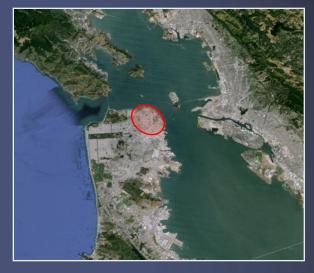


Rebecca Bires | Scott Brown | Scott Eckert | Jordan Huey | Helen Leenhouts | Andrew Levy | Jeffrey Loeb | Patrick Vogel

350 MISSION

30 Story Mixed-Use High-Rise

4 Story Lobby


Restaurant

Retail

25 Office Floors

4 Story Underground Parking Garage

San Francisco , CA

PROJECT GOALS

APOLLO

Net-Zero Design

- Producing energy
- Reducing energy load

Seismic Activity Response

- Continuous operation after a design level earthquake
- Half of code allowed drift

High Quality for Occupants

• System performance

Net Zero

Net Off-Site Energy Use (ZEB) - 100% of the energy purchased comes from renewable energy sources, even if the energy is generated off the site.

Strategy: buy energy from renewable sources and PV Eco-districts.

Goal: 35%

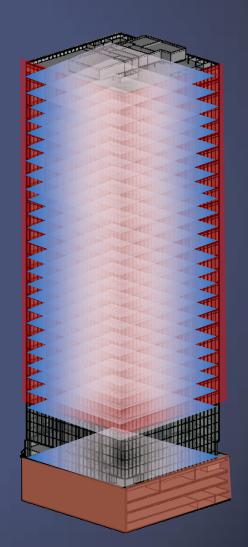
Net-Zero Source Energy Use (ZNE) - The building generates the same amount of energy that it consumes.

Strategy: use a combined heat-and-power system to generate energy on-site.

Goal: 20%

Net-Zero Energy Emissions (ZEE) – A building with zero net carbon emissions. *Strategy: use algae bioreactors to offset the carbon emissions of the combined heat-and-power system.*

Goal: 50%

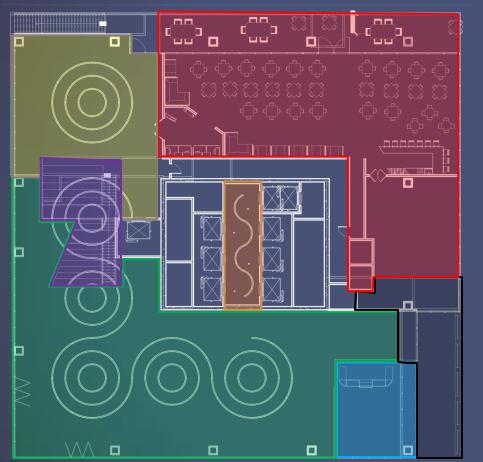

Building Overview

Price Estimate: \$93 million Schedule: 2.5 - 3 years LEED Certification: Platinum

Systems

- o Double Façade
- Raised Access Floor System
- Structural Steel System
- o Photovoltaic Grid
- Combined Heat and Power

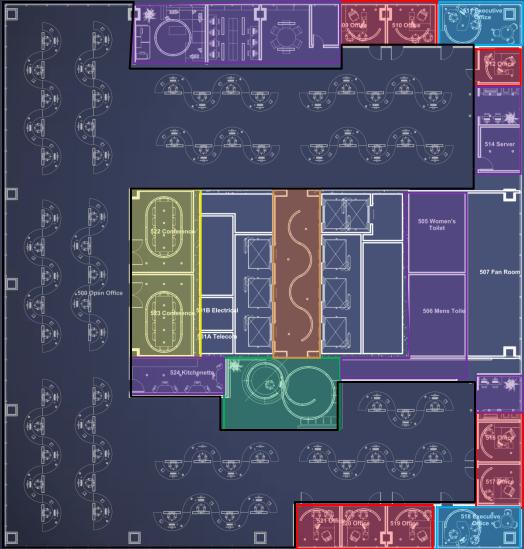
4 Story Parking Garage



Fremont Street

LOBBY LAYOUT

Street Level Lower Lobby Retail Back of House Elevator Lobby

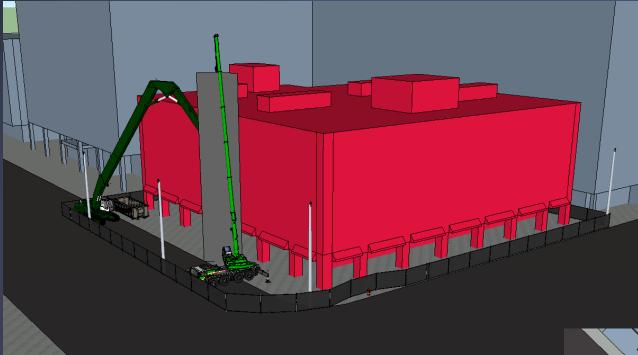

Staircase

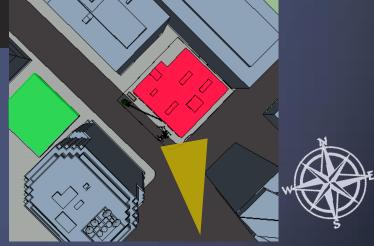
Second Level Upper Lobby Restaurant Elevator Lobby

Mission Street

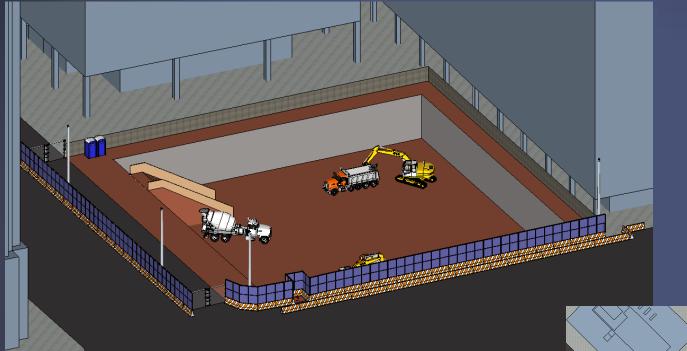
TYPICAL OFFICE LAYOUT

Elevator Lobby Reception Executive Offices Partner Offices Open Offices Conference Rooms Ancillary Spaces

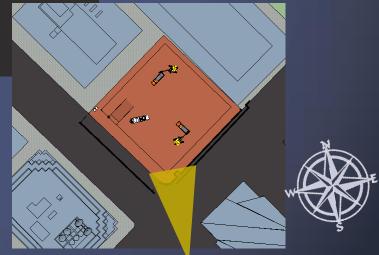

APOLLO


PROJECT PHASING

DEMOLITION PHASE



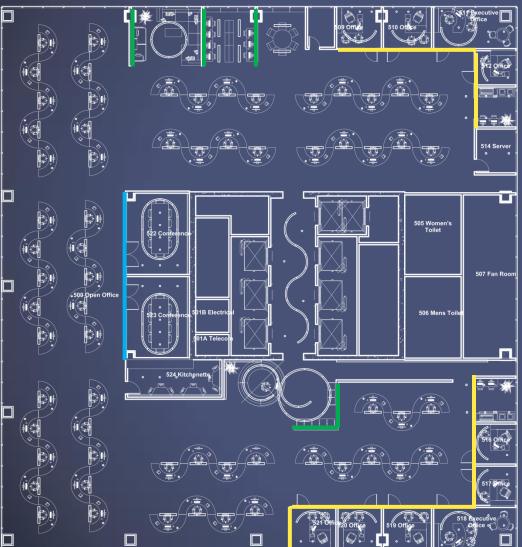
Electric Bus Lines
Asbestos Abatement
Demolition Mat
Sort & Recycle off-site
Concrete Reuse
Off Site Trailer



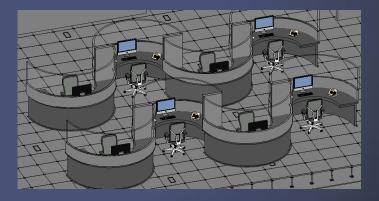
EXCAVATION PHASE

Construction Fence Soil Conditions Retaining Wall Foundation Mat \$5 million

ERECTION PHASE

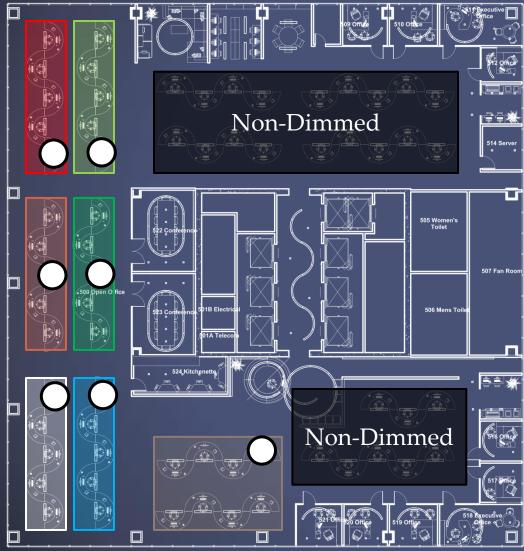

SYSTEMS

DAYLIGHT



TYPICAL OFFICE LAYOUT

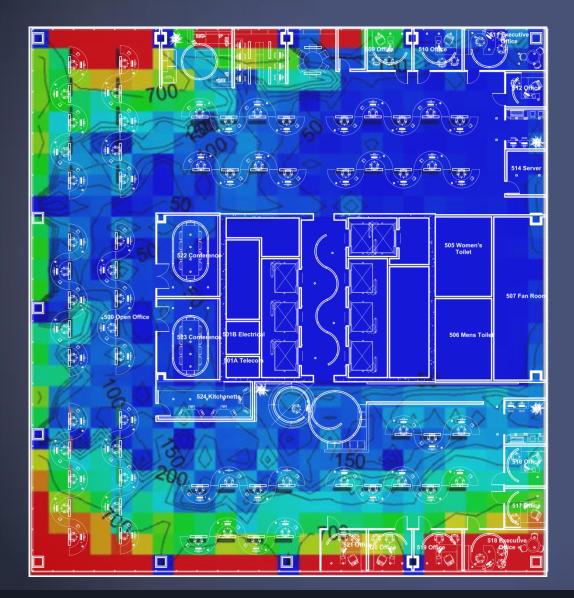
Frosted Glass Walls Clear Glass Walls Half Height Walls


APOLLO

ENERGY USE REDUCTION

Daylight Harvesting

Vacancy Sensing



Light Level Tuning

ENERGY SAVINGS

LPD Reduction

0.67 W/ft² out of 0.9 allowable, 36% reduction

191,360 kWhr

Daylight Harvesting dimming 38 fixtures to an average level of 24%

98,300 kWhr

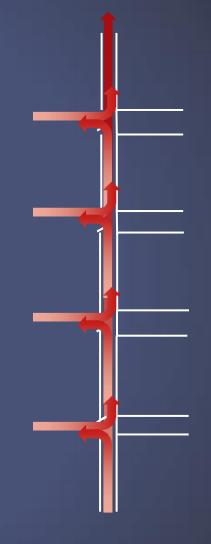
Light Level Tuning continually reducing lighting output, until it is too low

24,700 kWhr

Vacancy Sensing turning off lights in unoccupied spaces

29,000 kWhr

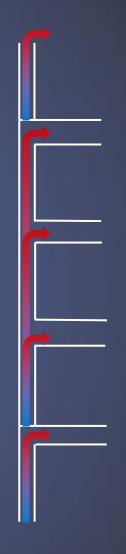
Total 383,814 kWhr



DOUBLE FAÇADE ~\$13 M

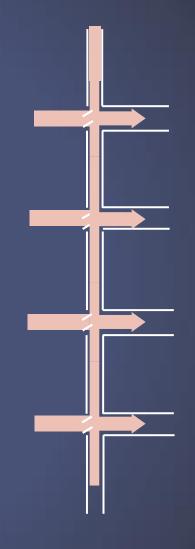
Double Façade

Summer Conditions (>74°F)		
Window Layer	Action	
Outer	Open	
Plenum	Opens when plenum >85°F	
Inner	Closed	



Double Façade

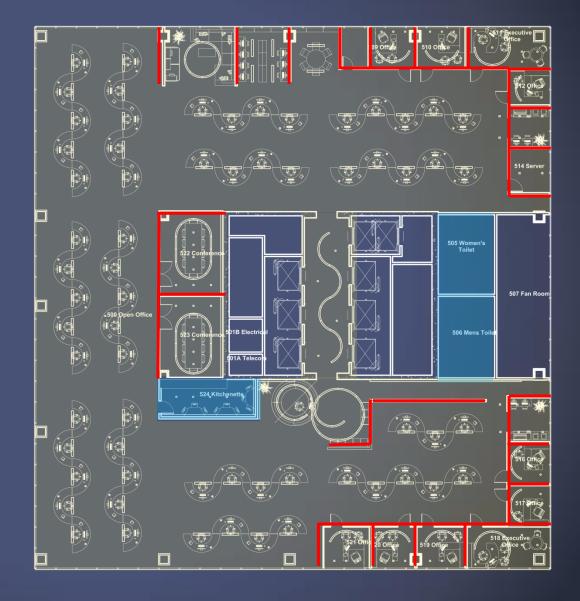
Winter Conditions (0-45 °F)	
-----------------------------	--

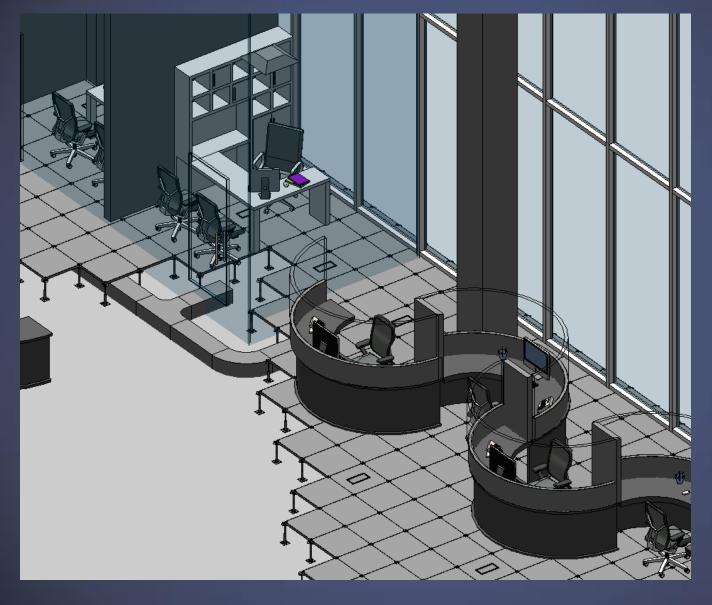

Window Layer	Action	
Outer	Closed	
Plenum	Opens when plenum >85°F	
Inner	Opens when plenum > 70	

Double Façade

Natural Ventilation Conditions (55-74°F)		
Window Layer	Action	
Outer	Open	
Plenum	Opens when plenum >85°F	
Inner	Open	

RAISED FLOOR ~ \$6 M


RAISED FLOOR


Raised Floor System

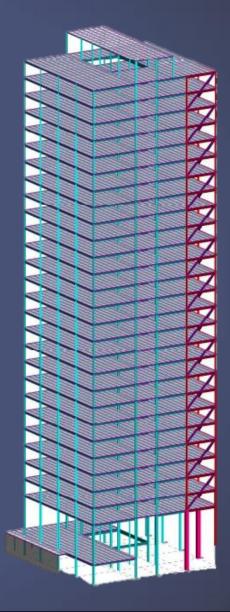
Walls that penetrate the raised floor

Pods

Raised Floor

APOLLO

GRAVITY ELEMENTS ~ \$5.5 M



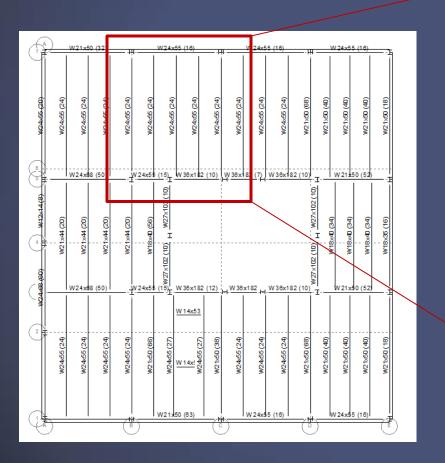
Steel Super-Structure

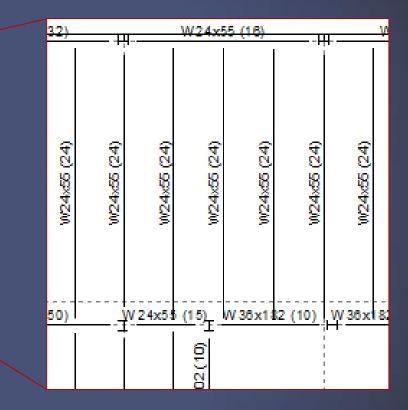
- Design Considerations:
 - Long span conditions for steel beams
 - Limit excessive beam depths
 - Limit Floor to Floor height increase

• Loads:

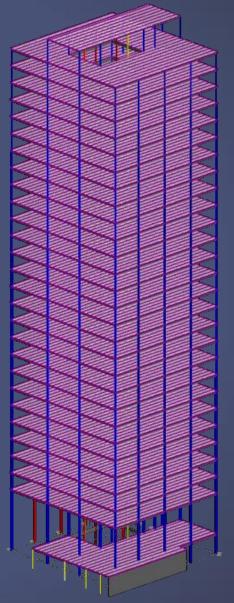
- Live Load: 100 psf
- Dead load: self weight + 10 psf
- Partition Load: 20 psf
- Raised Floor: 10 psf

Strategy

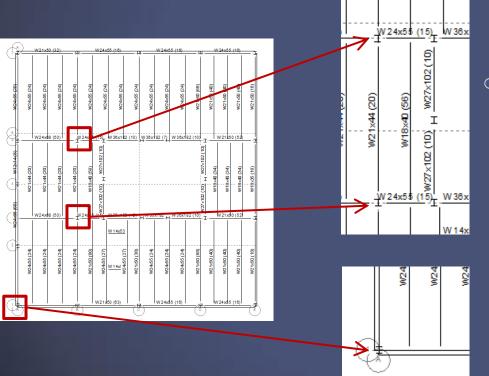

- RAM SS was used to design all gravity elements
- Initial RAM model was built for a typical floor with non-composite beams and unreducible loads to determine a worst case beam depth
- Team check-in to discuss beam depths
- RAM model rebuilt to a typical floor with composite beams and reducible loads


Structural Elements

- Beams range from W14 shapes to W36 shapes
- All columns in upper floors are W14 shapes
- o Built up columns were designed where W14 had inadequate capacity
- 2VLI20 deck from the Vulcraft Manufacturer's catalog was used with a 4 ¹/₂ inch topping thickness of normal weight concrete (2 hour fire rating)

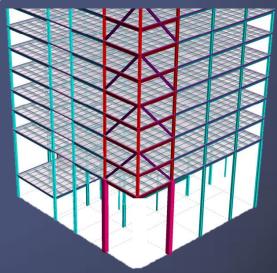

Typical Floor Beam Layout

Columns


- Spliced every 2 levels
- W14 shape
- Built-up columns designed in lower levels

Problems

- Beam depths still excessive
- o Cantilever

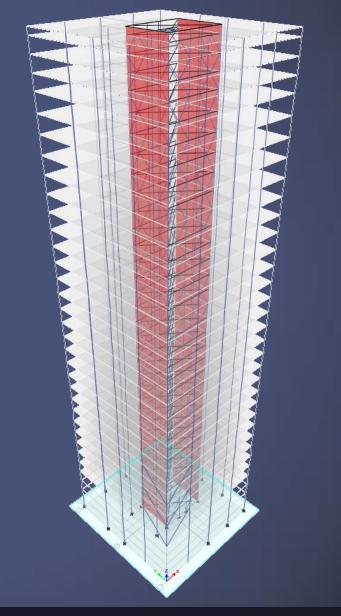


Solution

- Interior columns added, new spaces created
- Corner column introduced above lobby level, cantilever now only exists at lobby level

APOLLO

 Transfer braces added to cantilevered corner to transfer load away from corner


LATERAL ELEMENTS ~ \$15 M

LATERAL ELEMENTS

Design considerations:

- Building is to be able to withstand a design level earthquake with near immediate occupancy required after the event.
- The structure is to comply with one half the code allowed drift limit.
- While economy is not explicitly mentioned in the competition guidelines, the design team did consider the cost of different systems.

LATERAL ELEMENTS

Initial Strategy:

- Remove concrete structure as the primary LFRS and replace with steel
- Determine the new drift limit for the high rise
- Investigate potential damping systems
- Propose a new LFRS based on investigation and check progress for drift and ease of repair after a seismic event

INITIAL LATERAL CALCULATIONS APOLLO

Equivalent Lateral Force

 Performed for the estimated design weight in order to determine the approximate forces that the design team would be dealing with

Revised drift limit

 Upon accounting for extra height imposed by the new steel construction and mechanical systems the drift limit was determined to be 41.5 inches at the full height of the building

Level	F _x (kips)	M (kip-ft)
Roof	221.60	85130.23
26	207.66	76835.23
25	195.04	69598.54
24	182.76	62809.38
23	170.82	56455.63
22	159.21	50525.63
21	147.96	45005.28
20	137.05	39883.79
19	126.50	35147.91
18	116.31	30784.84
17	106.49	26781.59
16	97.03	23125.00
15	87.94	19801.73
14	79.24	16798.22
13	70.92	14100.72
12	62.99	11695.24
11	55.46	9567.51
10	48.34	7703.02
9	31.64	6086.94
8	35.37	4707.10
7	29.53	3538.98
6	24.15	2575.59
5	19.22	1797.51
4	14.78	1187.73
3	10.85	728.58
2	7.44	401.59
Lobby	0.00	0.00
	2456.30	702769.9

LATERAL SYSTEM INVESTIGATION APOLLO

After performing the initial calculations and discovering the significant forces on the building, lateral systems and damping were investigated. This investigation included:

- Base Isolation
- Outrigger systems
- Damping systems (primarily viscous fluid damping)
- Steel plate shear walls
- Special braced and moment frames

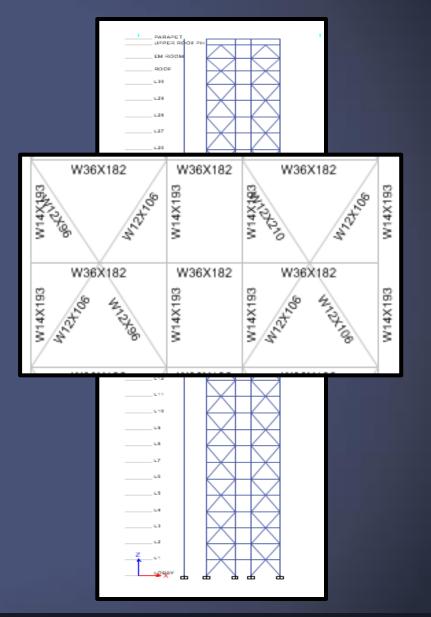
NEW LATERAL CALCULATIONS

Equivalent Lateral Force

 Performed for the proposed steel structure with estimated lateral members

Increased loads and moments at each floor

Level	F_{x} (kips)	M (kip-ft)
Roof	258.12	114603.37
30	194.45	83419.72
29	182.84	75695.71
28	171.53	68441.00
27	160.53	61643.12
26	153.02	56465.09
25	142.42	50417.00
24	132.14	44796.41
23	122.19	39590.04
22	115.81	35785.56
21	106.26	31239.88
20	97.05	27078.25
19	88.21	23286.27
18	80.14	19955.64
17	71.98	16842.28
16	64.18	14055.75
15	56.77	11580.62
14	51.01	9640.52
13	44.21	7692.35
12	37.82	6014.15
11	31.87	4588.70
10	26.59	3429.76
9	21.47	2447.39
8	16.82	1665.09
7	12.66	1063.25
6	9.45	652.03
5	6.18	333.92
Restaurant	0.58	10.52
Lobby	0.00	0
	2456.3	812433.396

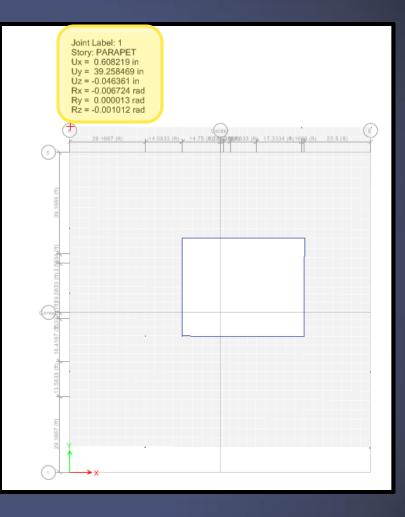

FINAL LATERAL DESIGN

Composed of special concentrically braced frames in the core

 Includes moment frames on the perimeter as required by code although the core alone meets requirements

Originally composed of SPSW and braced frames

 SPSW actually proved to be not only stiffer than was needed, but also significantly more expensive than the final design.

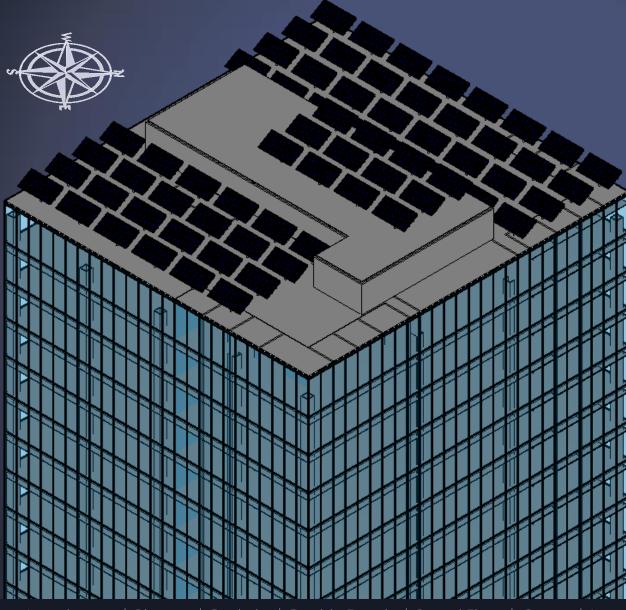


FINAL LATERAL DESIGN

Drift achieved: 39 inches

- Compare to 41.5 inch requirement
 - Neither over nor underdesigned
 - Results in an economic design meeting requirements

Withstands normal low magnitude seismic events Minimal drift during design level events and presents an easily repairable structure.



PHOTOVOLTAIC ~\$510,000

Photovoltaic System

Size

816 Photovoltaic panels mounted on 68 telescoping poles

Distribution

Transformed and fed into a distribution panel in rooftop electrical room

Output

313,250 kBTU per year Over 3% of total energy use

Combined Heat and Power ~\$815,000

COMBINED HEAT AND POWER APOLLO

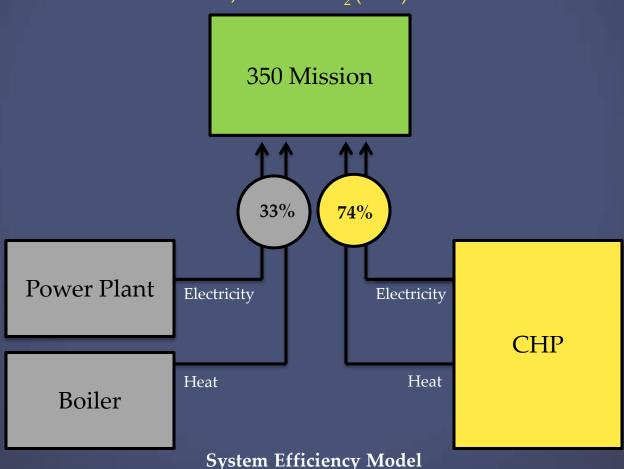
Feasibility	
High Electric Rates:	\$0.18/kWh
Desirable Spark Spread:	\$0.10/kWh
Future Energy Cost Concerns:	Yes
Reducing Environmental Impact:	Yes
Simple Payback Period (SPP)	
Initial System Cost	\$815,000
California CHP/Cogeneration Incentives Rebates	\$312,000
Capital Cost Post Rebate	\$503,000
Annual Operational Savings	\$101,400

 $SPP = \frac{Capital Cost}{Annual Savings} = \frac{503,000}{101,400} = 5 \text{ years}$

Combined Heat and Power

Electrical Output

Generation Capacity: Generated Power: Electrical Capacity Met: 650 kW 1,014,000 kWh/yr 27%

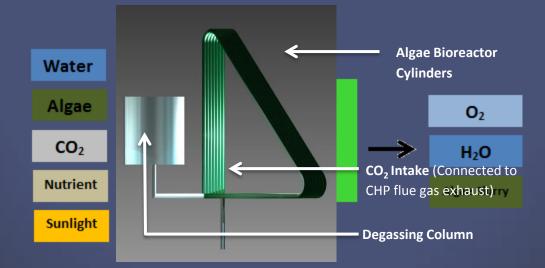

Thermal Output

Heat Recovery: Heat Recovery Efficiency: Heat Capacity Met: 1,850 MBtu/hr 45% 88%

COMBINED HEAT AND POWER APOLLO CHP Fuel Savings and Carbon Emission Reduction

Fuel Savings: Carbon Reduction: 625 MCF (5%) 355,663 lbs. CO₂ (20%)

ALGAE BIOREACTORS


Algae Bioreactors

Carbon Reduction

Yearly Emissions: Algae Sequestration: Percent Reduction: 1,369,638 lbs. CO₂ 837,503 lbs. CO₂ 60% APOLLO

Photosynthesis Chemical Reaction:

 $6CO2 + 12H2O + Light \rightarrow C6H12O6 + 6O2 + 6H2O$

RESULTS

ENERGY SAVINGS

- Lighting 1,456,000 kBtu
- Heating 1,870,000 kBtu
- Cooling 517,000 kBtu
- Pumps 38,000 kBtu
- Heat Rejection 419,000 kBtu
- Fans 1,240,000 kBtu
- Plug Load 4,900,000 kBtu Total 10,440,000 kBtu

Proposed

Baseline

• Lighting 4,567,000 kBtu

APOLLO

- Heating 4,625,000 kBtu
- Cooling 1,550,000 kBtu
- Pumps 155,000 kBtu
- Heat Rejection 481,000 kBtu
- Fans 6,578,000 kBtu
- Plug Load 4,900,000 kBtu Total 22,856,000 kBtu

ACHIEVEMENTS

		Goal	Achieved
•	Building Energy Use Reduction:	30%	54%
•	Net-Zero Energy Emissions:	50%	68%
•	Net-Zero Source Energy Use:	20%	30%
•	Net Off-Site Energy Use:	35%	19%
•	Drift Limit:	41.5 in	39 in
•	Lifecycle	5 yrs	-
•	Schedule Time	2.5 yrs	-

LEED

Project Checklist	Possible Points
Sustainable Sites	21
Water Efficiency	6
Energy and Atmosphere	26
Materials and Resources	8
Indoor Environmental Quality	12
Innovation and Design Process	3
Regional Priority Credits	4
Total	80

350 MISSION An iconic building that sets a precedent for sustainable architecture in San Francisco