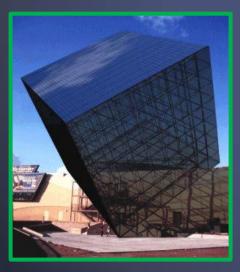
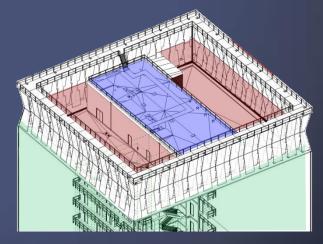

Rebecca Bires | Scott Brown | Scott Eckert | Jordan Huey | Helen Leenhouts | Andrew Levy | Jeffrey Loeb | Patrick Voge


C LIGHTING/ELECTRICAL APOLLO ENERGY PRODUCING MEASURES

Solar Panels on the Roof

- REC 215 AE-US 3'x5'
- About 650 Panels fit on this roof
- Summer: 325-520kW per day*
- Winter: 163-390kW per day* *Depending on cloud cover
- 100% South Facing at a vertical angle of 10°-20°



Photovoltaic Glazing on Upper Floors

- Architecturally integrated for seamless design
- Amount of energy produced will depend on area of PV Glazing

EFFECTS OF SOLAR SYSTEM

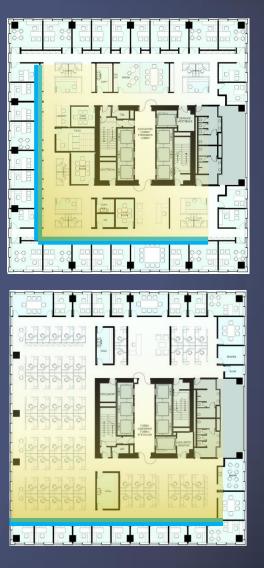
🔟 Structural

• Coordinate to ensure roof will be stable/strong enough

Construction

- Added schedule time for installation
- Limited roof access once installed

CD


Mechanical

- Coordinate with cogeneration mechanical rooms on roof
- Glazing changes will effect solar heat gain

EFFECTS OF GLASS PARTITIONS

🔟 Structural

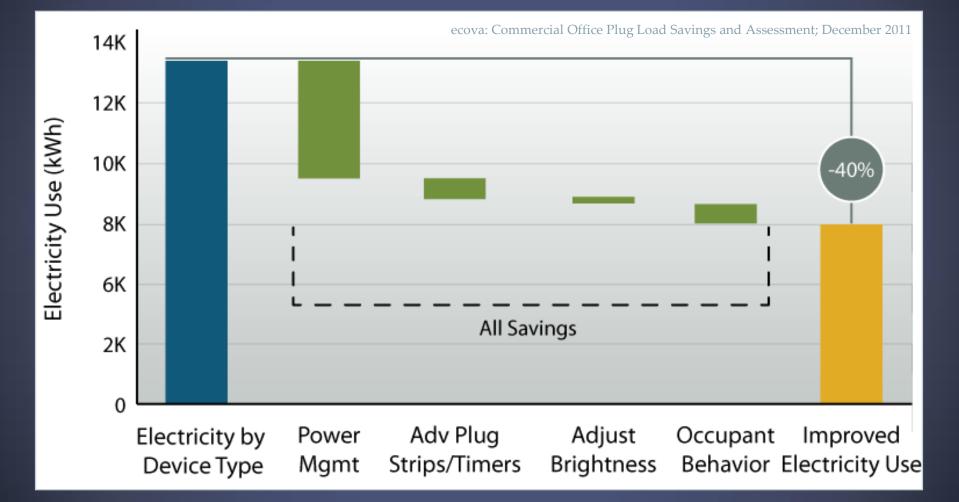
• Weight of glass partitions should be considered

Construction

- Schedule decrease, easy installation
- Quick drop off time

Mechanical

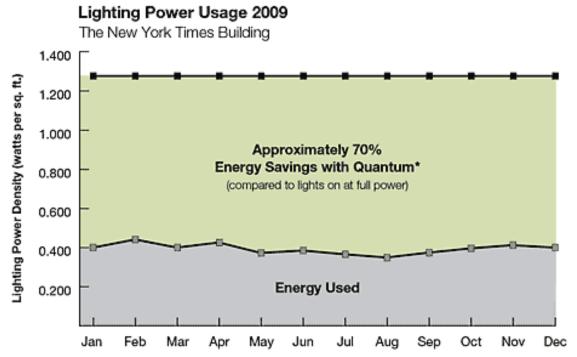
 Coordinate with building energy modeling to accurately measure heat gain/loss between rooms



113 W 495 kW-hr/year

10 W 44 kW-hr/year

113 W 495 kW-hr/year

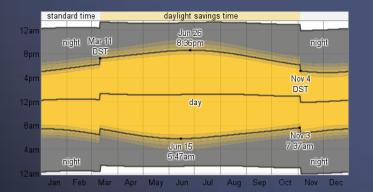

85 Computers per floor39,865 Kw-hr saved\$ 9,089 saved per floor\$227,230 potential savings

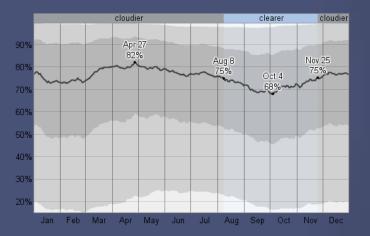
POLLO

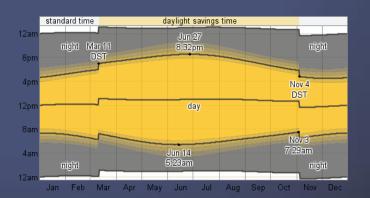
10 W 44 kW-hr/year 26 kW-hr/year

Progressive energy controls system

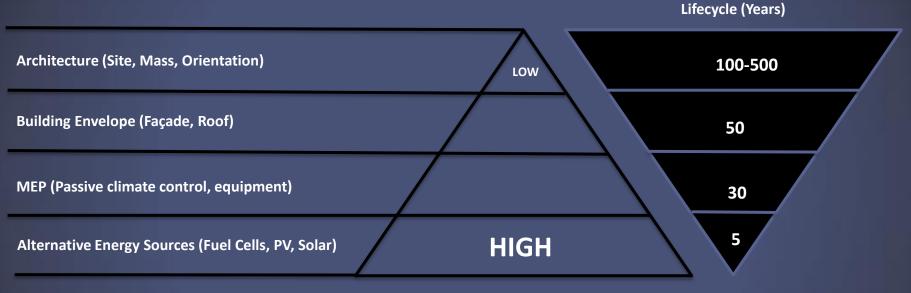



ENERGY SAVING MEASURES

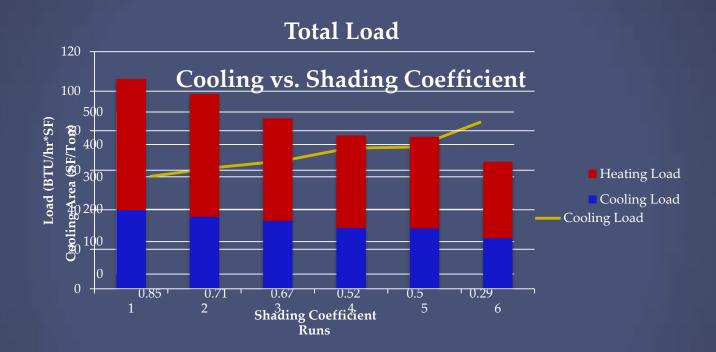

San Francisco


LIGHTING/ELECTRICAL

New York

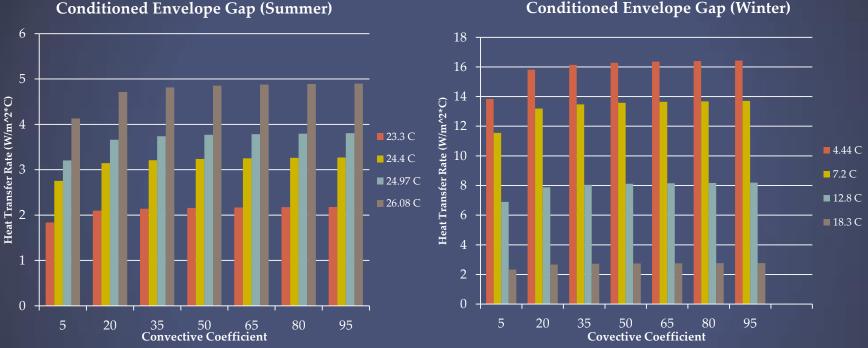


Design Strategy



Cost of Maintenance and Operation

FAÇADE ANALYSIS



Graph	_		Cooling	Cooling	Heating			
Run	Run #	Description	(SF/Ton)	(BTU/hr*SF)	(BTU/hr*SF)	Total (BTU/hr*SF)	U-Factor S	Shading Coefficient
1	6	Single Coated 1/8"	301	39.87	66.31	106.18	1	0.85
2	4	6mm Sgl Bronze	328.6	36.52	62	98.52	1	0.71
3	1	3mm Tpl Low-E (e5=1) Clr 6mm air	348.9	34.39	51.85	86.24	0.319	0.67
4	3	3mm Quad Low-E Films Clr 8 mm Krypton	388.6	30.88	46.67	77.55	0.117	0.52
5	2	3 mm Dbl Low-E (e2=.04) Clr 13mm Air	392	30.65	46.29	76.94	0.295	0.5
6	5	6 mm Tpl Low-E Film (66) Tint 13mmAir	469.3	25.57	38.74	64.31	0.218	0.29

SIMULATED ENVIRONMENT

Conditioned Envelope Gap (Winter)

Summer: Exhaust cooler air to the air gap

Exhaust heated air to the air gap Winter:

Create an artificial/simulated environment to retard heat transfer while using Goal: conditioned air that would normally be exhausted

Challenges: Humidity and complicated control scheme

Heat Transfer With Conditioned Space (Winter)

Simulated Environment

3500 1000 900 3000 800 2500 700 Heat Loss (kW) Heat Loss (kW) 600 2000 Hx -5 Hx - 5 500 Hx - 35 Hx - 35 1500 ■ Hx - 65 400 ■ Hx - 65 Hx - 95 300 Hx - 95 1000 200 500 100 23.322 24.426 24.97 4.44 26.082 7.2 12.8 18.3 Temperature (C) **Temperature (C)**

Heat Transfer With Conditioned Space (Summer)

Summer: Exhaust cooler air to the air gap

Winter: Exhaust heated air to the air gap

Goal: Create an artificial/simulated environment to retard heat transfer while using conditioned air that would normally be exhausted

Challenges: Humidity and complicated control scheme

EFFECTS OF DOUBLE FACADE

Increase loads

CONSTRUCTION

• Schedule increase

UNDERFLOOR AIR DISTRIBUTION

<1% of office market in 1995 to 6% in 2004

PROS

No "short cycling" of air Ease of renovation Better air quality If done right, same price Floor-to-floor height can be reduced by 6-12 inches

CONS

Designers, owners, tenants unfamiliar Some designed recently are performing poorly Too quiet Need to find experienced installer

EFFECTS OF UNDERFLOOR SYSTEM

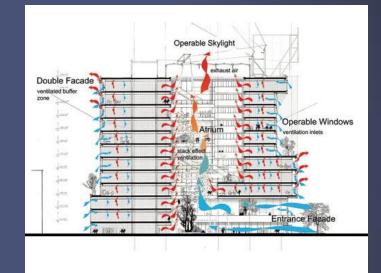
🔟 Structural

• Localized movement during earthquake must be examined

👲 Construction

- Schedule increase
- Find Specialist
- More supervision will be needed

LIGHTING/ELECTRICAL


• Data/cable moved to under the floor

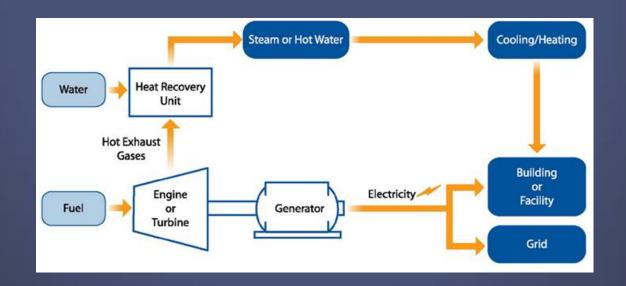
NATURAL VENTILATION

- Use pressure differences to move air
- Pros
 - Reduce energy consumption
- Cons
 - Best in hot, dry climates
 - Does not remove humidity from the air
 - Does not remove outside contaminants

COGENERATION

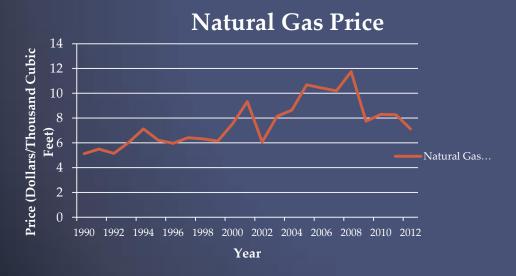
Benefits

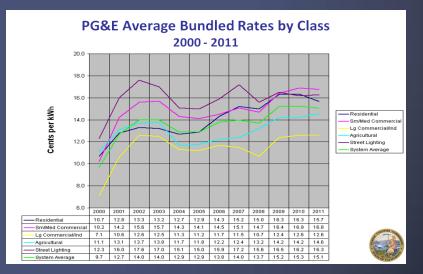
Cost savings for host facility/customer Partially independent from utility grid Environmental benefits Incentive programs (Self Generation Incentive Program "SGIP")


Technology Type	Incentive (\$/W)		
Renewable and Waste Heat Capture			
Wind Turbine	\$1.19		
Waste Heat to Power	\$1.19		
Pressure Reduction Turbine	\$1.19		
Non-Renewable Conventional CHP			
Internal Combustion Engine – CHP	\$0.48		
Micro-turbine – CHP	\$0.48		
Gas Turbine – CHP	\$0.48		
Emerging technologies			
Advanced Energy Storage	\$1.80		
Biogas Adder	\$1.80		
Fuel Cell – CHP or Electric Only	\$2.03		

COGENERATION CASE STUDY

201 Mission Street	350 Mission Street		
Building Type:	Office	Office	
Floor Area:	490,000 SF	480,000 SF	
System Size:	x2 375 kW	-	
Annual Electricity Supply	40%	-	
Annual Steam Demand	90%	-	

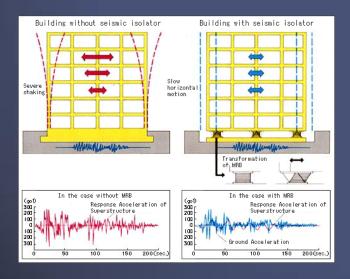



CHP COST BENEFIT

Typical CHP output: 125kWh per Mcf

Source	Unit Price	Cost
Electricity:	\$.126/kWh	\$15.75
Natural Gas:	\$7.13/Mcf	\$7.13

(Note: Doesn't take into consideration additional benefits such as waste heat recycling)

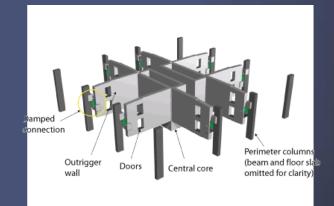


INITIAL IDEAS

- Keep Concrete structure and add stiffness where required to control drift
- Base Isolation
- Fluid Viscous Dampers
- Steel Plate Shear Walls

AFTER MEETING

Eliminated Ideas:


STRUCTURAL

- Keeping Concrete structure
- Base Isolation

Ideas Worth More Consideration:

- Steel Plate Shear Walls
- Fluid Viscous Dampers
- Dampers with Outriggers

EFFECTS OF IDEAS

Mechanical

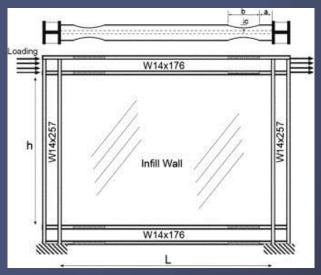
• Heavy integration with systems

CONSTRUCTION

- Increased modularization
- Schedule decrease

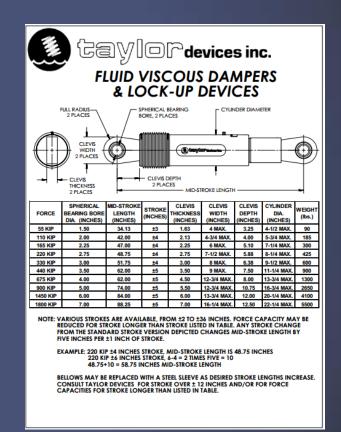
All Options

- Building height will increase
- Possible floor plan change
- Possible façade changes



Steel Plate Shear Walls

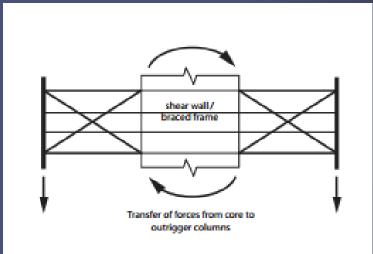
- Large energy dissipation
- Very stiff
- Ability to assemble off site
- Opens up space
- Ability to replace
- Time and Cost


Fluid Viscous Dampers

- Adds 20-30 percent damping to structure
- Drift Limit

STRUCTURAL

- Lifetime Cost
- Flexibility of configuration
- Range of Sizes
- Load Paths

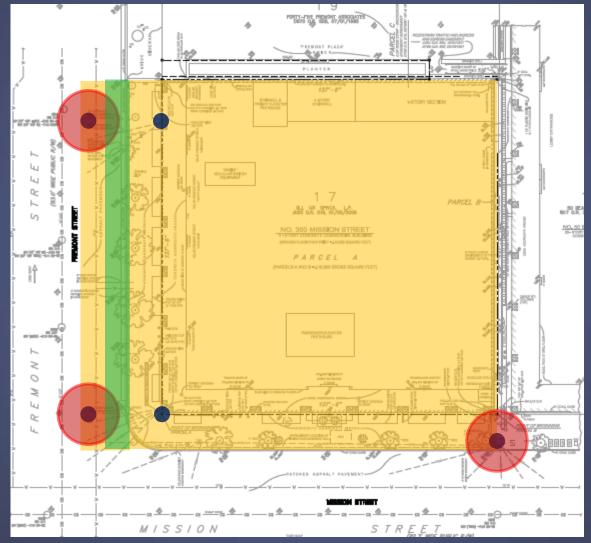


DAMPED OUTRIGGERS

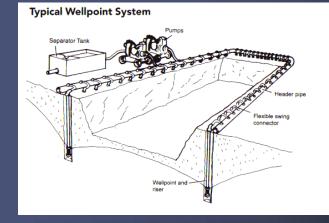
 Decrease overturning moment

STRUCTURAL

- Reduces column size
- Use of outrigger can be concealed
- Adds redundancy to our passive system
- Our size Building will only need one outrigger


Metro System

SITE CONSTRAINTS



Dewatering System

- Design groundwater level at Elevation -3ft
- Excavation to extend at Elevation -52ft
- Maintain at least 3ft below planned max. excavation
- Performance: Number, Depth, Position of wells, & Rate of pump
- Cost for disposing water into City's wastewater system

Opportunities to Prefab

- Mechanical system
- Structural System
- Kitchenette/Bathroom Pods

MEETING SCHEDULE

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	
9:00								LIGHTING/ELECTRICAL
9:30								
10:00								
10:30								MECHANICAL
11:00								
11:30								
12:00								STRUCTURAL
12:30								STRUCTURAL
1:00								
1:30								
2:00								Construction
2:30								
3:00								
3:30								
4:00								
4:30								
5:00								
5:30								
6:00								
6:30								
7:00								

QUESTIONS?

