

350 MISSION

Energy

Structure

Performance

SITE WEATHER CONDITIONS

Weather

- o Heating DB (99%) 40.8 °F
- o Cooling DB (1%) 78.3 °F
- o HDD 2708
- o CDD 142
- Design Challenge
 - o Humidity

IURE 1.10 Design strategies to achieve comfort when uncomfortable outdoor temperature and humidity iditions exist.

SITE

- Wind
 - o Prevailing direction: West to East

SITE SOLAR STUDY

Winter Solstice

8:00 AM

12:00 PM

4:00 PM

Summer Solstice

6:00 AM 12:

12:00 PM

6:00 PM

MECHANICAL

- Chapter 4: Ventilation Air Supply
 - Natural and Mechanical Ventilation
 - Underground Parking
 - Exhaust Requirements
 - Carbon Monoxide Sensing
- Chapter 5: Exhaust Systems
 - o General Requirements Installation & Termination
- Chapter 6: Duct Systems
 - o Design & Installation Requirements
- Chapter 10: Steam and Hot Water Boilers
 - Access & Maintenance
- Chapter 11: Refrigeration
 - Design Guidelines
 - o ASHRAE 15
- Chapter 12-14: Piping
 - o Piping Design Guidelines

ENERGY CHALLENGES

Small footprint; big building

Photovoltaic Arrays: 70-140M kwh

Open Air Entrance

NET- ZERO CONSTRUCTION

ENERGY USE REDUCTION

- LPD and Illuminance performance goals
- Shading devices
- Lighting and Electrical loads on occupancy sensors
- Descriptive controls narrative

NATIONAL ELECTRICAL CODE®

California Code of Regulations Title 24, Part 2, Volume 2 of 2

California Building Standards Commission Based on the 2009 International Building Code® 2010 California Historical Building Code, Title 24, 2010 California Existing Building Code, Title 24, I

International Electrical Code* Series

TITLE 24: ENERGY CODE

- Section 112: Mandatory Req's for Space-Conditioning Equipment
- Section 116: Mandatory Req's for Fenestration Products and Exterior Doors
- Section 118: Mandatory Req's for Insulation and Roofing Products
- Section 121: Req's for Ventilation
- Section 140: Choice of Performance and Prescriptive Approaches

STRUCTURAL PROVISIONS

- San Francisco governed by 2010 California Building Code
 - Code provisions for design in LFRD, ASD, empirical design, and conventional construction methods.
 - o Restricts stiffness to limit deflections of lateral drift
 - Governed by ASCE 7
 - o Deflection of concrete structural members
 - Governed by ACI 318
 - o Strength design of structural steel members
 - Governed by AISC steel manual
 - o Seismic load provisions
 - Governed by ASCE 7
 - Wind load and story drift provisions
 - Governed by ASCE 7
 - o Contains various modifications to both ASCE 7 and ASTM standards

ASCE 7 SEISMIC PROVISIONS

- Structural System Selection
 - o Limitations for both single and dual systems in both directions
- Seismic Load Effects
 - Horizontal and Vertical seismic load effects
 - o Seismic load combinations and overstrength factor effects
- Structural Modeling Criteria
 - Support conditions for various scenarios
 - o Stiffness and deformation limitations
- Drift and Deformation Limitations
 - o Story drift limited by risk category and story height
- Foundation Design
 - o Foundation requirements based on seismic design categories

ASCE 7 WIND PROVISIONS

- Main Wind-Force Resisting System (MWFRS)
 - Limited to either Directional Procedure for buildings of all heights or the Wind Tunnel Procedure for all buildings.
- Wind Speeds
 - o Procedure uses wind speed based on a three-second gust at 33 ft above ground.
 - o Taken from wind speed maps based on risk category.
 - Contains provisions for wind gusts and takes into account the approximate natural frequency of the building.

Latitude: 37.7909

Longitude: -122.3967

ASCE 7-10 Wind Speeds (3-sec peak gust MPH*):

Risk Category I: 100 Risk Category II: 110

Risk Category III-IV: 115

POTENTIAL DESIGN COMPONENTS

Fluid Viscous Dampers

- o Up to 50% decrease in floor acceleration and lateral deformation
- Different types of brace configurations
- High lifetime cost savings, LEED Points
- o Can be modeled in ETABS or SAP

POTENTIAL DESIGN COMPONENTS

- Base Isolation Techniques
 - o Isolate superstructure and foundation with elastomeric pads
- Special Truss Moment Frames
 - o Special part designed to dissipate energy and isolate yielding
 - o Yielded part can be easily replaced without major disruption
 - o Field labor savings, reduced welding

POTENTIAL DESIGN COMPONENTS

- Buckling-Restrained Braced Frames
 - o Takes both axial tension and compression without buckling
 - o Capacities in tension and compression are similar

LABOR

- 100% Labor Unions
- Well educated work force
- 7 ½ hour work days

MODULARIZATION

- Prefabrication is not common
- Locally produced
- Coordination with traffic hours

COLLABORATION

Programs

Technology

Trailers

COMPARISON

The Tower At PNC Plaza Pittsburgh, PA

Times Square Tower New York, NY

QUESTIONS?