| Appendix A |

LEED® 2009 New Construction and Major Renovation Scorecard

LEED 2009 for New Construction and Major Renovations

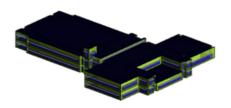
Project Checklist

7		19	Sustair	nable Sites Possible Points:	26
Υ	?	И			
Υ			Prereq 1	Construction Activity Pollution Prevention	
		1	Credit 1	Site Selection	1
		5	Credit 2	Development Density and Community Connectivity	5
		1	Credit 3	Brownfield Redevelopment	1
		6	Credit 4.1	Alternative Transportation—Public Transportation Access	6
1			Credit 4.2	Alternative Transportation—Bicycle Storage and Changing Rooms	1
3			Credit 4.3	Alternative Transportation—Low-Emitting and Fuel-Efficient Vehicles	3
		2	Credit 4.4	Alternative Transportation—Parking Capacity	2
		1	Credit 5.1	Site Development—Protect or Restore Habitat	1
		1	Credit 5.2	Site Development—Maximize Open Space	1
1			Credit 6.1	Stormwater Design—Quantity Control	1
1			Credit 6.2	Stormwater Design—Quality Control	1
		1	Credit 7.1	Heat Island Effect—Non-roof	1
1			Credit 7.2	Heat Island Effect—Roof	1
		1	Credit 8	Light Pollution Reduction	1
			*		
8		2	Water	Efficiency Possible Points:	10
Υ			Prereq 1	Water Use Reduction—20% Reduction	
4			Credit 1	Water Efficient Landscaping	2 to 4
		2	Credit 2	Innovative Wastewater Technologies	2
4				W - U B I - I	
			Credit 3	Water Use Reduction	2 to 4
\equiv					
11		7		water Use Reduction and Atmosphere Possible Points:	2 to 4
11		7	Energy	and Atmosphere Possible Points:	
11 Y		7	Energy Prereq 1	and Atmosphere Possible Points: Fundamental Commissioning of Building Energy Systems	
11 Y Y		7	Energy Prereq 1 Prereq 2	and Atmosphere Possible Points: Fundamental Commissioning of Building Energy Systems Minimum Energy Performance	
11 Y Y Y		7	Energy Prereq 1 Prereq 2 Prereq 3	Fundamental Commissioning of Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management	35
11 Y Y			Energy Prereq 1 Prereq 2 Prereq 3 Credit 1	Fundamental Commissioning of Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management Optimize Energy Performance	35 1 to 19
11 Y Y Y 4			Prereq 1 Prereq 2 Prereq 3 Credit 1 Credit 2	Fundamental Commissioning of Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management Optimize Energy Performance On-Site Renewable Energy	1 to 19 1 to 7
11 Y Y Y 4			Prereq 1 Prereq 2 Prereq 3 Credit 1 Credit 2 Credit 3	Fundamental Commissioning of Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management Optimize Energy Performance On-Site Renewable Energy Enhanced Commissioning	1 to 19 1 to 7 2
11 Y Y Y 4			Prereq 1 Prereq 2 Prereq 3 Credit 1 Credit 2 Credit 3 Credit 4	Fundamental Commissioning of Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management Optimize Energy Performance On-Site Renewable Energy Enhanced Commissioning Enhanced Refrigerant Management	1 to 19 1 to 7 2
11 Y Y Y 4 2 2 1			Prereq 1 Prereq 2 Prereq 3 Credit 1 Credit 2 Credit 3 Credit 4 Credit 5	Fundamental Commissioning of Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management Optimize Energy Performance On-Site Renewable Energy Enhanced Commissioning Enhanced Refrigerant Management Measurement and Verification	1 to 19 1 to 7 2 2 3
11 Y Y Y 4			Prereq 1 Prereq 2 Prereq 3 Credit 1 Credit 2 Credit 3 Credit 4	Fundamental Commissioning of Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management Optimize Energy Performance On-Site Renewable Energy Enhanced Commissioning Enhanced Refrigerant Management	1 to 19 1 to 7 2
11 Y Y Y 4 2 2 1	1	7	Prereq 1 Prereq 2 Prereq 3 Credit 1 Credit 2 Credit 3 Credit 4 Credit 5 Credit 6	Fundamental Commissioning of Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management Optimize Energy Performance On-Site Renewable Energy Enhanced Commissioning Enhanced Refrigerant Management Measurement and Verification Green Power	1 to 19 1 to 7 2 2 3
11 Y Y Y 4 2 2 1	1	7	Prereq 1 Prereq 2 Prereq 3 Credit 1 Credit 2 Credit 3 Credit 4 Credit 5 Credit 6	Fundamental Commissioning of Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management Optimize Energy Performance On-Site Renewable Energy Enhanced Commissioning Enhanced Refrigerant Management Measurement and Verification Green Power	1 to 19 1 to 7 2 2 3 2
11 Y Y Y 4 2 2 1	1	7	Prereq 1 Prereq 2 Prereq 3 Credit 1 Credit 2 Credit 3 Credit 4 Credit 5 Credit 6	Fundamental Commissioning of Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management Optimize Energy Performance On-Site Renewable Energy Enhanced Commissioning Enhanced Refrigerant Management Measurement and Verification Green Power	1 to 19 1 to 7 2 2 3 2
111 Y Y Y 4 2 2 1 2	1	7	Prereq 1 Prereq 2 Prereq 3 Credit 1 Credit 2 Credit 3 Credit 4 Credit 5 Credit 6	Fundamental Commissioning of Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management Optimize Energy Performance On-Site Renewable Energy Enhanced Commissioning Enhanced Refrigerant Management Measurement and Verification Green Power Possible Points:	1 to 19 1 to 7 2 2 3 2
111 Y Y Y 4 2 2 1 2	1	7	Prereq 1 Prereq 2 Prereq 3 Credit 1 Credit 2 Credit 3 Credit 4 Credit 5 Credit 6 Materia	Fundamental Commissioning of Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management Optimize Energy Performance On-Site Renewable Energy Enhanced Commissioning Enhanced Refrigerant Management Measurement and Verification Green Power als and Resources Possible Points:	1 to 19 1 to 7 2 2 3 2
111 Y Y Y 4 2 2 1 2	1	7	Prereq 1 Prereq 2 Prereq 3 Credit 1 Credit 2 Credit 3 Credit 4 Credit 5 Credit 6 Materia Prereq 1 Credit 1.1	Fundamental Commissioning of Building Energy Systems Minimum Energy Performance Fundamental Refrigerant Management Optimize Energy Performance On-Site Renewable Energy Enhanced Commissioning Enhanced Refrigerant Management Measurement and Verification Green Power als and Resources Possible Points: Storage and Collection of Recyclables Building Reuse—Maintain Existing Walls, Floors, and Roof	1 to 19 1 to 7 2 2 3 2 14

			Materia	als and Resources, Continued	
Υ	?	N			
2			Credit 4	Recycled Content	1 to 2
2			Credit 5	Regional Materials	1 to 2
		1	Credit 6	Rapidly Renewable Materials	1
	1		Credit 7	Certified Wood	1
			7		
10		5	Indoor	Environmental Quality Possible Points:	15
V	r		D	Walter Land Coults Declared	
Y	-		Prereq 1	Minimum Indoor Air Quality Performance	
Y			Prereq 2	Environmental Tobacco Smoke (ETS) Control	
1		_	Credit 1	Outdoor Air Delivery Monitoring	1
		1	Credit 2	Increased Ventilation	1
1			Credit 3.1	Construction IAQ Management Plan—During Construction	1
1			Credit 3.2	Construction IAQ Management Plan—Before Occupancy	1
1			Credit 4.1	Low-Emitting Materials—Adhesives and Sealants	1
1			Credit 4.2	Low-Emitting Materials—Paints and Coatings	1
1			Credit 4.3	Low-Emitting Materials—Flooring Systems	1
1			Credit 4.4	Low-Emitting Materials—Composite Wood and Agrifiber Products	1
		1	Credit 5	Indoor Chemical and Pollutant Source Control	1
1			Credit 6.1	Controllability of Systems—Lighting	1
		1	Credit 6.2	Controllability of Systems—Thermal Comfort	1
1			Credit 7.1	Thermal Comfort—Design	1
1			Credit 7.2	Thermal Comfort—Verification	1
		1	Credit 8.1	Daylight and Views—Daylight	1
		1	Credit 8.2	Daylight and Views—Views	1
4			lanava.	tion and Design Process Possible Points:	4
6		_	innova	tion and Design Process Possible Points:	6
1			Credit 1.1	•	1
1			Credit 1.2	Innovation in Design: Use of Blended Cement	1
1			Credit 1.3	Innovation in Design: Ose of Blended Centent Innovation in Design: Develop an Educational Program	1
1			Credit 1.4	Innovation in Design: Use of Waterbottle Filling Stations	1
1			Credit 1.5		4
			1	Innovation in Design: 95% Threshold for Construction Waste Management LEED Accredited Professional	1
1			Credit 2	LEED Accredited Professional	1
2		2	Region	al Priority Credits Possible Points:	4
				arranty erealts	
1			Credit 1.1	Regional Priority: Stormwater Quantity Control	1
1			Credit 1.2	Regional Priority: 50% Construction Waste Management	1
		1	Credit 1.3	Regional Priority: Parking Capacity	1
		1	Credit 1.4	Regional Priority: Site Selection	1
			1		-
50	1	42	Total	Possible Points:	110

| Appendix B |

Project Vasari Energy Analysis Results


- 1. As Designed
- 2. With 25% Glazing
- 3. With Heat Pump

Revit Massing

As Designed Conceptual Energy Model

Analyzed at 3/10/2013 2:53:55 PM

Revit Energy Analysis Result

Building Performance Factors

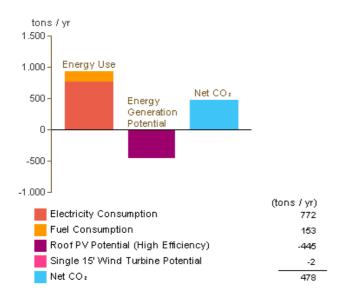
Location:	40.5360145568848,-75.3772811889648
Weather Station:	59314
Outdoor Temperature:	Max: 90°F/Min: 5°F
Floor Area:	80,390 sf
Exterior Wall Area:	37,893 sf
Average Lighting Power:	1.20 W / ft²
People:	1,873 people
Exterior Window Ratio:	0.35
Electrical Cost:	\$0.10 / kWh
Fuel Cost:	\$1.02 / Therm

Energy Use Intensity

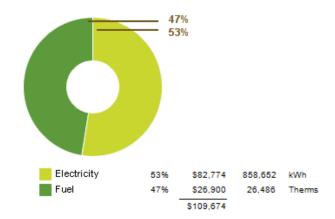
Electricity EUI:	11 kWh / sf / yr
Fuel EUI:	33 kBtu/sf/yr
Total EUI:	69 kBtu / sf / yr

Life Cycle Energy Use/Cost

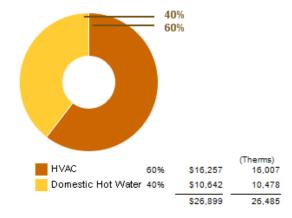
Life Cycle Electricity Use:	25,759,569 kWh
Life Cycle Fuel Use:	794,592 Therms
Life Cycle Energy Cost:	\$1,493,759

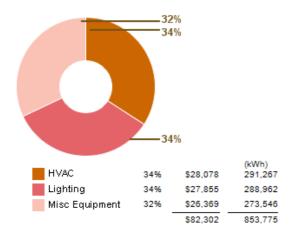

^{*30-}year life and 6.1% discount rate for costs

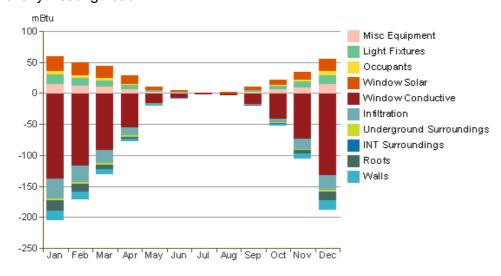
Renewable Energy Potential

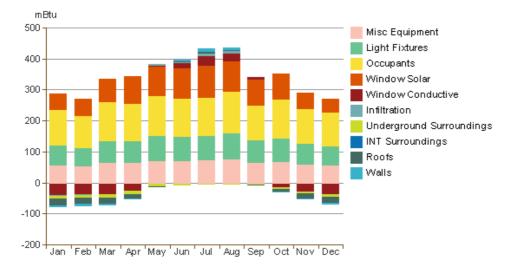

Roof Mounted PV System (Low efficiency):	165,026 kWh / yr
Roof Mounted PV System (Medium efficiency):	330,052 kWh / yr
Roof Mounted PV System (High efficiency):	495,077 kWh / yr
Single 15' Wind Turbine Potential:	3,316 kWh / yr

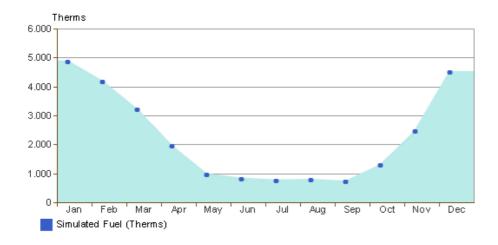
^{*}PV efficiencies are assumed to be 5%, 10% and 15% for low, medium and high efficiency systems

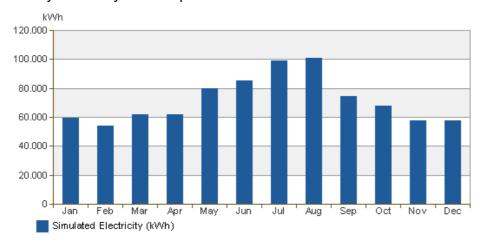

Annual Carbon Emissions

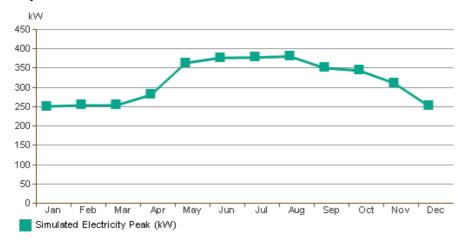

Annual Energy Use/Cost

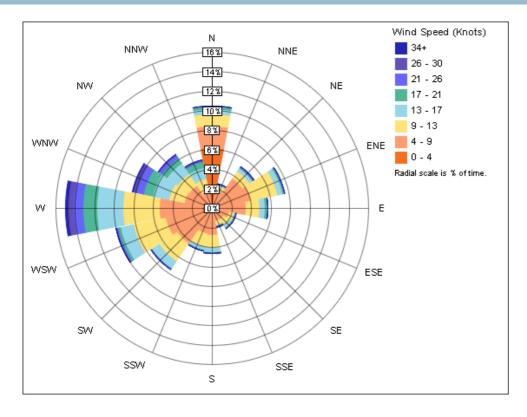

Energy Use: Fuel

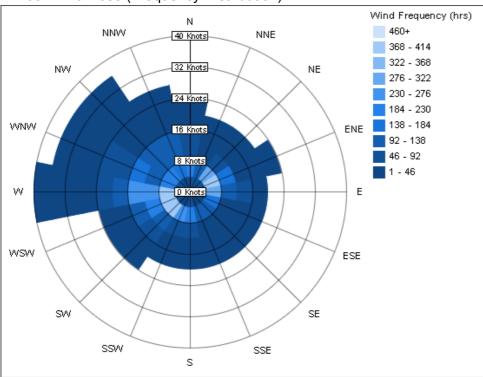

Energy Use: Electricity

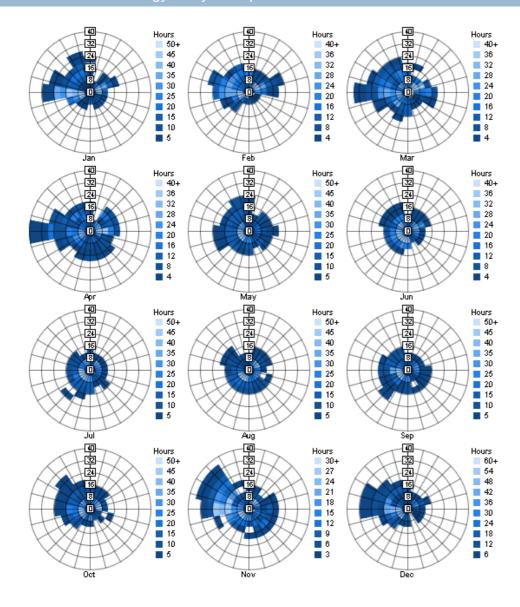

Monthly Heating Load

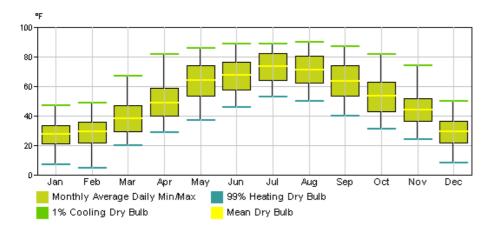

Monthly Cooling Load

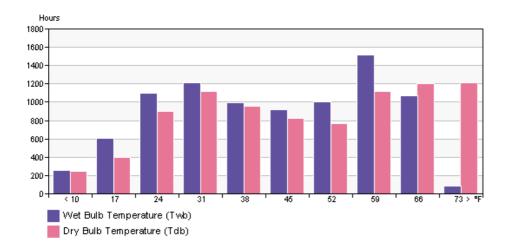

Monthly Fuel Consumption

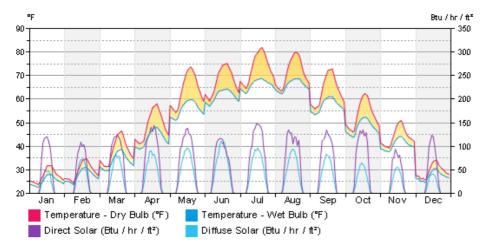

Monthly Electricity Consumption


Monthly Peak Demand


Annual Wind Rose (Speed Distribution)


Annual Wind Rose (Frequency Distribution)

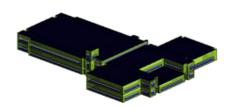

Monthly Wind Roses


Monthly Design Data

Annual Temperature Bins

Diurnal Weather Averages

Humidity


© Copyright 2013 Autodesk, Inc. All rights reserved. Portions of this software are copyrighted by James J. Hirsch & Associates, the Regents of the University of California, and others.

Revit Massing

25 Percent Glazing

Analyzed at 3/10/2013 3:07:18 PM

Revit Energy Analysis Result

Building Performance Factors

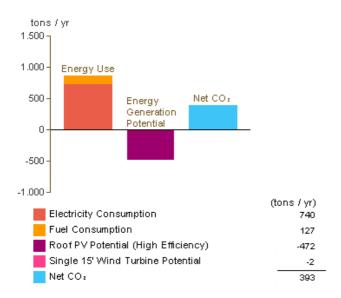
Location:	40.5360145568848,-75.3772811889648
Weather Station:	59314
Outdoor Temperature:	Max: 90°F/Min: 5°F
Floor Area:	80,390 sf
Exterior Wall Area:	37,893 sf
Average Lighting Power:	1.20 W / ft²
People:	1,873 people
Exterior Window Ratio:	0.21
Electrical Cost:	\$0.10 / kWh
Fuel Cost:	\$1.02 / Therm

Energy Use Intensity

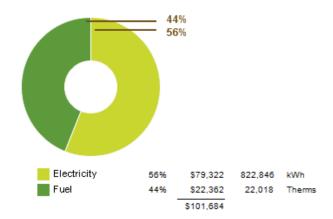
Electricity EUI:	10 kWh / sf / yr
Fuel EUI:	27 kBtu/sf/yr
Total EUI:	62 kBtu / sf / yr

Life Cycle Energy Use/Cost

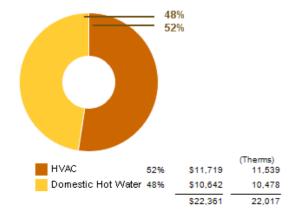
Life Cycle Electricity Use:	24,685,386 kWh
Life Cycle Fuel Use:	660,550 Therms
Life Cycle Energy Cost:	\$1,384,942

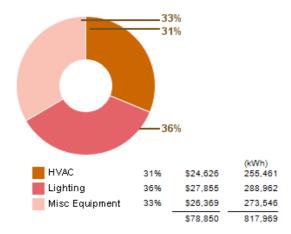

^{*30-}year life and 6.1% discount rate for costs

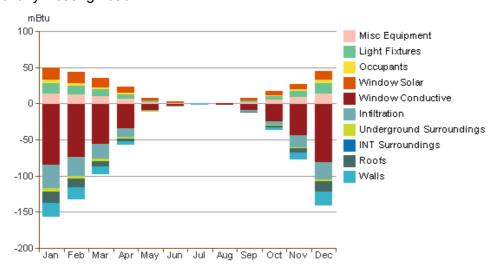
Renewable Energy Potential

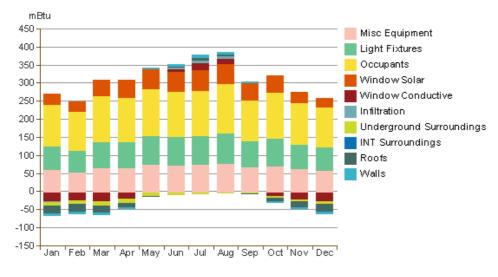

Roof Mounted PV System (Low efficiency):	175,202 kWh / yr
Roof Mounted PV System (Medium efficiency):	350,404 kWh / yr
Roof Mounted PV System (High efficiency):	525,606 kWh / yr
Single 15' Wind Turbine Potential:	3,316 kWh / yr

^{*}PV efficiencies are assumed to be 5%, 10% and 15% for low, medium and high efficiency systems

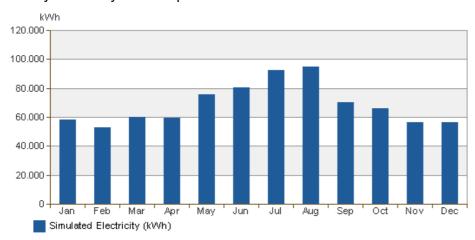

Annual Carbon Emissions

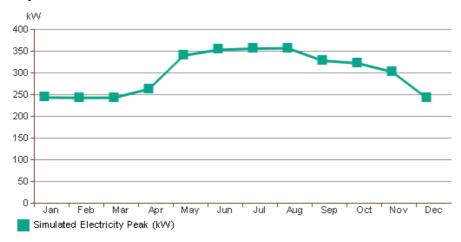

Annual Energy Use/Cost

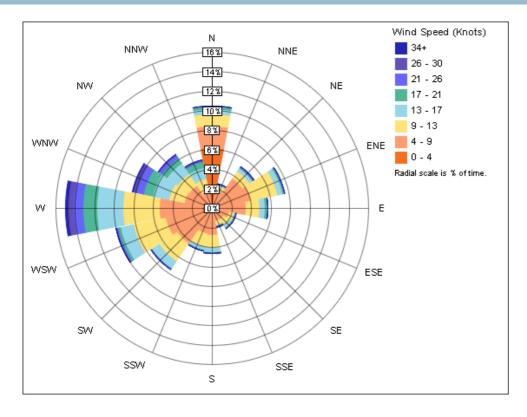

Energy Use: Fuel

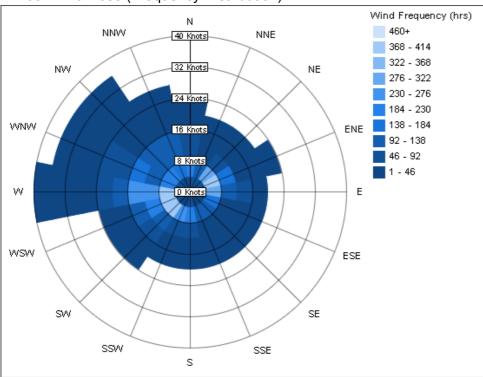

Energy Use: Electricity

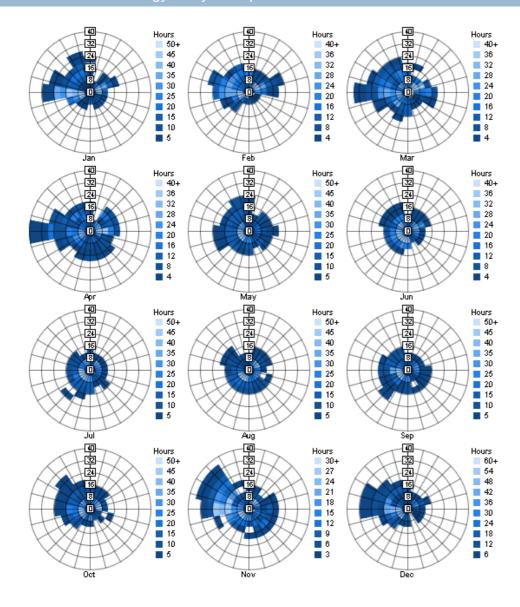

Monthly Heating Load

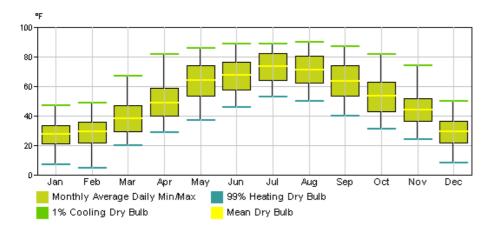

Monthly Cooling Load

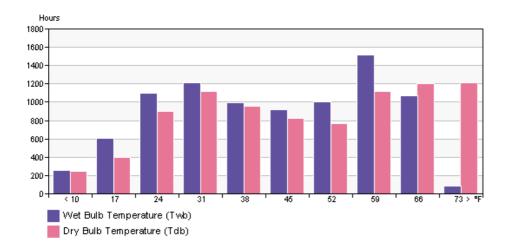

Monthly Fuel Consumption

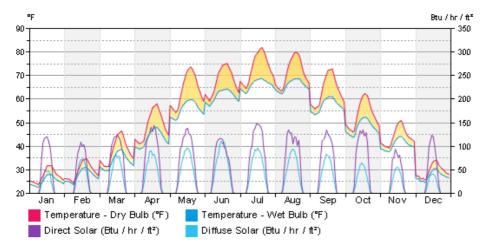

Monthly Electricity Consumption


Monthly Peak Demand


Annual Wind Rose (Speed Distribution)


Annual Wind Rose (Frequency Distribution)

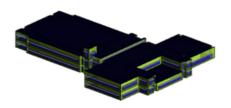

Monthly Wind Roses


Monthly Design Data

Annual Temperature Bins

Diurnal Weather Averages

Humidity


© Copyright 2013 Autodesk, Inc. All rights reserved. Portions of this software are copyrighted by James J. Hirsch & Associates, the Regents of the University of California, and others.

Revit Massing

As Designed Conceptual Energy Model

Analyzed at 3/10/2013 2:53:55 PM

Revit Energy Analysis Result

Building Performance Factors

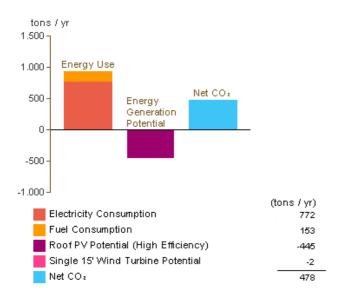
Location:	40.5360145568848,-75.3772811889648
Weather Station:	59314
Outdoor Temperature:	Max: 90°F/Min: 5°F
Floor Area:	80,390 sf
Exterior Wall Area:	37,893 sf
Average Lighting Power:	1.20 W / ft²
People:	1,873 people
Exterior Window Ratio:	0.35
Electrical Cost:	\$0.10 / kWh
Fuel Cost:	\$1.02 / Therm

Energy Use Intensity

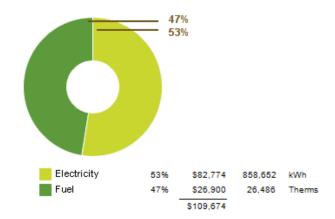
Electricity EUI:	11 kWh / sf / yr
Fuel EUI:	33 kBtu/sf/yr
Total EUI:	69 kBtu / sf / yr

Life Cycle Energy Use/Cost

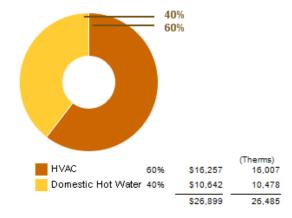
Life Cycle Electricity Use:	25,759,569 kWh
Life Cycle Fuel Use:	794,592 Therms
Life Cycle Energy Cost:	\$1,493,759

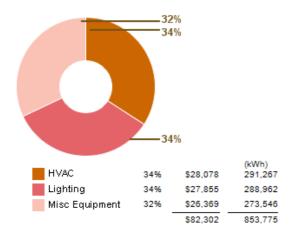

^{*30-}year life and 6.1% discount rate for costs

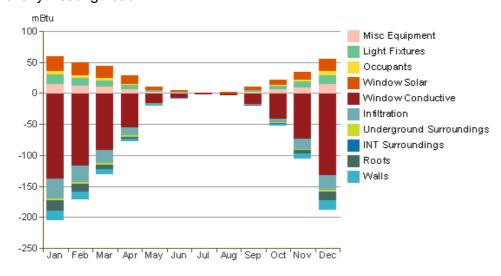
Renewable Energy Potential

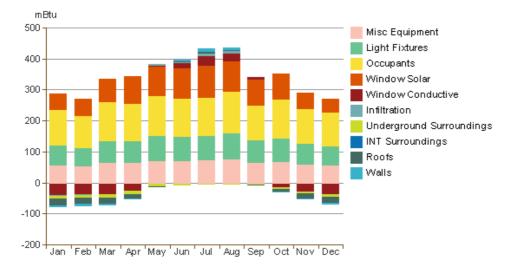

Roof Mounted PV System (Low efficiency):	165,026 kWh / yr
Roof Mounted PV System (Medium efficiency):	330,052 kWh / yr
Roof Mounted PV System (High efficiency):	495,077 kWh / yr
Single 15' Wind Turbine Potential:	3,316 kWh / yr

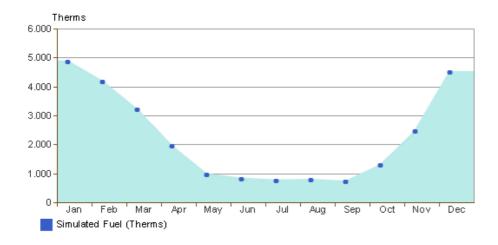
^{*}PV efficiencies are assumed to be 5%, 10% and 15% for low, medium and high efficiency systems

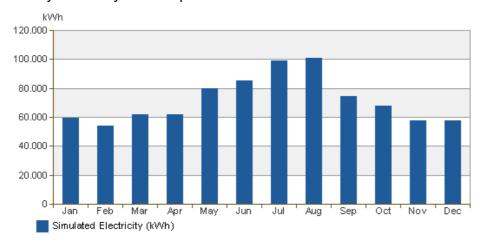

Annual Carbon Emissions

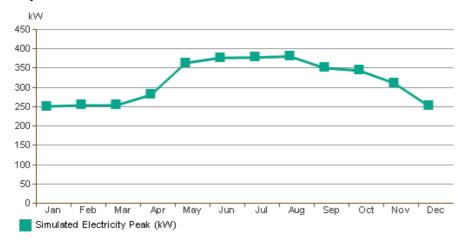

Annual Energy Use/Cost

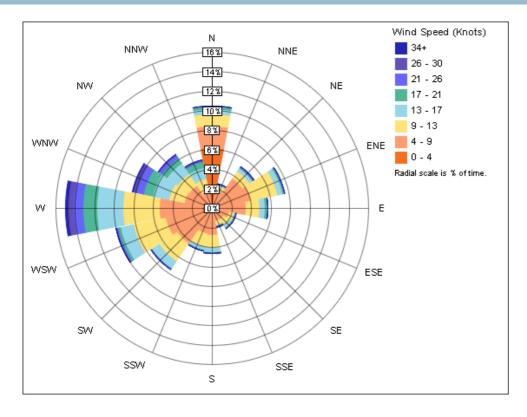

Energy Use: Fuel

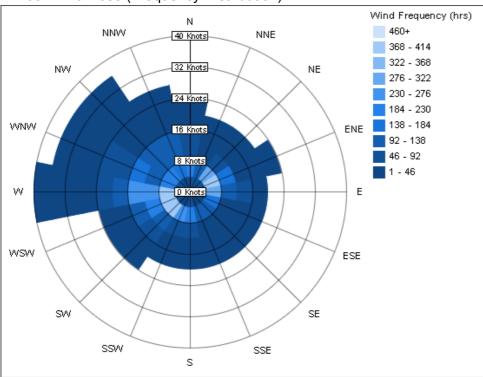

Energy Use: Electricity

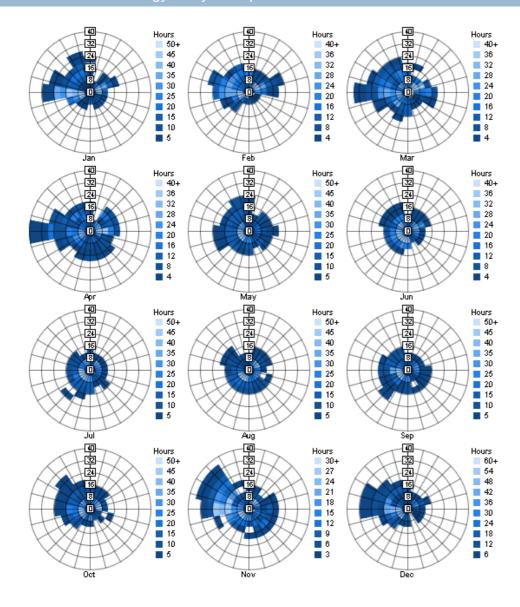

Monthly Heating Load

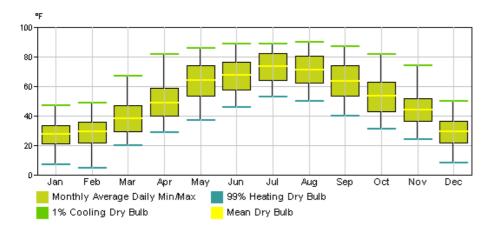

Monthly Cooling Load

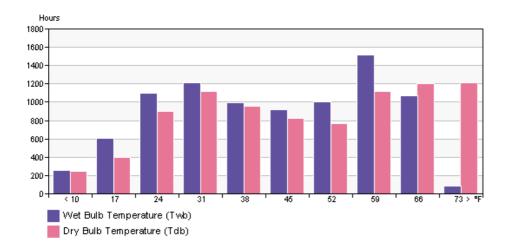

Monthly Fuel Consumption

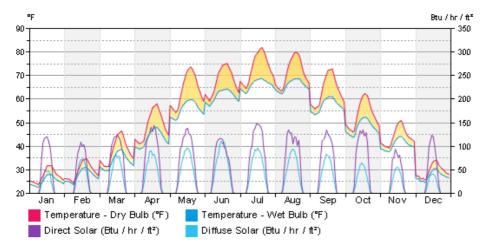

Monthly Electricity Consumption


Monthly Peak Demand


Annual Wind Rose (Speed Distribution)


Annual Wind Rose (Frequency Distribution)


Monthly Wind Roses


Monthly Design Data

Annual Temperature Bins

Diurnal Weather Averages

Humidity

© Copyright 2013 Autodesk, Inc. All rights reserved. Portions of this software are copyrighted by James J. Hirsch & Associates, the Regents of the University of California, and others.

| Appendix C | Green Roof Implementation Lifecycle Cost Table

Green Roof Implementation Lifecycle Cost Analysis

YEAR	INITIAL COST	ENERGY SAVINGS	EXTENDED LIFE	TAX SAVINGS	L	IFECYCLE COST
0	\$ (111,245.00)				\$	(111,245.00)
1		147.68		8343.375	\$	(102,753.95)
2		147.68		8343.375	\$	(94,262.89)
3		147.68		8343.375	\$	(85,771.84)
4		147.68		8343.375	\$	(77,280.78)
5		147.68		8343.375	\$	(68,789.73)
6		147.68		8343.375	\$	(60,298.67)
7		147.68			\$	(60,150.99)
8		147.68			\$	(60,003.31)
9		147.68			\$	(59,855.63)
10		147.68			\$	(59,707.95)
11		147.68			\$	(59,560.27)
12		147.68			\$	(59,412.59)
13		147.68			\$	(59,264.91)
14		147.68			\$	(59,117.23)
15		147.68			\$	(58,969.55)
16		147.68			\$	(58,821.87)
17		147.68			\$	(58,674.19)
18		147.68			\$	(58,526.51)
19		147.68			\$	(58,378.83)
20		147.68			\$	(58,231.15)
21		147.68			\$	(58,083.47)
22		147.68			\$	(57,935.79)
23		147.68			\$	(57,788.11)
24		147.68			\$	(57,640.43)
25		147.68	\$ 77,688.00		\$	20,195.25
26		147.68			\$	20,342.93
27		147.68			\$	20,490.61
28		147.68			\$	20,638.29
29		147.68			\$	20,785.97
30		147.68			\$	20,933.65
31		147.68			\$	21,081.33
32		147.68			\$	21,229.01
33		147.68			\$	21,376.69
34		147.68			\$	21,524.37
35		147.68			\$	21,672.05
36		147.68			\$	21,819.73
37		147.68			\$	21,967.41
38		147.68			\$	22,115.09
39		147.68			\$	22,262.77
40		147.68			\$	22,410.45

| Appendix D |

Photovoltaic System Product Specification Sheets

- 1. Astronenergy 250 Watt NOVA Solar Panel
- 2. Envision Solar Tree® Parking Lot PV Structure

NOVATM **Datasheet Crystalline PV Module CHSM6610M Series**

ΕN

ELECTRICAL SPECIFICATIONS				
STC rated output (Pmpp)*	250 Wp	255 Wp	260 Wp	265 Wp
PTC rated output (P _{mpp})**	223.0 Wp	227.6 Wp	232.2 Wp	236.8 Wp
Standard sorted output		-	0/+5 Wp	
Warranted power output STC (Pmpp min)	250 Wp	255 Wp	260 Wp	265 Wp
Rated voltage (V _{mpp}) at STC	30.48 V	30.84 V	31.19 V	31.49 V
Rated current (I _{mpp}) at STC	8.23 A	8.31 A	8.38 A	8.44 A
Open circuit voltage (Voc) at STC	38.09 V	38.24 V	38.39 V	38.55 V
Short circuit current (Isc) at STC	8.64 A	8.67 A	8.70 A	8.74 A
Module efficiency	15.2%	15.5%	15.8%	16.1%
Rated output (Pmpp) at NOCT	181.2 Wp	184.8 Wp	188.4 Wp	192.1 Wp
Rated voltage (V _{mpp}) at NOCT	27.15 V	27.43 V	27.73 V	28.06 V
Rated current (Impp) at NOCT	6.67 A	6.74 A	6.79 A	6.84 A
Open circuit voltage (Vco) at NOCT	34.66 V	34.80 V	34.94 V	35.08 V
Short circuit current (Icc) at NOCT	7.13 A	7.15 A	7.18 A	7.21 A
Temperature coefficient (P _{mpp})	- 0.469%/K	Maximum systen	n voltage SCII	1000 Vpc
Temperature coefficient (Isc)	+0.035%/K	Maximum systen	n voltage NEC	600 Vpc / 1000 Vpc
Temperature coefficient (I _{mpp})	- 0.042%/K	Number of diode	es	6
Temperature coefficient (V _{mpp})	- 0.433%/K	Maximum series fuse rating 15 A		15 A
Temperature coefficient (Voc)	- 0.328%/K			
Normal operating cell temperature (NOCT)	47±2°C			

^{*} Measurement tolerance ** Estimated

QUALIFICATION AND WARRANTIES				
Product standard	IEC 61215, 61730 / UL 1703			
Extended product warranty	10 years			
Output warranty of 90% performance Pr	npp (STC) 10 years			
Output warranty of 80% performance Pn	npp (STC) 25 years			
MunichRe Warranty	25 years			

CELL TECHNOLOGY	
Cell type	monocrystalline
Number of cells / cell arrangement	60 / 6 x 10
Cells dimension	6"
Cells dimension	6"

MECHANICAL SPECIFICATIONS				
Outer dimensions (L x W x H)	1652 x 994 x 40 mm 65.04 x 39.13 x 1.57 in			
Frame technology	Aluminum, silver anodized			
Module composition	Glass / EVA / Backsheet (white)			
Weight (module only)	19.5 kg / 42.9 lbs			
Front glass thickness	3.2 mm / 0.13 in			
Junction box IP rating	IP 65			
Cable length / diameter (UL)	1000 mm / 39.37 in / 12 AWG			
Cable length / diameter (IEC)	1000 mm / 39.37 in / 4 mm ²			
Maximum load capacity	5400 Pa			
Fire class	С			
Connector type (UL)	Multi Contact type 4 / MC type 4 compatible			
Connector type (TUV)	MC type 4 compatible			

Packing unit	25 modules
Weight of packing unit	530 kg / 1166 lbs

MISCELLANEOUS

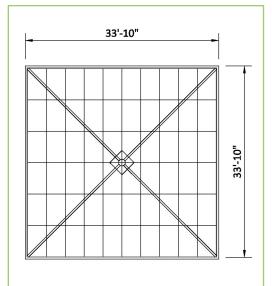
ARTICLE NUMBER (per panel)-(NOVA) CHSM6610M Series					
Model	Article No. (IEC)	Article No. (UL)			
(NOVA) CHSM6610M-250	100287	100298			
(NOVA) CHSM6610M-255	100288	100299			
(NOVA) CHSM6610M-260	100289	100300			
(NOVA) CHSM6610M-265	100290	100301			

 $\hbox{@ Chint Solar (Zhejiang) Co., Ltd. All rights reserved.} \\ Specifications and designs included in this datasheet are subject to change without notice.}$

www.astronergy.com Astronergy 1300 P / 11-2012

ENVISION SOLARSM SOLAR TREE® STRUCTURE

transforming parking lots and parking structures into clean power plants

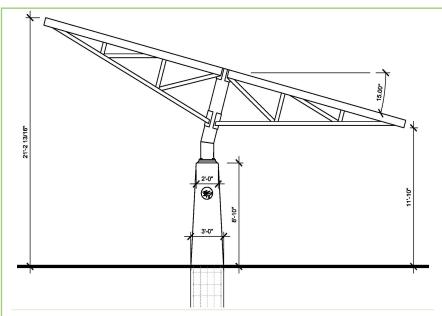


Solar Tree® arrays are the ideal solution to create distinguished, sustainable real estate. The Solar Tree® structure is designed to meet the needs of a wide variety of applications, shading vehicles from the sun, reducing carbon footprints through the production of renewable energy, and advancing the infrastructure for electric vehicles. Envision Solar's Solar Tree® arrays are the ideal combination of form, function and sustainability.

- · Each Solar Tree® structure shades six standard parking spaces
- Each Solar Tree® structure generates enough energy to fully charge six electric vehicles each day, making them truly emissions-free.
- · Iconic design suitable for a wide variety of properties
- System supports a variety of module types
- · Easily deployed on existing structures or new construction
- · Integrated Wire Management System
- Tilted at 15° to optimize aesthetics, energy production and shade, and to minimize maintenance
- Available for shipment worldwide

1 PV SYSTEM

PV System Size Per Tree:


14.40 kW DC (STC)

Module Type and Model Number:

MAGE Powertech® Plus 240/6MF

Tilt Angle:

15°

2 DIMENSIONS

33'-10" x 33'-10" (10.31m x 10.31m) Canopy:

Base Plate Dimensions:

20" x 20" x 1-1/2" (50.8cm x 50.8cm x 3.81cm)

Tapered height: 8'-10" (Standard; Can Vary) (2.69m) 24" at top; 36" at base (60.96cm); (91.44cm) **Concrete Column Dimensions:**

Typical Anchor Bolt Dimension: 1" dia. x (Depth Varies)

(2.54cm)

3 | FOUNDATION (Below Grade)

Material: Reinforced concrete (caisson) foundation, structurally designed for each location. Depth of caisson varies per soil conditions.

NOTE: Structural foundation design is not included. Additional engineering services available in select locations upon request.

4 | ELECTRICAL SYSTEM INTEGRATION

Lighting: Optional lighting fixtures can be mounted to column or canopy, providing indirect ambient light or direct downlighting. Energy-efficient LED's are recommended.

Electric Vehicle Charging Station (Optional): Accommodates a variety of charging station configurations.

NOTE: All Solar Tree® structures are pre-fit with spare conduits for future devices such as communication, security, or flat-screen advertising panels.

5 | SHIPPING CHARACTERISTICS

Shipping Dimensions (L x W x H):

Purlins - 34' x 3' x 2' (10.36m x .91m x .61m) Edge Beams - 35' x 2' x 1' (10.67m x .61m x .3m) Column – 15' x 4' x 3' (4.57m x 1.22m x .91m) Trusses – 24' x 3' x 4' (7.32m x .91m x 1.22m) Modules - 6' x 6' x 3' (1.83m x 1.83m x .91m)

Weight: 6,500 lbs (2,948.35 kg)

Size of Container: 40' or 60' Truck

Packing Configuration: Individually packaged, by component type

5 Pallets of Modules, Pallet Quantity:

4 Additional Pallets

6 ASSEMBLY INFORMATION

Equipment Requirements:

Light Crane, Forklift, Manlifts, Hand Tools (Backhoe/Drill Rig if being installed on-grade)

Labor Requirements:

Envision Solar or other skilled supervision 3 Skilled Workers

Contractor License Requirements:

B, C (Varies by State)

Finishes:

Tapered Column: Concrete

ASTM-123 Hot-Dipped Galvanized Steel G-90 Galvanized Steel Steel Column:

Purlins:

ASTM-123 Hot-Dipped Galvanized Steel Trusses:

7 CODE COMPLIANCE

Each Solar Tree® array exceeds code requirements in any jurisdiction in the United States with certain site specific modifications.

| Appendix E |

Photovoltaic System Lifecycle Cost Analysis Tables

- 1. Lifecycle Cost Analysis of Rooftop Array and 8 Solar Trees®
 - 2. Lifecycle Cost Analysis of Rooftop Array Only
- 3. Lifecycle Cost Analysis of Rooftop Array and One Solar Tree®

LIFECYCLE COST ANALYSIS OF ROOFTOP ARRAY AND 8 SOLAR TREES

	INITIAL		POWER		LIFECYCLE
YEAR	COST	INCENTIVES	SAVINGS	SREC	COST
0	(\$1,226,150)				(\$1,226,150)
1	, ,	\$367,845.00	\$ 21,205.86	\$ 39,840.44	(\$797,259)
2			\$ 21,205.86	\$ 39,840.44	(\$736,212)
3			\$ 21,205.86	\$ 39,840.44	(\$675,166)
4			\$ 21,205.86	\$ 39,840.44	(\$614,120)
5			\$ 21,205.86	\$ 39,840.44	(\$553,074)
6			\$ 21,205.86	\$ 39,840.44	(\$492,027)
7			\$ 21,205.86	\$ 39,840.44	(\$430,981)
8			\$ 21,205.86	\$ 39,840.44	(\$369,935)
9			\$ 21,205.86	\$ 39,840.44	(\$308,888)
10			\$ 21,205.86	\$ 39,840.44	(\$247,842)
11			\$ 21,205.86		(\$226,636)
12			\$ 21,205.86		(\$205,430)
13			\$ 21,205.86		(\$184,224)
14			\$ 21,205.86		(\$163,019)
15			\$ 21,205.86		(\$141,813)
16			\$ 21,205.86		(\$120,607)
17			\$ 21,205.86		(\$99,401)
18			\$ 21,205.86		(\$78,195)
19			\$ 21,205.86		(\$56,989)
20			\$ 21,205.86		(\$35,783)
21			\$ 21,205.86		(\$14,578)
22			\$ 21,205.86		\$6,628
23			\$ 21,205.86		\$27,834
24			\$ 21,205.86		\$49,040
25			\$ 21,205.86		\$70,246

LIFECYCLE COST ANALYSIS OF ROOFTOP ARRAY ONLY

	INITIAL		POWER		LIFECYCLE
YEAR	COST	INCENTIVES	SAVINGS	SREC	COST
0	(\$369,850)				(\$369,850)
1	,	\$110,955.00	\$ 8,748.28	\$ 16,403.04	(\$233,744)
2			\$ 8,748.28	\$ 16,403.04	(\$208,592)
3			\$ 8,748.28	\$ 16,403.04	(\$183,441)
4			\$ 8,748.28	\$ 16,403.04	(\$158,290)
5			\$ 8,748.28	\$ 16,403.04	(\$133,138)
6			\$ 8,748.28	\$ 16,403.04	(\$107,987)
7			\$ 8,748.28	\$ 16,403.04	(\$82,836)
8			\$ 8,748.28	\$ 16,403.04	(\$57,684)
9			\$ 8,748.28	\$ 16,403.04	(\$32,533)
10			\$ 8,748.28	\$ 16,403.04	(\$7,382)
11			\$ 8,748.28		\$1,366
12			\$ 8,748.28		\$10,115
13			\$ 8,748.28		\$18,863
14			\$ 8,748.28		\$27,611
15			\$ 8,748.28		\$36,360
16			\$ 8,748.28		\$45,108
17			\$ 8,748.28		\$53,856
18			\$ 8,748.28		\$62,604
19			\$ 8,748.28		\$71,353
20			\$ 8,748.28		\$80,101
21			\$ 8,748.28		\$88,849
22			\$ 8,748.28		\$97,598
23			\$ 8,748.28		\$106,346
24			\$ 8,748.28		\$115,094
25			\$ 8,748.28		\$123,842

LIFECYCLE COST ANALYSIS OF ROOFTOP ARRAY AND ONE SOLAR TREE

	INITIAL		POWER		LIFECYCLE
YEAR	COST	INCENTIVES	SAVINGS	SREC	COST
0	(\$494,606)				(\$494,606)
1		\$148,381.80	\$ 10,314.36	\$ 19,339.38	(\$316,570)
2			\$ 10,314.36	\$ 19,339.38	(\$286,917)
3			\$ 10,314.36	\$ 19,339.38	(\$257,263)
4			\$ 10,314.36	\$ 19,339.38	(\$227,609)
5			\$ 10,314.36	\$ 19,339.38	(\$197,956)
6			\$ 10,314.36	\$ 19,339.38	(\$168,302)
7			\$ 10,314.36	\$ 19,339.38	(\$138,648)
8			\$ 10,314.36	\$ 19,339.38	(\$108,994)
9			\$ 10,314.36	\$ 19,339.38	(\$79,341)
10			\$ 10,314.36	\$ 19,339.38	(\$49,687)
11			\$ 10,314.36		(\$39,372)
12			\$ 10,314.36		(\$29,058)
13			\$ 10,314.36		(\$18,744)
14			\$ 10,314.36		(\$8,429)
15			\$ 10,314.36		\$1,885
16			\$ 10,314.36		\$12,199
17			\$ 10,314.36		\$22,514
18			\$ 10,314.36		\$32,828
19			\$ 10,314.36		\$43,142
20			\$ 10,314.36		\$53,457
21			\$ 10,314.36		\$63,771
22			\$ 10,314.36		\$74,086
23			\$ 10,314.36		\$84,400
24			\$ 10,314.36		\$94,714
25			\$ 10,314.36		\$105,029

| Appendix F |

Lutron Quantum® Submittal Package

- 1. Bill of Material
- 2. One-Line Drawings
- 3. EcoSystem® Loop Layouts

LUTRON Bill of Material Job No: 186917

Job No: 186917 **Date:** 17-Apr-2012

Job Name: DeSales University - Gambet Center - Exterior Lighting Optic Project ID: 186917.2.9

Job Location: Upper Sauccon, PA

Quantity Product

<<QUANTUM>>

1 QS-A-CMP-LBO-0

Quantum Client Laptop by Others. The customer will be supplying a client laptop PC to operate the Quantum Q-Admin software. Refer to the product data sheet with the same model number for minimum requirements.

1 QS-LO

Quantum Local Area Network Lutron Only. The Quantum Inter-processor and computer (server / desktop or laptop) network is a dedicated LAN for the Lutron system. The Quantum computer may or may not be supplied by Lutron and all nodes on the LAN are limited to Lutron Quantum processor and Lutron Quantum Computers. All network equipment including routers, switches, and network cables are supplied by others to Lutron specifications.

2 QP3-1PL-100-240

Pre-assembled Quantum processor panel containing one Quantum processor with two configurable links. Each Quantum processor link can be configured to be a QS link or Power panel link. Panel accepts one 120V, 1 phase, 2 wire, 20A feed, (20A-1P over-current protection, per circuit, by others.) Dimensions (inches(cm)): 13.25 (33.7)H x 9.25 (23.5)W x 3.16 (8.0)D. Weight (w/o packaging): 11 lbs.

2 QSW-L-PP-A

Quantum software light control and monitor, per processor, English

2 QSW-BAC-L-PP-A

Quantum software BACnet lights, per processor

2 QSW-GGL-PP-A

Quantum Software - GreenGlance - 1 license required per processor (NOTE: REQUIRES REPORTING SOFTWARE LICENSE - QSW-RPT-PP-A)

2 QSW-RPT-PP-A

Quantum Software - Reporting - 1 license required per processor

1 QSN-2ECO-S For Both Levels

EcoSystem Energi Savr Node with 2 EcoSystem links. Control up to 128 EcoSystem-cmopatible ballasts or drivers. Wired inputs for 4 daylight sensors, 4 occupancy/vacancy sensors, 4 EcoSystem wallstations or IR receivers. QS link. Requires Energi Savr Node application on Apple iPod touch or iPhone to program. UL/CSA. 9.25 in. W (234.95 mm) x 13.25 in. H (336.55 mm) x 3.16 in. L (80.26 mm)

<<1ST FLOOR>>

64 LOS-CDT-2000-WH

Occupancy sensor - Ceiling mount, dual technology, 2000 sq ft, active high, 20-24VDC, white. Not rated for outdoor use. Contact Engineering.

36 QSWS2-2BI-WH

QS device: seeTouch QS 2-button wallstation. Two contact closure inputs via a connector on the back of the wallstation. Dimensions: $116 \text{ mm} \times 70 \text{ mm} \times 76 \text{ mm}$.

2 CW-2-WH

CLARO 2 Gang Faceplate White

6 QSWS2-2BRLI-WH

QS device: seeTouch QS 2-button wallstation with raise/lower. Two contact closure inputs via a connector on the back of the wallstation. Dimensions: 116 mm x 70 mm x 76 mm.

19 QSM2-4W-C

434 MHZ QS Sensor Module with 4 wired connections, Ceiling Mount

LUTRON

Bill of Material Job No: 186917

Job Name: DeSales University - Gambet Center - Exterior Lighting Optic Project ID: 186917.2.9

Job Location: Upper Sauccon, PA

16 QSN-4S16-S Normal

4 zone (feedthrough) switching module. Includes QS communication link and 4 groups of inputs for sensors and

wallstations. Dimensions: 13.25"x 9.25"x 3.16"

3 QSN-4S16-S Emergency

4 zone (feedthrough) switching module. Includes QS communication link and 4 groups of inputs for sensors and wallstations. Dimensions: 13.25 inx 9.25 inx 3.16 in

1 PP-120H

Power Pack 120V, active high, sources 24VDC to upto 3 devices - occupancy sensors and auxiliary power packs, complies with requirements for use in a compartment handling conditioned air (plenum), Relay ratings: 20A - 120/230/277V ballast, 15A - 347V ballast, 13A - 120V incandescent.

SNACK BAR B105

1 QSGRJ-3P-WH

GRAFIK Eye QS 3 zone control unit capable of setting 16 preset scenes of lighting, four of which are selectable on face of unit, and 0 shade columns. The unit contains a 434 mhz radio frequency antenna for wireless functionality. The GRAFIK Eye has wireless interconnects to Lutron wireless devices such as occupancy sensors and keypads. Features include an adjustable 0 second to 60 minute fade rate per scene, an integral infrared receiver, and an integral astronomic timeclock. Control mounts in a standard 4-gang US wallbox, 2 3/4 in min. depth (3 1/2 in recommended). Dimensions (inches (mm)): 4 11/16(119)H x 9 3/8(239)W x 3/8(10)D. Unengraved. Unit Color: WHITE

1 QSWS2-5BI-WH

QS device: seeTouch QS 5-button wallstation. Two contact closure inputs via a connector on the back of the wallstation. Dimensions: 116 mm x 70 mm x 76 mm.

1 LOS-CDT-2000-WH

Occupancy sensor - Ceiling mount, dual technology, 2000 sq ft, active high, 20-24VDC, white. Not rated for outdoor use. Contact Engineering.

AREA "C" ALTERNATE

6 LOS-CDT-2000-WH

Occupancy sensor - Ceiling mount, dual technology, 2000 sq ft, active high, 20-24VDC, white. Not rated for outdoor use. Contact Engineering.

2 QSGRJ-6E-1WH

GRAFIK Eye QS with EcoSystem 6 zone E120 series control unit capable of setting 16 preset scenes of lighting, four of which are selectable on face of unit, and 1 shade columns. First 3 zones are line-voltage dimming zones and can be optionally programmed to be EcoSystem zones. EcoSystem bus is integral to the unit, supporting up to 64 EcoSystem ballasts, which can be assigned to one of the 6 zones. Integral support for daylight and occupancy sensors attached to EcoSystem ballasts or interfaces, including the ability to link EcoSystem-connected daylight and occupancy sensors to the 3 line-voltage outputs. The unit contains a 434 mhz radio frequency antenna for wireless functionality. The GRAFIK Eye has wireless interconnects to Lutron wireless devices such as occupancy sensors and keypads. Features include an adjustable 0 second to 60 minute fade rate per scene, an integral infrared receiver, and an integral astronomic timeclock. Control mounts in a standard 4-gang US wallbox, 2 3/4 in min. depth (3 1/2 in recommended). Dimensions (inches (mm)): 4 11/16(119)H x 9 3/8(239)W x 3/8(10)D. Unengraved. Unit Color: WHITE

2 QSWS2-5BRLI-WH

QS device: seeTouch QS 5-button with raise/lower wallstation. Two contact closure inputs via a connector on the back of the wallstation. Dimensions: $116 \text{ mm} \times 70 \text{ mm} \times 76 \text{ mm}$.

1 GRX-IRPS-WH

GRX 3000/4000/5000/6000/7000 partition switch with an infrared sensor

LUTRON Bill of Material Job No: 186917

Job No: 186917 **Date:** 17-Apr-2012

Job Name: DeSales University - Gambet Center - Exterior Lighting Optic Project ID: 186917.2.9

Job Location: Upper Sauccon, PA

1 GRX-12VDC

12VDC power supply.

2 PP-120H

Power Pack 120V, active high, sources 24VDC to upto 3 devices - occupancy sensors and auxiliary power packs, complies with requirements for use in a compartment handling conditioned air (plenum), Relay ratings: 20A - 120/230/277V ballast, 15A - 347V ballast, 13A - 120V incandescent.

3 QSE-IO

QS device: 5 Contact Closure Inputs and 5 Relay Outputs for integrating QS based devices. Dimensions mm: 135W x 110H x 27D.

6 PHPM-PA-DV-WH

120/277V dual voltage phase control input phase-adaptive output power module. Dimensions (inches(mm)): 5.1(129.5)H x 6.3(160)W x 1.2(30.5)D. Mounts in a standard 2-gang US wallbox. Mounts in a 4 x 4 in (102 mm), 2.1 in (53 mm) deep US junction box. Mounts in a 4 x 4 in (102 mm), 2.1 in (53 mm) deep US junction box with barrier. Color: WHITE

2 QSE-CI-NWK-E

GRAFIK Eye QS auxiliary equipment interface integrates with user supplied PC or digital AV equipment using TCP/IP or RS232 communication. Dimensions mm: 135W x 110H x 27D.

1 QSWS2-2BI-WH

QS device: seeTouch QS 2-button wallstation. Two contact closure inputs via a connector on the back of the wallstation. Dimensions: 116 mm x 70 mm x 76 mm.

<<2ND FLOOR>>

24 LOS-CDT-2000-WH

Occupancy sensor - Ceiling mount, dual technology, 2000 sq ft, active high, 20-24VDC, white. Not rated for outdoor use. Contact Engineering.

2 QSWS2-2BI-WH

QS device: seeTouch QS 2-button wallstation. Two contact closure inputs via a connector on the back of the wallstation. Dimensions: 116 mm x 70 mm x 76 mm.

2 QSWS2-2BRLI-WH

QS device: seeTouch QS 2-button wallstation with raise/lower. Two contact closure inputs via a connector on the back of the wallstation. Dimensions: $116 \text{ mm} \times 70 \text{ mm} \times 76 \text{ mm}$.

10 QSM2-4W-C

434 MHZ QS Sensor Module with 4 wired connections, Ceiling Mount

5 QSN-4S16-S

4 zone (feedthrough) switching module. Includes QS communication link and 4 groups of inputs for sensors and wallstations. Dimensions: 13.25"x 9.25"x 3.16"

2 QSN-4S16-S

Emergency

Normal

4 zone (feedthrough) switching module. Includes QS communication link and 4 groups of inputs for sensors and wallstations. Dimensions: 13.25 inx 9.25 inx 3.16 in

SHEET E103 CLASSROOMS

6 LOS-CDT-2000-WH

Occupancy sensor - Ceiling mount, dual technology, 2000 sq ft, active high, 20-24VDC, white. Not rated for outdoor use. Contact Engineering.

LUTRON

Bill of Material Job No: 186917

Job Name: DeSales University - Gambet Center - Exterior Lighting Optic Project ID: 186917.2.9

Job Location: Upper Sauccon, PA

6 QSGRJ-6E-WH

GRAFIK Eye QS with EcoSystem 6 zone E120 series control unit capable of setting 16 preset scenes of lighting, four of which are selectable on face of unit, and 0 shade columns. First 3 zones are line-voltage dimming zones and can be optionally programmed to be EcoSystem zones. EcoSystem bus is integral to the unit, supporting up to 64 EcoSystem ballasts, which can be assigned to one of the 6 zones. Integral support for daylight and occupancy sensors attached to EcoSystem ballasts or interfaces, including the ability to link EcoSystem-connected daylight and occupancy sensors to the 3 line-voltage outputs. The unit contains a 434 mhz radio frequency antenna for wireless functionality. The GRAFIK Eye has wireless interconnects to Lutron wireless devices such as occupancy sensors and keypads. Features include an adjustable 0 second to 60 minute fade rate per scene, an integral infrared receiver, and an integral astronomic timeclock. Control mounts in a standard 4-gang US wallbox, 2 3/4 in min. depth (3 1/2 in recommended). Dimensions (inches (mm)): 4 11/16(119)H x 9 3/8(239)W x 3/8(10)D. Unengraved. Unit Color: WHITE

4 QSWS2-5BRLI-WH

QS device: seeTouch QS 5-button with raise/lower wallstation. Two contact closure inputs via a connector on the back of the wallstation. Dimensions: 116 mm x 70 mm x 76 mm.

6 QSE-CI-NWK-E

GRAFIK Eye QS auxiliary equipment interface integrates with user supplied PC or digital AV equipment using TCP/IP or RS232 communication.Dimensions mm: 135W x 110H x 27D.

CLASSROOMS B211,B214

2 QSGRJ-3P-WH

GRAFIK Eye QS 3 zone control unit capable of setting 16 preset scenes of lighting, four of which are selectable on face of unit, and 0 shade columns. The unit contains a 434 mhz radio frequency antenna for wireless functionality. The GRAFIK Eye has wireless interconnects to Lutron wireless devices such as occupancy sensors and keypads. Features include an adjustable 0 second to 60 minute fade rate per scene, an integral infrared receiver, and an integral astronomic timeclock. Control mounts in a standard 4-gang US wallbox, 2 3/4 in min. depth (3 1/2 in recommended). Dimensions (inches (mm)): 4 11/16(119)H x 9 3/8(239)W x 3/8(10)D. Unengraved. Unit Color: WHITE

4 PHPM-3F-DV-WH

120/277V dual voltage phase control input 3-wire fluorescent output power module. Dimensions (inches(mm)): 5.1(129.5)H x 6.3(160)W x 1.2(30.5)D. Mounts in a standard 2-gang US wallbox. Mounts in a 4 x 4 in (102 mm), 2.1 in (53 mm) deep US junction box. Mounts in a 4 x 4 in (102 mm), 2.1 in (53 mm) deep US junction box with barrier. Color: WHITE

2 LOS-CDT-2000-WH

Occupancy sensor - Ceiling mount, dual technology, 2000 sq ft, active high, 20-24VDC, white. Not rated for outdoor use. Contact Engineering.

***SEMINAR B213,B215 & CONF B233

3 QSGRJ-6E-WH

GRAFIK Eye QS with EcoSystem 6 zone E120 series control unit capable of setting 16 preset scenes of lighting, four of which are selectable on face of unit, and 0 shade columns. First 3 zones are line-voltage dimming zones and can be optionally programmed to be EcoSystem zones. EcoSystem bus is integral to the unit, supporting up to 64 EcoSystem ballasts, which can be assigned to one of the 6 zones. Integral support for daylight and occupancy sensors attached to EcoSystem ballasts or interfaces, including the ability to link EcoSystem-connected daylight and occupancy sensors to the 3 line-voltage outputs. The unit contains a 434 mhz radio frequency antenna for wireless functionality. The GRAFIK Eye has wireless interconnects to Lutron wireless devices such as occupancy sensors and keypads. Features include an adjustable 0 second to 60 minute fade rate per scene, an integral infrared receiver, and an integral astronomic timeclock. Control mounts in a standard 4-gang US wallbox, 2 3/4 in min. depth (3 1/2 in recommended). Dimensions (inches (mm)): 4 11/16(119)H x 9 3/8(239)W x 3/8(10)D. Unengraved. Unit Color: WHITE

LUTRON

Bill of Material Job No: 186917

Job Name: DeSales University - Gambet Center - Exterior Lighting Optic Project ID: 186917.2.9

Job Location: Upper Sauccon, PA

3 LOS-CDT-2000-WH

Occupancy sensor - Ceiling mount, dual technology, 2000 sq ft, active high, 20-24VDC, white. Not rated for outdoor use. Contact Engineering.

1 QSWS2-5BRLI-WH

QS device: seeTouch QS 5-button with raise/lower wallstation. Two contact closure inputs via a connector on the back of the wallstation. Dimensions: 116 mm x 70 mm x 76 mm.

1 QSE-CI-NWK-E

GRAFIK Eye QS auxiliary equipment interface integrates with user supplied PC or digital AV equipment using TCP/IP or RS232 communication. Dimensions mm: 135W x 110H x 27D.

AREA "A" ALTERNATE

2 QSGRJ-6E-WH

GRAFIK Eye QS with EcoSystem 6 zone E120 series control unit capable of setting 16 preset scenes of lighting, four of which are selectable on face of unit, and 0 shade columns. First 3 zones are line-voltage dimming zones and can be optionally programmed to be EcoSystem zones. EcoSystem bus is integral to the unit, supporting up to 64 EcoSystem ballasts, which can be assigned to one of the 6 zones. Integral support for daylight and occupancy sensors attached to EcoSystem ballasts or interfaces, including the ability to link EcoSystem-connected daylight and occupancy sensors to the 3 line-voltage outputs. The unit contains a 434 mhz radio frequency antenna for wireless functionality. The GRAFIK Eye has wireless interconnects to Lutron wireless devices such as occupancy sensors and keypads. Features include an adjustable 0 second to 60 minute fade rate per scene, an integral infrared receiver, and an integral astronomic timeclock. Control mounts in a standard 4-gang US wallbox, 2 3/4 in min. depth (3 1/2 in recommended). Dimensions (inches (mm)): 4 11/16(119)H x 9 3/8(239)W x 3/8(10)D. Unengraved. Unit Color: WHITE

2 LOS-CDT-2000-WH

Occupancy sensor - Ceiling mount, dual technology, 2000 sq ft, active high, 20-24VDC, white. Not rated for outdoor use. Contact Engineering.

2 QSWS2-5BRLI-WH

QS device: seeTouch QS 5-button with raise/lower wallstation. Two contact closure inputs via a connector on the back of the wallstation. Dimensions: 116 mm x 70 mm x 76 mm.

2 QSE-CI-NWK-E

GRAFIK Eye QS auxiliary equipment interface integrates with user supplied PC or digital AV equipment using TCP/IP or RS232 communication. Dimensions mm: 135W x 110H x 27D.

FXTFRIOR LIGHTING

1 XP16-FT

Pre-assembled switching panel containing sixteen feed-through relays, with a 16A continuous rating per relay circuit. Panel accepts up to sixteen 120-277V, 1 phase, 2 wire, 20A feed-through circuits. Requires a dedicated 120 or 277 volt 20A control circuit, (20A-1P over-current protection, per circuit, by others.) Dimensions (inches(cm)): 24(60)H x 14.375(37)Wx 4.1(10.3)D. Weight (w/o packaging): 35lbs.

1 GRX-CESO-277PKG

Consists of a standard CES/O-12/24-0-10 outdoor sensor from PLC Multipoint, packaged with an LC8 lighting controller from PLC Multipoint and a PP-277H power pack.

1 QSE-IO

QS device: 5 Contact Closure Inputs and 5 Relay Outputs for integrating QS based devices. Dimensions mm: 135W x 110H x 27D.

<<STAND-ALONE>>

LUTRON Bill of Material Job No: 186917

Job No: 186917 **Date:** 17-Apr-2012

Job Name: DeSales University - Gambet Center - Exterior Lighting Optic Project ID: 186917.2.9

Job Location: Upper Sauccon, PA

4 MRF2-8S-DV-WH

MRF 8A Dual Volt Switch White

4 MRF2-3BRL-L-WH

5 Button Pico Wireless Control. One Pico Can communicate wirelessly with up to 10 Maestro Wireless load controls. Horizontal button configuration includes symbols for On, Preset, Off, and raise/lower - White

8 LRF2-OCR2B-P-WH

Lutron occupancy sensor 1 way FM 434 R2

82 MS-OPS6M-DV-WH

Maestro 6A lighting switch with occupancy/vacancy sensor, multi-location, 120/277V, no neutral required, white

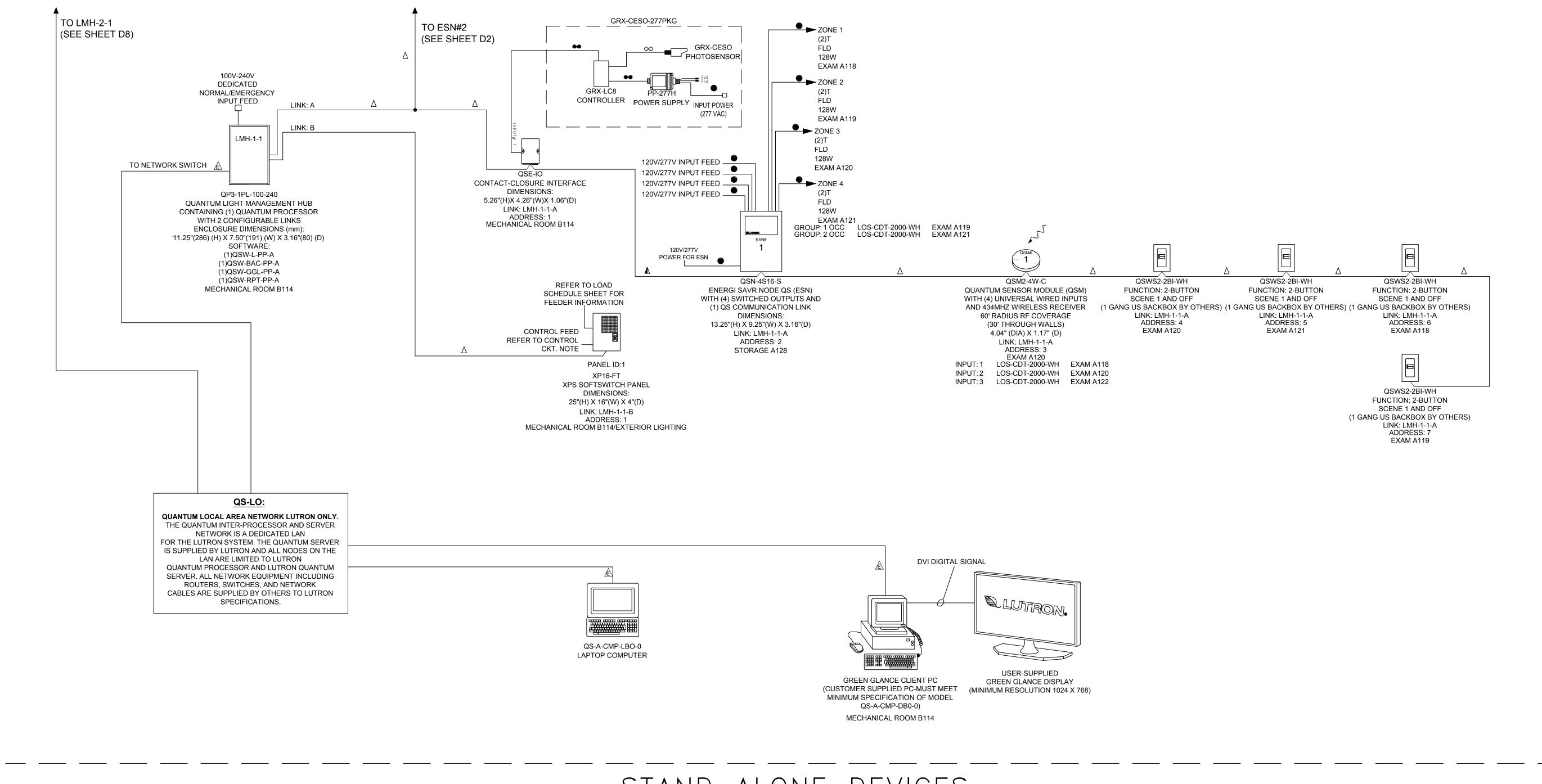
2 Yr Term LSC-B2

2 year warranty providing 100% replacement parts & 100% Lutron labor coverage with a first-available response time

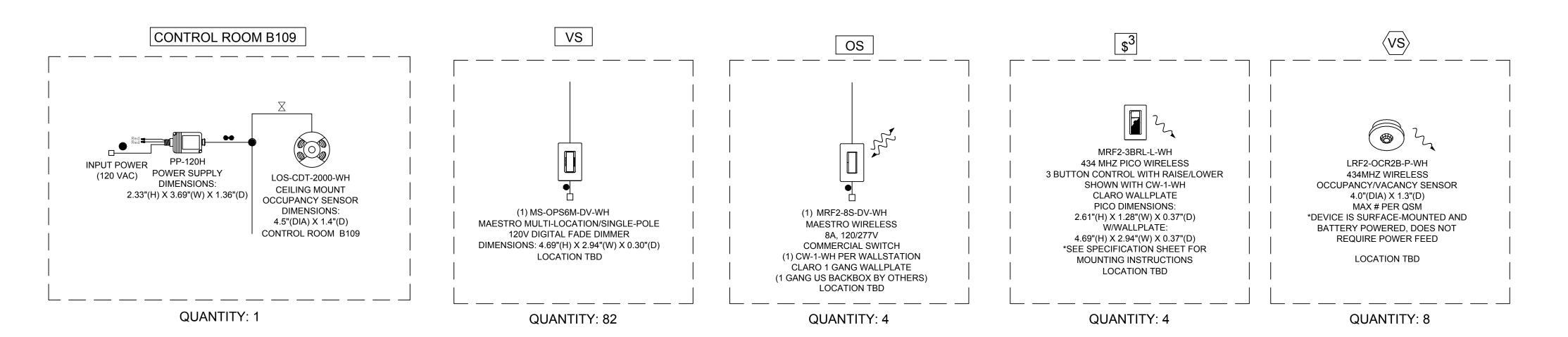
LSC-OS-PST-QTM

Quantum System Startup for this system includes the following visits:

Quantum Prewire Visit


Onsite visit by a Lutron Services Company Representative typically held with the electrical contractor, project manager, and owner's representative to discuss the project scope and timeline. Additionally, the mounting and wiring of system devices, including panels, controls, and sensors is discussed.

Quantum Factory Startup


Onsite visit by a Lutron Services Company Representative held after Lutron equipment is installed. Equipment installation is verified and system is programmed and tested during this time.

Quantum Training Visit

Onsite visit by a Lutron Services Company Representative held with the end user of the lighting control system. During this visit, Lutron Services Company Representative provides instruction on system maintenance and operation, including the use of any system software.

STAND ALONE DEVICES

- The lighting control system (LCS) is processor based and furnished with a factory prepared database.
- 2. The electrical contractor shall install and wire the LCS equipment per Lutron's installation instructions and
- 3. All work shall comply with the codes, laws, ordnances, rules
- and regulations of authorities governing the work. 4. The lighting control system (LCS) supports the following link
- EcoSystem Link: This is a FREE TOPOLOGY WIRING (T-Tap, Home-Run, etc. is OK). This link can have up to 8 EcoSystem loops. (See hub details for each hub).
- Keep ALL the ballasts/modules in one room in the same loop whenever possible. Wire daylight sensor, occupancy sensor and personal control to the closest EcoSystem ballast/module in the same room (see detail 1; for ecosystem wiring details).
- there is a discrepancy and rooms are wired to a different loop than the one shown Lutron needs to be notified. This information is important for programm ECO-SYSTEM LOOP

EcoSystem loops are shown on the lighting plans. If

- -Up to 64 ballasts/modules per EcoSystem loop -Up to 16 daylight sensors per loop -Up to 32 occupant sensors per loop
- OS Control Station Link: This is a FREE TOPOLOGY WIRING (T-Tap, Home-Run, etc. is OK) link. QS Device are wired on one of the configurable links per Lutron's drawing, however they do not have to be in the order shown. (QS Control Stations can be moved from one processor to another. Maximum 99 devices per link)
- The maximum wire length of a panel or QS Control Stations link is 2,000 feet or 32 power units (1 QS keypad = 1 power unit). A Smart Panel is used to extend the length of a link or to add more power units For more information on Smart Panels refer to Lutron
- If a QS Control Station is moved to another link, Lutron must be notified. This information is important for programming the system.
- Panels Link: Panels are DAISY-CHAINED on one of the configurable links per Lutron's drawing, however they do not have to be in the order shown. DO NOT Home-Run or t-tap this wiring link. All circuits need to be landed in these panels per Lutron's panel schedules.
- The maximum wire length of a panel link is 2,000 feet. a MX—RPTR is used to extend the length of a link another 2,000 feet. a maximum of (3) MX-RPTR's may be used per link for maximum length of 8,000 feet per

If a panel is moved to another link, or the loads are

- not wired as shown in Lutron panel schedules, Lutron must be notified. This information is important for POWEŘ PANEL LINK -Up to 32 circuit selectors per link
- -Up to 512 switch legs or zones per link -LT-1 link terminators needed on each end of

PROGRAMMING NOTES

The control station devices will be programmed to perform as described in the Sequence of Operations. Zone intensities will be programmed to Lutron's default settings unless otherwise

DO NOT MIX PANELS, QS DEVICES AND ECOSYSTEM CONTROLS ON

- 2 #12AWG (2.5 mm ²)
- O 3 #12AWG (2.5 mm ²)
- ♦ 0-10V Signal: 2 #18 AWG
- ●● 2 #18 AWG 3 #18 AWG
- X Lutron sensor cable C-CBL-522S otherwise use 3 #18 AWG
- Lutron sensor cable C-CBL-522S otherwise use 4 #18 AWG
- ☐ 120V Input Power
- Δ Lutron cable GRX-CBL-46L (5 Conductor Non-Plenum) or 2 #12 AWG (2.5mm ²), 1 Belden #9461 and between panels add 1 #18 AWG (1.0mm ²) for emergency sensing
- ▲ Lutron cable GRX-CBL-46L (5 Conductor Non-Plenum) or 2 #12 AWG (2.5mm 2), 1 Belden #9461 and between; panels add 1 #18 AWG (1.0mm ²) for emergency sensing. NOTE: MAKE CONNECTION TO PINS 1, 3 & 4 ONLY — DO NOT CONNECT TO PIN #2 (POWER).
- EcoSystem Bus:
 Lutron cable C-CBL-216-GR-1 (2 #16 Conductor Non-Plenum) or C-PCBL-216-CL-1 (2 #16 Conductor Plenum rated).
- Otherwise use 2 #16 AWG by others. CATSe or better cable for dedicated Lutron network terminated with RJ45 connectors (to be provided by
- others). 328 feet (100m) maximum run. Fiber Optic Cable for dedicated Lutron network terminated with appropriate Fiber Optic Connectors (to
- be provided by others). Note: Requires Dedicated Fiber Optic Link (2 strands

DESALES UNIVERSITY

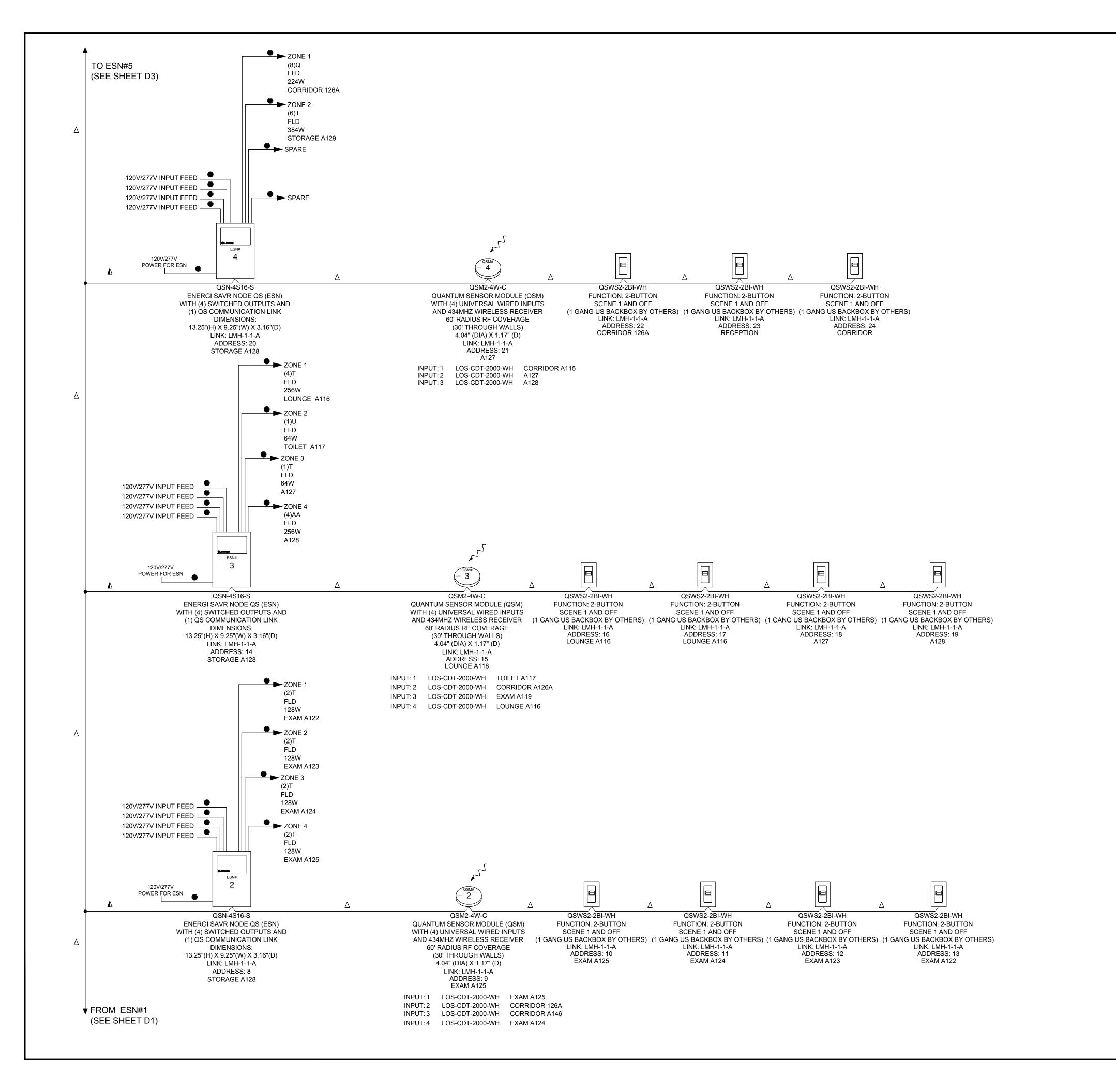
- GAMBET CENTER 1st Floor

UPPER SAUCON, PA

Quantum System

SYSTEM ONELINE

Project Number:	186917
Drawn By:	KS/SPK/JMM/TCW
Drawing Revision:	1


Drawing Date:

Sheet:

09/14/12

7200 Suter Road | Coopersburg, PA 18036 | USA (610) 282-3800 | fax: (610) 282-1146

- . The lighting control system (LCS) is processor based and furnished with a factory prepared database.
- 2. The electrical contractor shall install and wire the LCS equipment per Lutron's installation instructions and
- 3. All work shall comply with the codes, laws, ordnances, rules
- and regulations of authorities governing the work.
- 4. The lighting control system (LCS) supports the following link
- EcoSystem Link: This is a FREE TOPOLOGY WIRING (T-Tap, Home-Run, etc. is OK). This link can have up to 8 EcoSystem loops. (See hub details for each hub). Keep ALL the ballasts/modules in one room in the same loop whenever possible. Wire daylight sensor, occupancy sensor and personal control to the closest EcoSystem ballast/module in the same room (see detail 1; for ecosystem wiring details).
- EcoSystem loops are shown on the lighting plans. If there is a discrepancy and rooms are wired to a different loop than the one shown Lutron needs to be notified. This information is important for programmi the system.
- ECO-SYSTEM LOOP -Up to 64 ballasts/modules per EcoSystem loop -Up to 16 daylight sensors per loop -Up to 32 occupant sensors per loop
- OS Control Station Link: This is a FREE TOPOLOGY WIRING (T—Tap, Home—Run, etc. is OK) link. QS Device are wired on one of the configurable links per Lutron's drawing, however they do not have to be in the order shown. (QS Control Stations can be moved from one

processor to another. Maximum 99 devices per link)

- The maximum wire length of a panel or QS Control Stations link is 2,000 feet or 32 power units (1 QS keypad = 1 power unit). A Smart Panel is used to extend the length of a link or to add more power units For more information on Smart Panels refer to Lutron
- If a QS Control Station is moved to another link, Lutron must be notified. This information is important for programming the system.
- Panels Link: Panels are DAISY-CHAINED on one of the configurable links per Lutron's drawing, however they do not have to be in the order shown. DO NOT Home-Run or t-tap this wiring link. All circuits need to be landed in these panels per Lutron's panel schedules.
- The maximum wire length of a panel link is 2,000 feet. a MX—RPTR is used to extend the length of a link another 2,000 feet. a maximum of (3) MX-RPTR's may be used per link for maximum length of 8,000 feet per
- If a panel is moved to another link, or the loads are not wired as shown in Lutron panel schedules, Lutron must be notified. This information is important for programming the system. POWER PANEL LINK
- -Up to 32 circuit selectors per link -Up to 512 switch legs or zones per link -LT-1 link terminators needed on each end of
- PROGRAMMING NOTES

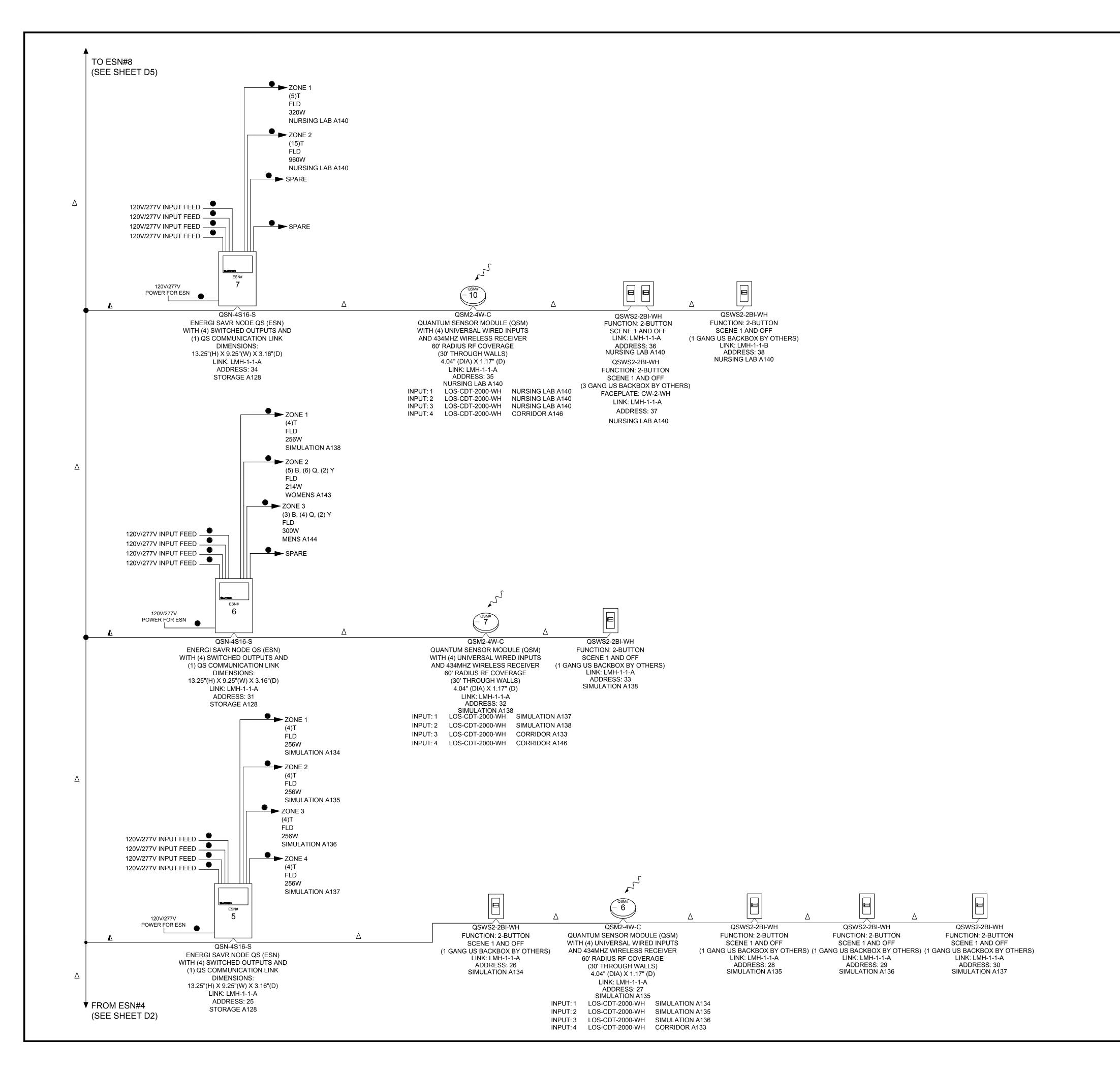
The control station devices will be programmed to perform as described in the Sequence of Operations. Zone intensities will be programmed to Lutron's default settings unless otherwise

DO NOT MIX PANELS, QS DEVICES AND ECOSYSTEM CONTROLS ON

- 2 #12AWG (2.5 mm ²)
- O 3 #12AWG (2.5 mm ²)
- ♦ 0-10V Signal: 2 #18 AWG
- ●● 2 #18 AWG 3 #18 AWG
- X Lutron sensor cable C-CBL-522S otherwise use 3 #18 AWG
- Lutron sensor cable C-CBL-522S otherwise use 4 #18 AWG
- ☐ 120V Input Power
- ∆ Lutron cable GRX-CBL-46L (5 Conductor Non-Plenum) or 2 #12 AWG (2.5mm ²), 1 Belden #9461 and between panels add 1 #18 AWG (1.0mm ²) for emergency sensing ▲ Lutron cable GRX-CBL-46L (5 Conductor Non-Plenum)
- or 2 #12 AWG (2.5mm ²), 1 Belden #9461 and between; panels add 1 #18 AWG (1.0mm ²) for emergency sensing. NOTE: MAKE CONNECTION TO PINS 1, 3 & 4 ONLY — DO NOT CONNECT TO PIN #2 (POWER).
- Lutron cable C-CBL-216-GR-1 (2 #16 Conductor Non-Plenum) or C-PCBL-216-CL-1 (2 #16 Conductor Plenum rated). Otherwise use 2 #16 AWG by others.
- CATSe or better cable for dedicated Lutron network terminated with RJ45 connectors (to be provided by
- others). 328 feet (100m) maximum run. Fiber Optic Cable for dedicated Lutron network terminated with appropriate Fiber Optic Connectors (to
- be provided by others). Note: Requires Dedicated Fiber Optic Link (2 strands of single-mode Fiber).

DESALES UNIVERSITY - GAMBET CENTER

1st Floor


UPPER SAUCON, PA

Quantum System

SYSTEM ONELINE

Project Number:	186917
Drawn By:	KS/JMM/TCW
Drawing Revision:	1
Drawing Date:	09/14/12
Sheet:	D2

- The lighting control system (LCS) is processor based and furnished with a factory prepared database.
- 2. The electrical contractor shall install and wire the LCS equipment per Lutron's installation instructions and

3. All work shall comply with the codes, laws, ordnances, rules

and regulations of authorities governing the work. 4. The lighting control system (LCS) supports the following link

• EcoSystem Link: This is a FREE TOPOLOGY WIRING (T-Tap, Home-Run, etc. is OK). This link can have up to 8 EcoSystem loops. (See hub details for each hub). Keep ALL the ballasts/modules in one room in the same loop whenever possible. Wire daylight sensor, occupancy sensor and personal control to the closest EcoSystem ballast/module in the same room (see detail 1; for ecosystem wiring details).

EcoSystem loops are shown on the lighting plans. If there is a discrepancy and rooms are wired to a different loop than the one shown Lutron needs to be notified. This information is important for programmi the system.

- ECO-SYSTEM LOOP -Up to 64 ballasts/modules per EcoSystem loop -Up to 16 daylight sensors per loop -Up to 32 occupant sensors per loop
- OS Control Station Link: This is a FREE TOPOLOGY WIRING (T—Tap, Home—Run, etc. is OK) link. QS Device are wired on one of the configurable links per Lutron's drawing, however they do not have to be in the order shown. (QS Control Stations can be moved from one processor to another. Maximum 99 devices per link)

The maximum wire length of a panel or QS Control Stations link is 2,000 feet or 32 power units (1 QS keypad = 1 power unit). A Smart Panel is used to extend the length of a link or to add more power units For more information on Smart Panels refer to Lutron

If a QS Control Station is moved to another link, Lutron must be notified. This information is important for programming the system.

• Panels Link: Panels are DAISY-CHAINED on one of the configurable links per Lutron's drawing, however they do not have to be in the order shown. DO NOT Home-Run or t-tap this wiring link. All circuits need to be landed in these panels per Lutron's panel schedules.

The maximum wire length of a panel link is 2,000 feet. a MX—RPTR is used to extend the length of a link another 2,000 feet. a maximum of (3) MX-RPTR's may be used per link for maximum length of 8,000 feet per

If a panel is moved to another link, or the loads are not wired as shown in Lutron panel schedules, Lutron must be notified. This information is important for programming the system. POWER PANEL LINK

-Up to 32 circuit selectors per link -Up to 512 switch legs or zones per link -LT-1 link terminators needed on each end of

PROGRAMMING NOTES

The control station devices will be programmed to perform as described in the Sequence of Operations. Zone intensities will be programmed to Lutron's default settings unless otherwise

DO NOT MIX PANELS, QS DEVICES AND ECOSYSTEM CONTROLS ON

- 2 #12AWG (2.5 mm²) O 3 #12AWG (2.5 mm ²)
- ♦ 0-10V Signal: 2 #18 AWG
- ●● 2 #18 AWG
- 3 #18 AWG X Lutron sensor cable C-CBL-522S otherwise use 3 #18 AWG
- Lutron sensor cable C-CBL-522S otherwise use 4 #18 AWG

of single-mode Fiber).

☐ 120V Input Power

∆ Lutron cable GRX-CBL-46L (5 Conductor Non-Plenum) or 2 #12 AWG (2.5mm ²), 1 Belden #9461 and between panels add 1 #18 AWG (1.0mm ²) for emergency sensing ▲ Lutron cable GRX-CBL-46L (5 Conductor Non-Plenum)

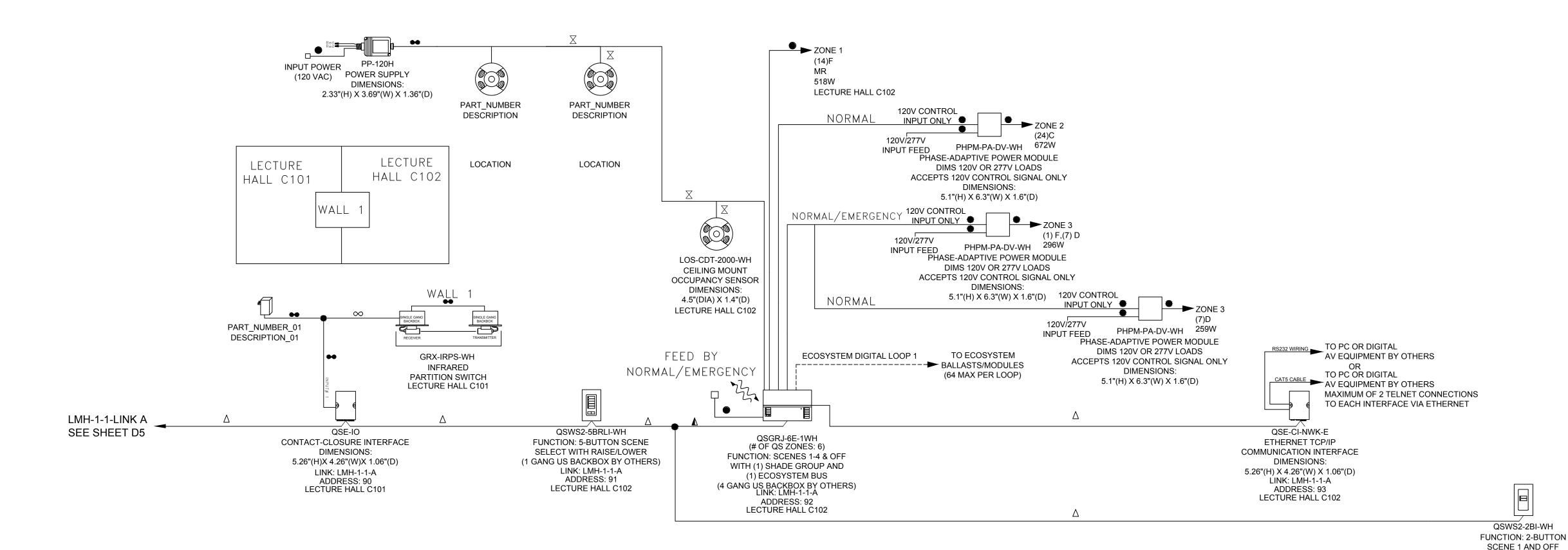
or 2 #12 AWG (2.5mm 2), 1 Belden #9461 and between; panels add 1 #18 AWG (1.0mm ²) for emergency sensing. NOTE: MAKE CONNECTION TO PINS 1, 3 & 4 ONLY — DO NOT CONNECT TO PIN #2 (POWER).

EcoSystem Bus:
Lutron cable C-CBL-216-GR-1 (2 #16 Conductor Non-Plenum) or C-PCBL-216-CL-1 (2 #16 Conductor Plenum rated). Otherwise use 2 #16 AWG by others.

CATSe or better cable for dedicated Lutron network terminated with RJ45 connectors (to be provided by others). 328 feet (100m) maximum run.

Fiber Optic Cable for dedicated Lutron network terminated with appropriate Fiber Optic Connectors (to be provided by others). Note: Requires Dedicated Fiber Optic Link (2 strands

DESALES UNIVERSITY - GAMBET CENTER 1st Floor


UPPER SAUCON, PA

Quantum System

SYSTEM ONELINE

186917 Project Number: KS/JMM/TCW Drawn By: Drawing Revision 09/14/12 **Drawing Date:** Sheet:

NOTE: SHADE BUTTONS WILL ONLY CONTROL SHADES IN ASSIGNED ROOM. SHADES WILL NOT OPERATE TOGETHER WHEN PARTITION WALL IS OPEN.

NERAL NOTES

- The lighting control system (LCS) is processor based and furnished with a factory prepared database.
- 2. The electrical contractor shall install and wire the LCS equipment per Lutron's installation instructions and
- 3. All work shall comply with the codes, laws, ordnances, rules
- and regulations of authorities governing the work.
- 4. The lighting control system (LCS) supports the following link types:
 EcoSystem Link: This is a FREE TOPOLOGY WIRING (T-Tap, Home-Run, etc. is OK). This link can have up
 - (T—Tap, Home—Run, etc. is OK). This link can have up to 8 EcoSystem loops. (See hub details for each hub). Keep ALL the ballasts/modules in one room in the same loop whenever possible. Wire daylight sensor, occupancy sensor and personal control to the closest EcoSystem ballast/module in the same room (see detail 1; for ecosystem wiring details).
 - EcoSystem loops are shown on the lighting plans. If there is a discrepancy and rooms are wired to a different loop than the one shown Lutron needs to be notified. This information is important for programmir the system.
 - ECO-SYSTEM LOOP

 -Up to 64 ballasts/modules per EcoSystem loop

 -Up to 16 daylight sensors per loop

 -Up to 32 occupant sensors per loop
- QS Control Station Link: This is a FREE TOPOLOGY WIRING (T—Tap, Home—Run, etc. is OK) link. QS Devices are wired on one of the configurable links per Lutron's drawing, however they do not have to be in the order shown. (QS Control Stations can be moved from one processor to another. Maximum 99 devices per link)
- The maximum wire length of a panel or QS Control Stations link is 2,000 feet or 32 power units (1 QS keypad = 1 power unit). A Smart Panel is used to extend the length of a link or to add more power units For more information on Smart Panels refer to Lutron
- If a QS Control Station is moved to another link, Lutron must be notified. This information is important for programming the system.
- Panels Link: Panels are DAISY-CHAINED on one of the configurable links per Lutron's drawing, however they do not have to be in the order shown. DO NOT Home-Run or t-tap this wiring link. All circuits need to be landed in these panels per Lutron's panel schedules.
- The maximum wire length of a panel link is 2,000 feet. a MX-RPTR is used to extend the length of a link another 2,000 feet. a maximum of (3) MX-RPTR's may be used per link for maximum length of 8,000 feet per link.
- If a panel is moved to another link, or the loads are not wired as shown in Lutron panel schedules, Lutron must be notified. This information is important for programming the system. POWER PANEL LINK
- -Up to 32 circuit selectors per link
 -Up to 512 switch legs or zones per link
 -LT-1 link terminators needed on each end of

PROGRAMMING NOTES

The control station devices will be programmed to perform as described in the Sequence of Operations. Zone intensities will be programmed to Lutron's default settings unless otherwise specified.

DO NOT MIX PANELS, QS DEVICES AND ECOSYSTEM CONTROLS ON THE SAME LINK.

- 2 #12AWG (2.5 mm ²)
- 2 #12AWG (2.5 mm²)
 3 #12AWG (2.5 mm²)
- ♦ 0-10V Signal: 2 #18 AWG
- 2 #18 AWG3 #18 AWG

(1 GANG US BACKBOX BY OTHERS) LINK: LMH-1-1-A

ADDRESS: 94

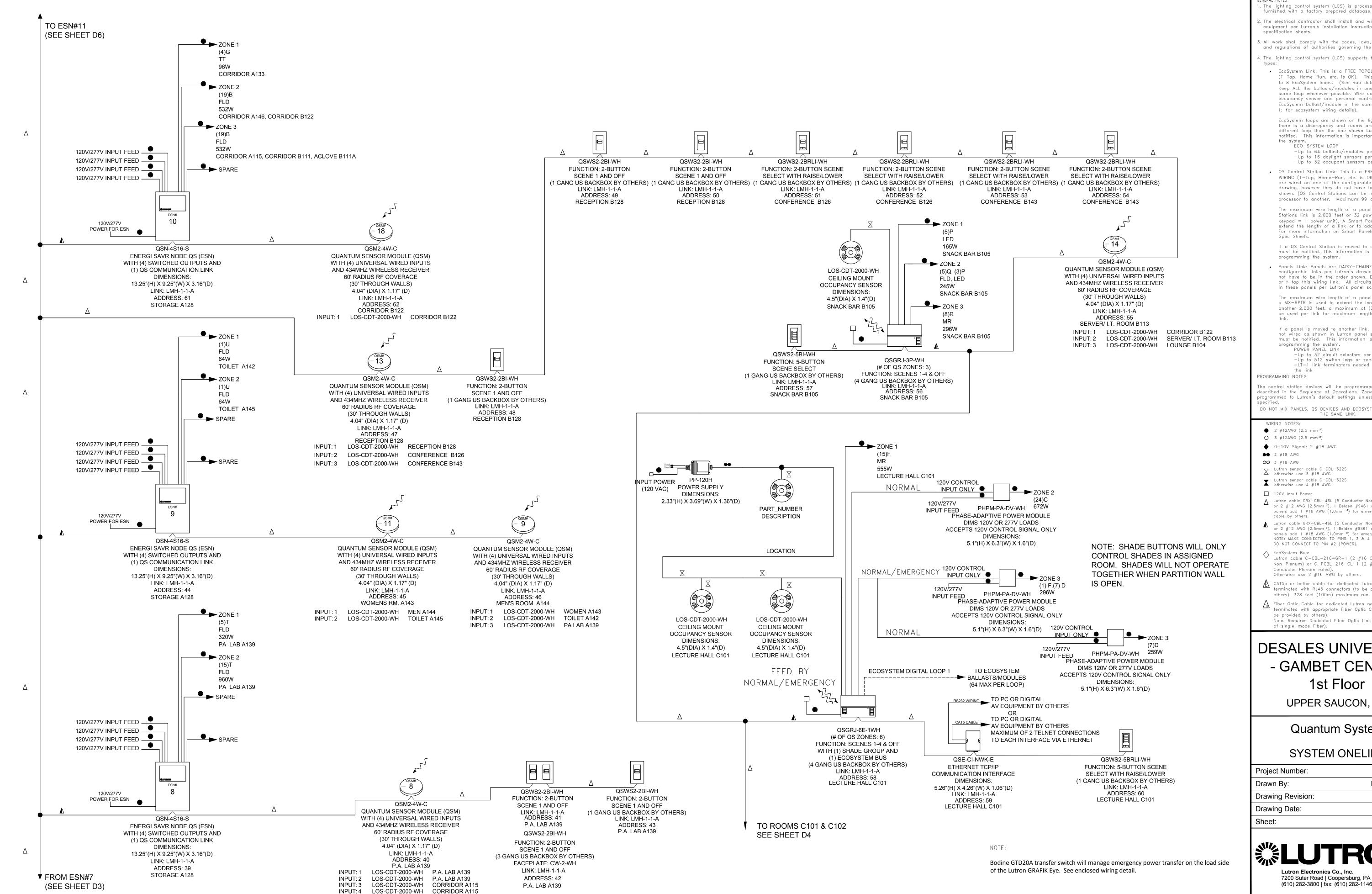
CONTROL ROOM

- X Lutron sensor cable C-CBL-522S otherwise use 3 #18 AWG
- Lutron sensor cable C-CBL-522S otherwise use 4 #18 AWG
- 120V Input Power
- ∆ Lutron cable GRX-CBL-46L (5 Conductor Non-Plenum) or 2 #12 AWG (2.5mm²), 1 Belden #9461 and between panels add 1 #18 AWG (1.0mm²) for emergency sensing cable by others.
- ▲ Lutron cable GRX-CBL-46L (5 Conductor Non-Plenum) or 2 #12 AWG (2.5mm²), 1 Belden #9461 and between; panels add 1 #18 AWG (1.0mm²) for emergency sensing. NOTE: MAKE CONNECTION TO PINS 1, 3 & 4 ONLY — DO NOT CONNECT TO PIN #2 (POWER).
- EcoSystem Bus:
 Lutron cable C-CBL-216-GR-1 (2 #16 Conductor
 Non-Plenum) or C-PCBL-216-CL-1 (2 #16
 Conductor Plenum rated).
- Otherwise use 2 #16 AWG by others.

 CAT5e or better cable for dedicated Lutron network terminated with RJ45 connectors (to be provided by others). 328 feet (100m) maximum run.
- Fiber Optic Cable for dedicated Lutron network terminated with appropriate Fiber Optic Connectors (to be provided by others).
- terminated with appropriate Fiber Optic Connectors (to be provided by others). Note: Requires Dedicated Fiber Optic Link (2 strands of single—mode Fiber).

DESALES UNIVERSITY - GAMBET CENTER 1st Floor

UPPER SAUCON, PA


Quantum System

SYSTEM ONELINE

Project Number:	186917
Drawn By:	KS/JMM/TCW
Drawing Revision:	1
Drawing Date:	09/14/12

Sheet:

The lighting control system (LCS) is processor based and

2. The electrical contractor shall install and wire the LCS

equipment per Lutron's installation instructions and

3. All work shall comply with the codes, laws, ordnances, rules

and regulations of authorities governing the work. 4. The lighting control system (LCS) supports the following link

• EcoSystem Link: This is a FREE TOPOLOGY WIRING (T-Tap, Home-Run, etc. is OK). This link can have u to 8 EcoSystem loops. (See hub details for each hub). Keep ALL the ballasts/modules in one room in the same loop whenever possible. Wire daylight sensor, occupancy sensor and personal control to the closest EcoSystem ballast/module in the same room (see detail

1; for ecosystem wiring details). EcoSystem loops are shown on the lighting plans. If there is a discrepancy and rooms are wired to a different loop than the one shown Lutron needs to be notified. This information is important for programm

ECO-SYSTEM LOOP -Up to 64 ballasts/modules per EcoSystem loop -Up to 16 daylight sensors per loop

-Up to 32 occupant sensors per loop OS Control Station Link: This is a FREE TOPOLOGY WIRING (T-Tap, Home-Run, etc. is OK) link. QS Devic are wired on one of the configurable links per Lutron's drawing, however they do not have to be in the order

shown. (QS Control Stations can be moved from one processor to another. Maximum 99 devices per link) The maximum wire length of a panel or QS Control Stations link is 2,000 feet or 32 power units (1 QS keypad = 1 power unit). A Smart Panel is used to extend the length of a link or to add more power units

If a QS Control Station is moved to another link, Lutron must be notified. This information is important for

programming the system.

For more information on Smart Panels refer to Lutron

 Panels Link: Panels are DAISY-CHAINED on one of the configurable links per Lutron's drawing, however they d not have to be in the order shown. DO NOT Home-Run or t-tap this wiring link. All circuits need to be landed in these panels per Lutron's panel schedules.

The maximum wire length of a panel link is 2,000 feet. a MX—RPTR is used to extend the length of a link another 2,000 feet. a maximum of (3) MX-RPTR's may be used per link for maximum length of 8,000 feet per

not wired as shown in Lutron panel schedules, Lutron must be notified. This information is important for POWER PANEL LINK

If a panel is moved to another link, or the loads are

-Up to 32 circuit selectors per link -Up to 512 switch legs or zones per link -LT-1 link terminators needed on each end of

PROGRAMMING NOTES

The control station devices will be programmed to perform as described in the Sequence of Operations. Zone intensities will be programmed to Lutron's default settings unless otherwise DO NOT MIX PANELS, QS DEVICES AND ECOSYSTEM CONTROLS ON

• 2 #12AWG (2.5 mm ²)

O 3 #12AWG (2.5 mm ²) ♦ 0-10V Signal: 2 #18 AWG

●● 2 #18 AWG

∞ 3 #18 AWG

X Lutron sensor cable C-CBL-522S otherwise use 3 #18 AWG

X Lutron sensor cable C-CBL-522S otherwise use 4 #18 AWG

■ 120V Input Power

∆ Lutron cable GRX-CBL-46L (5 Conductor Non-Plenum) or 2 #12 AWG (2.5mm 2), 1 Belden #9461 and between panels add 1 #18 AWG (1.0mm ²) for emergency sensing

Lutron cable GRX-CBL-46L (5 Conductor Non-Plenum) or 2 #12 AWG (2.5mm 2), 1 Belden #9461 and between; panels add 1 #18 AWG (1.0mm ²) for emergency sensing. NOTE: MAKE CONNECTION TO PINS 1, 3 & 4 ONLY —

DO NOT CONNECT TO PIN #2 (POWER). EcoSystem Bus: Lutron cable C-CBL-216-GR-1 (2 #16 Conductor Non-Plenum) or C-PCBL-216-CL-1 (2 #16

Conductor Plenum rated) Otherwise use 2 #16 AWG by others. CAT5e or better cable for dedicated Lutron network

terminated with RJ45 connectors (to be provided by others). 328 feet (100m) maximum run. Fiber Optic Cable for dedicated Lutron network

erminated with appropriate Fiber Optic Connectors (to be provided by others). Note: Requires Dedicated Fiber Optic Link (2 strands of single—mode Fiber).

DESALES UNIVERSITY - GAMBET CENTER 1st Floor


UPPER SAUCON, PA

Quantum System

SYSTEM ONELINE

186917 Project Number: KS/JMM/TCW Drawn By: **Drawing Revision** 09/14/12 Drawing Date: D5 Sheet:

- The lighting control system (LCS) is processor based and furnished with a factory prepared database.
- 2. The electrical contractor shall install and wire the LCS equipment per Lutron's installation instructions and

3. All work shall comply with the codes, laws, ordnances, rules

and regulations of authorities governing the work. 4. The lighting control system (LCS) supports the following link

 EcoSystem Link: This is a FREE TOPOLOGY WIRING (T—Tap, Home—Run, etc. is OK). This link can have up to 8 EcoSystem loops. (See hub details for each hub). Keep ALL the ballasts/modules in one room in the same loop whenever possible. Wire daylight sensor, occupancy sensor and personal control to the closest EcoSystem ballast/module in the same room (see detail 1; for ecosystem wiring details).

EcoSystem loops are shown on the lighting plans. If there is a discrepancy and rooms are wired to a different loop than the one shown Lutron needs to be notified. This information is important for programmin the system. ECO-SYSTEM LOOP

- -Up to 64 ballasts/modules per EcoSystem loop -Up to 16 daylight sensors per loop -Up to 32 occupant sensors per loop
- QS Control Station Link: This is a FREE TOPOLOGY WIRING (T—Tap, Home—Run, etc. is OK) link. QS Devices are wired on one of the configurable links per Lutron's drawing, however they do not have to be in the order shown. (QS Control Stations can be moved from one processor to another. Maximum 99 devices per link)

The maximum wire length of a panel or QS Control Stations link is 2,000 feet or 32 power units (1 QS keypad = 1 power unit). A Smart Panel is used to extend the length of a link or to add more power units. For more information on Smart Panels refer to Lutron

If a QS Control Station is moved to another link, Lutron must be notified. This information is important for programming the system.

 Panels Link: Panels are DAISY—CHAINED on one of the configurable links per Lutron's drawing, however they do not have to be in the order shown. DO NOT Home-Run or t—tap this wiring link. All circuits need to be landed in these panels per Lutron's panel schedules.

The maximum wire length of a panel link is 2,000 feet. a MX—RPTR is used to extend the length of a link another 2,000 feet. a maximum of (3) MX-RPTR's may be used per link for maximum length of 8,000 feet per

If a panel is moved to another link, or the loads are not wired as shown in Lutron panel schedules, Lutron must be notified. This information is important for programming the system. POWER PANEL LINK

—Up to 32 circuit selectors per link -Up to 512 switch legs or zones per link -LT-1 link terminators needed on each end of

PROGRAMMING NOTES

The control station devices will be programmed to perform as described in the Sequence of Operations. Zone intensities will be programmed to Lutron's default settings unless otherwise

DO NOT MIX PANELS, QS DEVICES AND ECOSYSTEM CONTROLS ON

 2 #12AWG (2.5 mm²) O 3 #12AWG (2.5 mm ²)

♦ 0-10V Signal: 2 #18 AWG

●● 2 #18 AWG

∞ 3 #18 AWG X Lutron sensor cable C-CBL-522S otherwise use 3 #18 AWG

Lutron sensor cable C-CBL-522S otherwise use 4 #18 AWG

of single—mode Fiber).

☐ 120V Input Power

∆ Lutron cable GRX-CBL-46L (5 Conductor Non-Plenum) or 2 #12 AWG (2.5mm ²), 1 Belden #9461 and between

panels add 1 #18 AWG (1.0mm ²) for emergency sensing ▲ Lutron cable GRX-CBL-46L (5 Conductor Non-Plenum) or 2 #12 AWG (2.5mm ²), 1 Belden #9461 and between;

panels add 1 #18 AWG (1.0mm 2) for emergency sensing. NOTE: MAKE CONNECTION TO PINS 1, 3 & 4 ONLY -DO NOT CONNECT TO PIN #2 (POWER). EcoSystem Bus:
Lutron cable C-CBL-216-GR-1 (2 #16 Conductor

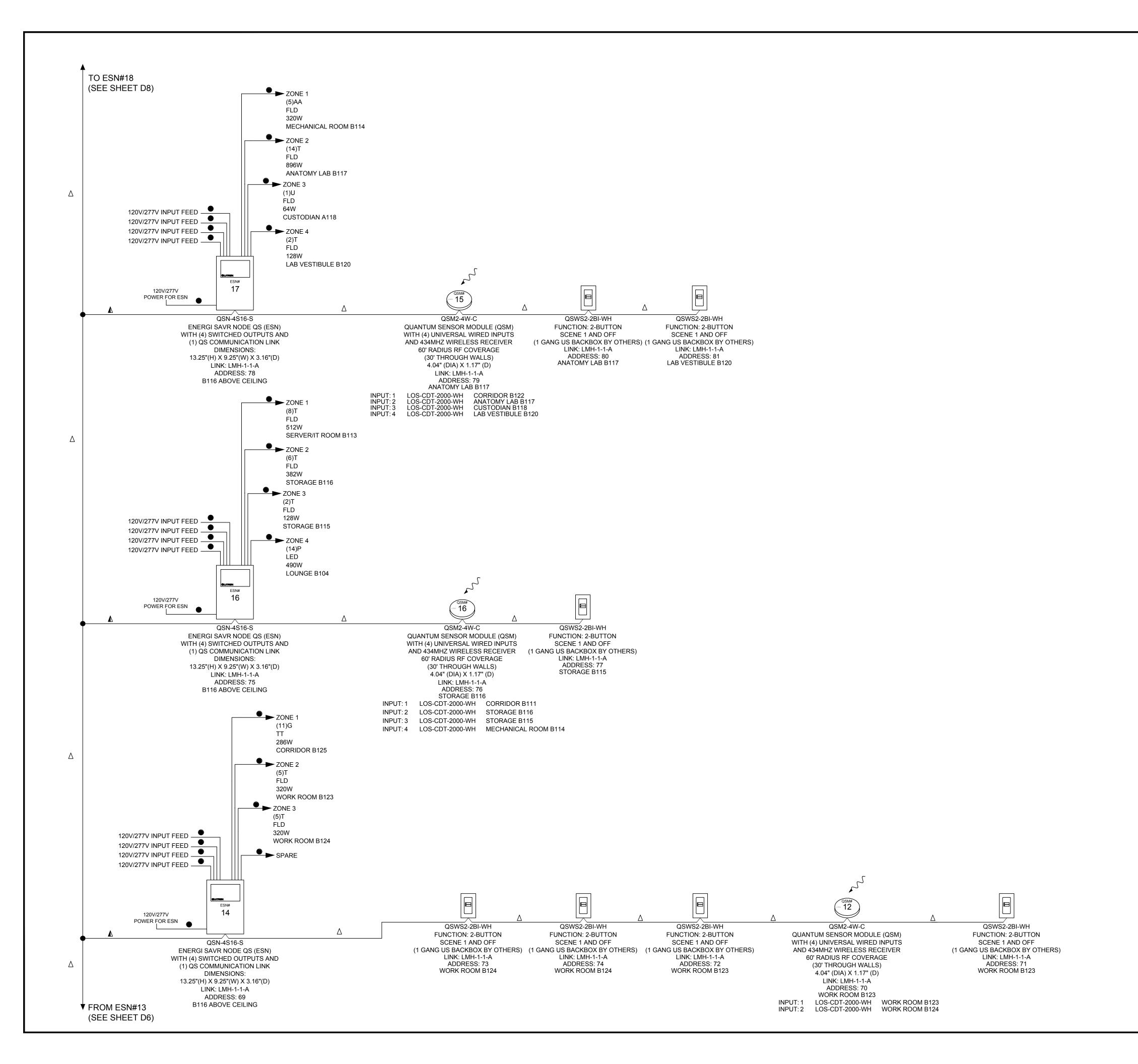
Non-Plenum) or C-PCBL-216-CL-1 (2 #16 Conductor Plenum rated). Otherwise use 2 #16 AWG by others.

CATSe or better cable for dedicated Lutron network terminated with RJ45 connectors (to be provided by others). 328 feet (100m) maximum run.

Fiber Optic Cable for dedicated Lutron network terminated with appropriate Fiber Optic Connectors (to be provided by others). Note: Requires Dedicated Fiber Optic Link (2 strands

DESALES UNIVERSITY - GAMBET CENTER 1st Floor

UPPER SAUCON, PA


Quantum System

SYSTEM ONELINE

186917 Project Number: KS/JMM/TCW Drawn By: Drawing Revision: 09/14/12 Drawing Date:

Sheet:

7200 Suter Road | Coopersburg, PA 18036 | USA (610) 282-3800 | fax: (610) 282-1146

- GENERAL NOTES
- The lighting control system (LCS) is processor based and furnished with a factory prepared database.
- 2. The electrical contractor shall install and wire the LCS equipment per Lutron's installation instructions and
- 3. All work shall comply with the codes, laws, ordnances, rules
- and regulations of authorities governing the work.

 4. The lighting control system (LCS) supports the following link
- types:

 EcoSystem Link: This is a FREE TOPOLOGY WIRING
 (T—Tap, Home—Run, etc. is OK). This link can have up
 to 8 EcoSystem loops. (See hub details for each hub).
- to 8 EcoSystem loops. (See hub details for each hub) Keep ALL the ballasts/modules in one room in the same loop whenever possible. Wire daylight sensor, occupancy sensor and personal control to the closest EcoSystem ballast/module in the same room (see detail 1; for ecosystem wiring details).
- different loop than the one shown Lutron needs to be notified. This information is important for programming the system.

 ECO-SYSTEM LOOP

 -Up to 64 ballasts/modules per EcoSystem loop

EcoSystem loops are shown on the lighting plans. If

there is a discrepancy and rooms are wired to a

- -Up to 16 daylight sensors per loop

 -Up to 32 occupant sensors per loop

 QS Control Station Link: This is a FREE TOPOLOGY

 WIRING (T-Tap, Home-Run, etc. is OK) link. QS Device
- are wired on one of the configurable links per Lutron's drawing, however they do not have to be in the order shown. (QS Control Stations can be moved from one processor to another. Maximum 99 devices per link)

 The maximum wire length of a panel or QS Control
- Stations link is 2,000 feet or 32 power units (1 QS keypad = 1 power unit). A Smart Panel is used to extend the length of a link or to add more power units For more information on Smart Panels refer to Lutron Spec Sheets.
- If a QS Control Station is moved to another link, Lutron must be notified. This information is important for programming the system.
- Panels Link: Panels are DAISY—CHAINED on one of the configurable links per Lutron's drawing, however they do not have to be in the order shown. DO NOT Home—Run or t—tap this wiring link. All circuits need to be landed in these panels per Lutron's panel schedules.
- The maximum wire length of a panel link is 2,000 feet. a MX—RPTR is used to extend the length of a link another 2,000 feet. a maximum of (3) MX—RPTR's may be used per link for maximum length of 8,000 feet per link.
- If a panel is moved to another link, or the loads are not wired as shown in Lutron panel schedules, Lutron must be notified. This information is important for programming the system.

 POWER PANEL LINK
- -Up to 32 circuit selectors per link
 -Up to 512 switch legs or zones per link
 -LT-1 link terminators needed on each end of
- PROGRAMMING NOTES

The control station devices will be programmed to perform as described in the Sequence of Operations. Zone intensities will be programmed to Lutron's default settings unless otherwise

DO NOT MIX PANELS, QS DEVICES AND ECOSYSTEM CONTROLS ON

- WIRING NOTES:

 2 #12AWG (2
- 2 #12AWG (2.5 mm²)
 3 #12AWG (2.5 mm²)
- ♦ 0-10V Signal: 2 #18 AWG
- 2 #18 AWG
- Lutron sensor cable C-CBL-522S otherwise use 4 #18 AWG
- 120V Input Power
- ∆ Lutron cable GRX-CBL-46L (5 Conductor Non-Plenum) or 2 #12 AWG (2.5mm²), 1 Belden #9461 and between panels add 1 #18 AWG (1.0mm²) for emergency sensing
- ▲ Lutron cable GRX-CBL-46L (5 Conductor Non-Plenum) or 2 #12 AWG (2.5mm²), 1 Belden #9461 and between; panels add 1 #18 AWG (1.0mm²) for emergency sensing. NOTE: MAKE CONNECTION TO PINS 1, 3 & 4 ONLY − DO NOT CONNECT TO PIN #2 (POWER).
- EcoSystem Bus:
 Lutron cable C-CBL-216-GR-1 (2 #16 Conductor
 Non-Plenum) or C-PCBL-216-CL-1 (2 #16
 Conductor Plenum rated).
- Otherwise use 2 #16 AWG by others.

 CAT5e or better cable for dedicated Lutron network terminated with RJ45 connectors (to be provided by
- others). 328 feet (100m) maximum run.

 Fiber Optic Cable for dedicated Lutron network
- terminated with appropriate Fiber Optic Connectors (to be provided by others). Note: Requires Dedicated Fiber Optic Link (2 strands of single—mode Fiber).

DESALES UNIVERSITY

1st Floor

- GAMBET CENTER

UPPER SAUCON, PA

Quantum System

SYSTEM ONELINE

Project Number:	186917
Drawn By:	KS/JMM/TCW
Drawing Revision:	1
Drawing Date:	09/14/12

Sheet:

the system.

- . The lighting control system (LCS) is processor based and furnished with a factory prepared database.
- 2. The electrical contractor shall install and wire the LCS equipment per Lutron's installation instructions and
- 3. All work shall comply with the codes, laws, ordnances, rules
- and regulations of authorities governing the work. 4. The lighting control system (LCS) supports the following link
- EcoSystem Link: This is a FREE TOPOLOGY WIRING (T-Tap, Home-Run, etc. is OK). This link can have up to 8 EcoSystem loops. (See hub details for each hub). Keep ALL the ballasts/modules in one room in the same loop whenever possible. Wire daylight sensor, occupancy sensor and personal control to the closest
- EcoSystem ballast/module in the same room (see detail 1; for ecosystem wiring details). EcoSystem loops are shown on the lighting plans. If there is a discrepancy and rooms are wired to a different loop than the one shown Lutron needs to be
- ECO-SYSTEM LOOP -Up to 64 ballasts/modules per EcoSystem loop -Up to 16 daylight sensors per loop -Up to 32 occupant sensors per loop

notified. This information is important for programmin

 QS Control Station Link: This is a FREE TOPOLOGY WIRING (T—Tap, Home—Run, etc. is OK) link. QS Device are wired on one of the configurable links per Lutron's drawing, however they do not have to be in the order shown. (QS Control Stations can be moved from one

processor to another. Maximum 99 devices per link)

- The maximum wire length of a panel or QS Control Stations link is 2,000 feet or 32 power units (1 QS keypad = 1 power unit). A Smart Panel is used to extend the length of a link or to add more power units. For more information on Smart Panels refer to Lutron
- If a QS Control Station is moved to another link, Lutron must be notified. This information is important for programming the system.
- Panels Link: Panels are DAISY—CHAINED on one of the configurable links per Lutron's drawing, however they do not have to be in the order shown. DO NOT Home-Run or t—tap this wiring link. All circuits need to be landed in these panels per Lutron's panel schedules.
- The maximum wire length of a panel link is 2,000 feet. a MX—RPTR is used to extend the length of a link another 2,000 feet. a maximum of (3) MX-RPTR's may be used per link for maximum length of 8,000 feet per
- If a panel is moved to another link, or the loads are not wired as shown in Lutron panel schedules, Lutron must be notified. This information is important for programming the system. POWER PANEL LINK
- —Up to 32 circuit selectors per link -Up to 512 switch legs or zones per link -LT-1 link terminators needed on each end of

PROGRAMMING NOTES

The control station devices will be programmed to perform as described in the Sequence of Operations. Zone intensities will be programmed to Lutron's default settings unless otherwise

DO NOT MIX PANELS, QS DEVICES AND ECOSYSTEM CONTROLS ON THE SAME LINK.

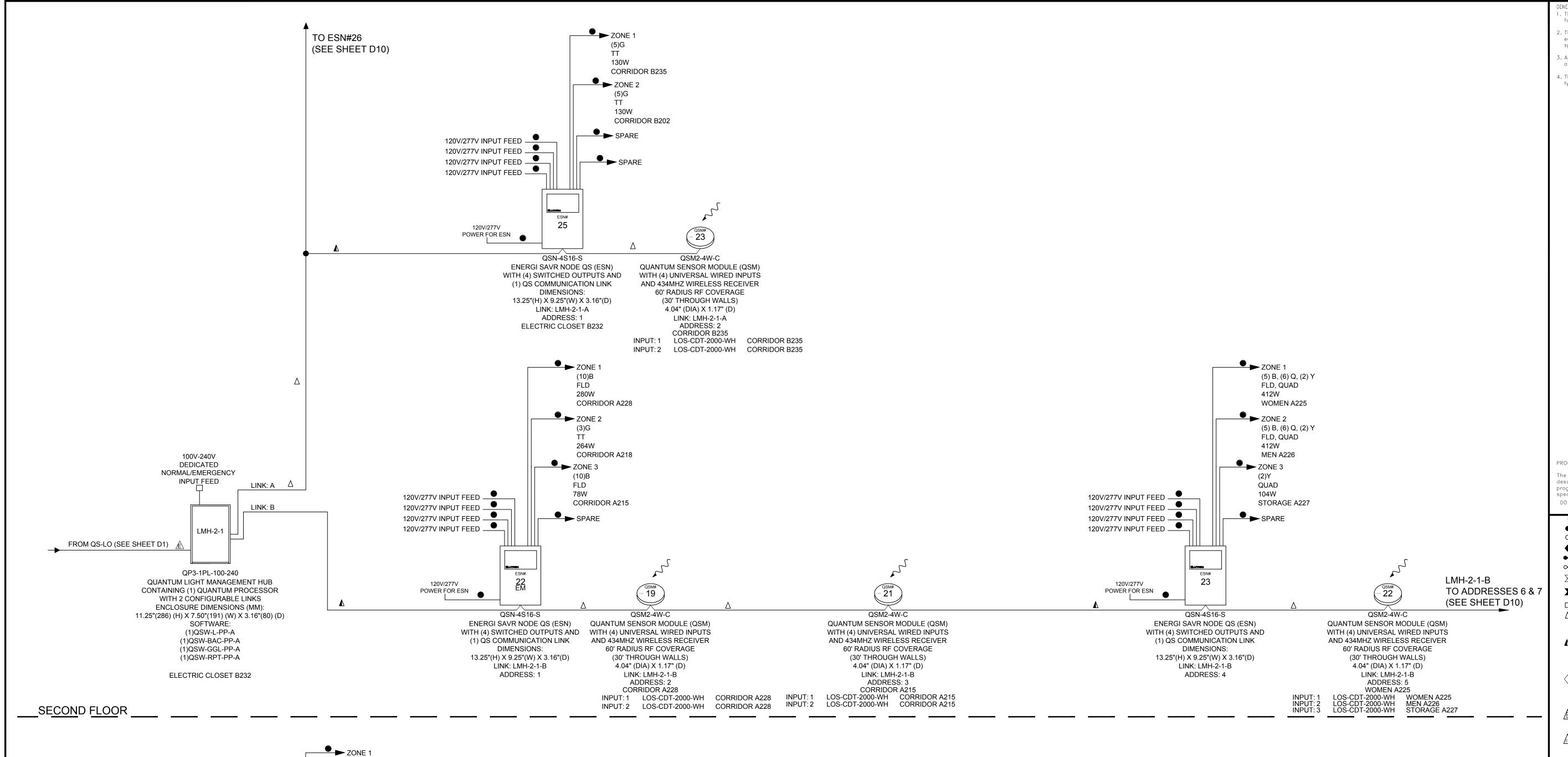
- 2 #12AWG (2.5 mm²)
- O 3 #12AWG (2.5 mm ²)
- ♦ 0-10V Signal: 2 #18 AWG
- ●● 2 #18 AWG **∞** 3 #18 AWG
- X Lutron sensor cable C-CBL-522S otherwise use 3 #18 AWG
- Lutron sensor cable C-CBL-522S otherwise use 4 #18 AWG
- ☐ 120V Input Power
- ∆ Lutron cable GRX-CBL-46L (5 Conductor Non-Plenum) or 2 #12 AWG (2.5mm ²), 1 Belden #9461 and between panels add 1 #18 AWG (1.0mm ²) for emergency sensing ▲ Lutron cable GRX-CBL-46L (5 Conductor Non-Plenum)

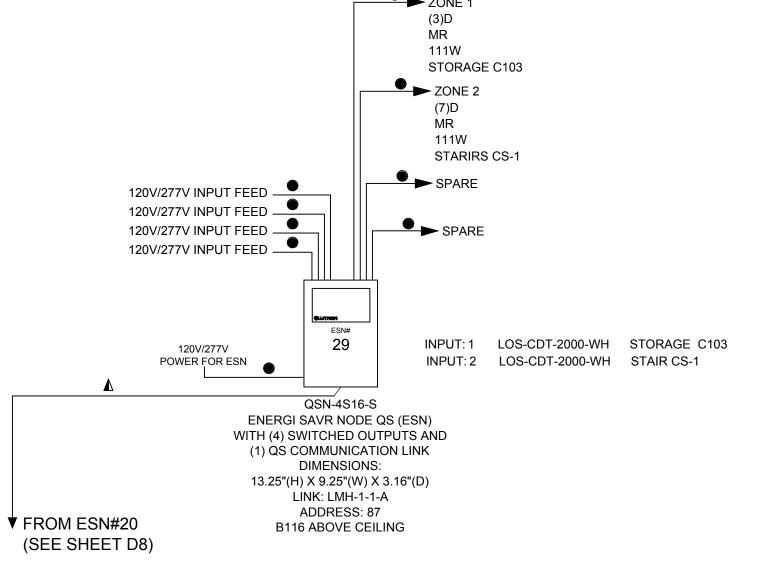
or 2 #12 AWG (2.5mm ²), 1 Belden #9461 and between;

- panels add 1 #18 AWG (1.0mm 2) for emergency sensing. NOTE: MAKE CONNECTION TO PINS 1, 3 & 4 ONLY -DO NOT CONNECT TO PIN #2 (POWER).
- EcoSystem Bus:
 Lutron cable C-CBL-216-GR-1 (2 #16 Conductor Non-Plenum) or C-PCBL-216-CL-1 (2 #16 Conductor Plenum rated). Otherwise use 2 #16 AWG by others.
- CATSe or better cable for dedicated Lutron network terminated with RJ45 connectors (to be provided by others). 328 feet (100m) maximum run.
- Fiber Optic Cable for dedicated Lutron network terminated with appropriate Fiber Optic Connectors (to
- be provided by others). Note: Requires Dedicated Fiber Optic Link (2 strands of single-mode Fiber).

DESALES UNIVERSITY - GAMBET CENTER 1st Floor

UPPER SAUCON, PA


Quantum System


SYSTEM ONELINE

186917 Project Number: KS/JMM/TCW Drawn By: Drawing Revision: 09/14/12 Drawing Date:

Sheet:

FIRST FLOOR

GENERAL NOTES

- The lighting control system (LCS) is processor based and furnished with a factory prepared database.
- The electrical contractor shall install and wire the LCS equipment per Lutron's installation instructions and
- 3. All work shall comply with the codes, laws, ordnances, rules
- and regulations of authorities governing the work.
- 4. The lighting control system (LCS) supports the following link types:
 EcoSystem Link: This is a FREE TOPOLOGY WIRING (T-Tap, Home-Run, etc. is OK). This link can have up
- to 8 EcoSystem loops. (See hub details for each hub). Keep ALL the ballasts/modules in one room in the same loop whenever possible. Wire daylight sensor, occupancy sensor and personal control to the closest EcoSystem ballast/module in the same room (see detail 1; for ecosystem wiring details).
- there is a discrepancy and rooms are wired to a different loop than the one shown Lutron needs to be notified. This information is important for programmir the system.

 ECO—SYSTEM LOOP

EcoSystem loops are shown on the lighting plans. If

- -Up to 64 ballasts/modules per EcoSystem loop -Up to 16 daylight sensors per loop -Up to 32 occupant sensors per loop
- QS Control Station Link: This is a FREE TOPOLOGY
 WIRING (T—Tap, Home—Run, etc. is OK) link. QS Device:
 are wired on one of the configurable links per Lutron's
 drawing, however they do not have to be in the order
 shown. (QS Control Stations can be moved from one
 processor to another. Maximum 99 devices per link)
- The maximum wire length of a panel or QS Control Stations link is 2,000 feet or 32 power units (1 QS keypad = 1 power unit). A Smart Panel is used to extend the length of a link or to add more power units For more information on Smart Panels refer to Lutron Spec Sheets
- If a QS Control Station is moved to another link, Lutron must be notified. This information is important for programming the system.
- Panels Link: Panels are DAISY—CHAINED on one of the configurable links per Lutron's drawing, however they do not have to be in the order shown. DO NOT Home—Run or t—tap this wiring link. All circuits need to be landed in these panels per Lutron's panel schedules.
- The maximum wire length of a panel link is 2,000 feet. a MX—RPTR is used to extend the length of a link another 2,000 feet. a maximum of (3) MX—RPTR's may be used per link for maximum length of 8,000 feet per link
- If a panel is moved to another link, or the loads are not wired as shown in Lutron panel schedules, Lutron must be notified. This information is important for programming the system.

 POWER PANEL LINK
- -Up to 32 circuit selectors per link-Up to 512 switch legs or zones per link-LT-1 link terminators needed on each end of

PROGRAMMING NOTES

The control station devices will be programmed to perform as described in the Sequence of Operations. Zone intensities will be programmed to Lutron's default settings unless otherwise specified

DO NOT MIX PANELS, QS DEVICES AND ECOSYSTEM CONTROLS ON THE SAME LINK.

- 2 #12AWG (2.5 mm ²)
- O 3 #12AWG (2.5 mm ²)
- ♦ 0-10V Signal: 2 #18 AWG
- 2 #18 AWG
- **∞** 3 #18 AWG
- Lutron sensor cable C-CBL-522S otherwise use 3 #18 AWG
- Lutron sensor cable C-CBL-522S otherwise use 4 #18 AWG
- ☐ 120V Input Power

of single-mode Fiber).

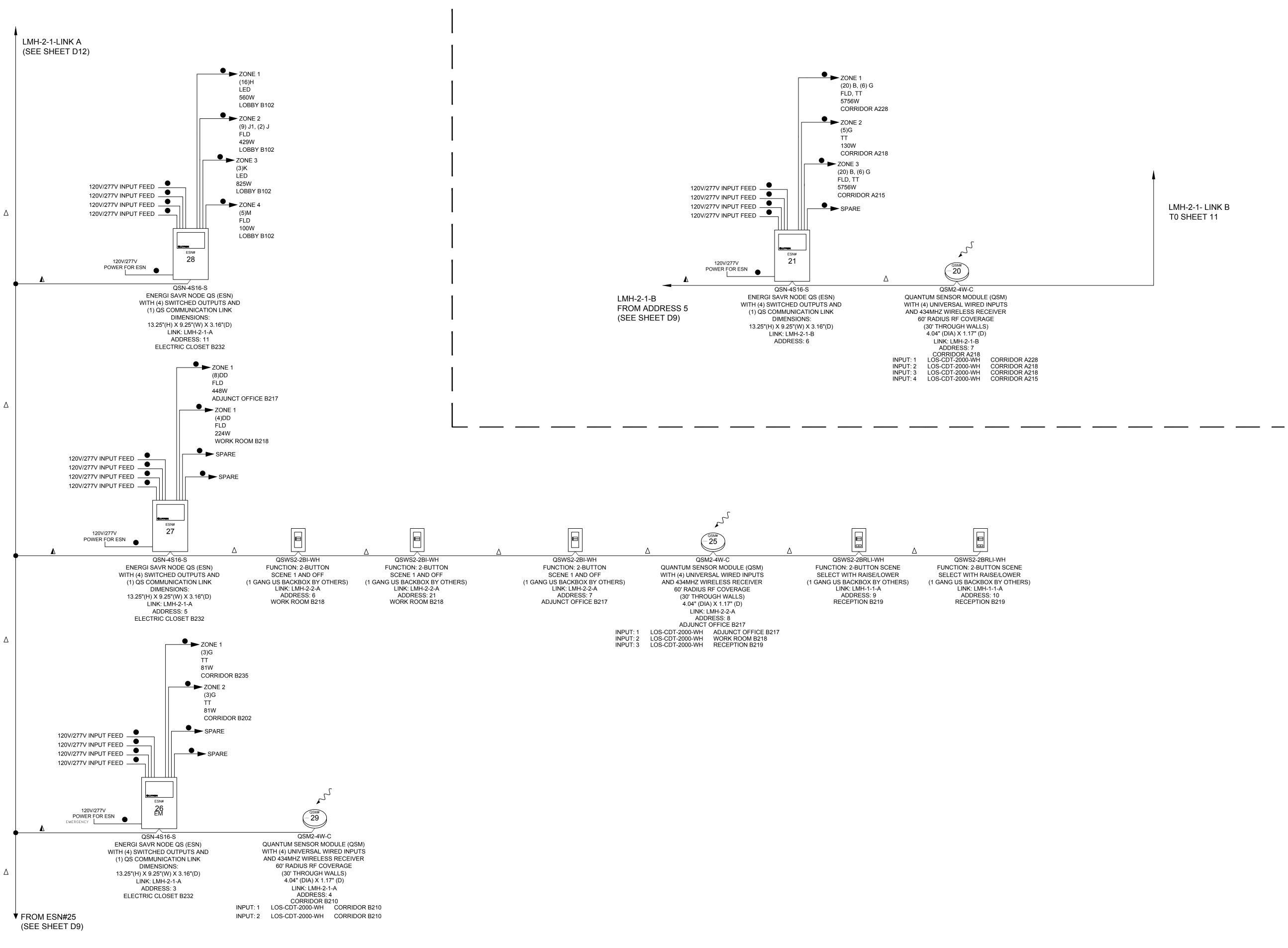
- △ Lutron cable GRX—CBL—46L (5 Conductor Non—Plenum) or 2 #12 AWG (2.5mm ²), 1 Belden #9461 and between panels add 1 #18 AWG (1.0mm ²) for emergency sensing cable by others.
- ▲ Lutron cable GRX-CBL-46L (5 Conductor Non-Plenum) or 2 #12 AWG (2.5mm²), 1 Belden #9461 and between; panels add 1 #18 AWG (1.0mm²) for emergency sensing. NOTE: MAKE CONNECTION TO PINS 1, 3 & 4 ONLY − DO NOT CONNECT TO PIN #2 (POWER).
- EcoSystem Bus:
 Lutron cable C-CBL-216-GR-1 (2 #16 Conductor
 Non-Plenum) or C-PCBL-216-CL-1 (2 #16
 Conductor Plenum rated).
- Otherwise use 2 #16 AWG by others.

 CAT5e or better cable for dedicated Lutron network terminated with RJ45 connectors (to be provided by others). 328 feet (100m) maximum run.
- Fiber Optic Cable for dedicated Lutron network terminated with appropriate Fiber Optic Connectors (to be provided by others).

 Note: Requires Dedicated Fiber Optic Link (2 strands

DESALES UNIVERSITY - GAMBET CENTER

1st & 2nd Floor


UPPER SAUCON, PA

Quantum System

SYSTEM ONELINE

Project Number:	186917
Drawn By:	KS/JMM/TCW
Drawing Revision:	1
Drawing Date:	09/14/12
Sheet:	D9

The lighting control system (LCS) is processor based and furnished with a factory prepared database.

2. The electrical contractor shall install and wire the LCS equipment per Lutron's installation instructions and

3. All work shall comply with the codes, laws, ordnances, rules and regulations of authorities governing the work.

4. The lighting control system (LCS) supports the following link

• EcoSystem Link: This is a FREE TOPOLOGY WIRING (T-Tap, Home-Run, etc. is OK). This link can have up to 8 EcoSystem loops. (See hub details for each hub). Keep ALL the ballasts/modules in one room in the same loop whenever possible. Wire daylight sensor, occupancy sensor and personal control to the closest EcoSystem ballast/module in the same room (see detail 1; for ecosystem wiring details).

different loop than the one shown Lutron needs to be notified. This information is important for programmi the system. ECO-SYSTEM LOOP

EcoSystem loops are shown on the lighting plans. If

there is a discrepancy and rooms are wired to a

-Up to 64 ballasts/modules per EcoSystem loop -Up to 32 occupant sensors per loop

 OS Control Station Link: This is a FREE TOPOLOGY WIRING (T-Tap, Home-Run, etc. is OK) link. QS Device are wired on one of the configurable links per Lutron's drawing, however they do not have to be in the order shown. (QS Control Stations can be moved from one processor to another. Maximum 99 devices per link)

The maximum wire length of a panel or QS Control Stations link is 2,000 feet or 32 power units (1 QS keypad = 1 power unit). A Smart Panel is used to extend the length of a link or to add more power units For more information on Smart Panels refer to Lutron

If a QS Control Station is moved to another link, Lutron must be notified. This information is important for programming the system.

• Panels Link: Panels are DAISY-CHAINED on one of the configurable links per Lutron's drawing, however they do not have to be in the order shown. DO NOT Home-Run or t—tap this wiring link. All circuits need to be landed in these panels per Lutron's panel schedules.

The maximum wire length of a panel link is 2,000 feet. a MX-RPTR is used to extend the length of a link another 2,000 feet. a maximum of (3) MX-RPTR's may be used per link for maximum length of 8,000 feet per

not wired as shown in Lutron panel schedules, Lutron must be notified. This information is important for programming the system. POWER PANEL LINK

If a panel is moved to another link, or the loads are

—Up to 32 circuit selectors per link -Up to 512 switch legs or zones per link -LT-1 link terminators needed on each end of

PROGRAMMING NOTES

The control station devices will be programmed to perform as described in the Sequence of Operations. Zone intensities will be programmed to Lutron's default settings unless otherwise

DO NOT MIX PANELS, QS DEVICES AND ECOSYSTEM CONTROLS ON

WIRING NOTES:

 2 #12AWG (2.5 mm²) O 3 #12AWG (2.5 mm ²)

♦ 0-10V Signal: 2 #18 AWG

●● 2 #18 AWG

∞ 3 #18 AWG X Lutron sensor cable C-CBL-522S otherwise use 3 #18 AWG

Lutron sensor cable C-CBL-522S otherwise use 4 #18 AWG

☐ 120V Input Power ∆ Lutron cable GRX-CBL-46L (5 Conductor Non-Plenum) or 2 #12 AWG (2.5mm ²), 1 Belden #9461 and between panels add 1 #18 AWG (1.0mm ²) for emergency sensing

▲ Lutron cable GRX-CBL-46L (5 Conductor Non-Plenum) or 2 #12 AWG (2.5mm ²), 1 Belden #9461 and between; panels add 1 #18 AWG (1.0mm ²) for emergency sensing. NOTE: MAKE CONNECTION TO PINS 1, 3 & 4 ONLY — DO NOT CONNECT TO PIN #2 (POWER).

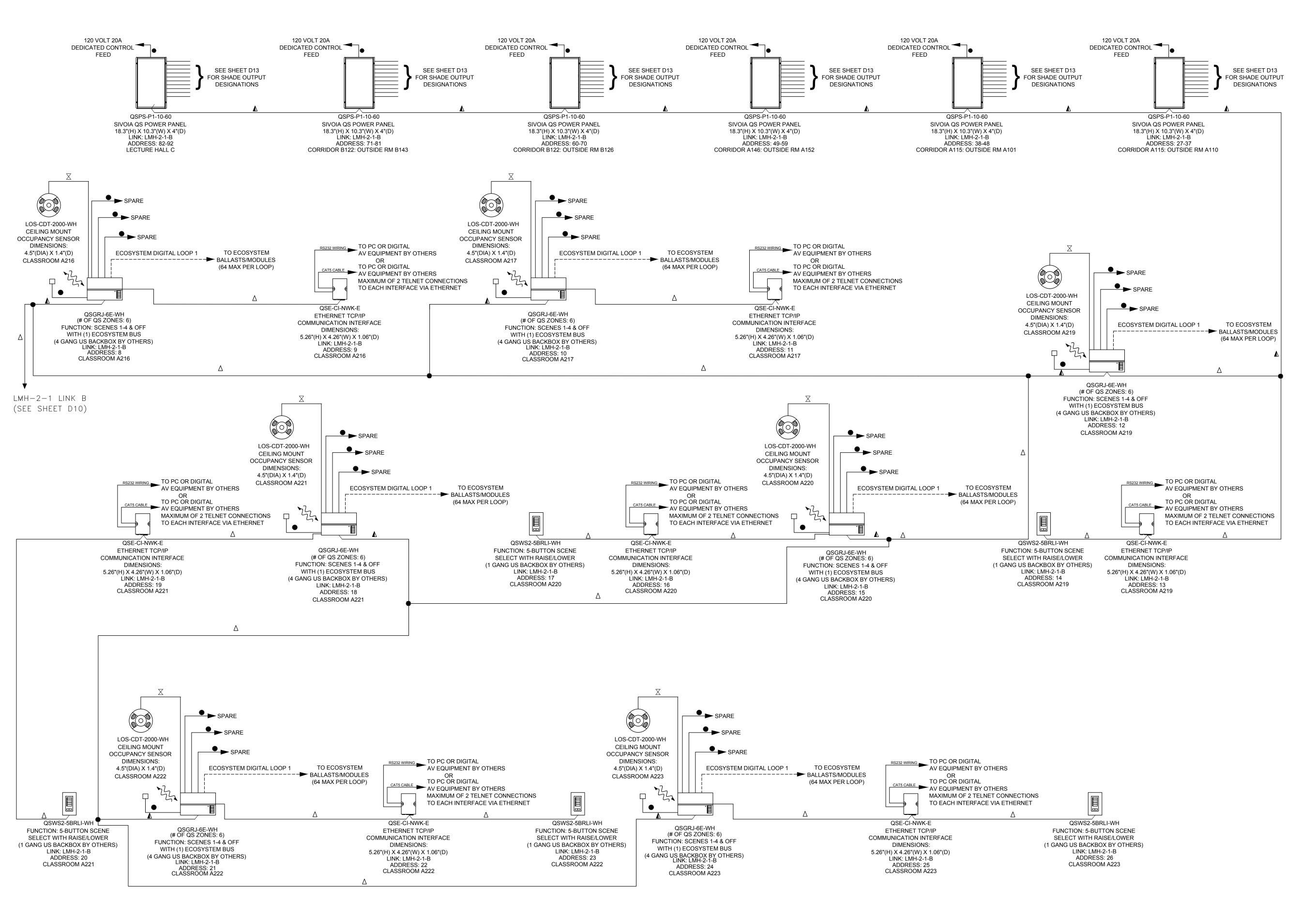
EcoSystem Bus:
Lutron cable C-CBL-216-GR-1 (2 #16 Conductor Non-Plenum) or C-PCBL-216-CL-1 (2 #16 Conductor Plenum rated).

Otherwise use 2 #16 AWG by others. CATSe or better cable for dedicated Lutron network terminated with RJ45 connectors (to be provided by

others). 328 feet (100m) maximum run. Fiber Optic Cable for dedicated Lutron network terminated with appropriate Fiber Optic Connectors (to

be provided by others). Note: Requires Dedicated Fiber Optic Link (2 strands of single-mode Fiber).

DESALES UNIVERSITY - GAMBET CENTER 2nd Floor


UPPER SAUCON, PA

Quantum System

SYSTEM ONELINE

Project Number:	186917
Drawn By:	KS/JMM/TCW
Drawing Revision:	1
Drawing Date:	09/14/12
Sheet:	D10

ENERAL NOTES
. The lighting control system (LCS) is processor based and

furnished with a factory prepared database.

- 2. The electrical contractor shall install and wire the LCS equipment per Lutron's installation instructions and
- specification sneets.
- All work shall comply with the codes, laws, ordnances, rules and regulations of authorities governing the work.
- 4. The lighting control system (LCS) supports the following link
- EcoSystem Link: This is a FREE TOPOLOGY WIRING
 (T—Tap, Home—Run, etc. is OK). This link can have up
 to 8 EcoSystem loops. (See hub details for each hub)
 Keep ALL the ballasts/modules in one room in the
 same loop whenever possible. Wire daylight sensor,
 occupancy sensor and personal control to the closest
 EcoSystem ballast/module in the same room (see detail)
- 1; for ecosystem wiring details).

 EcoSystem loops are shown on the lighting plans. If there is a discrepancy and rooms are wired to a different loop than the one shown Lutron needs to be notified. This information is important for programmi
- the system.

 ECO-SYSTEM LOOP

 -Up to 64 ballasts/modules per EcoSystem loop

 -Up to 16 daylight sensors per loop

-Up to 32 occupant sensors per loop

- QS Control Station Link: This is a FREE TOPOLOGY
 WIRING (T—Tap, Home—Run, etc. is OK) link. QS Device:
 are wired on one of the configurable links per Lutron's
 drawing, however they do not have to be in the order
 shown. (QS Control Stations can be moved from one
- The maximum wire length of a panel or QS Control Stations link is 2,000 feet or 32 power units (1 QS keypad = 1 power unit). A Smart Panel is used to extend the length of a link or to add more power units for more information on Smart Panels refer to Lutron Spec Sheets.

processor to another. Maximum 99 devices per link)

- If a QS Control Station is moved to another link, Lutron must be notified. This information is important for programming the system.
- Panels Link: Panels are DAISY-CHAINED on one of the configurable links per Lutron's drawing, however they do not have to be in the order shown. DO NOT Home-Run or t-tap this wiring link. All circuits need to be landed in these panels per Lutron's panel schedules.
- The maximum wire length of a panel link is 2,000 feet. a MX—RPTR is used to extend the length of a link another 2,000 feet. a maximum of (3) MX—RPTR's may be used per link for maximum length of 8,000 feet per link
- If a panel is moved to another link, or the loads are not wired as shown in Lutron panel schedules, Lutron must be notified. This information is important for programming the system. POWER PANEL LINK
- -Up to 32 circuit selectors per link-Up to 512 switch legs or zones per link-LT-1 link terminators needed on each end of

PROGRAMMING NOTES

The control station devices will be programmed to perform as described in the Sequence of Operations. Zone intensities will be programmed to Lutron's default settings unless otherwise specified.

- DO NOT MIX PANELS, QS DEVICES AND ECOSYSTEM CONTROLS ON THE SAME LINK.
- 2 #12AWG (2.5 mm ²)
- O 3 #12AWG (2.5 mm²)

 ♦ 0-10V Signal: 2 #18 AWG
- ◆ 2 #18 AWG 3 #18 AWG
- X Lutron sensor cable C-CBL-522S otherwise use 3 #18 AWG
- Lutron sensor cable C-CBL-522S otherwise use 4 #18 AWG
- 120V Input Power
- ∆ Lutron cable GRX-CBL-46L (5 Conductor Non-Plenum) or 2 #12 AWG (2.5mm²), 1 Belden #9461 and between panels add 1 #18 AWG (1.0mm²) for emergency sensing cable by others.
 ⚠ Lutron cable GRX-CBL-46L (5 Conductor Non-Plenum)
- or 2 #12 AWG (2.5mm ²), 1 Belden #9461 and between; panels add 1 #18 AWG (1.0mm ²) for emergency sensing. NOTE: MAKE CONNECTION TO PINS 1, 3 & 4 ONLY DO NOT CONNECT TO PIN #2 (POWER).

 EcoSystem Bus:
- Lutron cable C-CBL-216-GR-1 (2 #16 Conductor Non-Plenum) or C-PCBL-216-CL-1 (2 #16 Conductor Plenum rated).
 Otherwise use 2 #16 AWG by others.
- CAT5e or better cable for dedicated Lutron network terminated with RJ45 connectors (to be provided by others). 328 feet (100m) maximum run.
- Fiber Optic Cable for dedicated Lutron network
- terminated with appropriate Fiber Optic Connectors (to be provided by others). Note: Requires Dedicated Fiber Optic Link (2 strands of single—mode Fiber).

DESALES UNIVERSITY - GAMBET CENTER

2nd Floor

UPPER SAUCON, PA

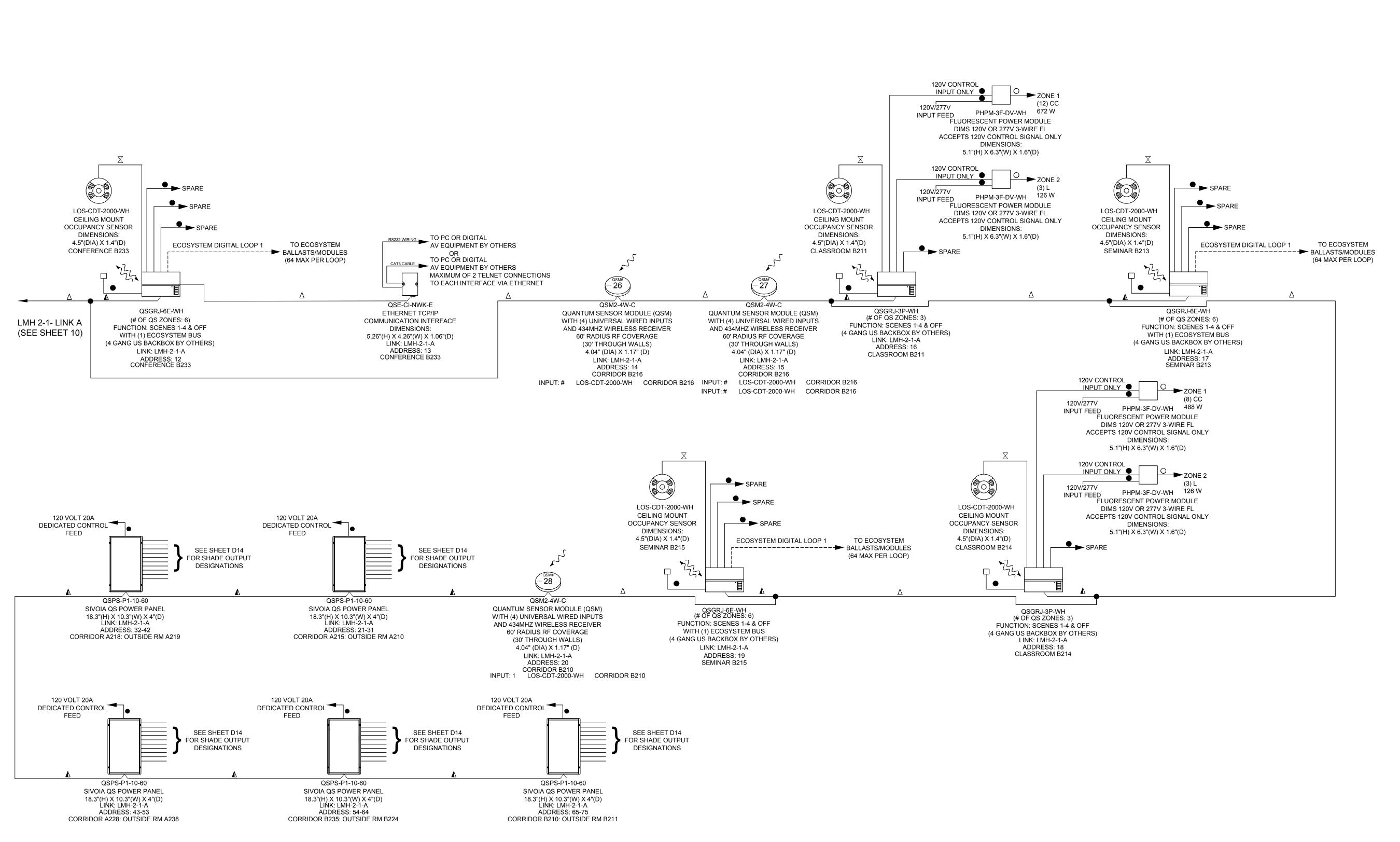
Quantum System

SYSTEM ONELINE

Project Number: 186917

Drawn By: KS/JMM/TCW

Drawing Revision: 1


Drawing Date: 09/14/12

Sheet: D11

(610) 282-3800 | fax: (610) 282-1146

7200 Suter Road | Coopersburg, PA 18036 | USA

ENERAL NOTES

- The lighting control system (LCS) is processor based and furnished with a factory prepared database.
- 2. The electrical contractor shall install and wire the LCS equipment per Lutron's installation instructions and
- 3. All work shall comply with the codes, laws, ordnances, rules
- and regulations of authorities governing the work.

 4. The lighting control system (LCS) supports the following link
- EcoSystem Link: This is a FREE TOPOLOGY WIRING (T—Tap, Home—Run, etc. is OK). This link can have up to 8 EcoSystem loops. (See hub details for each hub). Keep ALL the ballasts/modules in one room in the same loop whenever possible. Wire daylight sensor, occupancy sensor and personal control to the closest EcoSystem ballast/module in the same room (see detail).
- EcoSystem ballast/module in the same room (see deta 1; for ecosystem wiring details).

 EcoSystem loops are shown on the lighting plans. If there is a discrepancy and rooms are wired to a different loop than the one shown Lutron needs to be
- the system.

 ECO-SYSTEM LOOP

 -Up to 64 ballasts/modules per EcoSystem loop

 -Up to 16 daylight sensors per loop

 -Up to 32 occupant sensors per loop

notified. This information is important for programm

QS Control Station Link: This is a FREE TOPOLOGY
WIRING (T—Tap, Home—Run, etc. is OK) link. QS Device:
are wired on one of the configurable links per Lutron's
drawing, however they do not have to be in the order
shown. (QS Control Stations can be moved from one

processor to another. Maximum 99 devices per link)

- The maximum wire length of a panel or QS Control Stations link is 2,000 feet or 32 power units (1 QS keypad = 1 power unit). A Smart Panel is used to extend the length of a link or to add more power units For more information on Smart Panels refer to Lutron
- If a QS Control Station is moved to another link, Lutron must be notified. This information is important for programming the system.
- Panels Link: Panels are DAISY—CHAINED on one of the configurable links per Lutron's drawing, however they do not have to be in the order shown. DO NOT Home—Run or t—tap this wiring link. All circuits need to be landed in these panels per Lutron's panel schedules.
- The maximum wire length of a panel link is 2,000 feet. a MX—RPTR is used to extend the length of a link another 2,000 feet. a maximum of (3) MX—RPTR's may be used per link for maximum length of 8,000 feet per link.
- If a panel is moved to another link, or the loads are not wired as shown in Lutron panel schedules, Lutron must be notified. This information is important for programming the system.

 POWER PANEL LINK
- -Up to 32 circuit selectors per link
 -Up to 512 switch legs or zones per link
 -LT-1 link terminators needed on each end of

PROGRAMMING NOTES

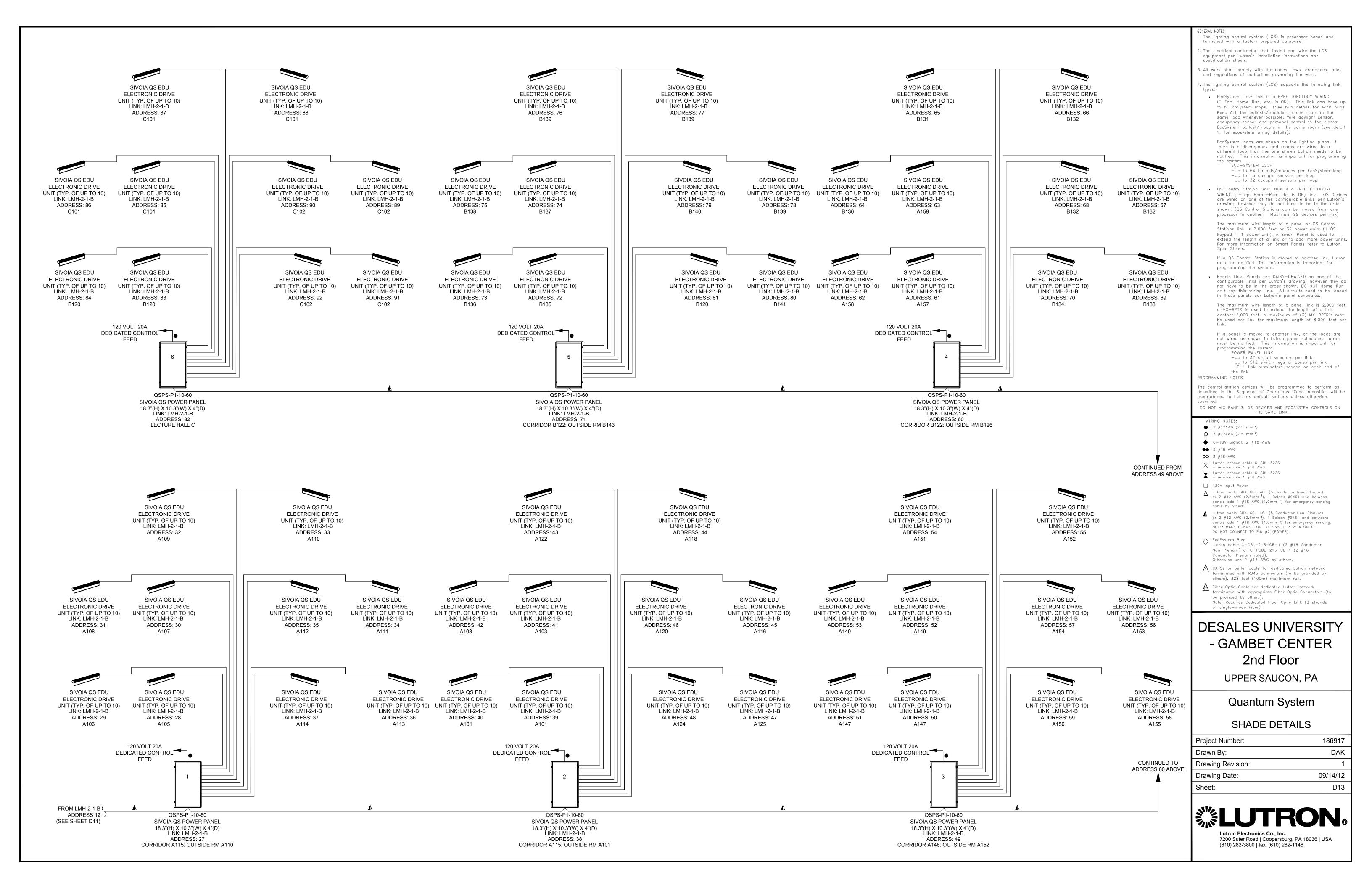
The control station devices will be programmed to perform as described in the Sequence of Operations. Zone intensities will be programmed to Lutron's default settings unless otherwise specified.

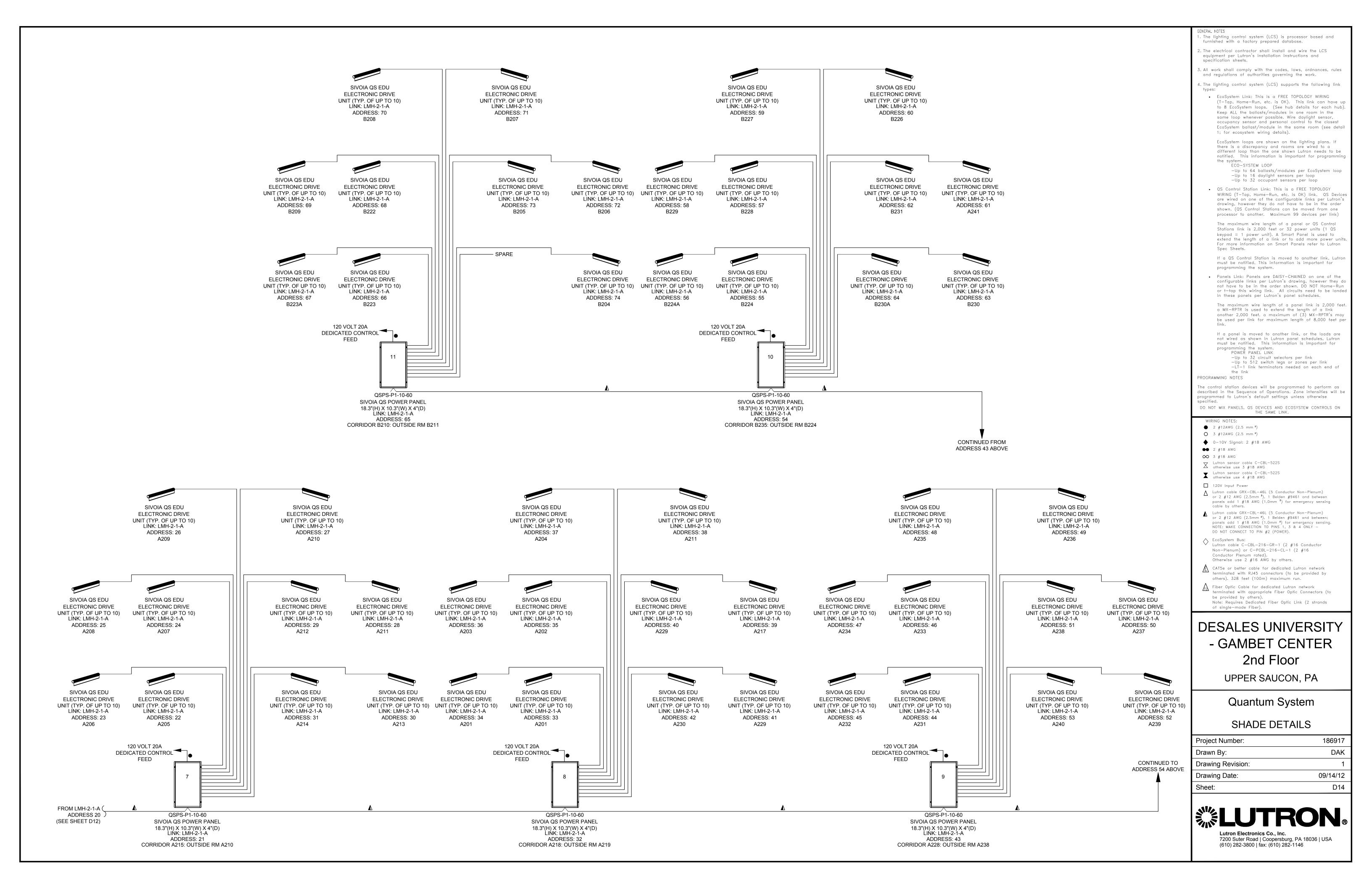
DO NOT MIX PANELS, QS DEVICES AND ECOSYSTEM CONTROLS ON THE SAME LINK.

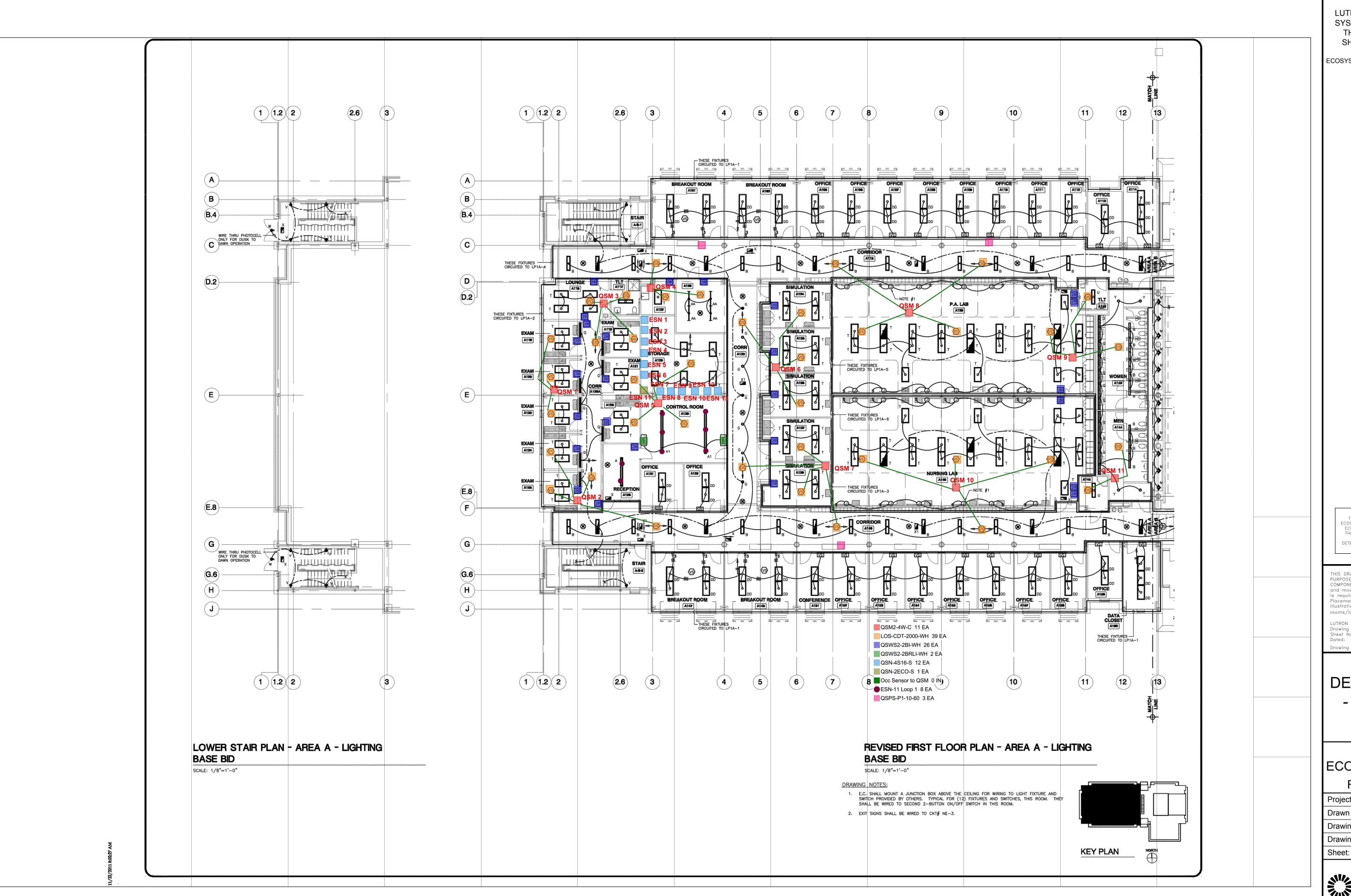
- 2 #12AWG (2.5 mm ²)
- O 3 #12AWG (2.5 mm ²)
- ♦ 0-10V Signal: 2 #18 AWG♦ 2 #18 AWG
- ∞ 3 #18 AWG
- Lutron sensor cable C-CBL-522S otherwise use 3 #18 AWG
- X Lutron sensor cable C-CBL-522S otherwise use 4 #18 AWG
- ☐ 120V Input Power
- △ Lutron cable GRX-CBL-46L (5 Conductor Non-Plenum) or 2 #12 AWG (2.5mm ²), 1 Belden #9461 and between panels add 1 #18 AWG (1.0mm ²) for emergency sensing cable by others.
- ▲ Lutron cable GRX-CBL-46L (5 Conductor Non-Plenum) or 2 #12 AWG (2.5mm ²), 1 Belden #9461 and between; panels add 1 #18 AWG (1.0mm ²) for emergency sensing. NOTE: MAKE CONNECTION TO PINS 1, 3 & 4 ONLY − DO NOT CONNECT TO PIN #2 (POWER).
- EcoSystem Bus:
 Lutron cable C-CBL-216-GR-1 (2 #16 Conductor
 Non-Plenum) or C-PCBL-216-CL-1 (2 #16
 Conductor Plenum rated).
 Otherwise use 2 #16 AWG by others.
- CATSe or better cable for dedicated Lutron network terminated with RJ45 connectors (to be provided by others). 328 feet (100m) maximum run.
- Fiber Optic Cable for dedicated Lutron network terminated with appropriate Fiber Optic Connectors (to be provided by others).
- be provided by others).

 Note: Requires Dedicated Fiber Optic Link (2 strands of single—mode Fiber).

DESALES UNIVERSITY - GAMBET CENTER 2nd Floor


UPPER SAUCON, PA


Quantum System


SYSTEM ONELINE

Project Nui	mber:	186917
Drawn By:		KS/JMM/TCW
Drawing Re	evision:	1
Drawing Da	ate:	09/14/12
Sheet:		D12

ECOSYSTEM LOOP CONTROLS/MODULES

IMPORTANT NOTE REGARDING SENSOR PLACEMENT
THE OCCUPANCY SENSORS & DAYLIGHT SENSORS ON THIS
ECOSYSTEM LOOP LAYOUT WERE NOT PLACED BY LUTRON. THIS
ECOSYSTEM LOOP LAYOUT ONLY SHOWS THE CONNECTION OF
THE SENSORS TO THE APPROPRIATE ECOSYSTEM COMPONENT.
THE ACTUAL LOCATIONS OF THE SENSORS SHOULD BE
DETERMINED BY FOLLOWING THE LUTRON SPECIFICATION SHEETS
AND THE INSTALLATION INSTRUCTIONS.

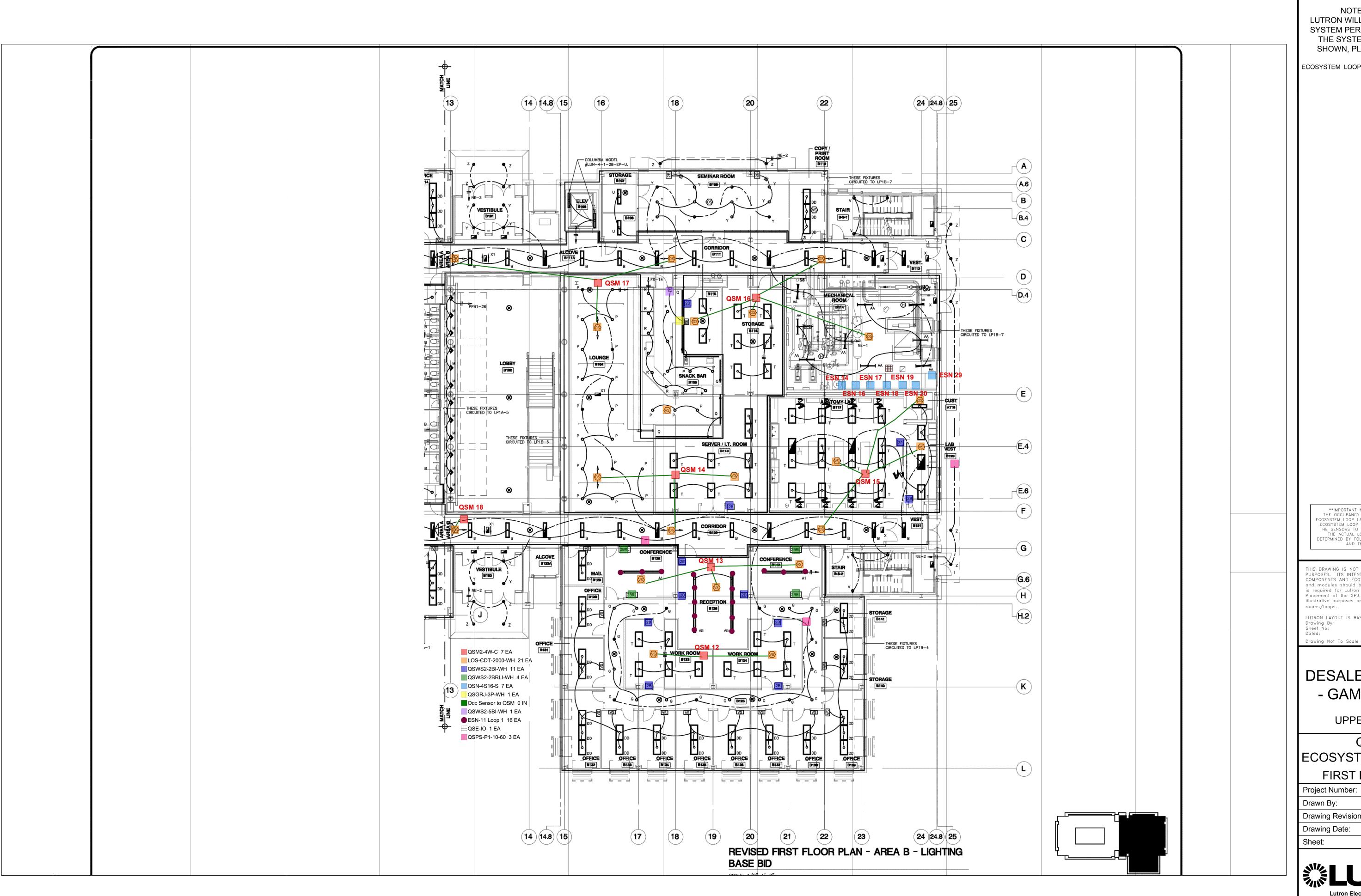
THIS DRAWING IS NOT TO BE USED FOR GENERAL BUILDING WIRING PURPOSES. ITS INTENT IS TO DISPLAY THE QUANTUM SYSTEM COMPONENTS AND ECOSYSTEM PARTS ONLY. All EcoSystem ballast and modules should be wired to the loop that is shown. This is required for Lutron database programming purposes. Placement of the XPJ, BMJ and BMF modules are show for illustrative purposes only and can be placed anywhere within the

LUTRON LAYOUT IS BASED UPON: Drawing By: Sheet No: Dated:

Dated: Drawing Not To Scale

DESALES UNIVERSITY - GAMBET CENTER

UPPER SAUCON, PA


QUANTUM ECOSYSTEM LOOP LAYOUT FIRST FLOOR - AREA A

1111011120011	, (i (L) () (
Project Number:	186917
Drawn By:	KS/DAK
Drawing Revision:	1
Drawing Date:	09/14/2012

7200 Suter Road | Coopersburg, PA 18036 | USA (610) 282-3800 | fax: (610) 282-1146

ELL1

ECOSYSTEM LOOP CONTROLS/MODULES

IMPORTANT NOTE REGARDING SENSOR PLACEMENT THE OCCUPANCY SENSORS & DAYLIGHT SENSORS ON THIS COSYSTEM LOOP LAYOUT WERE NOT PLACED BY LUTRON. THIS THE SENSORS TO THE APPROPRIATE ECOSYSTEM COMPONENT.

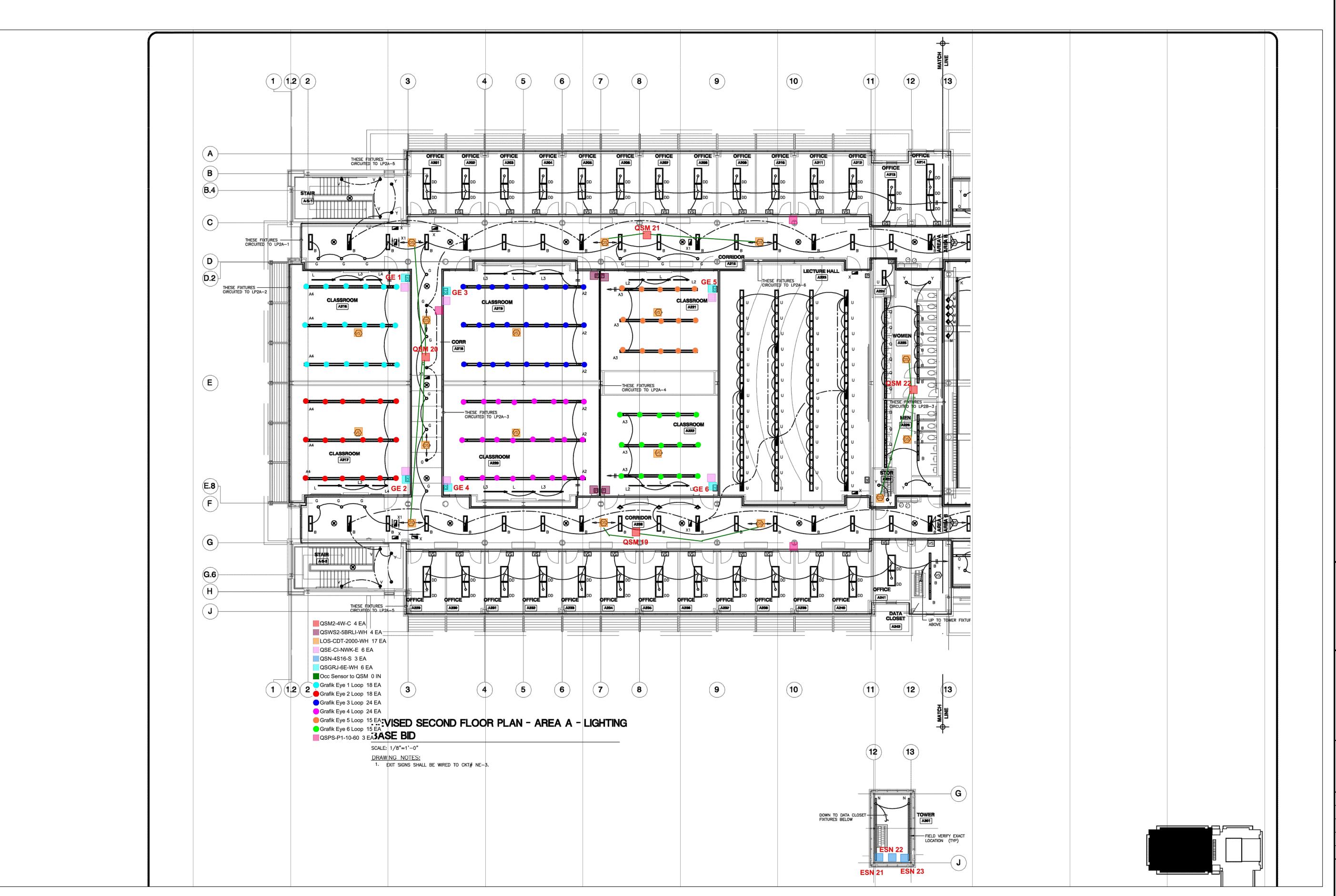
THE ACTUAL LOCATIONS OF THE SENSORS SHOULD BE

DETERMINED BY FOLLOWING THE LUTRON SPECIFICATION SHEETS

AND THE INSTALLATION INSTRUCTIONS.

THIS DRAWING IS NOT TO BE USED FOR GENERAL BUILDING WIRING PURPOSES. ITS INTENT IS TO DISPLAY THE QUANTUM SYSTEM COMPONENTS AND ECOSYSTEM PARTS ONLY. All EcoSystem ballast and modules should be wired to the loop that is shown. This is required for Lutron database programming purposes. Placement of the XPJ, BMJ and BMF modules are show for illustrative purposes only and can be placed anywhere within the

LUTRON LAYOUT IS BASED UPON: Drawing By: Sheet No: Dated:


DESALES UNIVERSITY - GAMBET CENTER

UPPER SAUCON, PA

QUANTUM ECOSYSTEM LOOP LAYOUT FIRST FLOOR - AREA B

Project Number:	186917
Drawn By:	KS/DAK
Drawing Revision:	1
Drawing Date:	09/14/2012
Sheet:	ELL2

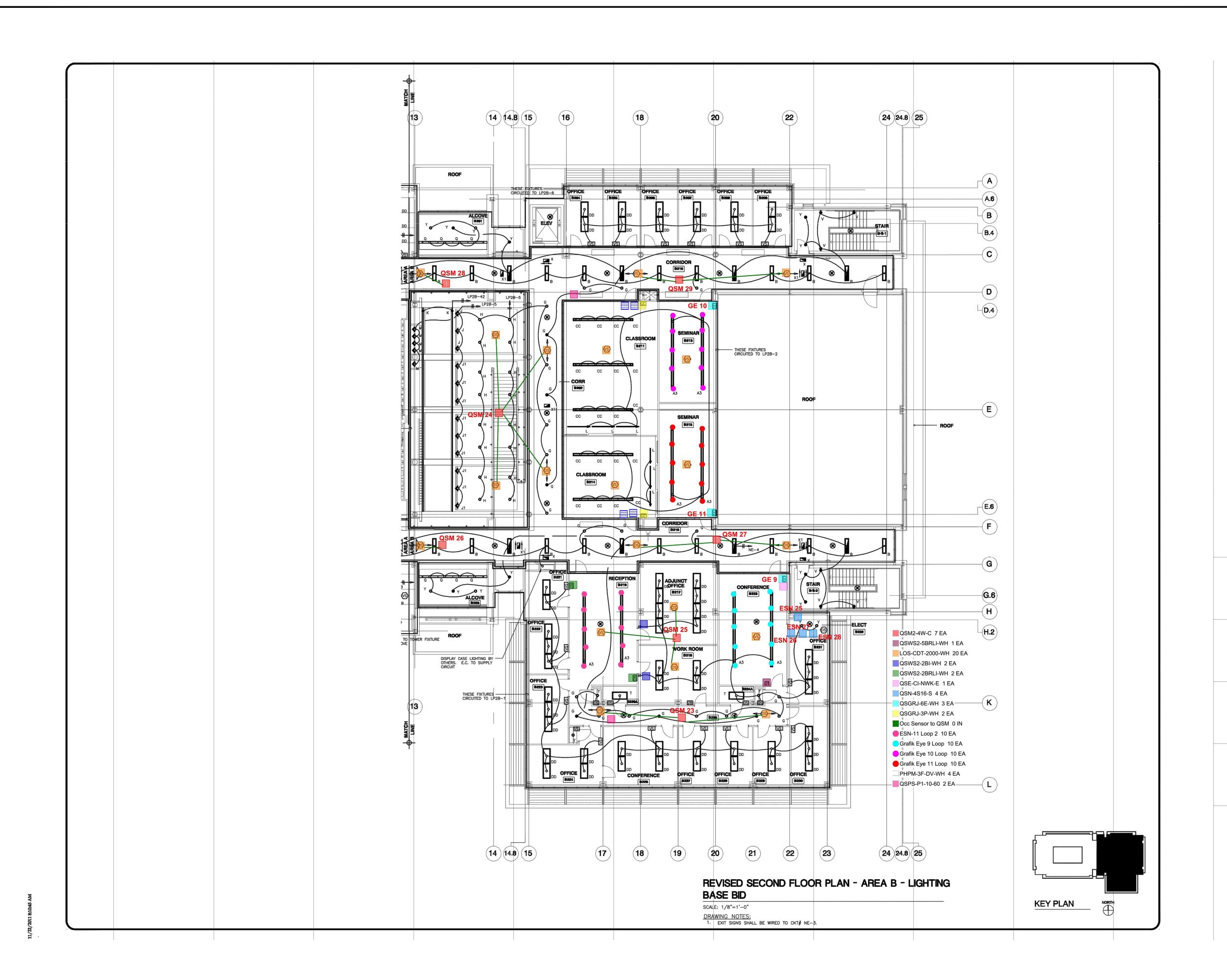
ECOSYSTEM LOOP CONTROLS/MODULES

IMPORTANT NOTE REGARDING SENSOR PLACEMENT
THE OCCUPANCY SENSORS & DAYLIGHT SENSORS ON THIS
ECOSYSTEM LOOP LAYOUT WERE NOT PLACED BY LUTRON. THIS
ECOSYSTEM LOOP LAYOUT ONLY SHOWS THE CONNECTION OF
THE SENSORS TO THE APPROPRIATE ECOSYSTEM COMPONENT.
THE ACTUAL LOCATIONS OF THE SENSORS SHOULD BE
DETERMINED BY FOLLOWING THE LUTRON SPECIFICATION SHEETS
AND THE INSTALLATION INSTRUCTIONS.

THIS DRAWING IS NOT TO BE USED FOR GENERAL BUILDING WIRING PURPOSES. ITS INTENT IS TO DISPLAY THE QUANTUM SYSTEM COMPONENTS AND ECOSYSTEM PARTS ONLY. All EcoSystem ballast and modules should be wired to the loop that is shown. This is required for Lutron database programming purposes. Placement of the XPJ, BMJ and BMF modules are show for illustrative purposes only and can be placed anywhere within the

LUTRON LAYOUT IS BASED UPON: Drawing By: Sheet No: Dated:

Drawing Not To Scale


DESALES UNIVERSITY
- GAMBET CENTER

UPPER SAUCON, PA

QUANTUM ECOSYSTEM LOOP LAYOUT SECOND FLOOR - AREA A

Project Number:	186917
Drawn By:	KS/DAK
Drawing Revision:	1
Drawing Date:	09/14/2012
Sheet:	ELL3

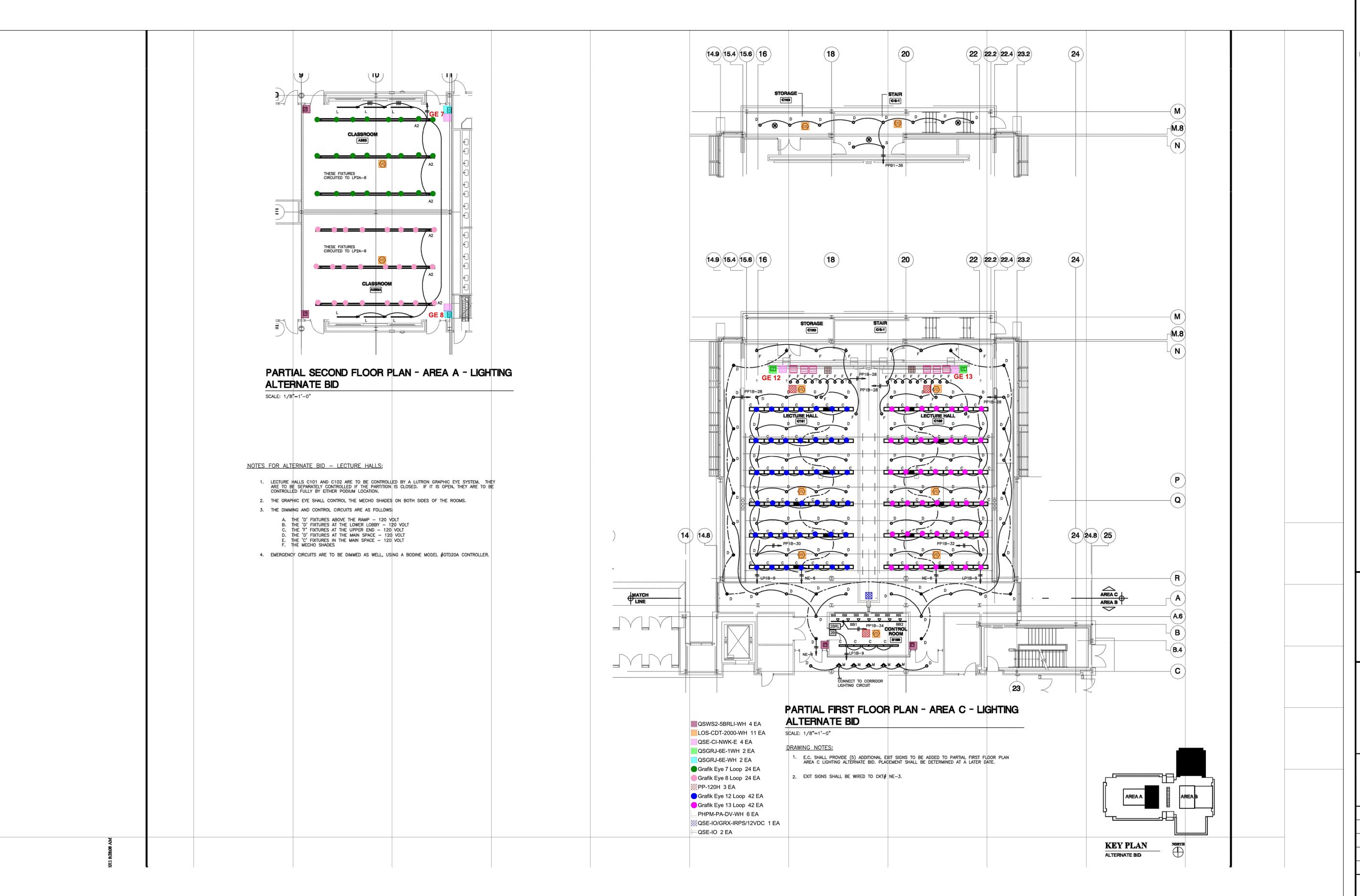
ECOSYSTEM LOOP CONTROLS/MODULES

IMPORTANT NOTE REGARDING SENSOR PLACEMENT
THE OCCUPANCY SENSORS & DAYLIGHT SENSORS ON THIS
ECOSYSTEM LOOP LAYOUT WERE NOT PLACED BY LUTRON. THIS
ECOSYSTEM LOOP LAYOUT ONLY SHOWS THE CONNECTION OF
THE SENSORS TO THE APPROPRIATE ECOSYSTEM COMPONENT.
THE ACTUAL LOCATIONS OF THE SENSORS SHOULD BE
DETERMINED BY FOLLOWING THE LUTRON SPECIFICATION SHEETS
AND THE INSTALLATION INSTRUCTIONS.

THIS DRAWING IS NOT TO BE USED FOR GENERAL BUILDING WIRING PURPOSES. ITS INTENT IS TO DISPLAY THE QUANTUM SYSTEM COMPONENTS AND ECOSYSTEM PARTS ONLY. All EcoSystem ballast and modules should be wired to the loop that is shown. This is required for Lutron database programming purposes. Placement of the XPJ, BMJ and BMF modules are show for illustrative purposes only and can be placed anywhere within the

LUTRON LAYOUT IS BASED UPON: Drawing By: Sheet No: Dated:

Drawing Not To Scale


DESALES UNIVERSITY - GAMBET CENTER

UPPER SAUCON, PA

QUANTUM ECOSYSTEM LOOP LAYOUT SECOND FLOOR - AREA B

Project Number:	186917
Drawn By:	KS/DAK
Drawing Revision:	1
Drawing Date:	09/14/2012
Sheet:	ELL4

E105.pdf (100% of Scale); DeSales Univ - Gambet Center- Ext. Ltg Option; OnScreenDB_V1; 4/2/2012 08:58 AM

NOTE TO CONTRACTOR:
LUTRON WILL PROGRAM THE QUANTUM
SYSTEM PER THESE LOOP LAYOUTS. IF
THE SYSTEM CANNOT BE WIRED AS
SHOWN, PLEASE CONTACT LUTRON.

ECOSYSTEM LOOP CONTROLS/MODULES

IMPORTANT NOTE REGARDING SENSOR PLACEMENT
THE OCCUPANCY SENSORS & DAYLIGHT SENSORS ON THIS
ECOSYSTEM LOOP LAYOUT WERE NOT PLACED BY LUTRON. THIS
ECOSYSTEM LOOP LAYOUT ONLY SHOWS THE CONNECTION OF
THE SENSORS TO THE APPROPRIATE ECOSYSTEM COMPONENT.
THE ACTUAL LOCATIONS OF THE SENSORS SHOULD BE
DETERMINED BY FOLLOWING THE LUTRON SPECIFICATION SHEETS
AND THE INSTALLATION INSTRUCTIONS.

THIS DRAWING IS NOT TO BE USED FOR GENERAL BUILDING WIRING PURPOSES. ITS INTENT IS TO DISPLAY THE QUANTUM SYSTEM COMPONENTS AND ECOSYSTEM PARTS ONLY. All EcoSystem ballast and modules should be wired to the loop that is shown. This is required for Lutron database programming purposes. Placement of the XPJ, BMJ and BMF modules are show for illustrative purposes only and can be placed anywhere within the

LUTRON LAYOUT IS BASED UPON: Drawing By: Sheet No: Dated:

Drawing Not To Scale

DESALES UNIVERSITY - GAMBET CENTER

UPPER SAUCON, PA

QUANTUM ECOSYSTEM LOOP LAYOUT FIRST FLOOR - AREA C

Project Number:	186917
Drawn By:	KS/DAK
Drawing Revision:	1
Drawing Date:	09/14/2012
Sheet:	ELL5

| Appendix G |

Luminaire Takeoff and Lighting Load Calculations

Luminaire Takeoff and Lighting Load Calculations

Fixture Type	Quantity	Input Watts	Total Watts	Total kWh/year	Percent Lit	kW Used	Percent Dimmed	kW Saved				
Area IA												
A	2	56	112	408.8	0.6	245.28	0.4	163.52				
A-Added	63	56	3528	12877.2	0.6	7726.32	0.4	5150.88				
Al	6	56	336	1226.4	0.75	919.8	0.25	306.6				
A1-Added	3	56	168	613.2	0.75	459.9	0.25	153.3				
В	18	28	504	1839.6	0.85	1563.66	0.15	275.94				
Bl	24	42	1008	3679.2	0.85	3127.32	0.15	551.88				
G	7	26	182	664.3	1	664.3	0	0				
M	12	20	240	876	1	876	0	0				
Q	11	28	308	1124.2	0.85	955.57	0.15	168.63				
T	97	64	6208	22659.2	0.85	19260.32	0.15	3398.88				
U	2	64	128	467.2	1	467.2	0	0				
V	6	35	210	766.5	1	766.5	0	0				
X	7	2	14	51.1	1	51.1	0	0				
X1	5	2	10	36.5	1	36.5	0	0				
Y	4	62	248	905.2	1	905.2	0	0				
				Area 1B								
A	2	56	112	408.8	0.6	245.28	0.4	163.52				
A-Added	20	56	1120	4088	0.6	2452.8	0.4	1635.2				
Al	6	56	336	1226.4	0.75	919.8	0.25	306.6				
A1-Added	6	56	336	1226.4	0.75	919.8	0.25	306.6				
A5	10	224	2240	8176	0.75	6132	0.25	2044				
AA	9	64	576	2102.4	1	2102.4	0	0				
В	20	28	560	2044	0.85	1737.4	0.15	306.6				
B1	6	42	252	919.8	0.85	781.83	0.15	137.97				
Р	26	35	910	3321.5	1	3321.5	0	0				
R	8	37	296	1080.4	1	1080.4	0	0				
T	45	64	2880	10512	0.85	8935.2	0.15	1576.8				
V	6	35	210	766.5	1	766.5	0	0				
X	9	2	18	65.7	1	65.7	0	0				
X1	3	2	6	21.9	1	21.9	0	0				
Y	8	62	496	1810.4	1	1810.4	0	0				
Z	8	62	496	1810.4	1	1810.4	0	0				
				Area 2A								
A-Added	55	56	3080	11242	0.7	7869.4	0.3	3372.6				
A1-Added	3	56	168	613.2	0.82	502.824	0.18	110.376				
A2	6	448	2688	9811.2	0.82	8045.184	0.18	1766.016				
A3	6	280	1680	6132	0.82	5028.24	0.18	1103.76				
A4	6	336	2016	7358.4	0.82	6033.888	0.18	1324.512				
В	18	28	504	1839.6	0.85	1563.66	0.15	275.94				
		12	1000	3679.2	0.05	3127.32	0.15	551.88				
B1	24	42	1008	3079.2	0.85	312(.32	0.15	331.66				
B1 G	24 17	26	442	1613.3	1	1613.3	0.13	0				

L	12	42	504	1839.6	0.82	1508.472	0.18	331.128				
L1	6	28	168	613.2	1	613.2	0	0				
M	5	20	100	365	1	365	0	0				
Q	10	28	280	1022	0.85	868.7	0.15	153.3				
U	1	64	64	233.6	1	233.6	0	0				
V	6	35	210	766.5	1	766.5	0	0				
X	4	2	8	29.2	1	29.2	0	0				
X1	4	2	8	29.2	1	29.2	0	0				
Y	10	62	620	2263	1	2263	0	0				
Area 2B												
A-Added	32	56	1792	6540.8	0.6	3924.48	0.4	2616.32				
A1-Added	12	56	672	2452.8	0.75	1839.6	0.25	613.2				
A3	6	280	1680	6132	0.75	4599	0.25	1533				
A3-Added	2	280	560	2044	0.75	1533	0.25	511				
A5-Added	2	224	448	1635.2	0.75	1226.4	0.25	408.8				
В	16	28	448	1635.2	0.85	1389.92	0.15	245.28				
B1	10	42	420	1533	0.85	1303.05	0.15	229.95				
CC	20	66	1320	4818	0.75	3613.5	0.25	1204.5				
G	22	26	572	2087.8	1	2087.8	0	0				
Н	16	35	560	2044	1	2044	0	0				
J	3	39	117	427.05	1	427.05	0	0				
J1	9	39	351	1281.15	1	1281.15	0	0				
K	2	275	550	2007.5	1	2007.5	0	0				
L	3	42	126	459.9	0.75	344.925	0.25	114.975				
Q	8	28	224	817.6	1	817.6	0	0				
T	2	64	128	467.2	0.75	350.4	0.25	116.8				
V	6	35	210	766.5	1	766.5	0	0				
X	4	2	8	29.2	1	29.2	0	0				
X1	5	2	10	36.5	1	36.5	0	0				
Y	16	62	992	3620.8	1	3620.8	0	0				
Lecture Hall/Classroom (Alternate Bid)												
A2	5	448	2240	8176	0.75	6132	0.25	2044				
B1	7	42	294	1073.1	1	1073.1	0	0				
С	88	42	3696	13490.4	0.75	10117.8	0.25	3372.6				
D	86	37	3182	11614.3	0.75	8710.725	0.25	2903.575				
F	16	37	592	2160.8	0.75	1620.6	0.25	540.2				
L	6	42	252	919.8	1	919.8	0	0				
			59315	216499.75		174,409.12		42,090.63				