Milton S. Hershey Medical Center Biomedical Research Building Hershey, Pennsylvania

> Joshua Zolko, Structural Option 17 September 2012

Table of Contents	
Executive Summary	3
Building Introduction	3
Systems	4
Foundation System	4
General Floor Framing	4
Floor System	5
Expansion Joints	6
Roof System	6
Secondary Structural System for Mechanical Equipment	6
Support of Curtain Walls	7
Support of Architectural Cylinder on Corner of Building	7
Lateral System	7
Overall Interaction of Systems	8
Design Codes	8
Typical Materials Used	8
Gravity Loads	8
Spot Checks	9
Appendix	10
Elevations	11
Plans	13
Foundation	13
First Floor	14
Second Floor	15
Typical 3rd through 7th Floor Plans	16
Calculations	17
Seismic Calculations	17
Wind Calculations	21
Snow Load Check	24
Spot Checks	25
Beam	25
Column	24
Punching Shear	30
Caisson	33

Executive Summary:

A detailed analysis was conducted in order to get a general feel of the building, the codes it was designed under relative to the current codes used today. It was found that there is a good chance that the building is out of date in relation to modern codes, and thus it is difficult to discern which popular design method, ASD or LRFD was used to design the building. In regards to the spot checks performed, the caisson passed the first axial check at its 84 inch diameter section with a load of 2425 kips being supported by a maximum of 4708 kips provided by the caisson. It failed at the second section, with a load of 2425 kips being support by a maximum 1946 kips. The column supports its axial load of 623 kips with a maximum of 2000 kips, but fails in the maximum possible moment should a severe loading difference occur with a maximum moment of 175 ft kips supporting a moment of 479 ft kips. Checking the punching shear of the slabs found that the slab can support the shear force about the shear reinforcement about the column, with a 453 kip maximum supporting a 267 kip shear force. It, however, fails at the face of the column, with 297 kips pushing through 202 kips supplied by the face of the support. The beam checked failed at the center of the span, with it being designed for only 293 ft kips, but having a positive moment of 330 ft kips being applied, while the 479 ft kip negative moment was successfully supported by reinforcement that could provide a maximum of 559 ft kips. Shear reinforcement was not sufficient, with a 124.5 kip load pushing through a slightly less 122.1 kip reinforcement. Development length of the negative moment was checked as well, and it was found that the 7 foot 1 inch provided length was greater than the 5 foot 2 inch requirement. Deflection was determined not necessary to calculate given the depth of the beam. There were a number of hits and misses with being up to code, and some aspects that were not up to code, but that can simply be a difference of codes utilized, different loads applied, different design methods being used, ASD vs. LRFD, and human error. Finally, checks between seismic and wind loads applied at each floor level, it was determined that seismic forces control over the wind forces that could be seen by this building.

Building Summary:

The Milton S. Hershey Medical Center Biomedical Research Building in Hershey, Pennsylvania, is an education and research facility. It is owned by the Milton S. Hershey Medical Center, and is part of Penn State Hershey, and thus is a branch campus of Pennsylvania State University. It is a 110' tall structure with 7 stories and 245000 total square feet of floor space. It was constructed by Alexander Building and Shoemaker Construction Companies and managed by Alvin H. Butz, Inc. between 1991 and 1993, costing \$49 million. It was designed by Geddes Brecher Qualls Cunningham, and engineered by The Sigel Group and Earl Walls Associates. The most distinguishing architectural aspect of the building is a large cylinder that extends from the 2nd floor up to the roof on one of the corners of the building.

Foundation System:

The Biomedical Research Building at Penn State Hershey utilizes a simple monolithic concrete structure to serve its load distribution needs. This structure stands on a series of large, 3 to 7 and a half foot diameter caissons which loads ranging from 250 kips to 1610 kips, with most loads around 1000 kips expected by the building's original engineers. These caissons have a 40 kip per square foot requirement, using 3000 psi 28 day strength concrete, and are set into the bedrock below. It should be noted that even though 3000 psi concrete was called for, there was an instance where 1000 psi concrete was called for in the plans. A variety of different sized 60ksi steel rebar are utilized in reinforcing both the caissons and the grade beams, with clear cover at 2.5 inches, given its exposure to ground.

Caissons were chosen as the building's foundation, as the area is known to have large sink holes develop within the limestone deposits. This prevents future sinkhole development underneath or nearby to have any drastic effect on the Biomedical Research Building's safety, especially as sinkholes are not usually detected until it is too late. As seen in figure 2, grade

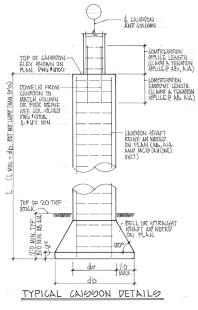


Figure 1. Typical Caisson Detail

beams act to transfer forces from the columns into the caissons when columns and caissons do not line up, and to further the idea of sink hole damage prevention, using beams varying from 14 inches wide by 30 inches deep to 7 feet by 16 foot 8 inches deep.

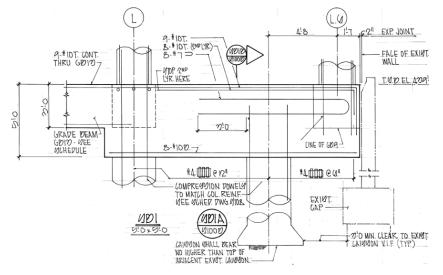


Figure 2. Example of caisson and column misalignment

General Floor Framing:

Floors of the Biomedical Research building are supported by large beams typically spanning 20' that predominately go in the longitudinal direction of the building for the central part, and in the far ends of the building. These beams vary from 12 to 36 inches deep, and 3 to 8 feet wide. There obviously were some depth restrictions where the 8 foot wide beams are located. Shown in Figure 3 on the next page, the building is effectively cut into 3 sections by two set of three openings in the floors, with columns and beams on all sides of these openings. These openings are to serve the building in its HVAC, plumbing and electrical needs. Additional openings in the floor are directly adjacent to these service openings, for elevator shafts that serve the entirety of the building. These elevator shafts have two additional columns to help support the concentrated load of the elevator and its machinery, distributing the load around the openings.

Joshua Zolko | Structural Option

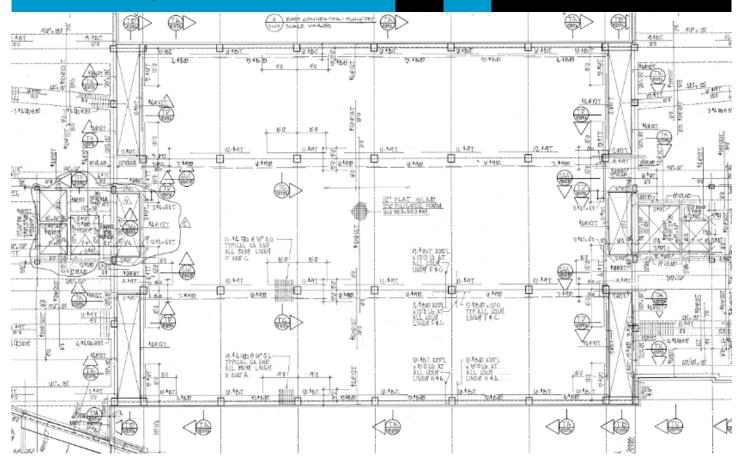
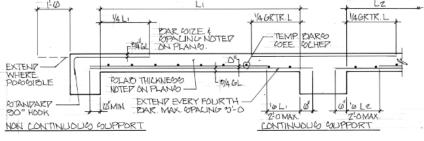



Figure 3. Typical Floor Plan - The three vertical openings on each side are for HVAC, electrical, and mechanical usage, and the openings just to the outside of these openings are elevator shafts.

Beams use rebar at the top and bottom of the beam to resist positive and negative moments, and such reinforcement is usually discontinued at some point after development length has been achieved. Shear reinforcement is used in the form of stirrups, using #3 or #4 sized rebar with 40ksi steel. There are no drop panels used, and as found in the calculations on page # in Appendix #, the building would benefit from drop panels.

Supporting the beams are a multitude of columns, averaging about 2 feet by 2 feet in dimension. Circular columns are also used, and average about 30 inches in diameter. 60ksi rebar are used to reinforce the

columns, with varied sizes and number of rebar utilized. Clear cover for the columns and beams inside of the building is at 1.5 inches.

Floor Systems:

On these beams are a system of one way slabs designed to support 100 to

Figure 4. Typical Slab Detail

125 psf floor loads, using 4000 psi 28 day strength concrete, with temperature reinforcement and a 6x6 W2.0xW2.0 WWF. The one way slabs are oriented perpendicular to the beams, and are treated as beams in that direction. On the ground level, where large mechanical equipment is located, slabs are thickened according to the size and weight of the machinery, as applicable.

Expansion joints:

There are no expansion joints, but there is temperature reinforcement to handle the stresses of expansion and contraction of the building. In addition, there are also control joints that are designed to mitigate and control potential cracking in the building, which would include crack development due to temperature change. A typical control joint detail is shown below.

TEMPERA	TURE BARG
GLAD THK	REINF
4 THAN	1 10e12"
5° - 0	*4@18"
(S ^h 7	*4@10"
7. 8	*****
8 9	\$4011
9" - 10	\$ #4@10"

Figure 5. Temperature Reinforcement Schedule

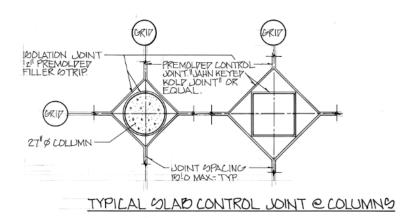


Figure 6. Typical Control Joint Detail

Roof system:

On the roof, elevator machinery and miscellaneous other HVAC machinery is stationed here, that must be supported in addition to snow loads, and were designed also to manage rain water, and divert it to drainage pipes on the roof. There are parapets of varying heights also located on the roof, preventing water run off on the sides of the building. The 8 inch thick roof is sloped slightly to aid in rain water management, preventing it from pooling, and potentially causing a collapse. Calculations on page # in Appendix # for snow loads show that the design load of 30 psf is in excess of the 21 psf snow load that would accumulate on the roof should snow drifts come into play during winter months.

Secondary Structural System for Mechanical Equipment:

As mentioned before, for the ground level, slabs are thickened for the additional weight, and elevator equipment has its own columns around the elevator shaft to handle both the weight of the machinery, the elevator carriage, and the people that may be using the elevator at any given time.

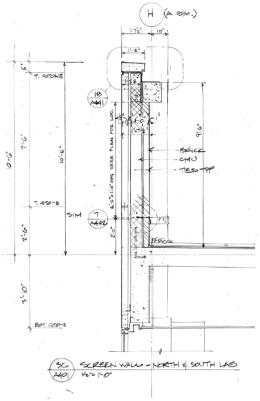
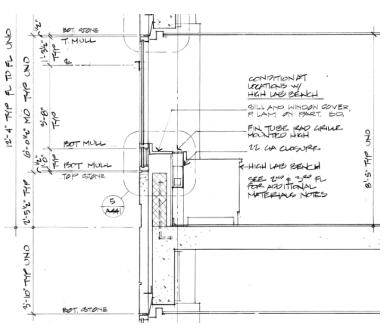



Figure 7. Example Section of a Parapet.

Support of Curtain Walls:

Curtain walls and cladding for this building consist of limestone, granite and glass panels. These are often anchored directly into the concrete structure where they are applied. Two inches of clearing between the panel and the building are in place to insure that moisture has a way to trickle out and not accumulate behind the panel. Slabs have beams or some other support at the edge of their spans of varying depths and widths to support additional weight where panels are installed.

There is an architectural cylinder on the corner of the building that is supported by 4 - 33" by 33" columns reinforced with 8 #11's as in Figure 10. The column is 125% larger than the columns above it, possibly from a safety standpoint. From the 2nd floor to the roof, the slabs on the interior support its glass, granite and limestone facade, and on the other face, a solid wall supports additional aesthetic wall panels along the stairwell, as seen in a section in Figure 11.

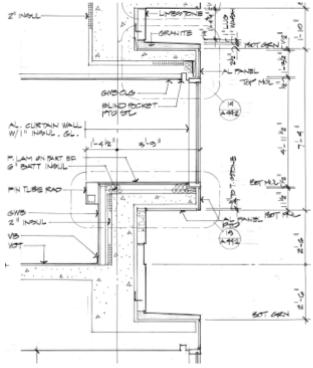


Figure 9. Example Section of Exterior Cladding

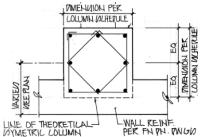


Figure 10. Illustration of Column Used for Support of Architectural Cylinder

Lateral system:

Wind plays a large factor in the surrounding buildings, especially the Crescent, the main hospital building of the Hershey Medical Center. Its long and unique shape plays a direct role in sheltering the Biomedical Research Building from direct wind, as well as other surrounding buildings in the area. As for the Biomedical Research building, it has an oblong shape, making wind forces to be manageable in one direction by a smaller area for wind to push up, and a large structure to resist this wind load, but leaves a larger area to resist a larger wind load with shear walls. Wind forces are directly resisted by the curtain on the building, and

Joshua Zolko | Structural Option

forces are then transferred to the 8"-12" thick concrete slabs. Slabs then transfers the load into the columns and shear walls, and eventually down into the ground, through the caissons. For the short side of the building, there are large concrete beams that would play a strong role in resist wind forces.

Overall Interaction of Systems:

Ultimately, all existing systems rely heavily on the largely straightforward concrete structure, with lateral forces, going through the curtain walls, and most live and gravity loads behind handled by the floor slabs. The one way slabs transfer the loads to the beams and shear walls, and subsequently into various columns, which also support equipment loads and resulting roof loads. Excessive cracking in the slabs are controlled by control joints, temperature reinforcement maintains the effectiveness of the slabs under various temperature related stresses. Large grade beams then take the loads from the columns, as well as the thickened ground slab, supporting various heavy machinery, and redistribute the loads to the caissons below.

Design Codes:

The original codes used by the original plans were BOCA, 1987 Edition, ACI 318-83, AISC, 1980 Edition, A. W. S. D1.1, 1986 or 1988 Edition and CRSI, 1986 edition. This technical report uses ACI 318-08, and ASCE-05 for its reference calculations.

Typical Materials Used:

Typical materials that were utilized were varying strengths of concrete. Those specifically specified in the typical details were 4000-5000 psi 28 day strength concrete, with most concrete being 4000 psi strength, while further investigation into the plans revealed at least one call for 1000 psi concrete for use in caissons. Reinforcing steel bars for #4-#11 sizes were to adhere to ASTM A615-60, and stirrups being #3 and #4 were to be of grade 40 steel. For the one way slabs, unless 6x6-w2.0xw2.0 WWF was called for, 6x6-w2.9xw2.9 WWF was the typical wire mesh used.

Gravity Loads:

Gravity loads were a combination of dead, live, and superimposed loads. Dead loads were calculated based on existing slab thicknesses and a 150 pcf concrete density. Live loads from plans were used, 125 psf for laboratories, and 100 psf for everywhere else, but for simplicity's sake, 125 psf was used for all locations except the roof. A 30 psf roof load was used for a guideline for calculated snow drift loads. Lastly, a 15 psf superimposed dead load was included for miscellaneous lighting, electrical, HVAC, and plumping fixtures that may have been otherwise excluded from calculations.

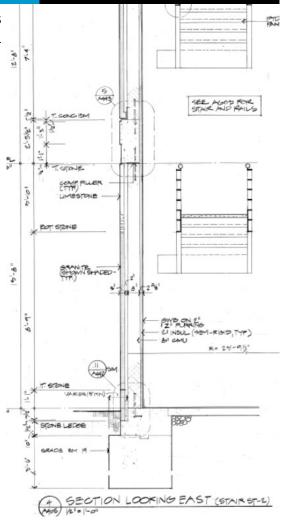


Figure 11. Section of Stairwell

Spot Checks:

Four checks were performed, including a typical column, a typical beam, punching shear for a typical slab, and a caisson. Figures are included below for reference for where these checks were performed.

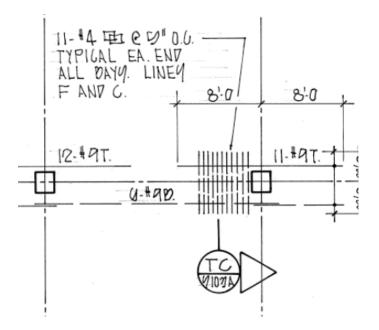
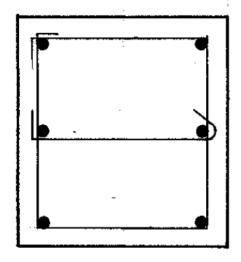
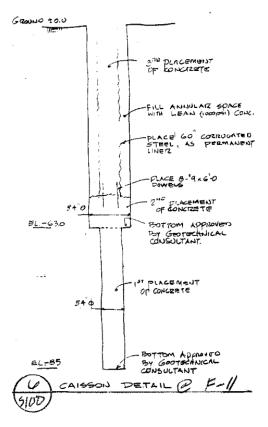
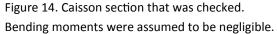
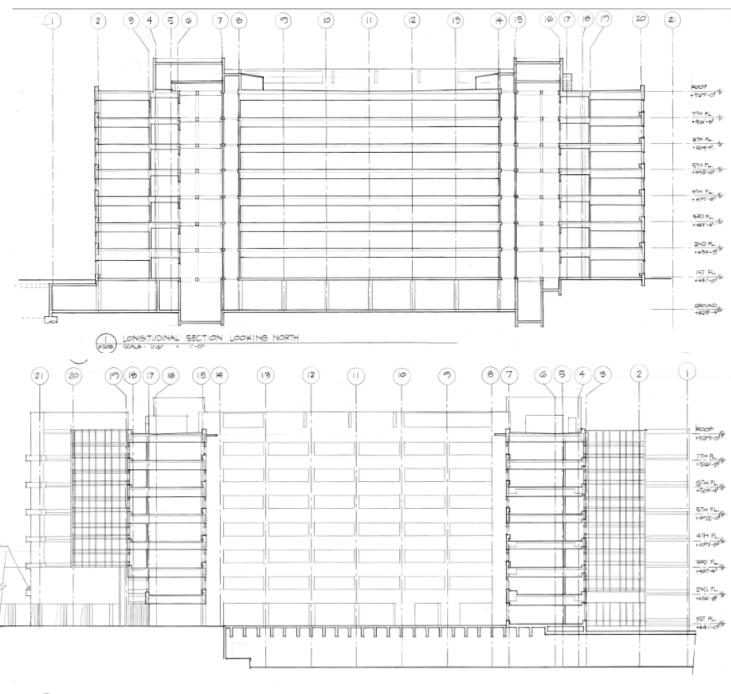
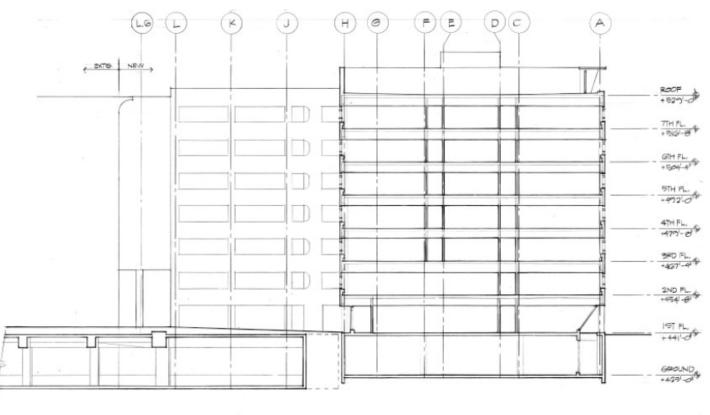


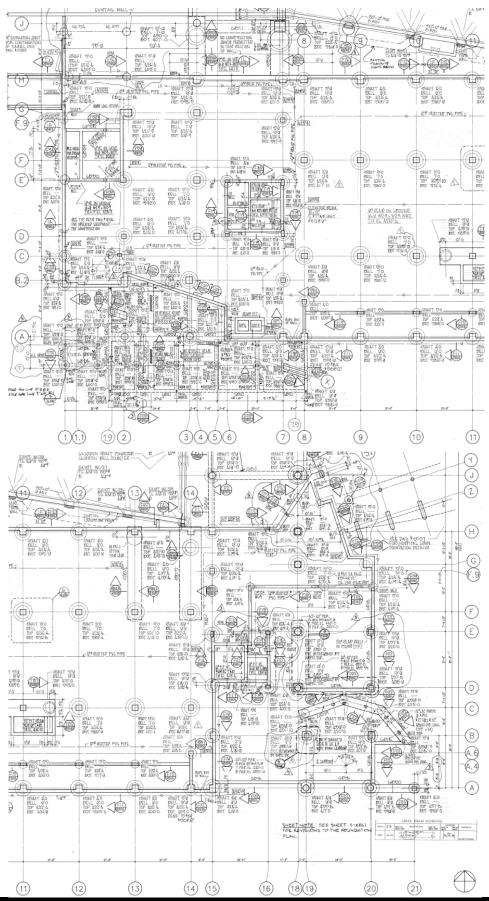
Figure 12. Beam between lines 9 and 10 along C on the 5th floor. Punching shear was checked for this slab around the right column.

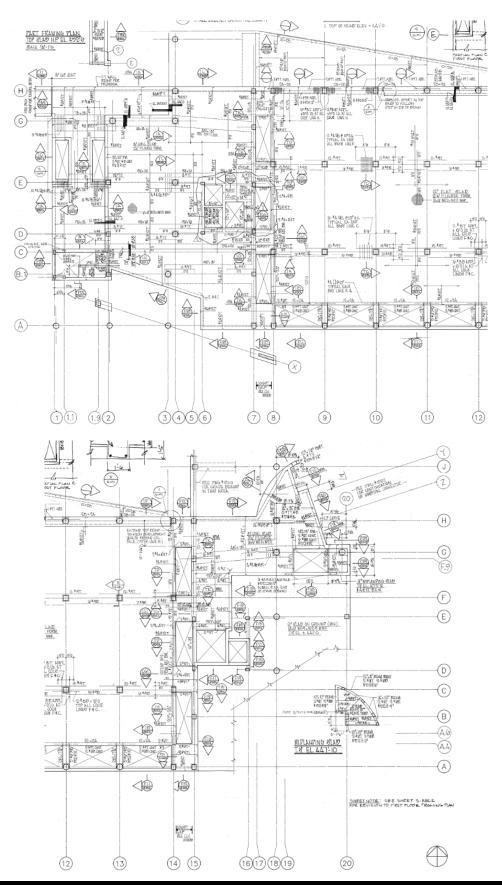

Figure 13. Typical section of column calculated. Column is located at F10 on the 5th floor.


Appendix

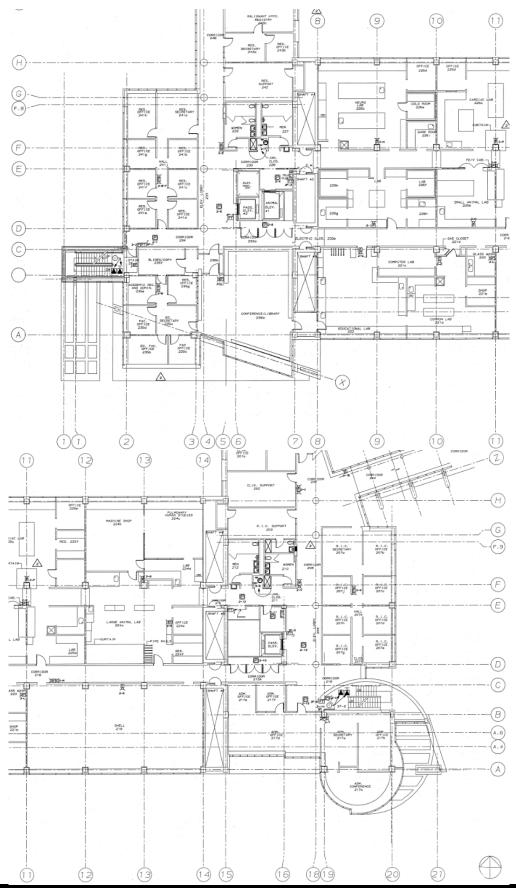
Elevations


2 SECTION THRU CONNECTORS LOOKING SOUTH

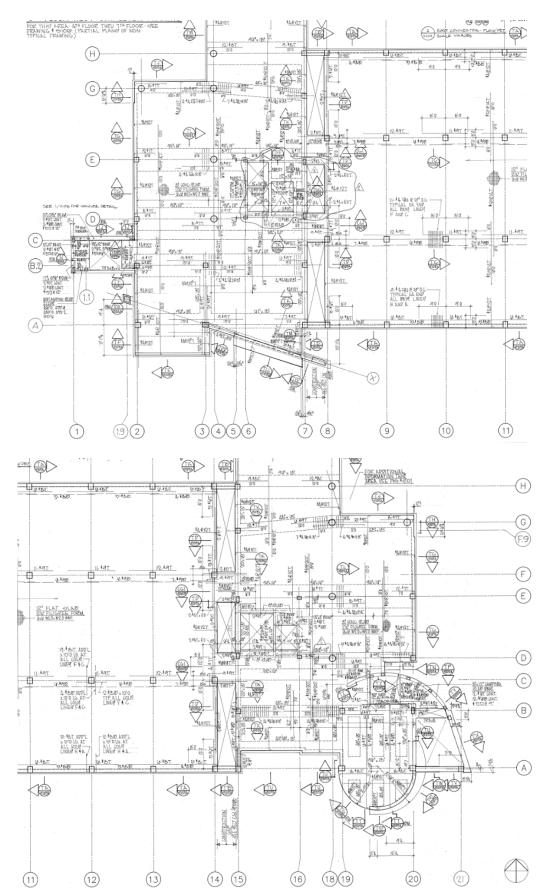
Elevations


A208 GALE - 1/16' - 1-0'

Foundation Plan (Ground Floor)



Biomedical Research Building


First Floor Plan

Second Floor Plan

Typical 3rd through 7th Floor Plans

"OMPAD"

cal Report 1		Joshua Zolko Structural C		
Joshun Willo	tech Ruport 1	setsmiclouds		
Selfweight of building:	10 11 57			
Assume 8"stabs typica				
		6" slab for ground flour.		
Assume 12" slabs for 2,		81' slub for root		
Assume 150 lbs per which				
	form in size along ent			
Assume certain wells to b	atypical - 6'3.5" high - 6'4,5" gluss	limistone sections, 4"th. K.K.		
Approximate and of gre	rend floor:			
(95.75).(264.75)=25.	350 Sqft.			
Approximate area of 1st				
(88.2)(286) = 25225:	sqft.			
Approximate and of 2nd J	Cloor:			
(257)(96)=24672sqff.				
Approximate area of Ord.	- 7th floors:			
(282.75)(96) = 27144 Sq f	+.			
5.27144=13570 sqff.				
total aven: 21/000 syft				
Approximute foot free: 2500	NSgft,			
height of columns: 116' from	topot cuissons to butto	am of roof.		
Average Whoma size is 20'	"x20",=> 1.6 x 1.6			
Hot Column SIG7				
volume of columns: 18870	tts .			
rolow of floors + root:				
25350 ft > + 25225ft> +	2467077 +2(1357	20) ft3 + 2 (2500) ft3=169	7USAS	
Perimeter of building: 757	21			

	Site buton: Hers hu	Tech Kepost 1	Seismil Louds	2/3
		7) 10 Dectric Response Acceleration		8
0				
		usgs.gov, referencing AS		
		il Classification, Risk Cete	cypry tacility	
	Sg=,154g Sms=,			
	S1= ,055 g Sm1=,	1 0. 1		
'n	2. Determine Seismire Des	Tyn Category (SDC)		
AMP	Building is Category I	1 80 T= 1,5 (tabk) 1.5-2)		
R	Por Hurshey, PA.			
	For Sps=,1053 an	nd Catyon IV => SDL=A	(tuble 11,6-1)	
	For SD1 =, US7 g a	nd Category IV => SDC= A	(tubk 11.6-2)	
	3. Identify the analysis p			
_	Equivalent Latural Force			
	Seismic base Shear			
	V=CS·W R=3 (Tab	c 12.2-1, Ordinary reinforced to	nich moment frame)	
	Le=Spg = 103 =,		-= ,016 x=,9 (Tabk 12.8-2)	
	$\left(\frac{R}{I}\right)\left(\frac{3}{15}\right)$	= 1016(110)9 hr		
	(S (SOL = 1057 =			
	$\left(\frac{\rho}{I}\right)T = \left(\frac{3}{15}\right)H$			
	Ce is not busing	han. 017, therefore Cy T	ν.υη.	
	G=,017,01√			-
	4. Calculate total building	Lexapph.		
	a construct source sources			-

"DAMPAD"

Sorface are of britdin	Tech Report	Sephithouds	37
			8
752.110=82720 Sqff.			
82720. 1, 150 + 827	$\frac{10}{n}$, $\frac{1}{n}$, $\frac{150}{2}$, $\frac{3}{100000}$	bs artinwall weight	
(169700+18870)150:	= 2830000 163		
Total Approximete buil	dry weight: 314000016:	5	
rout LL= Supst (from	n plans)		
,2.30=6pst			
6.25000 = 150000	165		
W= 31400000 + 150000	= 31450000165=>31450K	rps	
V= (5·w=,01.31450			
V= 529 Kips			
6. Determine Ventrul di	shibution of seismilforc	es	
Frelvx. Vesza	akips		
$C_{VX} = \frac{W_{Y}}{Z} \frac{W_{Y}}{W_{Y}} \frac{K}{K} = 2$, for T=1.17.55		
Cvx calculated on spre	ad sheet,		
Fx Calculated on sp	readsheet.		
	also calculated on spread !	rut, at 42808 ft. Kips	

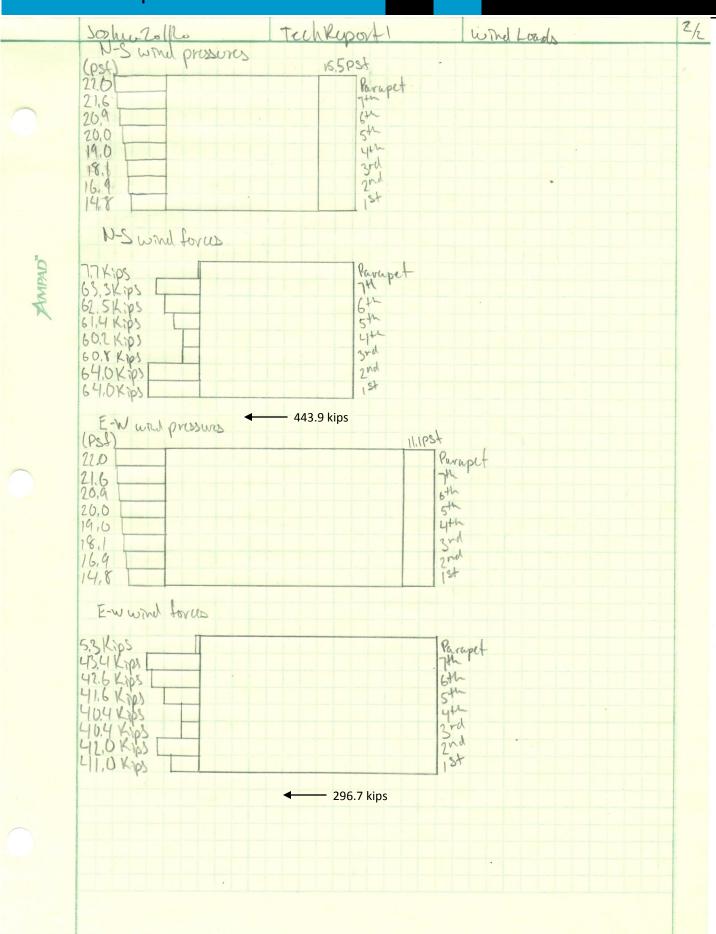
Seismic Spreadsheet Calculations

Cvx Calculations								
Floor	٧	Nx	Hx	EWiHi^K	К	Cvx		
g		2535	0	0	2	0		
1		3784	14.25	768388.5	2	0.00838		
2	2	3700	27.91667	2883559	2	0.031448		
(1)	3	2714	40.58333	4469977	2	0.048749		
Z	Ļ	2714	52.91667	7599671	2	0.082882		
5		2714	65.25	11555025	2	0.126019		
6	5	2714	77.58333	16336037	2	0.17816		
7	7	2714	89.91667	21942709	2	0.239306		
Roof		2500	102.25	26137656	2	0.285056		
Total :						1		

Fx Calculations								
Cvx	V	Fx						
0.01	529	5.29						
0.03	529	15.87						
0.05	529	26.45						
0.08	529	42.32						
0.13	529	68.77						
0.18	529	95.22						
0.24	529	126.96						
0.29	529	153.41						
Total Shear		534.29						

Overturning Moment							
Fx (kip)	H (Feet)	M (kip ft)					
5.29	14	75.3825					
15.87	28	443.0375					
26.45	41	1073.429					
42.32	53	2239.433					
68.77	65	4487.242					
95.22	78	7387.485					
126.96	90	11415.82					
153.41	102	15686.17					
Total:		42808					

	Joshua Zollis Tech Report 1 Wind Loods	42
	Locution: Hersley, PA	8
	(edgory II (tabk H))	
	Exposure C (section 6,5,6)	
	V=90mph (Figure 6-1)	
	I=1.15(Table 6-1)	
	Kd=,85 (Tubk 6-4)	
"0	K2+ =1.0 (flatelevention).	
"CIAMPAD"	K2 = 1.26+1.31 = 1.29 (Tabk 6-3) (h=110) (varies)	
A		
	gz culculated on sprend sheet using:	
	92=.00256K2K2+Kd V2I	
	For p=qGCp-q:(GCpi);	
	G=,85 Cofrontible (2-6)	
	Gp from tubk 6-6 > values found in Spread shet.	
	LIB for 95' sile: 95/277 = 34/<1; Cp = -5	
	-10 for 271' Side: 277/95 = 2,92; Cp 2-3	


Wind Spreadsheet Calculations

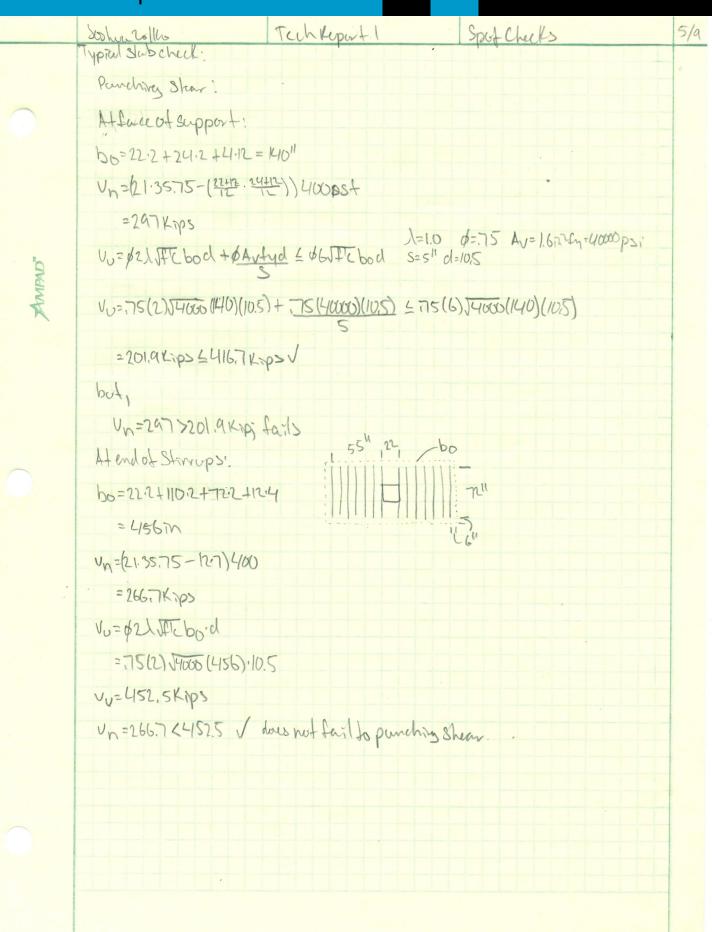
	Spreadsheet for qz									
Floor	Н	С	Kz	Kzt	Kd	V	V^2	_	qz	
1	14.3	0.00256	0.85	1	0.85	90	8100	1.15	17.22902	
2	13.7	0.00256	0.97	1	0.85	90	8100	1.15	19.66136	
3	12.7	0.00256	1.04	1	0.85	90	8100	1.15	21.08022	
4	12.3	0.00256	1.09	1	0.85	90	8100	1.15	22.09369	
5	12.3	0.00256	1.15	1	0.85	90	8100	1.15	23.30986	
6	12.3	0.00256	1.2	1	0.85	90	8100	1.15	24.32333	
7	12.3	0.00256	1.24	1	0.85	90	8100	1.15	25.13411	
Parapet	1.5	0.00256	1.26	1	0.85	90	8100	1.15	25.53949	

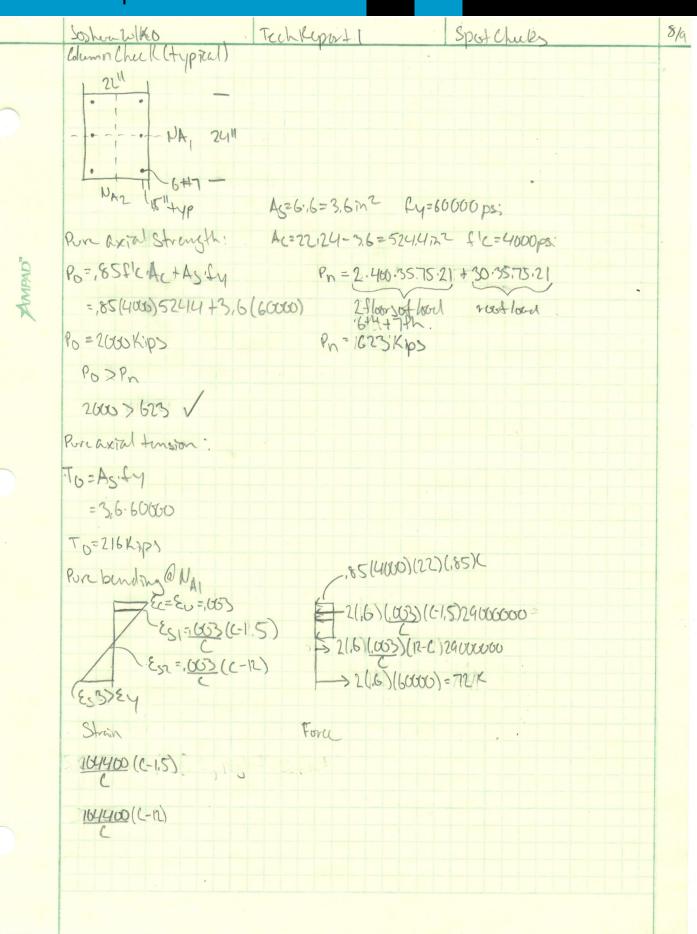
	Windward Pressures									
q	G	Ср	qi	Gcpi (+/-)	Pressure	(+/-)	Resultant			
17.22902	0.85	0.8	17.22902	0.18	11.71574	3.101224	14.81696			
19.66136	0.85	0.8	19.66136	0.18	13.36972	3.539044	16.90877			
21.08022	0.85	0.8	21.08022	0.18	14.33455	3.794439	18.12899			
22.09369	0.85	0.8	22.09369	0.18	15.02371	3.976864	19.00057			
23.30986	0.85	0.8	23.30986	0.18	15.8507	4.195774	20.04648			
24.32333	0.85	0.8	24.32333	0.18	16.53986	4.378199	20.91806			
25.13411	0.85	0.8	25.13411	0.18	17.09119	4.524139	21.61533			
25.53949	0.85	0.8	25.53949	0.18	17.36686	4.597109	21.96397			

	Leeward Pressures							
			LW (95	5' side)				
q	G	Ср	qi	Gcpi (+/-)	р	(+/-)	Resultant	
25.53949	0.85	-0.5	25.53949	0.18	-10.8543	4.597109	-15.4514	
			LW (27	7' side)				
q	G	Ср	qi	Gcpi (+/-)	р	(+/-)	Resultant	
25.53949	0.85	-0.3	25.53949	0.18	-6.51257	4.597109	-11.1097	

Resultant wind loads							
	WW (95')	WW (277')	Н	LW (95')	LW (277')	R (95')	R (277')
1	20058.46	58486.25	14.3	-20917.3	-43852.7	40.97579	63.91115
2	21953.22	64010.96	13.7	-20061.1	-42057.5	42.01428	64.01076
3	21815.21	63608.57	12.7	-18593.2	-38980.2	40.40839	60.79538
4	22262.34	64912.29	12.3	-18103.9	-37954.4	40.36622	60.21671
5	23487.79	68485.44	12.3	-18103.9	-37954.4	41.59167	61.44216
6	24509	71463.07	12.3	-18103.9	-37954.4	42.61288	62.46337
7	25325.96	73845.18	12.3	-18103.9	-37954.4	43.42985	63.28033
Parapet	3129.865	9126.028	1.5	-2201.82	-4616.07	5.331689	7.745937

 Sushua Zolks Root: flet	Tech Report 1	Snow hads	
pf=74C+Ipg			
$C_{1} = 1.0 (tuble 7.2)$			
(+=1.0 (tabk 7=3)			
I = 1.2 (tabk 74)			
Pg=25(figure 7-1)			
pf=7(1.0)(1.0)(1.2)(25)		
= 21 pot			
Orift			
8=,13pg+14 pg=25			
=,13(25)+14			
= 17.25 pct 430 pct v			
$h_b = \frac{P_s}{r} P_s = C_s P_f$			
ps=1,0(21)	pf=21		
hb221 ps=21			
mb= 1.22			
h=8.75' (from rostp			
bc=8,75-1.22=7.53'	he = 7.52 = 6.17 7.2, c	heckorit	
6=50	hb 1.22		
hd=2.3 hd che			
w=4hd <8hc			
= 4(2.3) (8(7,53)			
= 9,2 < 60,2 V			
Pd = hd(PS)			
= 2.3(21) = 48.3 pst	higher them design.	not load on drawings!	


$$\frac{Vesture Y_{1}Kr}{Vesture} = \frac{Tech kepa+1}{SpotChucks} = \frac{Vesture}{Vesture} = \frac{Ves$$


Joshua Zolko | Structural Option

$$\frac{1}{2}$$

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

$$\frac{1}{10} \frac{1}{10} \frac$$

$$System (14) = \frac{1}{104465} = \frac{1}{1046} = \frac{1}{10465} = \frac{1}{1046} = \frac{1}{10465} = \frac{1}{10465} = \frac{1}{10465} = \frac{1}{104465} = \frac{1}{10465} = \frac{$$

	John 20/160 (21,5"	Tech Report 1	Spot Checks	7/9			
	ES1 = 1003 (1.5	-1,5)=0		2			
	FS1=0 Concrete = ,85(4060)(29(1.85)(1.5)						
	FSZ=108Kips	=164Kips					
	Momentabout 0 at NAZ:						
"DAMPAD"	$M_{0} = 175.341.Kips$ $M_{0} = 175.341.Kips$						
	479.27175.3 × 474.2 Kip ff from negative moment on beam.						
			, mixed with different codes and				
	Design metho	ds, wild account for dra.	str. difference.				
-							
	·						
			·				

	Joshua Zolka Caisson Cheel	. Tech Report 1	SpotChecks	919			
			ut, us cuisson is in grand.)	8			
	Phas Call for 1000 psi ancrete > f'c=1000 psi.						
D"	$84'' \neq \Rightarrow \pi 42^2 = A_c = 5539in^2$						
	,45.1000.5534=41708Kips 724125Kips V						
"UPAINA	sciend partofaisson below first is 54" \$ =>17272=Ac22289,06 m2						
*	,85(600) .2289=194	S.7 Kips < 2 LI25 Kip	>> X fails, but works with 1550 Kip load marked on plano. Also, Stepcracted by shrinking of diameter + Carisson is 35 'deep with stepat-63' deep.				