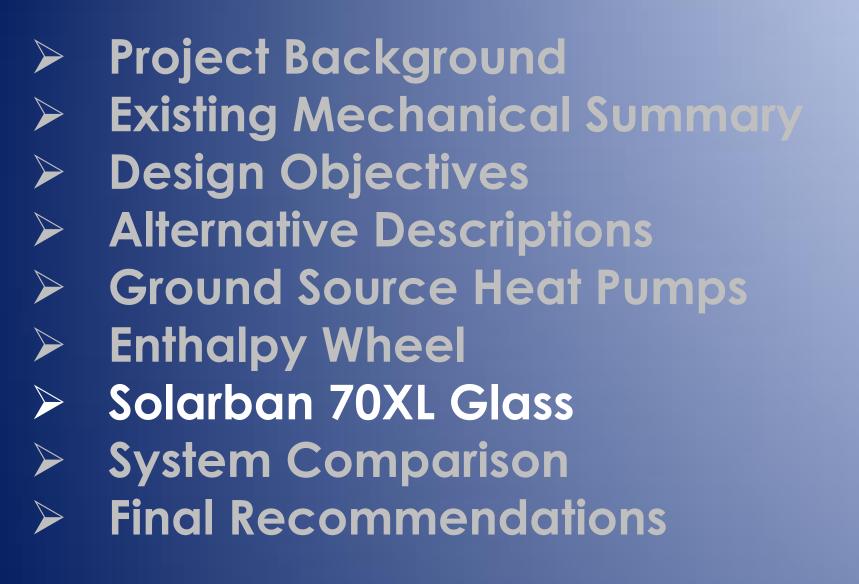
Bottom Reint _____

Units: W: Span ----NOTES:

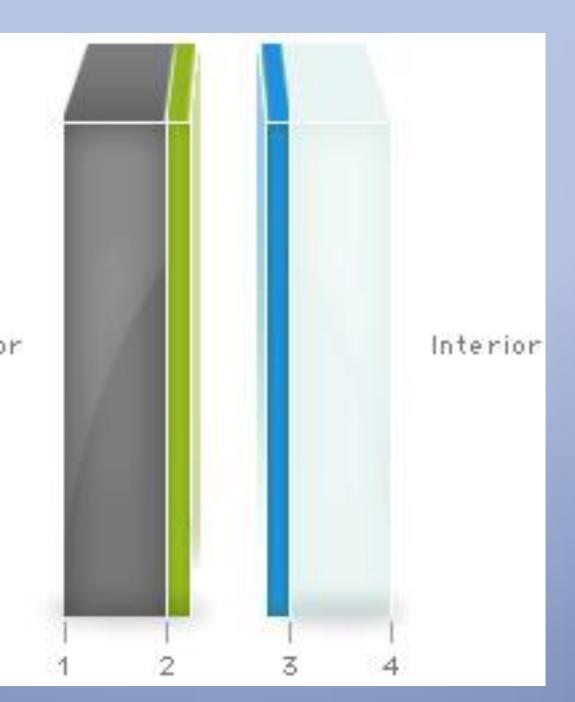
*3 - Des: Bottom Bar

_____ Units: St

Span ____ 1


Flexural Cap ______

> Units: x Span ---- ----


RESULT	5								
rcement									
Width (:			Xmax (ft),						
			Хтах						
 Ft	2 70	105 26	0 833	0 954 1	4 477	8 933	0 692	4-#7	+2 +5
idle	2.70	0.00	13.500	0.000 1	4.477	0.000	0.000		
ght	2.70	105.26	0.833 13.500 26.167	0.954 1	4.477	8.933	0.692	4-#7	*3 *5
			reinforceme maximum all		cing.				
ails									
length	(ft)		C.	ntinuoua		Di			
Bars 1	Length	Bars L	ength Ba	irs Length	Bars	Length	Bars	Length	i.
		2-#7	3.67 -			5.45			
forcem									
lidth (:	ft), Mma	x (k-ft),	Xmax (ft),	As (in^2),	Sp (in)				
Width	Mm	ax Xm	ax AsMin	AsMax	SpReq	AsReq	Bars		
Detail	3	ath (ft)	i reinforceme						
Lor	ng Bars_	5546 AV 38	Short Ba Bars Star	ars					
		Length	Bars Star	t Length					
		27.00							
apacity									
		01 BL (14	(). ().						
		2), PhiMn sBot	PhiMn-	PhiMn+					
0.000	2.40	3.00	-358.73	456.31					
0.833	2.40	3.00	-358.73	456.31					
2.672	2.40	3.00	-358.73	456.31					
3.672	1.20	3.00	-181.65	456.31					
4.445	1.20		-181.65	456.31					
5.445	0.00	3.00	0.00	456.31					
	0.00	3.00	0.00	456.31					
	0.00		0.00	456.31					
	0.00		0.00	456.31					
	0.00		0.00	456.31					
	1.20		-181.65	456.31					
	1.20		-181.65	456.31					
	2.40		-358.73	456.31					
	2.40		-358.73	456.31					
27 000	2.40	2 00	-358.73	456.31					
21.000	2.40	3.00	-358.73	456.31					

- Beam Analyzed in spBeam
- Sized Beam Cross Checked With Scheduled Beam
- Scheduled Beam Well Oversized
- Beam Holds New Load

Exterior

Installing Solarban 70XL Glass

- Calculate Cost of Glazing
- Analyze Glazing Properties
- Results

Calculate Total Amount of Glazing

- Calculate Total Amount of Glazing
- Calculate Cost of Glazing
- Analyze Glazing Properties
- Results

Floor
Lower Level:
First Floor:
Second Floor:
Overall Total:

Fenestration Area				
Glass (SF)	Gross Wall (SF)	Percentage Glass		
736	12992	6		
3842	12643	30		
2630	7462	35		
7208	33096	22		

Total Glazing

Review Architectural Drawings

- Calculate Total Amount of Glazing
- Calculate Cost of Glazing
- Analyze Glazing Properties
- Results

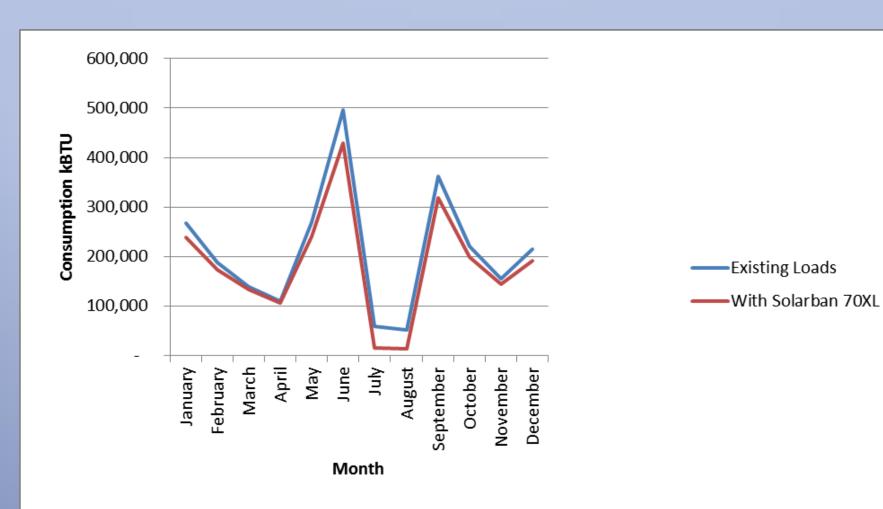
Туре	Cost/SF	Total SF	Cost
1" clear/clear	\$4.95	7208	\$35 <i>,</i> 679.60
1" Solarban 60	\$6.45	7208	\$46,491.60
1" Solarban 70 XL	\$7.45	7208	\$53 <i>,</i> 699.60

	1" Solarban 70 XL	1" Solarban 60	1" clear/clear
1st Floor	\$5 <i>,</i> 483.20	\$4,747.20	\$3 <i>,</i> 643.20
2nd Floor	\$28 <i>,</i> 622.90	\$24,780.90	\$19,017.90
3rd Floor	\$19 <i>,</i> 593.50	\$16,963.50	\$13,018.50
Total	\$53,699.60	\$46,491.60	\$35,679.60

Cost

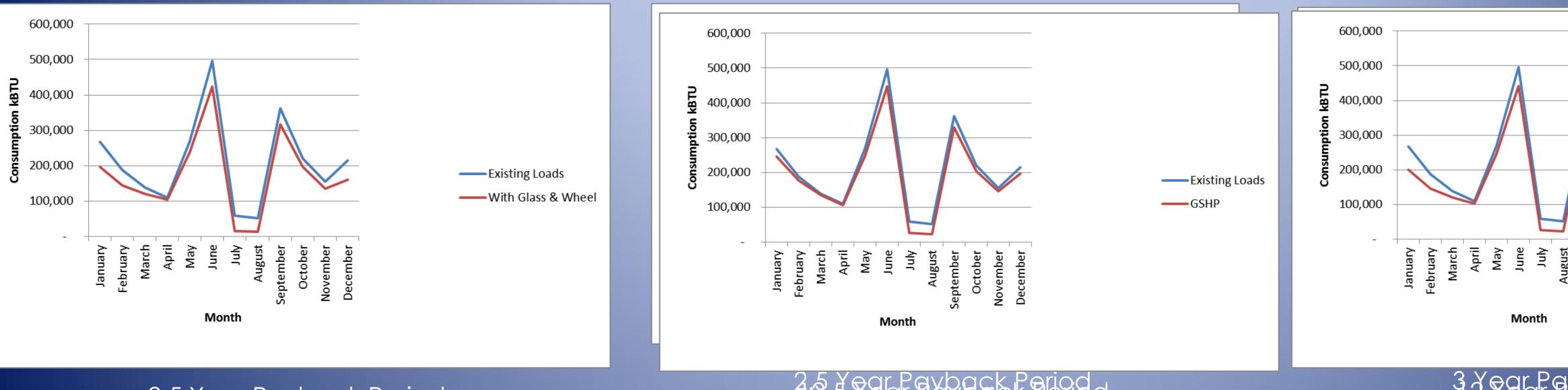
- Multiply Glass SF By \$/SF
- Analyze 3 Types of Glass

- Calculate Total Amount of Glazing
- Calculate Cost of Glazing •
- Analyze Glazing Properties
- Results

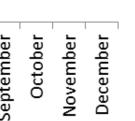

Glass	U-Value	Shading Coefficient
Installed	0.588	0.811
Solarban 60	0.29	0.44
Solarban 70XL	0.26	0.27

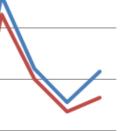
Performance

- Installed Values Obtained From Drawings
- Upgraded Values Obtained From PPG Industries


- Calculate Total Amount of Glazing lacksquare
- Calculate Cost of Glazing \bullet
- Analyze Glazing Properties
- Results

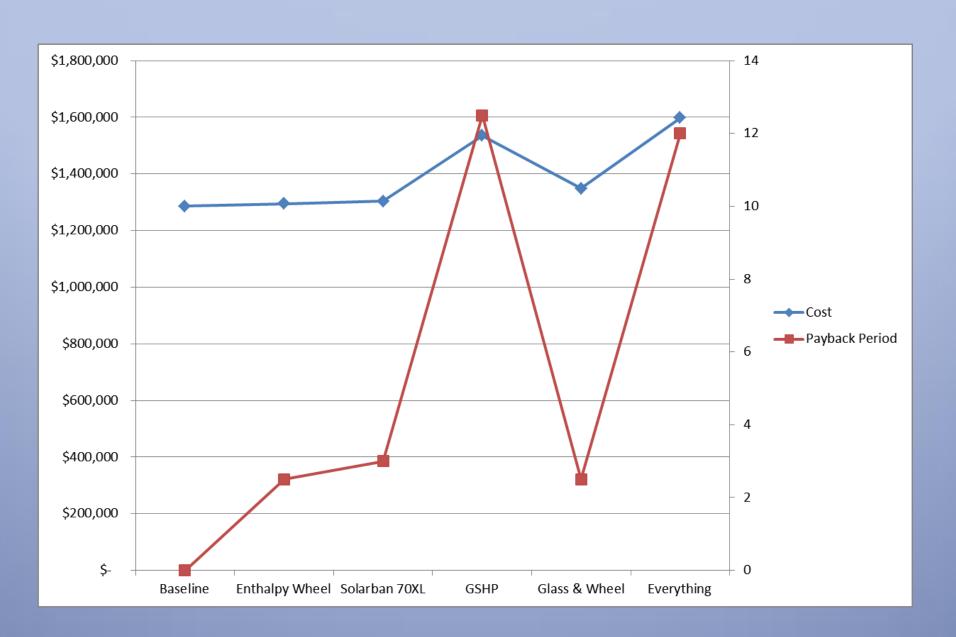
Energy Savings


- 6.6 % Annual Heating Savings
- 16.7 % Annual Cooling Savings
- 13 % Total Annual Energy Savings



2.5 Year Payback Period

32986PPX986EPPindd



GSHP, Wheel, Glass

Existing Loads

Final Recommendations

- Maximize Distance Between Cost & Payback Period
- Analyze Owner's Intentions
- Make Suggestion

Special Thanks To:

- Justin Bem
- Dr. Bahnfleth
- Penn State AE Mechanical Faculty
- Family & Friends

Questions Or Comments

