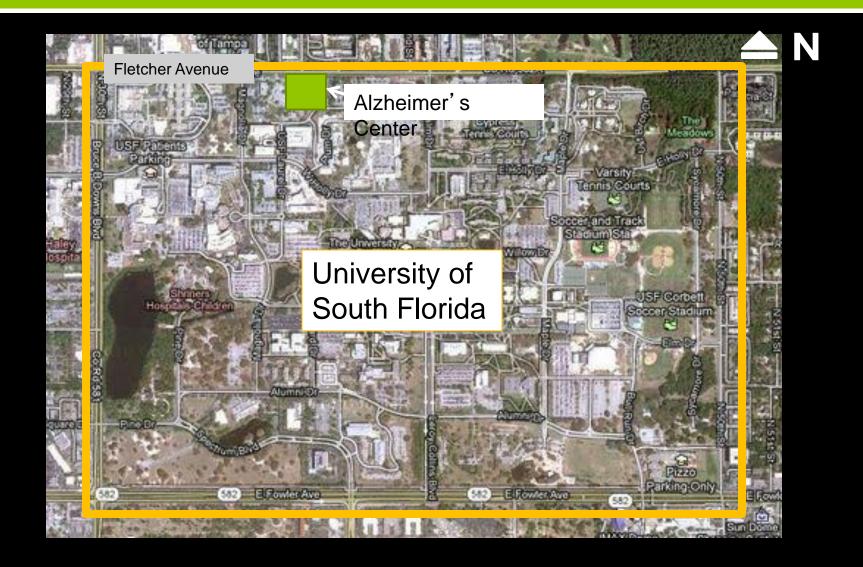

J.B. BYRD ALZHEIMER'S CENTER & RESEARCH INSTITUTE

Raffi Kayat | Structural Option


Faculty Advisor: Dr. Ali M. Memari

Senior Thesis 2012

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Fixed Base Design
- Base Isolation Design
- Comparison of Designs
- Sustainability Breadth: Viability Study
- Questions/Comments

BUILDING INTRODUCTION

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Fixed Base Design
- Base Isolation Design
- Comparison of Designs
- Sustainability Breadth: Viability Study
- Questions/Comments

□ Size

Location

108,000 SF

BUILDING INTRODUCTION



- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Fixed Base Design
- Base Isolation Design
- Comparison of Designs
- Sustainability Breadth: Viability Study
- Questions/Comments

- Location □ Size 108,000 SF
- Total Height 116'

BUILDING INTRODUCTION

Alzheimer's Research Institut Entry no. U161

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Fixed Base Design
- Base Isolation Design
- Comparison of Designs
- Sustainability Breadth: Viability Study
- Questions/Comments

- Location □ Size 108,000 SF Total Height 116' Cost
 - \$22,000,000

BUILDING INTRODUCTION

Alzheimer's Research Institut Entry no. U161

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Fixed Base Design
- Base Isolation Design
- Comparison of Designs
- Sustainability Breadth: Viability Study
- Questions/Comments

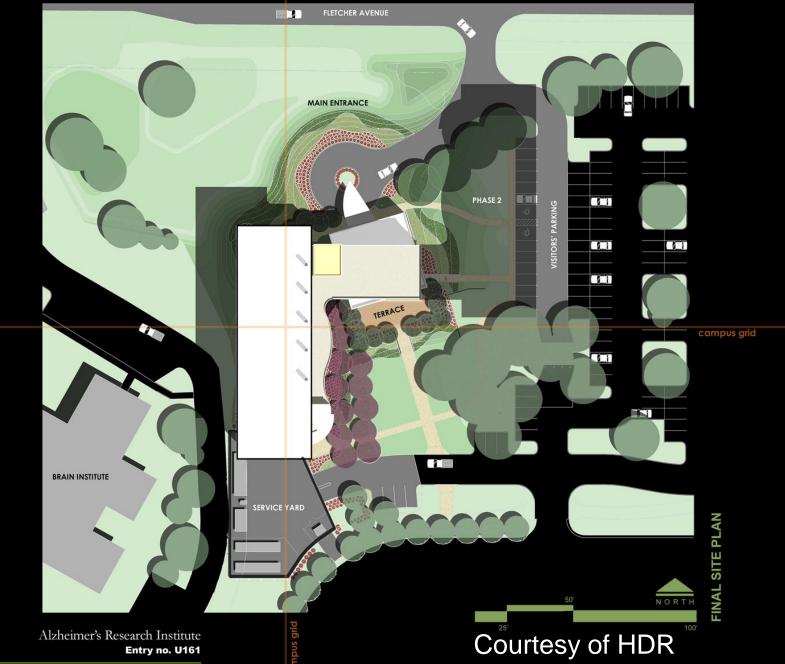
- Location
- □ Size
 - 108,000 SF
- Total Height
 - 116'
- Cost
 - \$22,000,000
- Construction
 - February 2006 to July 2007

BUILDING INTRODUCTION

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Fixed Base Design
- Base Isolation Design
- Comparison of Designs
- Sustainability Breadth: Viability Study
- Questions/Comments

- Location
- □ Size
 - 108,000 SF
- Total Height
 - 116'
- Cost
 - \$22,000,000
- Construction
 - February 2006 to July 2007
- Occupancy
 - **Business and Research**

BUILDING INTRODUCTION


Alzheimer's Research Institut Entry no. U161

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Fixed Base Design
- Base Isolation Design
- Comparison of Designs
- Sustainability Breadth: Viability Study
- Questions/Comments

- Location
- □ Size
 - 108,000 SF
- Total Height
 - 116'
- Cost
 - \$22,000,000
- Construction
 - February 2006 to July 2007
- Occupancy
 - **Business and Research**
- □ LEED Silver

BUILDING INTRODUCTION

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- □ Fixed Base Design
- Base Isolation Design
- Comparison of Designs
- Sustainability Breadth: Viability Study
- Questions/Comments

PROJECT TEAM

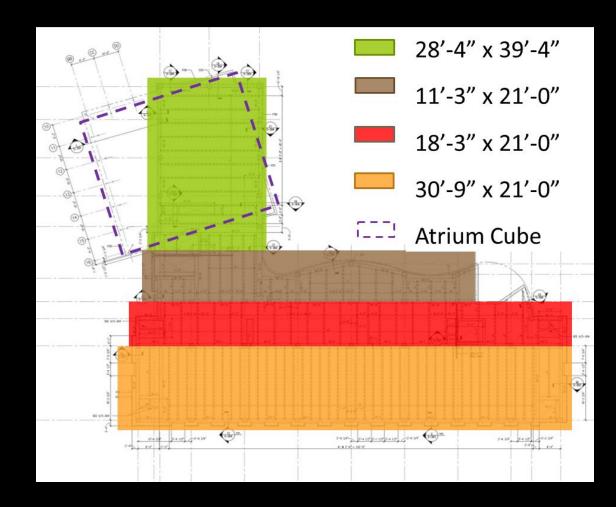
□ Owner J.B. Byrd Alzheimer's Center General Contractor & **Construction Management Turner Construction** □ Architecture Structural Mechanical Electrical Plumbing

HDR,Inc

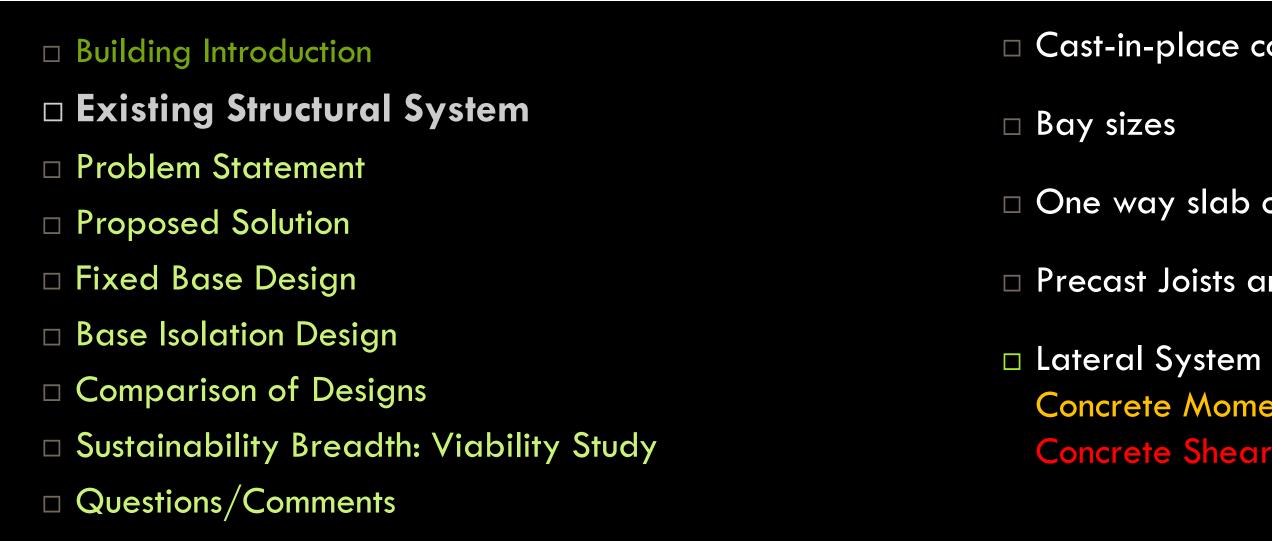
- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- □ Fixed Base Design
- Base Isolation Design
- Comparison of Designs
- Sustainability Breadth: Viability Study
- Questions/Comments

EXISTING STRUCTURAL SYSTEM

Cast-in-place concrete mat-slab foundation

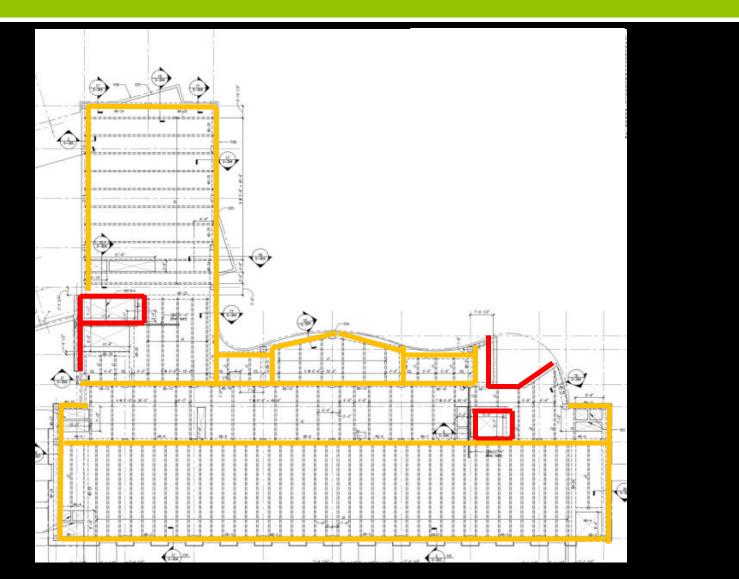

- □ Building Introduction Existing Structural System Problem Statement Proposed Solution □ Fixed Base Design Base Isolation Design Comparison of Designs Sustainability Breadth: Viability Study
- Questions/Comments

- Cast-in-place concrete mat-slab foundation
- One way slab framing
- Precast Joists and Beam Soffits
- Bay sizes


EXISTING STRUCTURAL SYSTEM

BAY SIZES

EXISTING STRUCTURAL SYSTEM


Cast-in-place concrete mat-slab foundation

One way slab construction

Precast Joists and Beam Soffits

Concrete Moment frames

Concrete Shear Walls

- □ Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- □ Fixed Base Design
- Base Isolation Design
- Comparison of Designs
- Sustainability Breadth: Viability Study
- □ Questions/Comments

- □ Interest in seismic design
- Scenario Created Request for building to be built for University of San Diego (USD)
 - Close to Northridge and San Andreas fault line

PROBLEM STATEMENT

SAN DIEGO SITE

□ Building Introduction Existing Structural System Problem Statement Proposed Solution Fixed Base Design Base Isolation Design Comparison of Designs Sustainability Breadth: Viability Study Questions/Comments

- Interest in seismic design
- Scenario Created Request for building
 - Request for building to be built for University of San Diego (USD)
 - Close to Northridge and San Andreas fault line
- □ Similar site to USF
- Geotechnical report same as original building
- Facility required to meet strict standards

PROBLEM STATEMENT

LOCATION ON USD CAMPUS

□ Building Introduction Existing Structural System Problem Statement Proposed Solution □ Fixed Base Design Base Isolation Design Comparison of Designs Sustainability Breadth: Viability Study Questions/Comments

- 2 Designs undertaken in concrete Fixed Base System in San Diego to meet S-3
- Comparison between traditional and high-tech
- Design Goals Minimal Impact to Architecture
- MAE Incorporated:

Emergency Management Centre of Foligno, Italy

Computer Modeling Earthquake Design

Isolated Base System in California S-3

Low Cost of Implementation

- Building Introduction Existing Structural System
- Problem Statement
- Proposed Solution
- □ Fixed Base Design
 - Loads
 - Gravity Redesign
 - Computer modeling
 - Lateral Redesign

Lateral Forces Summary

Wind N-S direction

Wind E-W directio

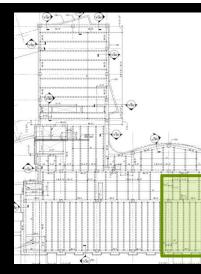
Seismic N-S direct

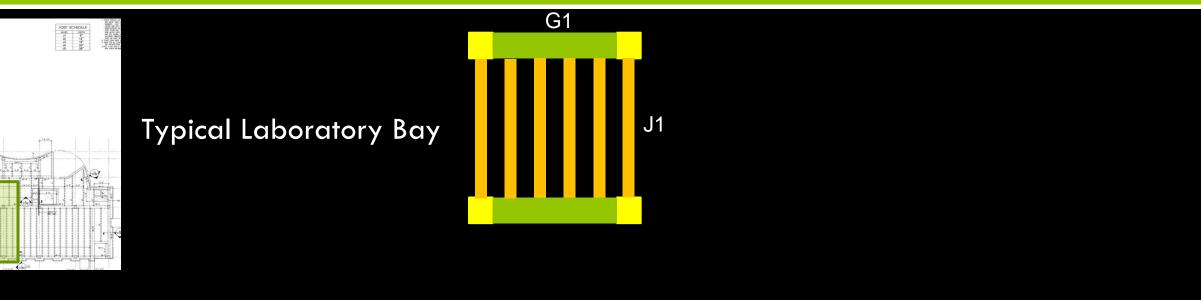
Seismic E-W direct

STRUCTURAL DEPTH

LOADS ON BUILDING

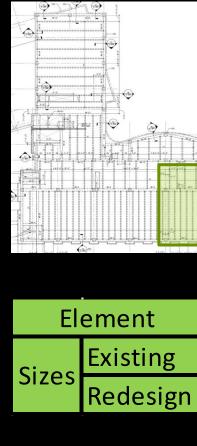
- Load Combination Used 1.2D+1.0L+1.0E+0.2S
- Modal Response applied to system

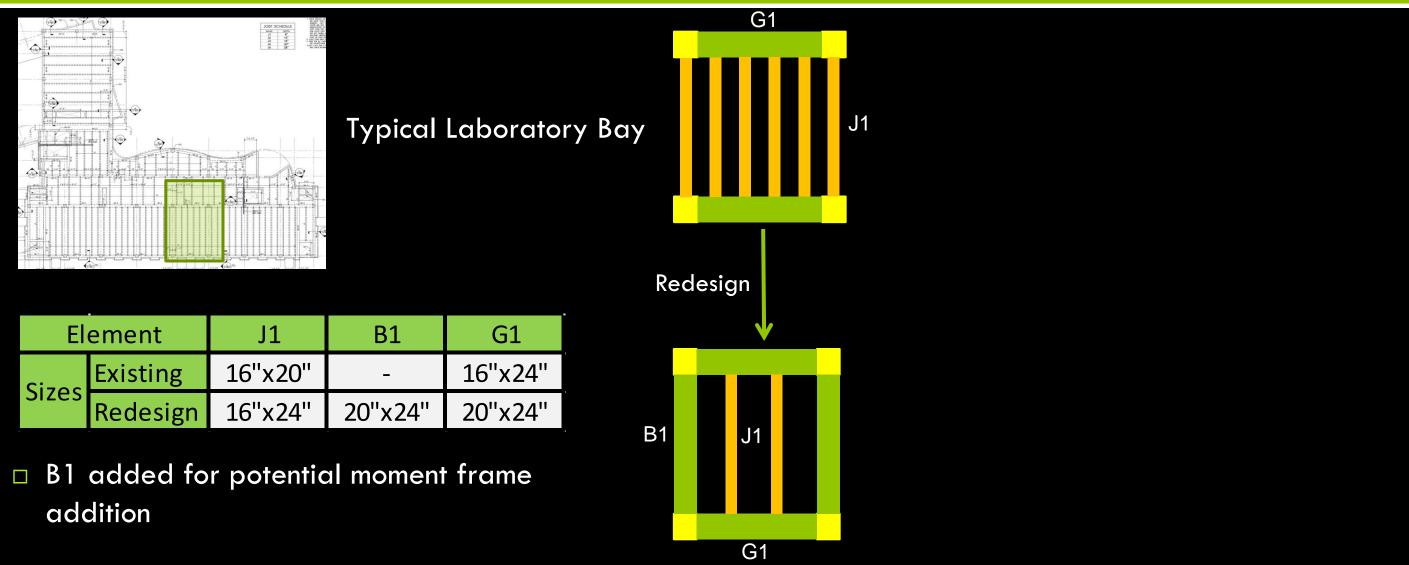

· ·	Ta	ampa,FL	San Diego,CA			
	Base Shear	Overturning	Base Shear Overturnin			
	(kips)	Moment (ft-kips)	(kips)	Moment (ft-kips)		
n	682	36,276	340	18076		
n	892	47,457	448	23811		
ion	102	10.910	2012	169,437		
tion	193	10,819	2013			


- Reduced Wind
- Higher Seismic
- Similar Dead and Live Loads
 - California

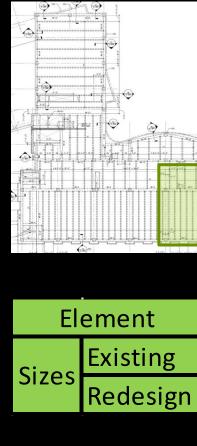
Redesign lateral system to resist the higher loads

Redesign gravity for practicality of construction in

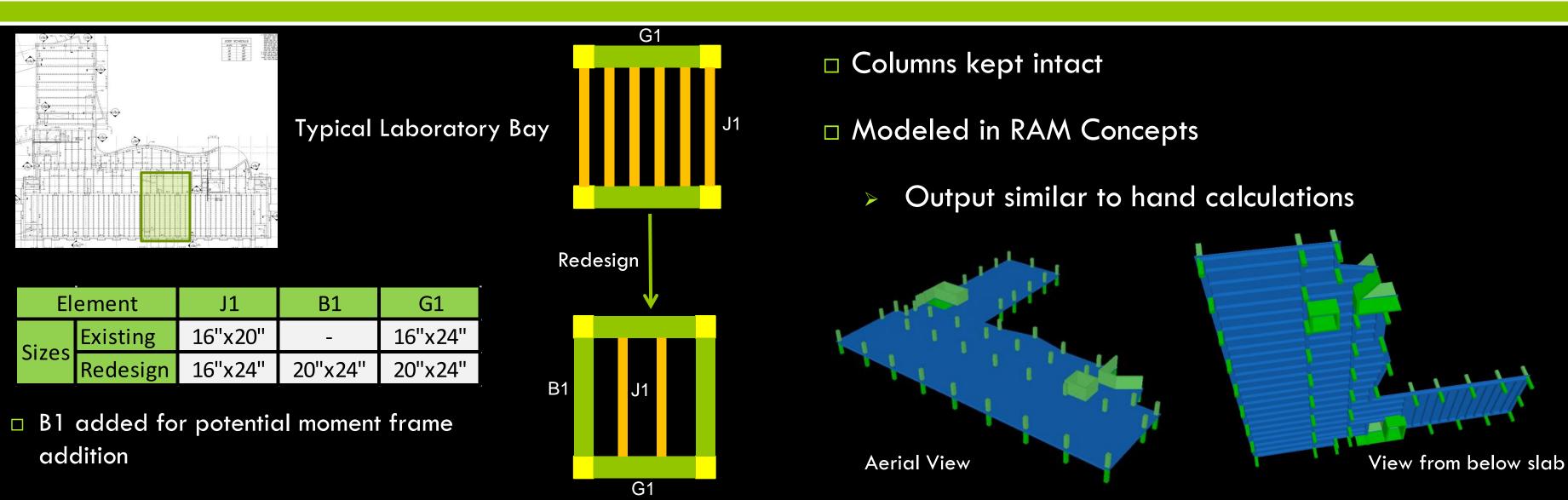

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Fixed Base Design
 - Loads
 - Gravity Redesign/One Way Slab
 - Computer modeling
 - Lateral Redesign



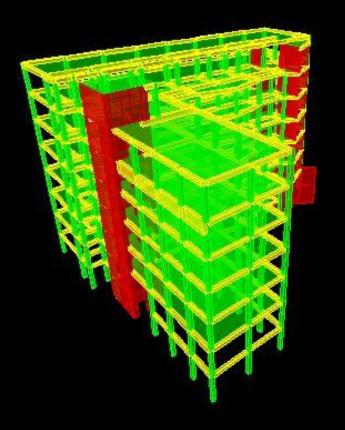
- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Fixed Base Design
 - Loads
 - Gravity Redesign/One Way Slab
 - Computer modeling
 - Lateral Redesign



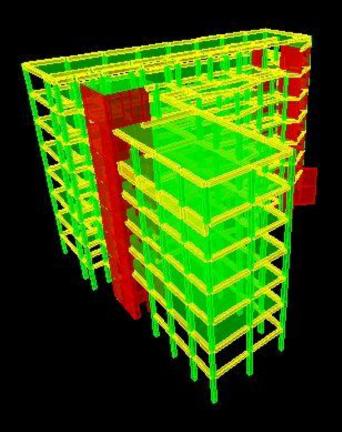
addition



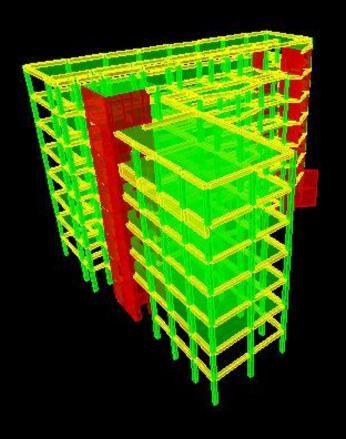
- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Fixed Base Design
 - Loads
 - Gravity Redesign/One Way Slab
 - □ Computer modeling
 - Lateral Redesign



addition



- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Fixed Base Design
 - Loads
 - Gravity Redesign
 - Computer modeling
 - Lateral Redesign

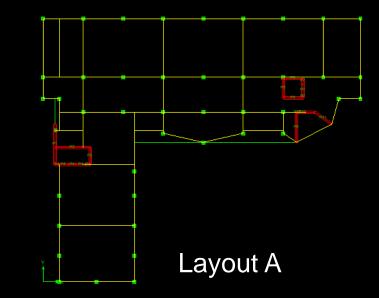

Design to overcome Extreme torsional irregularity in the Y-direction Meet code minimum moment frame S-3 Minimal Impact to architectural

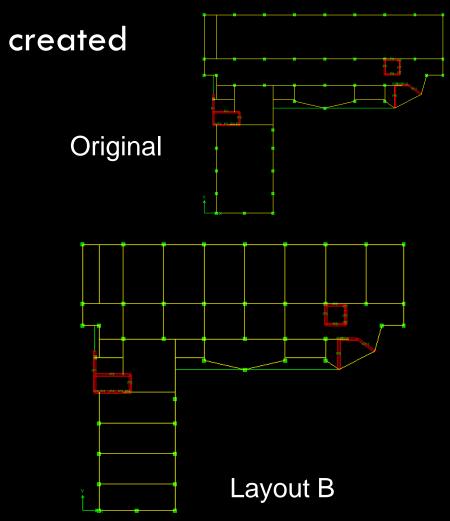
- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Fixed Base Design
 - Loads
 - Gravity Redesign
 - Computer modeling
 - Lateral Redesign

- Design to overcome
 Extreme torsional irregularity in the Y-direction
 Meet code minimum moment frame S-3
 Minimal Impact to architectural
- Solution
 Increase stiffness and reduce torsion in Y-direction
 Keep same shear walls layout

- □ Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- □ Fixed Base Design
 - Loads
 - □ Gravity Redesign
 - Computer modeling
 - Lateral Redesign

- Design to overcome Minimal Impact to architectural
- Solution
- Dual System: Special concrete shear walls with intermediate concrete moment frames R=6.5, Cd=5


FIXED BASE DESIGN


MOMENT FRAME LAYOUT

- Extreme torsional irregularity in the Y-direction
- Meet code minimum moment frame S-3

Increase stiffness and reduce torsion in Y-direction Keep same shear walls layout

2 Moment Frames layouts created

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Fixed Base Design
 - Loads
 - □ Gravity Redesign
 - Computer modeling
 - Lateral Redesign

Layout A

	total drifts in Y total drifts in X		Max drift in Y	Max drift in X	Y-dire	ection	X-di	rection		
Wall size	Beam size	Period (sec)	(inch)	(inch)	(inch) between 5-6	(inch) between 3-4	S5= 2%= 3.48"	S3= 1%= 1.74"	S5= 2%= 3.48"	S3= 1%= 1.74"
	20x24	1.737	32.21	26.29	4.686	3.875	NG	NG	NG	NG
12"	20x28	1.633	28.23	22.97	4.098	3.374	NG	NG	ОК	NG
12	20x32	1.553	25.25	20.65	3.660	3.022	NG	NG	ОК	NG
	20x36	1.489	22.97	18.93	3.324	2.762	OK	NG	ОК	NG
	20x24	1.622	27.98	23.37	4.072	3.441	NG	NG	ОК	NG
16"	20x28	1.533	24.84	20.65	3.603	3.034	NG	NG	ОК	NG
10	20x32	1.463	22.42	18.71	3.249	2.742	ОК	NG	ОК	NG
	20x36	1.406	20.53	17.25	2.971	2.522	ОК	NG	ОК	NG

FIXED BASE DESIGN

LATERAL SYSTEM

Several iterations done

🗆 Layout B

			total drifts in V	total drifts in X	Max drift in Y	Max drift in X	Y-dire	ection	X-di	rection
Wall size	Beam size	Period (sec)	(inch)	(inch)	(inch) between 5-6	(inch) between 3-4	S5= 2%= 3.48"	S3= 1%= 1.74"	\$5= 2%= 3.48"	S3= 1%= 1.74"
	20x24	1.687	29.42	26.09	4.271	3.844	NG	NG	NG	NG
12"	20x28	1.581	25.58	22.77	3.703	3.343	NG	NG	ОК	NG
12	20x32	1.501	22.78	20.45	3.290	2.992	ОК	NG	ОК	NG
	20x36	1.439	20.68	18.73	2.980	2.733	ОК	NG	ОК	NG
	20x24	1.582	25.82	23.20	3.744	3.416	NG	NG	ОК	NG
16"	20x28	1.491	22.73	20.48	3.290	3.008	ОК	NG	ОК	NG
10	20x32	1.421	20.42	18.54	2.950	2.716	ОК	NG	ОК	NG
	20x36	1.366	18.65	17.08	2.690	2.496	ОК	NG	ОК	NG
20"	20x36	1.307	17.05	15.77	2.460	2.305	ОК	NG	ОК	NG
	20x36	1.258	15.75	14.67	2.272	2.145	ОК	NG	ОК	NG
24"	20x42	1.204	14.22	13.40	2.049	1.955	ОК	NG	ОК	NG
	24x42	1.184	14.22	13.40	2.049	1.955	ОК	NG	ОК	NG
28"	20x42	1.165	13.291	12.602	1.916	1.839	ОК	NG	ОК	NG
32"	24x42	1.113	12.808	12.301	1.847	1.794	ОК	NG	ОК	NG
52	24x48	1.077	11.847	11.473	1.708	1.670	ОК	ОК	ОК	ОК

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Fixed Base Design
 - Loads
 - □ Gravity Redesign
 - □ Computer modeling
 - Lateral Redesign

□ System chosen to meet S-5 (2% drift) Layout B

16"	20x24	1.582
	20x28	1.491
10	20x32	1.421
	20x36	1.366

□ Shear walls: Increase of 4" Moment frames: Increase in depth

25.82	23.20	3.744	3.416	NG	NG	ОК	NG
22.73	20.48	3.290	3.008	ОК	NG	ОК	NG
20.42	18.54	2.950	2.716	ОК	NG	ОК	NG
18.65	17.08	2.690	2.496	ОК	NG	ОК	NG

20x24
20x28
20x32
20x36

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- □ Fixed Base Design
 - Loads
 - Gravity Redesign
 - □ Computer modeling
 - Lateral Redesign

□ System chosen to meet S-5 (2% drift) Layo

16"	20x24	1.582
	20x28	1.491
10	20x32	1.421
	20x36	1.366

□ Shear walls: Increase of 4" Moment frames: Increase in depth

FIXED BASE DESIGN

2.950

2.690

LATERAL SYSTEM

			5-5 (••••		
ut	В						
	25.02	22.20	2 744	2.446	NC	NC	01/

2.716

2.496

OK

ОК

□ System chosen to meet S-3 (1% drift) Layout B

	24x42	1.184	14.22	13.40	2.049	1.955	ОК	NG	ОК	NG
28"	20x42	1.165	13.291	12.602	1.916	1.839	ОК	NG	OK	NG
22"	24x42	1.113	12.808	12.301	1.847	1.794	ОК	NG	ОК	NG
32"	24x48	1.077	11.847	11.473	1.708	1.670	ОК	ОК	ОК	ОК

28"	20x42
32"	24x42
52	24x48

Impractical design due to plenum space

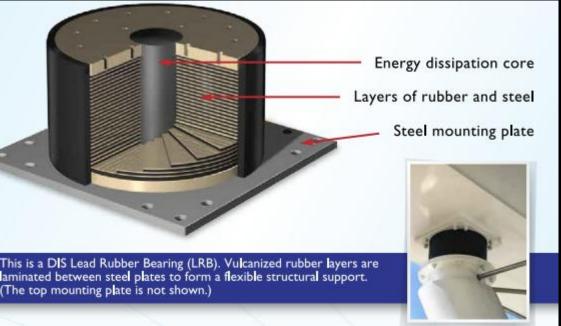
20x24 20x28 20x32 20x36

20.42

18.65

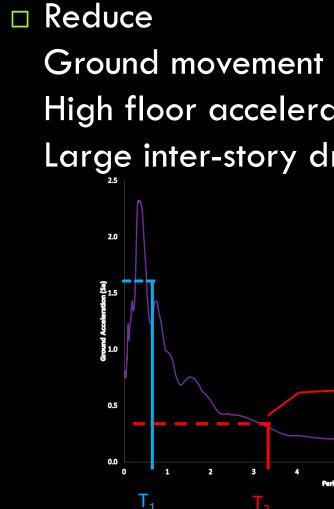
18.54

17.08


- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- □ Fixed Base Design
- Base Isolation Design
 - Introduction
 - □ Time History
 - Design
 - Results

BASE ISOLATION

Lead Rubber Base Isolators

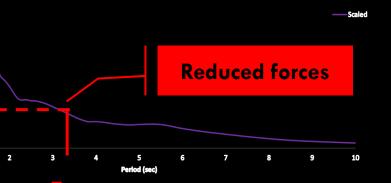

Courtesy of Teratec

Rubber provides flexibility to move and return

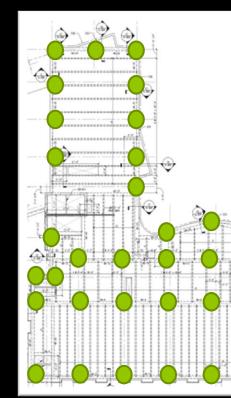
Steel can move horizontally but provide vertical stiffness

Lead has plastic property Kinetic energy is absorbed into heat energy as the lead is deformed

- Building Introduction Existing Structural System Problem Statement Proposed Solution □ Fixed Base Design Base Isolation Design
 - Introduction
 - □ Time History
 - Design
 - Results



BASE ISOLATION


ISOLATORS LAYOUT

Damping

- High floor acceleration
- Large inter-story drifts

Placed between the structure and the foundation, beneath the ground floor slab

Number O Isolators 66

Building Introduction Existing Structural System Problem Statement Proposed Solution □ Fixed Base Design Base Isolation Design Introduction □ Time History Design Results

Recommended records chosen from FEMA P695

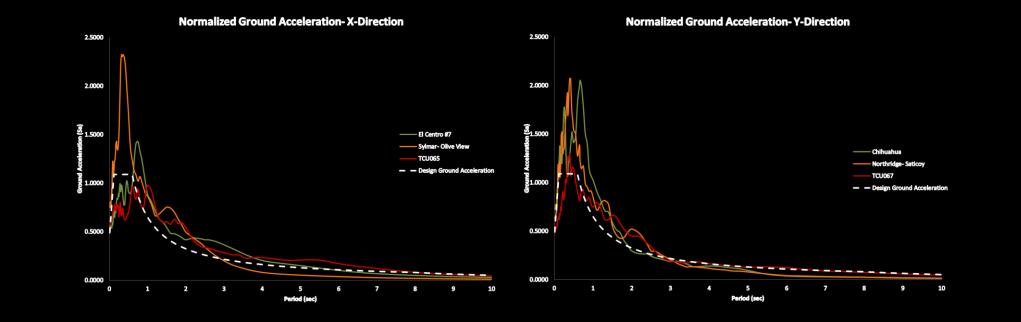
Earthquakes chosen for analysis

Direction of Earthquake

X-Direction

Y-Direction

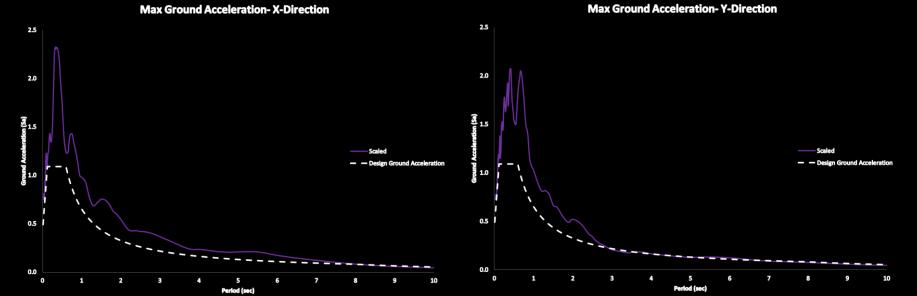
EARTHQUAKES


Earthquake	Station	Magnitude
Imperial Valley	El centro 7	6.5
Northridge-01	Sylmar - Olive View	6.7
Chi Chi, Taiwan	TCU065	7.6
Imperial Valley	<u>Chihuahua</u>	6.5
Northridge-01	Northridge - Saticoy	6.7
Chi Chi, Taiwan	TCU067	7.6

FEMA= Federal Emergency Management Agency

P695=Quantification of Building Seismic Performance Factors

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- □ Fixed Base Design
- Base Isolation Design
 - Introduction
 - □ Time History
 - Design
 - Results


TIME HISTORY

Response spectrum and scaling factors were taken from PEER NGA for the proposed solution

PEER = Pacific Earthquake Engineering Research Center of the University of California at Berkeley

- Building Introduction Existing Structural System Problem Statement Proposed Solution □ Fixed Base Design Base Isolation Design Introduction □ Time History Design
 - Results

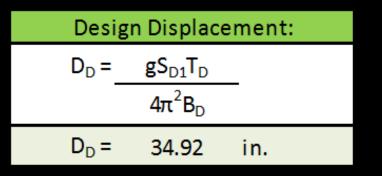
TIME HISTORY

Response spectrum were taken from PEER NGA for the proposed solution then scaled accordingly

Maximum Envelope of the ground motion history

- Building Introduction Existing Structural System Problem Statement Proposed Solution □ Fixed Base Design
- Base Isolation Design
 - Introduction
 - □ Time History
 - 🗆 Design
 - Results

DESIGN METHOD


- Time histories applied to fixed base design S-3
 - Recorded max displacements & interstory drifts for each earthquake

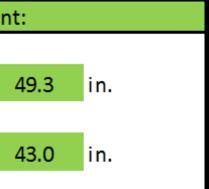
Building Introduction	Time histo
Existing Structural System	Time histo
Problem Statement	Hyste
Proposed Solution	Prelim
Fixed Base Design	following
Base Isolation Design	Recor
□ Introduction	for each e
Time History	
Design	
Results	

DESIGN METHOD

- ories applied to fixed base design S-3
- ories applied to isolated structure CA S-3 eresis curve could no be obtained minary sizing for base isolators was done ASCE 7-05
- rded max displacements & interstory drifts earthquake

Minimum lateral displacement in each direction

Minimum with actual and accidental torsion


Total Displacement:

$$D_{TD} = D_D \left[1 + y \frac{12e}{b^2 + d^2} \right]$$

SIZING (ASCE 7-05)

Maximum I	Displacem	ent:
-----------	-----------	------

D _M =	$gS_{M1}T_M$	_	
	$4\pi^2 B_M$		
D _M =	30.46	in.	

Minimum axial capacity of 1,300 kips

Building Introduction	Time historie
Existing Structural System	Time historie
Problem Statement	
Proposed Solution	Further iterc
Fixed Base Design	Size base
Base Isolation Design	
Introduction	Optimize
Time History	stiffness
Design	
Results	

DESIGN METHOD

- ries applied to fixed base design S-3
- ries applied to isolated structure CA S-3
- rations done
- ise isolator
- ze structure by reducing strength and

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- □ Fixed Base Design
- Base Isolation Design
 - Introduction
 - □ Time History
 - Design
 - Results

	tor En								
Isol		i <i>gineer</i> Proper	0			5	1		
	DEVI	CE SIZE	-	M	OUNTIN	IG PLA		ENSIC	INS
holator Nameter, D ₁ (in)	Isolator Height, H (in)	Number of Rubber Layers, N	Lead Diameter D _L (in)	L (in		Hole Qty.	Hole Ø	A (in)	B (in)
12.0	5-11	4-14	0-4	14	1	4	11/16	2	
14.0	6-12	5-16	0-4	16		4	11/16	2	
16.0	7.13	6-20	0.5	11	1	4	11/16	2	
18.0	7-14	6-20	0-5	20		4	11/16	2	
20.5	8-15	8-24	0-7	22.	5 1	8	11/16	2	2
22.5	8-15	8-24	0-7	24.		8	11/16	2	2
25.5	8-15	8-24	0-8	27.		8	1 1/16	2	2
27.5	8-17	8-30	0-8	29.	5 1.25	8	15/16	2.5	3
29.5	9-18	8-30	0-9	31.		8	15/16	2.5	3
31.5	9-20	8-33	0-9	33.	5 1.25	8	1 5/16	2.5	3
33.5	9-21	8-35	0-10	35.		12	15/16	2.5	3.75
35.5	10-22	9-37	0-10	37.		12	15/16	2.5	3.75
37.5	10-23	10-40	0-11	39.		12	15/16	2.5	3.75
39.5	11-25	11-40	0-11	41.		12	1 9/16	3	4.5
41.5	12-26	12-45	0-12	43.		12	1 9/16	3	4.5
45.5	13-30	14-45	0-13	47.		12	1 9/16	3	4.5
49.5	14-30	16-45	0.14	52.		16	1 9/16	3	4.5
53.5	16-30	18-45	0-15	56.		16	1 9/16	3	4.5
\$7.1	17-30	20-45	0-16	60		20	19/16	3	4.5
61.0	18-30	22-45	0-16	64	2	20	1 9/16	3	4.5
Isolator		IGN PROP			Maximum	AxialL	bee		
D _I (in)	Yielded Stiffness, K _d (k/in)	Characterist Strength, Q ₄ (kips)	ic Compres Stiffner K _v (k/ir		Displacement D _{max} (in)	Pmax(k	ity, ips)		
12.0	1-5	0-15	>25		6	101			
14.0	1.7	0-15	>50	0	6	150			
16.0	2-9	0-25	>50		8	200			
18.0	2-11	0-25	>50	10	10	250			
20.5	2-13	0-40	>1.00	0	12	300		Saud .	
22.5	3-16	0-40	>3,00		14	400		1) The	
25.5	3-20	0-50	>4,00		16	600		naxiun	
27.5	3-24	0-50	>4,50		18	700		mits o	£ 250
29.5	4-27	0-60	>5,00		18	800		olator	diam
31.5	4-30	0-60	>6,00		20	900		nent at	
33.5	4-35	0-80	>7,00		22	1,10	•	ubber	
35.5	4-35	0-80	>8,00		22	1,30		auder	modu
37.5	4-35	0-110	>10,00		24	1,50			
39.5	5-36	0-110	>11,00		26	1,70		2) Rub	
41.5	5-36	0-130	>12,00		28	1,90		5 psi t	o 100
45.5	6-37	0-150	>16,00		30	3,10			
49.5	7-38	0-170	>21,00		32	4,60		3) For	analy
\$3.5	8-40	0-200	>29,00		34	6,20	0 1	lastic	
\$7.1	9-41	0-230	>30,00		36	7,50			
61.0	10-42	0-230	>37.00		36	9,00			

BASE ISOLATOR

Isolator chosen for optimized system from manufacturer cut sheet

Diameter: 37.5"

Maximum displacement: 24"

Axial Capacity: 1,500 kips

□Unit Cost: \$14,250

Link element modeled in ETABS using cut sheet

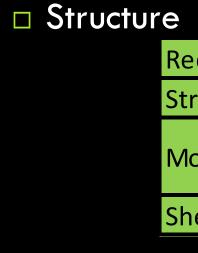
Isolator Properties					
Linear Propert	ies				
Effective Stiffness (k/in)	4				
Effective Damping	0.15				
Nonlinear Prope	Nonlinear Properties				
Stiffness (k/in)	40				
Yield Strength (kips)	110				
Post Yield Stiffness Ratio	0.2				

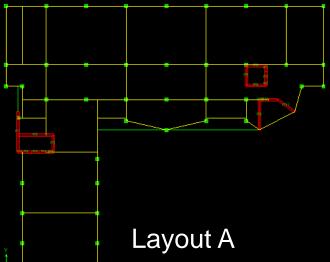
Results

Building Introduction	Dual system
Existing Structural System]
Problem Statement	
Proposed Solution	using
Fixed Base Design	Period of the
Base Isolation Design	
Introduction	
Time History	
Design	

OPTIMIZED SYSTEM

m:

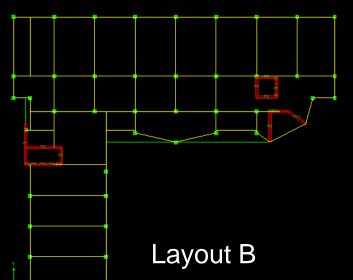

- 12" special shear walls20"x28" intermediate moment framesLayout A
- the structure
- T = 4.04 seconds


Displacement / Interstory drifts / Controlling EQ

Direction of	Earthquake	Station	Scale Factor	Magnitude	Peak time in X (sec)	Peak time in Y (sec)	Max Displacement (inch)	
Earthquake	•						Х	Y
	Imperial Valley	El centro 7	525	6.5	5.48	11.27	16.38	1.88
X-Direction	Northridge-01	Sylmar - Olive View	441	6.7	4.82	14.60	21.22	1.76
Chi Chi, Ta	Chi Chi, Taiwan	TCU065	312	7.6	5.42	12.37	9.20	1.50
	Imperial Valley	Chihuahua	1018	6.5	32.41	14.91	1.51	9.23
Y-Direction	Northridge-01	Northridge - Saticoy	579	6.7	7.31	4.07	1.22	16.56
	Chi Chi, Taiwan	TCU067	451	7.6	44.27	30.94	1.57	18.74

Direction of	Farthquaka	Magnituda	Max inters	tory drift	Max interstory drift	S5= 2%	= 3.48"	S3= 1%	6= 1.74"
Earthquake	Earthquake	Magnitude	Х	Y	location	Х	Y	Х	Y
	Imperial Valley	6.5	1.458	0.334	Story 1-Story 2	ОК	ОК	ОК	ОК
X-Direction	Northridge-01	6.7	1.729	0.789	Story 1-Story 2	ОК	ОК	ОК	ОК
	Chi Chi, Taiwan	7.6	1.032	0.277	Story 1-Story 2	ОК	ОК	ОК	ОК
	Imperial Valley	6.5	0.164	0.734	Story 1-Story 2	ОК	ОК	ОК	ОК
Y-Direction	Northridge-01	6.7	0.161	1.321	Story 1-Story 2	ОК	ОК	ОК	ОК
	Chi Chi, Taiwan	7.6	0.177	1.493	Story 1-Story 2	ОК	ОК	ОК	ОК

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Fixed Base Design
- Base Isolation Design
- Comparison of Designs
- Sustainability Breadth: Viability Study
- Questions/Comments



SUMMARY

CONSTRUCTION MANAGEMENT

quirement	S-3 (1% Drift)				
ucture	Fixed	Isolated			
oment frames	Layout B	Layout A			
	24x48	20x28			
ear Walls	32"	12"			

Cost

	Original	Fixed CA-S3	Isolated CA-S3
Superstructure	\$2,890,802	\$2,656,186	\$2,302,165
Isolators	\$0	\$0	\$985,820
Total Cost	\$21,620,193	\$22,091,880	\$22,683,679
Difference to original	-	+ \$471,687	+ \$1,063,486
hedule		•	

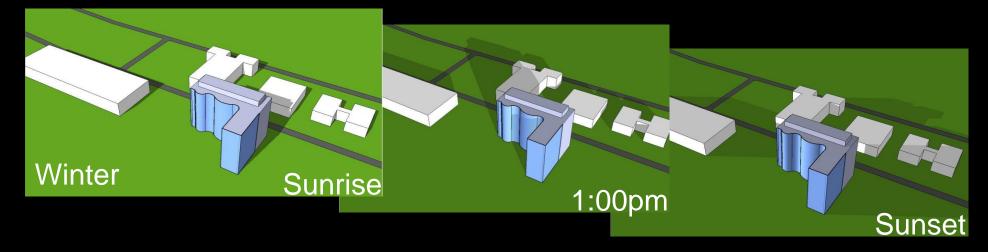
Schedule Summary							
System #days Extra to origina							
Original design	324	-					
One way cast-in-place	380	56					
Isolated one way cast-in-place	391	67					

- Building Introduction Existing Structural System Problem Statement Proposed Solution □ Fixed Base Design Base Isolation Design Comparison of Designs Sustainability Breadth: Viability Study
- Questions/Comments

□ BISEM Inc.

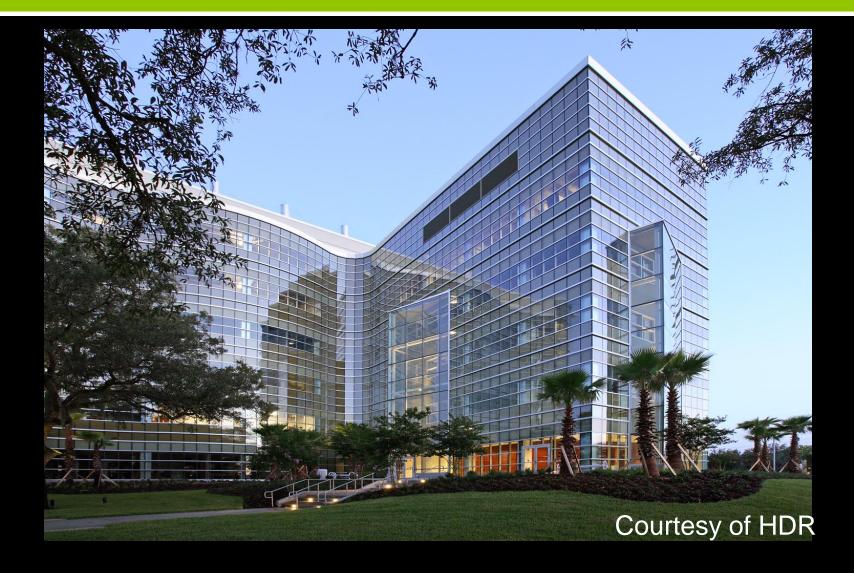
INTRODUCTION

- Feasibility of Integrated photovoltaic curtain wall
 - Life Cycle Assessment
 - Payback Period
 - Additional LEED points earned
- Solar study for California site


□ Panel size 33"x33" 72 Watt Monocrystalline silicon Efficiency of 30-40%

Example of BIPV curtain wall

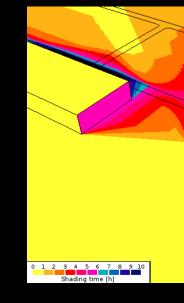
- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- □ Fixed Base Design
- □ Base Isolation Design
- Comparison of Designs
- Sustainability Breadth: Viability Study
- Questions/Comments


- Critical Days
- Critical Times

GOOGLE SKETCHUP

□ Winter Solstice, Summer Solstice, and Equinox

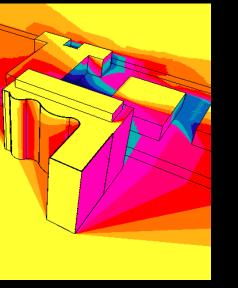
Sunrise, Sunset, and 1:00 PM (peak hour)

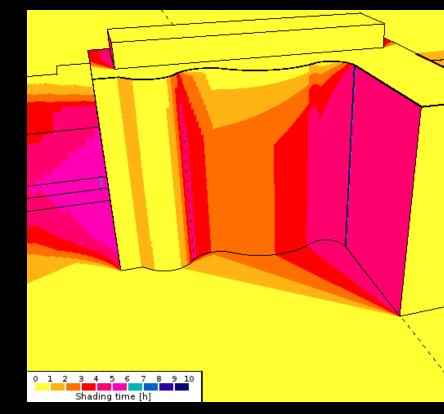


- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- □ Fixed Base Design
- Base Isolation Design
- Comparison of Designs

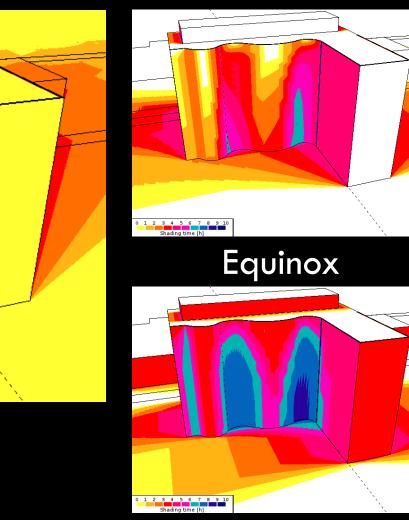
Sustainability Breadth: Viability Study

Questions/Comments





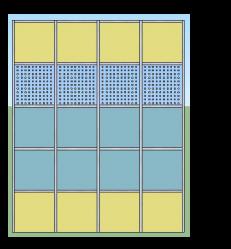
SHADOW ANALYSIS

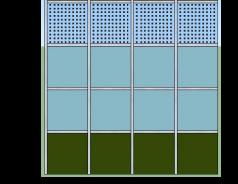

An improved analysis using Shadow Analysis

Winter Solstice

Summer Solstice

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- □ Fixed Base Design
- Base Isolation Design
- Comparison of Designs


Sustainability Breadth: Viability Study


Questions/Comments

Model

ARCHITECTURE

Impact on exterior aesthetic

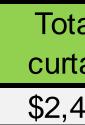
Existing

Proposed

Actual

Existing

Minimal Impact to exterior architecture


Proposed

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- □ Fixed Base Design
- Base Isolation Design
- Comparison of Designs

Sustainability Breadth: Viability Study

Questions/Comments

COST

Description	Total	\$/sf
PV Design	\$ 198,090	\$ 15.00
Electrical Design	\$ 198,090	\$ 15.00
Curtain Wall Design	\$ 198,090	\$ 15.00
Curtain Wall Aluminun	\$ 264,120	\$ 20.00
Vision Glass	\$ 39,618	\$ 3.00
Thin Film at Spandrel	\$ 726,330	\$ 55.00
Inverters & Monitoring	\$ 158,472	\$ 12.00
Wiring	\$ 198,090	\$ 15.00
Fabrication	\$ 264,120	\$ 20.00
Installation	\$ 264,120	\$ 20.00
Total	\$ 2,509,140	\$ 190.00

Existing panel price at \$78/sq.ft

tal BIPV tain wall	Exisiting Panels	Addition for BiPV
469,522	\$1,030,068	\$1,479,072

- □ Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- □ Fixed Base Design
- Base Isolation Design
- □ Comparison of Designs

Sustainability Breadth: Viability Study

Questions/Comments

COST

PAYBACK PERIOD

idered

Description	Total	\$/sf
PV Design	\$ 198,090	\$ 15.00
Electrical Design	\$ 198,090	\$ 15.00
Curtain Wall Design	\$ 198,090	\$ 15.00
Curtain Wall Aluminun	\$ 264,120	\$ 20.00
Vision Glass	\$ 39,618	\$ 3.00
Thin Film at Spandrel	\$ 726,330	\$ 55.00
Inverters & Monitoring	\$ 158,472	\$ 12.00
Wiring	\$ 198,090	\$ 15.00
Fabrication	\$ 264,120	\$ 20.00
Installation	\$ 264,120	\$ 20.00
Total	\$ 2,509,140	\$ 190.00

Existing panel price at \$78/sq.ft

tal BIPV tain wall	Exisiting Panels	Addition for BiPV
469,522	\$1,030,068	\$1,479,072

PV surface area is 46% of curtain wall

Federal tax credit is 30% in the first year

State and federal calculated using the Modified Accelerated Cost Recovery System (MACRS)

Watts generated decrease for 90° tilt

1 credit received for LEED certification

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Fixed Base Design
- Base Isolation Design
- Comparison of Designs
- Sustainability Breadth: Viability Study
- Questions/Comments

Assumption: South, East & West Elevation of the curtain wall is 13,206 square feet. The federal tax credit for the BIPV curtain wall is 30% in the first year. There is also a state and federal accelerated depriciation, MACRS. This allows the BIPV curtain wall to be deducted over 5 years, rather than 30 years. So, by the end of the second year, you will have paid for the premium for the BIPV thinfilm addition. The next three years of accelerated depriciation become an ROI.

Standard Cu

BiPV Curtai

Total Taxab

Federal Ta BiP

MACRS Dep Local Utility MACRS Dep

MACRS Dep

MACRS Dep MACRS Dep

PAYBACK PERIOD

95% Payback in 36 Months

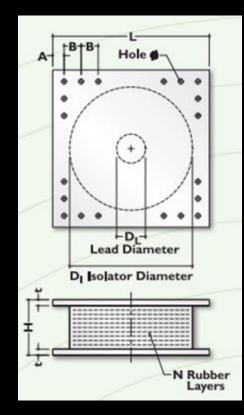
Curtain Wall:	13,206	\$	78	\$1	^{Cost} 1,030,068		
ain Wall Pre <mark>m</mark> ium:	13,206	\$	112	\$1	L, <mark>479,07</mark> 2		
able BiPV:				\$2	2,509,140		
Tax Credit 30% of total							
PV in First Year:				\$	740,857		
epreciation Year One:				\$	189,758		
ty Rebate:				\$	94,925	=	\$18,925 per year for 5 years
epreciation Federal/Sta	te Year T	wo:		\$	189,758		
epreciation Federal/Sta	te Year T	hre	e:	\$	189,758	95%	Payback 36 Months
epreciation Federal/Sta	te Year F	our		Ś	189,758	13%	ROI
epreciation Federal/Sta	10:00			\$	189,758	13%	ROI

■ LEED — systems are the same

All other analyses favor BIPV retrofit

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- □ Fixed Base Design
- Base Isolation Design
- Comparison of Designs
- Sustainability Breadth: Viability Study
- Questions/Comments

Entire AE faculty


ACKNOWLEDGMENTS

- □ HDR Architecture, Inc. for providing the project and the owner permission form, specially Michael Paczack
- BISEM, Inc. for providing BIPV information and guidance

 - Dr. Ali Memari
 - Prof. Kevin Parfitt
 - Prof. Robert Holland
- Special thanks to my family and friends for their support

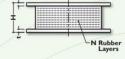
- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Fixed Base Design
- Base Isolation Design
- Comparison of Designs
- Sustainability Breadth: Viability Study
- Questions/Comments

QUESTIONS?

Isolator Di	mensions
DI (in)	37.5
H (in)	23
Ν	40
DL (in)	11
L(in)	39.5
t (in)	1.5
Hole Qty	12
Hole D (in)	1 5/16
A (in)	2.5
B (in)	3.75

DYNAMIC ISOLATION SYSTEMS

Section 3: Engineering Isolator Engineering Properties

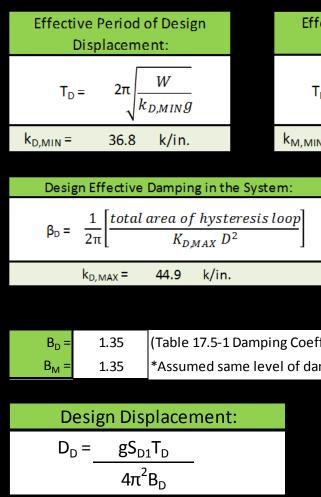

Isolator Properties: U.S. Units

	DEV	CE SIZE		MOL	JNTIN	G PLA	TE DIME	NSIC	NS
Isolator Diameter, D _I (in)	lsolator Height, H (in)	Number of Rubber Layers, N	Lead Diameter D _L (in)	L (in)	t (in)	Hole Qty.	Hole Ø (in)	A (in)	B (in)
12.0	5-11	4-14	0-4	14	1	4	11/16	2	•
14.0	6-12	5-16	0-4	16	1	4	11/16	2	•
16.0	7-13	6-20	0-5	18	1	4	11/16	2	
18.0	7-14	6-20	0-5	20	1	4	11/16	2	-
20.5	8-15	8-24	0-7	22.5	1	8	11/16	2	2
22.5	8-15	8-24	0-7	24.5	1	8	11/16	2	2
25.5	8-15	8-24	0-8	27.5	1.25	8	11/16	2	2
27.5	8-17	8-30	0-8	29.5	1.25	8	1 5/16	2.5	3
29.5	9-18	8-30	0-9	31.5	1.25	8	1 5/16	2.5	3
31.5	9-20	8-33	0-9	33.5	1.25	8	1 5/16	2.5	3
33.5	9-21	8-35	0-10	35.5	1.5	12	1 5/16	2.5	3.75
35.5	10-22	9-37	0-10	37.5	1.5	12	15/16	2.5	3.75
37.5	10-23	10-40	0-11	39.5	1.5	12	15/16	2.5	3.75
39.5	11-25	11-40	0-11	41.5	1.5	12	19/16	3	4.5
41.5	12-26	12-45	0-12	43.5	1.75	12	19/16	3	4.5
45.5	13-30	14-45	0-13	47.5	1.75	12	19/16	3	4.5
49.5	14-30	16-45	0-14	52.5	1.75	16	19/16	3	4.5
53.5	16-30	18-45	0-15	56.5	2	16	19/16	3	4.5
57.1	17-30	20-45	0-16	60	2	20	19/16	3	4.5
61.0	18-30	22-45	0-16	64	2	20	19/16	3	4.5

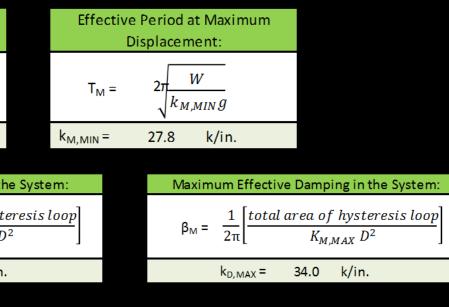
Isolator	DES	GN PROPE	RTIES	Maximum	Axial Load
Diameter, D ₁ (in)	Yielded Stiffness, K _d (k/in)	Characteristic Strength, Q _d (kips)	Compression Stiffness, K _v (k/in)	Displacement, D _{max} (in)	Capacity, Pmax(kips)
12.0	1-5	0-15	>250	6	100
14.0	1-7	0-15	>500	6	150
16.0	2-9	0-25	>500	8	200
18.0	2-11	0-25	>500	10	250
20.5	2-13	0-40	>1,000	12	300
22.5	3-16	0-40	>3,000	14	400
25.5	3-20	0-50	>4,000	16	600
27.5	3-24	0-50	>4,500	18	700
29.5	4-27	0-60	>5,000	18	800
31.5	4-30	0-60	>6,000	20	900
33.5	4-35	0-80	>7,000	22	1,100
35.5	4-35	0-80	>8,000	22	1,300
37.5	4-35	0-110	>10,000	24	1,500
39.5	5-36	0-110	>11,000	26	1,700
41.5	5-36	0-130	>12,000	28	1,900
45.5	6-37	0-150	>16,000	30	3,100
49.5	7-38	0-170	>21,000	32	4,600
53.5	8-40	0-200	>29,000	34	6,200
57.1	9-41	0-230	>30,000	36	7,500
61.0	10-42	0-230	>37,000	36	9,000

1
1
:
•
:

10		
D	solator	Diameter

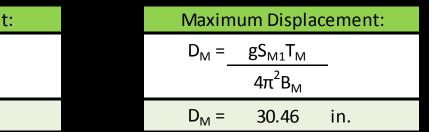

(1) The axial load capacities correspond to maxiumum displacements based on design limits of 250% rubber shear strain or 2/3 the isolator diameter. An isolator's actual displacement and load capacity are dependent on the rubber modulus and number of rubber layers.

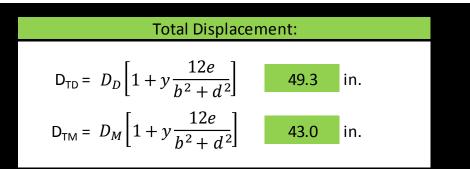
(2) Rubber Shear Moduli (G) are available from 55 psi to 100 psi.

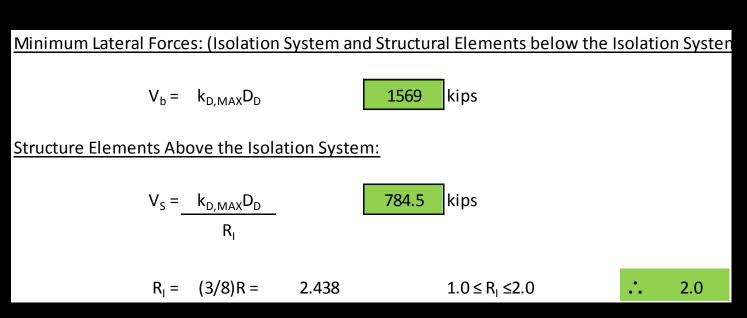

(3) For analytical bilinear modeling of the Elastic Stiffness use $K_e=10^*K_d$.

Geo tech: Nodarse & Associates, Inc.

		-							
S _s =	1.636		d =	195	ft				
S ₁ =	0.646		e =	20.8	ft (with 5% accidental torsion)				
S _{M1} =	0.49		g =	386.4	in./sec ²				
S _{D1} =	0.646		T _{str.} =	1.491					
R =	6.5		T _D =	7.455	sec.				
W =	20,000	kips	T _M =	8.6	sec.				
b =	145	ft	Damping =	15%]				
Variation =	10%	(Variation in stiffness from the mean							
stiffness values of the isolators is considered									

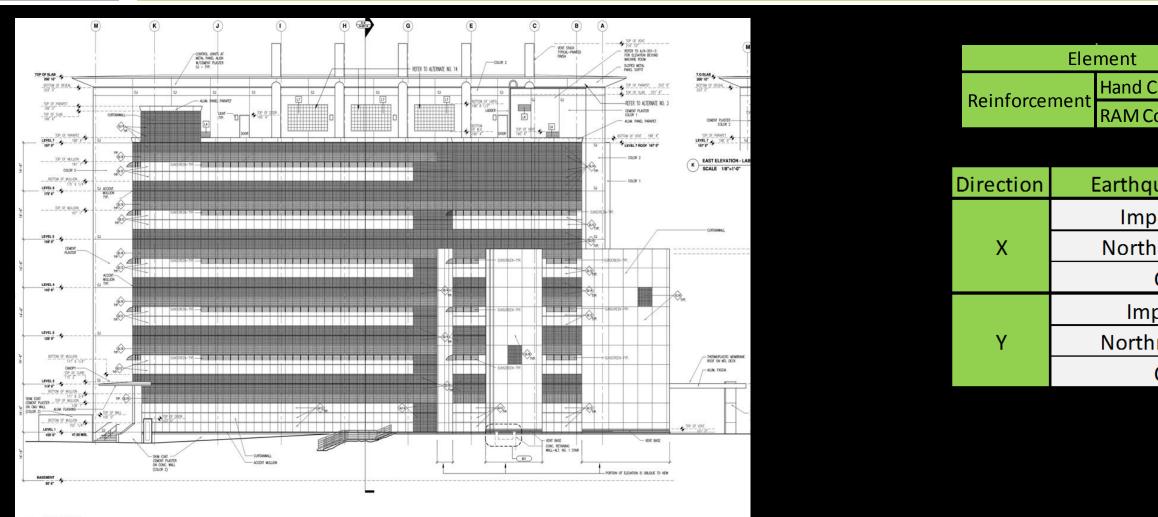



 $D_{\rm D} = 34.92$ in.



(Table 17.5-1 Damping Coefficient)

*Assumed same level of damping assigned to both directions



Fodoral Invog	tmont Tay (Cradit 20%	of total BiPV u	ntil 2017:	\$	(740	857)	30%	740,857		
rederar inves				ф	(740	,007)	30%	740,007			
MACRS Dep	reciation Va	lue:		\$	2,469	522					
	Depreciat	ion Schedul	e Per Year:	yr 1	\$	493	904		167,927		
yr 2							904		167,927		
yr 3							904		167,927		
				yr 4	\$	493	904		167,927		
				yr 5	\$	493	904		167,927		
State Deprec	ciation: (10)	/earStraigh	t Line)		\$	246,95	2.20	10%	21,831		
				TAX SAVINGS							
YEAR 1	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YE	AR 6	YEAR 7	YEAR 8	YEAR 9	YEAR 10	\$ 1,479,072
908,784	167,927	167,927	167,927	167,927							
21,831	21,831	21,831	21,831	21,831		21,831	21,831	21,831	21,831	21,831	
930,615	189,758	189,758	189,758	189,758		21,831	21,831	21,831	21,831	21,831	\$ 1,798,800
63%	13%	13%	13%	13%			NET OUT C	OF POCKET CO	OSTS		\$ (319,728)
95% Retu	irn in 36 n	nonths	Actual 13% pose investment per year	year for two							
Break Even Point					_						

	PV performance	13.47	kWh/SF/YR							
	No Pv SD EUI	5.53	(KWh/SF/YR)							
	Floor Plate	12934	SF							
	Story height	14.5	ft							
	South		West		East					
	Façade		Façade		Façade					
	PV	PV GEN	PV	PV GEN	PV	PV GEN	TOTAL PV GEN	Consumption	Net	
	Coverage	(kWh/YR)	Coverage	(kWh/YR)	Coverage	(kWh/YR)	(kWh/YR)	(kWh/YR)	Consumption	
Façade Length	140		80		80					-
PV (KWh/SF/YR)	11.43		11.33		11.53					
80% performance	9.144		9.064		9.224					
tory 8	46%	8,539	46%	4,837	46%	4,922	18,297	71,525	53,228	
7	46%	8,539	46%	4,837	46%	4,922	18,297	71,525	53,228	1
6	46%	8,539	46%	4,837	46%	4,922	18,297	71,525	53,228]
5	46%	8, 539	46%	4,837	46%	4,922	18,297	71,525	53,228	
4	46%	8, 539	46%	4,837	46%	4,922	18,297	71,525	53,228	
3	46%	8,539	46%	4,837	46%	4,922	18,297	71,525	53,228	
2	46%	8,539	46%	4,837	46%	4,922	18,297	71,525	53,228	
1	46%	8,539	46%	4,837	46%	4,922	18, 297	71,525	53,228	
	Σ	68,309	Σ	38,692	Σ	39,375	146,377	572,200	425,823	
							Total PV O	ffset (%) =	25.58%	
									×	
									0.1297	_\$/kWh
								Total Savings=	\$18,985	

EE EAST ELEVATION

		J1			B1		G1			
Calculation	(2)#9	(3)#9	(4)#9	(2)#9	(3)#9	(4)#9	(4)#9	(2)#9	(4)#9	
Concept	(4)#7	(5)#7	(4)#9	(4)#7	(5)#7	(4)#9	(4)#9	(4)#7	(4)#9	

uake Name / Recording Station	Scale factor from PEER
perial Valley-06/ El Centro #7	1.3587
nridge-01 / Sylmar - Olive View	1.1408
Chi Chi, Taiwan / TCU065	0.8084
perial Valley-06/ Chihuahua	2.6337
nridge-01 / Northridge - Saticoy	1.498
Chi Chi, Taiwan / TCU067	1.1668

S _s =	164%	1.6	536		F _a =	1.0			S _{ms} =	Fa.S _s	=	1.6
S ₁ =	65%	0.6	646		$F_v =$	1.5			S _{m1} =	Fv.S ₁	_=	0.969
Category	=					S _{DS} =	2/3 S	'MS	1.091			
S _{DS} :	= D		SD)S = D		S _{D1} =	2/3 S	'M1	0.646			
S _{D1}	= D											
Cs= S _{DS} /(R/I) 0.1677948	37	≤	Cs=	S _{D1} /(T.(R	/I)) 0.106	7					
			>	Cs=	0.5S ₁ /(R/	/I) 0.049692	2308	Cs=	0.1	1067		

C _u = 1.4	$T_a = C_T \cdot h_n^x =$	0.67
	$T = C_u T_a =$	0.93