ALBANY MEDICAL CENTER

PATIENT PAVILION

Albany, Ny

SENIOR THESIS 2012 | ADVISOR: DR. HANAGAN

THOMAS J. KLEINOSKY – STRUCTURAL

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- PROGRESSIVE COLLAPSE
- MAE INCORPORATION
- MECHANICAL BREADTH

348,000 SQUARE FEET
6 STORIES ABOVE GRADE PLUS SUBBASEMENT

PROJECT PHASING

PHASE 1: EXISTING DESIGN

PHASE 2: VERTICAL EXPANSION

227,000 SQUARE FOOT EXPANSION
 4 ADDITIONAL STORIES
 MECHANICAL PENTHOUSE ADDED

PATIENT CARE FACILITY

□ Max Height: 145'

SQUARE FEET: 575,000 SQUARE FEET

□ CONSTRUCTION COST: \$360 MILLION

PHASE 2: TBD

BUILDING STATISTICS

□ PHASE 1: SEPTEMBER 2010 TO JUNE 2013

- BUILDING INTRODUCTION EXISTING STRUCTURE THESIS PROPOSAL PROGRESSIVE COLLAPSE □ MAE INCORPORATION MECHANICAL BREADTH
 - CIVIL ENGINEERS: CLARK PATTERSON LEE

BUILDING STATISTICS

- OWNER: ALBANY MEDICAL CENTER
- ARCHITECT: TRO JUNG | BRANNEN
- GENERAL CONTRACTOR: GILBANE BUILDING CO.
- STRUCTURAL ENGINEER: RYAN-BIGGS ASSOCIATES
- MECHANICAL ENGINEER: ICOR Associates

FOUNDATION

□ 36" MAT FOUNDATION TYPICAL EAST WEST DIRECTION #9 AT 6" OC BOTTOM #9 AT 12" OC TOP NORTH SOUTH DIRECTION #9 AT 6" OC TOP AND BOTTOM

10" ROUND HSS

TWO TO FOUR PIPES PER PILE

NEAR EXISTING BUILDINGS

North

Mat foundation

MICROPILES

- Building Introduction
- EXISTING STRUCTURE
 - FOUNDATION
 - GRAVITY & LATERAL
- THESIS PROPOSAL
- PROGRESSIVE COLLAPSE
- MAE INCORPORATION
- MECHANICAL BREADTH

Foundation

Mat foundation

- Building Introduction
- EXISTING STRUCTURE
 - FOUNDATION
 - FRAMING
- THESIS PROPOSAL
- PROGRESSIVE COLLAPSE
- □ MAE INCORPORATION
- MECHANICAL BREADTH

- GRAVITY SYSTEM

 - - -10 FOOT MAX SPANS

LATERAL SYSTEM ECCENTRIC BRACED FRAMES MOMENT FRAMES

FRAMING SYSTEM

LATERAL FRAME LAYOUT

COMPOSITE STEEL FRAMING • 27 TO 30 FOOT SPANS ■ 3" VLI DECKING W/ 3¹/₂" TOPPING

BUILDING INTRODUCTION EXISTING STRUCTURE THESIS PROPOSAL PROGRESSIVE COLLAPSE □ MAE INCORPORATION MECHANICAL BREADTH

- PROGRESSIVE COLLAPSE ANALYSIS:

 - ALTERNATE PATH METHOD (DIRECT METHOD) TIE-FORCE METHOD (INDIRECT METHOD)

MECHANICAL BREADTH:

- FAÇADE REDESIGN:
 - ANALYZE THERMAL PERFORMANCE

PROBLEM STATEMENT

□ STRUCTURAL DEPTH (PER UFC 04-023-03):

COST COMPARISON

- CONSTRUCTION MANAGEMENT BREADTH:
 - SITE LOGISTICS:
- □ MAE COURSE RELATED STUDY:
 - AE 534: DESIGN OF STEEL CONNECTION
 - EXTENDED SHEAR TAB CONNECTION
 - WELDED UNREINFORCED FLANGE MOMENT CONNECTION

DEVELOP SITE LOGISTICS FOR PRECAST FACADE DEVELOP SITE LOGISTICS FOR EXISTING BUILDING

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- PROGRESSIVE COLLAPSE
 - TIE-FORCE METHOD
 - PRELIMINARY MEMBER SIZES
 - ALTERNATE PATH METHOD
- □ MAE INCORPORATION
- MECHANICAL BREADTH

PER OCCUPANCY CATEGORY IV:

□ TIE-FORCE METHOD MUST REDESIGN TIES IF REQUIRED TIE STRENGTH IS NOT MET

ALTERNATE PATH METHOD MUST BE PERFORMED AT ALL CORNER COLUMNS AND MID SPAN OF ALL SIDES ENHANCED LOCAL RESISTANCE CHECK MUST BE

- PERFORMED

Occupancy Category	Des
I	No specific requirements
II	Option 1: Tie Forces for t Local Resistance for the o walls at the first story.
	Option 2: Alternate Path locations.
	Alternate Path for specifie Enhanced Local Resistan or walls.
IV	Tie Forces; Alternate Path removal locations; Enhan first and second story colu

ign Requirement

the entire structure and Enhanced corner and penultimate columns or

OR

- for specified column and wall removal
- ed column and wall removal locations: nce for all perimeter first story columns
- th for specified column and wall nced Local Resistance for all perimeter umns or walls.

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- PROGRESSIVE COLLAPSE
 - TIE-FORCE METHOD
 - PRELIMINARY MEMBER SIZES
 - ALTERNATE PATH METHOD
- □ MAE INCORPORATION
- MECHANICAL BREADTH

RESTRICTIONS

TIE-FORCES METHOD

□ REQUIRES DUCTILITY, CONTINUITY, AND REDUNDANCY

□ MECHANICALLY "TIES" THE BUILDING TOGETHER

- Building Introduction
- EXISTING STRUCTURE
- THESIS PROPOSAL
- PROGRESSIVE COLLAPSE
 - TIE-FORCE METHOD
 - PRELIMINARY MEMBER SIZES
 - ALTERNATE PATH METHOD
- MAE INCORPORATION
- MECHANICAL BREADTH

LONGITUDINAL AND TRANSVERSE REINFORCEMENT:

REINFORCEMENT DESIGN:

REQUIRED TIE STRENGTH (LB/FT):

$$F_i = 3w_F L_1$$

 $w_f = 1.2D + 0.5L$
 $L_1 = \text{greatest bay length}$

$$A_{min} = \frac{F_i}{\phi \cdot \Omega \cdot F_y}$$

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- PROGRESSIVE COLLAPSE
 - TIE-FORCE METHOD
 - PRELIMINARY MEMBER SIZES
 - ALTERNATE PATH METHOD
- MAE INCORPORATION
- MECHANICAL BREADTH

Penthous
Length (ft.)
F _I /F _P (кір/ft)/(кі
$A_{SMIN}(IN.^2)$
BAR USED
Spacing (in.)
MAX SPACING (IN.)
TYPICAL SP

LONGITUDINAL AND TRANSVERSE TIES

ΞĹ	EVEL - WF = 213	3 PSF			BASEMENT TO 2ND LEVEL - WF = 164 F		SF		
	_ONGITUDINAL	TRANS	VERSE			Longitudinal	TRANS	SVERSE	
	30	27.	.33		Length (ft.)	30	27	<i>.</i> .33	
	19.2	17	7.5		F_1/F_P (KIP/FT)/(KIP)	14.8	1.	3.5	
	0.284	0.2	.59		$A_{\rm CMIN}$ (IN. ²)	0.219	С	0.2	
	No. 4	Nc	0.4		BAR USED	No. 4	N	D. 4	
	8	Ş	<i>Э</i>		Spacing (in.)	10	1	2	
	65	7	2		MAX SPACING (IN.)	65	7	72	
4	Ro	of Lev	'el-wf = 12	4 PSF		3rd to) 8тн I	$_{\rm EVEL} - WF = 1$	54 PSF
			Longitudin	AL TRANSVERSE				Longitudina	L TRANSVERSE
Ι	ENGTH (FT.)		30	27.33		Length (ft.)		30	27.33
F	F _I /F _P (KIP/FT).	/(KIP)	11.2	10.2		F_{I}/F_{P} (KIP/FT)	/(KIP)	13.9	12.6
A	$A_{\rm SMIN}$ (IN. ²)		0.166	0.151		A_{SMIN} (IN. ²)		0.205	0.187
E	Bar Used		No. 4	No. 4		BAR USED		No. 4	No. 4
<	Spacing (in.)		14	15		Spacing (in.)		11	12
Γ	/IAX SPACING ((in.)	65	72		MAX SPACING (in.)	65	72

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- PROGRESSIVE COLLAPSE
 - TIE-FORCE METHOD
 - PRELIMINARY MEMBER SIZES
 - ALTERNATE PATH METHOD
- □ MAE INCORPORATION
- MECHANICAL BREADTH

EXTERNAL WORK

- RESULTING POINT LOAD
- INTERNAL WORK
 - WORK ABSORBED BY THE HINGES PRODUCT OF THE MOMENT AND THE ROTATION
- SMALL ANGLE THEORY
 - $sin(\theta) = tan(\theta) = \theta(radians)$

PRELIMINARY MEMBER SIZES

- EXTERNAL WORK = INTERNAL WORK

- Building Introduction
- EXISTING STRUCTURE
- THESIS PROPOSAL
- PROGRESSIVE COLLAPSE
 - TIE-FORCE METHOD
 - PRELIMINARY MEMBER SIZES
 - ALTERNATE PATH METHOD
- MAE INCORPORATION
- MECHANICAL BREADTH

	R	ID	GF	\mathbf{C}

ALTERNATE PATH METHOD

OVER REMOVED ELEMENTS

COLUMN REMOVAL REQUIREMENTS

EXTERIOR FRAMES MODELED AS MOMENT FRAMES

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- PROGRESSIVE COLLAPSE
 - TIE-FORCE METHOD
 - PRELIMINARY MEMBER SIZES
 - ALTERNATE PATH METHOD
- □ MAE INCORPORATION
- MECHANICAL BREADTH

- DEFINE MEMBERS
 - PRIMARY MEMBERS
 - SECONDARY MEMBERS

ALTERNATE PATH METHOD

LOAD COMBINATION AND ASSIGNMENTS • $G = \Omega[1.2D + (0.5L \text{ or } 0.2S)] + L_{LAT}$ $\Omega_{\rm LD} = 0.9m_{LIF} + 1.1$ $\Omega_{\rm LF}^{\rm LD} = 2.0$

DEFORMATION- AND FORCE-CONTROLLED ACTIONS

A MODEL WAS CREATED EXPLICITLY FOR EACH ACTION

	m-Factors for Linear Procedures						
		Prir	nary	Second	ату		
romnonent/Action	Ю	LS	CP	LS	СР		
Component		Deforma Controlled	tion- Action	Force- Co Acti	ntrolled on		
Moment Frames Beams Columns Joints 		Moment (M M)	Shear (V) Axial load (V ¹	(P), V		
Shear Walls		M, V		Р			
Braced Frames		P V		 P P, M			
Connections		P, V, M ²		P, V, M			

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- PROGRESSIVE COLLAPSE
 - TIE-FORCE METHOD
 - PRELIMINARY MEMBER SIZES
 - ALTERNATE PATH METHOD
- MAE INCORPORATION
- MECHANICAL BREADTH

CALCULATE M-FACTORS

□ INTERACTION EQUATION (AISC CHAPTER H)

$$\frac{P_r}{2P_c} + \left[\frac{\left[\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right]}{m \ factor} \right] \le 1.0$$

Merr	ber Location	Member	Mr	Pr	Mc	Рс	m-fact	tor nteraction	
Roof		W21X50	268.6	0	412.5	661.5	6	0.108525 P	ASS
Base	Member	Properties	5	W21x50		W24x76		W24x62	
Pent	bf	/2tf		6.1		6.61		5.97	_
	h,	/tw		49.4		49.00		50.10	
Men	52/	√Fye		7.0117		7.0117		7.0117	
Roof	418,	∕vFye		53.36		53.36		53.36	
Base Pent	65/	√Fye		8.76		8.76		8.76	
	640/vFye			86.30		86.30		86.30	
	Beam m-factor			6.00)	e	5.00	6	.00
Mem	ber Location	Member	Mr	Pr	Mc	Pc m	n-factor	Interaction	-
Roof		W21X50	916.4	0 4	12.5	661.5	6	0.370262626 P	ASS
Basement to 8th W		W24X62	85.4	0 5	73.75	819	6	0.024807553 P	ASS
Penth	nouse	W24X76	109.3	0	750	1008	6	0.024288889 P	ASS

RESULTS

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- PROGRESSIVE COLLAPSE
 - TIE-FORCE METHOD
 - PRELIMINARY MEMBER SIZES
 - ALTERNATE PATH METHOD
- □ MAE INCORPORATION
- MECHANICAL BREADTH

ALTERNATE PATH METHOD

CALCULATE M-FACTORS

• IF $\frac{P_r}{r} > 0.5$ then force-controlled

	2	6	8	10	12
r					
	1.25	1.25	2	2	3

Linear interpolation between the values on lines a and b for both flange slenderness (first term) and web slenderness (second term) shall be performed, and the lowest resulting value shall be used.

$\leq \frac{260}{\sqrt{F_{\star}}}$	1.25	¹	2	3	4
$\frac{400}{\sqrt{E_{\star}}}$	1.25	1.25	1.5	2	2

EQUATION (B) IF: 0.

RESULTS

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Eq. I	nterpolated	Force Controlled	
Ax342 W14x342 Ax342 Ax344 Ax34	(a)	No	No	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>, , , , , , , , , , , , , , , , , , , </u>	Iteration 1	Final Interaction	
.4x342 W14x342 0.377731361 0.3772003466	ation 5	Iteration 4		
0.145225037 0.329480016 0.42507717 0.625020449 0.314130789 0.314130789 0.371236467 0.430889848 0.757731361 0.572003466			0.07670476	
A176 W14x193 0.329480016 0.42507717 0.625020449 0.625020449 0.314130789 0.314130789 0.371236467 0.430889848 0.757731361 0.572003466 0.572003466			0.145225037	
0.42507717 0.625020449 0.314130789 0.371236467 0.430889848 0.757731361	4 176	W14x193	0.329480016	
0.625020449 0.314130789 0.371236467 0.4x342 0.430889848 0.757731361 0.572003466			0.42507717	
.4x342 W14x342 0.314130789 0.371236467 0.430889848 0.757731361 0.757731361 0.572003466			0.625020449	
.4x342 W14x342 0.371236467 0.430889848 0.757731361 0.572003466			0.314130789	
0.430889848 0.757731361 0.572003466	.4x342 .4x370	W14x342	0.371236467	
0.757731361			0.430889848	
0.572003466			0.757731361	
$1_{\rm V}$ 270 $1_{\rm V}$ 1/1/ $_{\rm V}$ 270 $1_{\rm V}$ 270		\ <u>\</u> /1/\v270	0.572003466	
0.652593825		VV14X370	0.652593825	

$$.2 < \frac{P_{\gamma}}{P_c} < 0.5$$

MAE INCORPORATION

DESIGN LIMIT STATES:

- BOLT SHEAR
- PLATE AND WEB BEARING
- \Box Max plate thickness
- PLATE SHEAR YIELD/RUPTURE
- PLATE BLOCK SHEAR
- PLATE FLEXURE AND SHEAR INTERACTION
- PLATE BUCKLING
- UWELD STRENGTH

<u>Load:</u>

V_{ACTUAL}= 206KIPS

M-FACTOR=6.79

V_{DESIGN}=206/6.79 =30.3KIPS

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- THESIS PROPOSAL
- GRAVITY SYSTEM
- PROGRESSIVE COLLAPSE
- □ MAE INCORPORATION
- MECHANICAL BREADTH

INTRODUCTION:

- ANALYZING A TYPICAL PATIENT ROOM
- □ CALCULATE THERMAL PERFORMANCE OF EXISTING
 - FAÇADE
- PROPOSE A NEW PRECAST FAÇADE
- PROCESS:
 - DETERMINE NUMBER OF PATIENT ROOMS ON EXTERIOR
 - OF BUILDING IN EACH DIRECTION
 - OBTAIN PRICING FROM PRECAST AND GLASS
 - MANUFACTURER
 - □ MATERIAL COST ANALYSIS
 - RUN A TRACE MODEL
 - ENERGY COST ANALYSIS

- Building Introduction
- EXISTING STRUCTURE
- THESIS PROPOSAL
- GRAVITY SYSTEM
- PROGRESSIVE COLLAPSE
- MAE INCORPORATION
- MECHANICAL BREADTH

	G
Sq ft	
# Rooms	
Cost/sq ft	(
Total Cost	(7
EXISTIN	G
	J-∖

■ S.C.=0.30

WALL CONSTRUCTION:

PROPOSED PRECAST WALL CONSTRUCTION:

Glazing Cost Comparison						
Exis	ting	Prop	posed	Difference		
	58.67		58.67			
	242		242			
)	11.00	\$	12.80			
156,	179.54	\$181,	,736.19	\$25,556.65		
GLAZ	ING:					
on Ve	E19-2M					
ALUE	=0.25					

	Façade Cost
	Existing
Sq ft	105.33
# Rooms	242
Cost/sq ft	\$ 26.14
Total Cost	\$666,304.94
	SED GLAZING.
	CASTLE BUILDING

- U-VALUE=0.24
- S.C.=0.28

Comparison Proposed Difference 105.33 242 \$ 29.00 \$739.205.94 \$72,001.00

GENVELOPE LOW-E #2

MECHANICAL BREADTH

- PATIENT ROOM MODEL
 - ROOM DESIGN LOADS PER DESIGN VALUES IN MEEB BOOK

- FOUR ROOMS WERE MODELED
- TRACE RESULTS
 - COOLING LOADS
 - HEATING LOADS
- ANNUAL SAVINGS

			Existing Façade						
		Wall	Envelope	Internal Lo	ads Total	us Loads			
Туре	Ho	South	-2359	0	-2359	ter			
Load (Btu/h)		East	-2359	0	-2359				
		North	-2359	0	-2359				
		West	-2359	0	-2359				
		NUIT	, γ ζι,ιυ	ې ۲.45 ،	3,303.03				
		Wall	Envelope	Internal Lo	ads Total				
		South	-2284	0	-2284				
	-	East	-2284	0	-2284				
	IC	North	-2284	0	-2284				
		West	-2284	0	-2284				
			ŀ	Existing	Proposed				
		Total Btu/h		9436	9136				
		Energy	Saved		300				

BUILDING INTRODUCTION	G FAMILY
EXISTING STRUCTURE	GIVEN
THESIS PROPOSAL	🔲 AE Fac
GRAVITY SYSTEM	■ DR.
PROGRESSIVE COLLAPSE	■ PRC ■ DR.
MAE INCORPORATION	FRIEND
MECHANICAL BREADTH	
	GILBAN • Emi

Ryan-Biggs Associates

- CHRIS LESCHER
- NEIL WEISEL

CONCLUSION

HANK YOU FOR ALL YOUR SUPPORT AND MOTIVATION YOU HAVE IVEN ME IN THE PAST COUPLE MONTHS.

EFACULTY

Dr. Hanagan

PROFESSOR PARFITT

DR. GESCHWINDER

RIENDS ANDS CO-WORKERS

LBANE BUILDING CO.

Emilio Genzano

QUESTIONS?

- Building Introduction
- EXISTING STRUCTURE
- THESIS PROPOSAL
- GRAVITY SYSTEM
- PROGRESSIVE COLLAPSE
- MAE INCORPORATION
- MECHANICAL BREADTH
- - APPENDIX

APPENDIX I

X-DIRECTION						
			AXX			
Basement	0.1	0.12	0.57			
Level 1	0.212	0.15	0.95			
Level 2	0.55	0.383	0.97			
Level 3	0.83	0.65	0.87			
Level 4	1.14	0.95	0.83			
Level 5	1.45	1.26	0.80			
Level 6	1.93	1.7	0.79			
Level 7	2.28	2.06	0.77			
Level 8	2.67	2.48	0.75			
Level 9	3.03	2.88	0.73			
Level 10	3.29	3.22	0.71			

	Y-DIRECTION
Basement	0.1
Level 1	0.2
Level 2	0.53
Level 3	0.79
Level 4	1.07
Level 5	1.35
Level 6	1.79
Level 7	2.1
Level 8	2.47
Level 9	2.81
Level 10	3.07

A	YY
0.06	1.085
0.1	1.235
0.26	1.250
0.42	1.184
0.6	1.140
0.8	1.095
1.08	1.081
1.3	1.060
1.57	1.0
1.83	1.0
2.05	1.00

- Building Introduction
- EXISTING STRUCTURE
- PROBLEM STATEMENT
- PROPOSED SOLUTION
- GRAVITY SYSTEM
- PROGRESSIVE COLLAPSE
- MAE INCORPORATION
- MECHANICAL BREADTH
- - APPENDIX

Appendix I

	P(kips)	Moment(k-ft)	δ_{xe}	$\delta_{ m ye}$	$\delta_{\mathrm{xe}} \mathbf{C_d/l}$	$\delta_{ m ye} C_{ m d}/ m I$	$\Delta_{\mathbf{xe}}$	$\Delta_{\mathbf{ye}}$	$\Delta_{\text{max}}\text{=}0.010h_{\text{sx}}$		
ement	21	359	0.1	0	0.166666667	0	0	0	1.8	Pass	>
el 1	52	1125	0.212	0.02	0.35	0.03	0.187	0.033	1.44	Pass	rit
el 2	100	1954	0.55	0.05	0.92	0.08	0.563	0.050	1.44	Pass	rla
el 3	121	2158	0.83	0.09	1.38	0.15	0.467	0.067	1.32	Pass	မြေ
el 4	159	2702	1.14	0.14	1.90	0.23	0.517	0.083	1.32	Pass	lr
el 5	213	3618	1.45	0.19	2.42	0.32	0.517	0.083	1.32	Pass	a
el 6	290	4917	1.93	0.25	3.22	0.42	0.800	0.100	1.8	Pass	uo
el 7	355	6016	2.28	0.31	3.80	0.52	0.583	0.100	1.44	Pass	rsi
el 8	454	7699	2.67	0.37	4.45	0.62	0.650	0.100	1.71	Pass	Lo
el 9	586	9941	3.03	0.45	5.05	0.75	0.600	0.133	1.8	Pass	0
el 10	43	737	3.29	0.51	5.48	0.85	0.433	0.100	1.8	Pass	2
$V_{base} =$	2394										

- Building Introduction
- EXISTING STRUCTURE
- PROBLEM STATEMENT
- PROPOSED SOLUTION
- GRAVITY SYSTEM
- PROGRESSIVE COLLAPSE
- MAE INCORPORATION
- MECHANICAL BREADTH
- - APPENDIX

Appendix I

	P(kips)	Moment(k-ft)	$\delta_{\rm xe}$	$\delta_{ m ye}$	$\delta_{\rm xe} {\rm C_d} / {\rm I}$	$\delta_{ m ye} C_{ m d}$ /I	$\Delta_{\mathbf{xe}}$	$\Delta_{\mathbf{ye}}$	$\Delta_{\text{max}} \text{=} \textbf{0.010h}_{\text{sx}}$		
sement	21	248.5	0	0	0	0	0	0	1.8	Pass	>
vel 1	52	766.9	0.1	0.2	0.17	0.33	0.167	0.333	1.44	Pass	rit
vel 2	100	1484.7	0.25	0.53	0.42	0.88	0.250	0.550	1.44	Pass	rla
vel 3	121	1622.6	0.36	0.79	0.60	1.32	0.183	0.433	1.32	Pass	မီရ
vel 4	159	1943	0.47	1.07	0.78	1.78	0.183	0.467	1.32	Pass	lrr
vel 5	213	2462.3	0.58	1.35	0.97	2.25	0.183	0.467	1.32	Pass	a
vel 6	290	3372.6	0.74	1.79	1.23	2.98	0.267	0.733	1.8	Pass	uo
vel 7	355	4054.3	0.86	2.1	1.43	3.50	0.200	0.517	1.44	Pass	rsi
vel 8	454	4904	0.99	2.47	1.65	4.12	0.217	0.617	1.71	Pass	10
vel 9	586	6332	1.09	2.8	1.82	4.67	0.167	0.550	1.8	Pass	9
vel 10	43	470	1.16	3.07	1.93	5.12	0.117	0.450	1.8	Pass	2
V _{base} =	2394										

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- PROBLEM STATEMENT
- PROPOSED SOLUTION
- PROGRESSIVE COLLAPSE
- MAE INCORPORATION
- MECHANICAL BREADTH

REINFORCEMENT DESIGN:

PERIPHERAL TIE REINFORCEMENT:

REQUIRED TIE STRENGTH (LB/FT):

$$F_o = 6w_F L_1 L_p$$

$$w_f = 1.2D + 0.5L$$

$$L_1 = \text{greatest bay length}$$

$$A_{min} = \frac{F_i}{\phi \cdot \Omega \cdot F_y}$$

- BUILDING INTRODUCTION
- EXISTING STRUCTURE
- PROBLEM STATEMENT
- PROPOSED SOLUTION
- PROGRESSIVE COLLAPSE
- MAE INCORPORATION
- MECHANICAL BREADTH

East-West
North-Sout

PERIPHERAL TIES

Basement to 2nd Level

	Fp	A _{s min}	Bars	Spacing
	88.7	1.314	(4) No.6	9
า	80.7	1.2	(3) No.6	12

Penthouse Level						
	Fp	A _{s min}	Bars	Spacing		
East-West	115	1.7	(4) No.6	9		
North-South	104.8	1.55	(4) No.6	9		

	3rd to 8th Level						
	Fp	A _{s min}	Bars	Spacing			
	83.2	1.23	(3) No.6	12			
th	75.8	1.12	(3) No.6	12			

Roof Level						
	Γ _ρ	A _{s min}	Bars	Spacing		
East-West	67	0.99	(3) No.6	12		
North-South	61	0.9	(3) No.6	12		