

40 Continental Boulevard Merrimack NH, 03054

Ref: Atrium Medical Project Documents

Table of Contents

Title Page

Depth Analysis 1 Depth Analysis 2 Depth Analysis 3 Conclusion & Recommendations Acknowledgements

Project Information

- **Existing Conditions**
- **Owner Information**
- **Building Information**

Location:

Site Size: Existing Structure:

Previous Owner: New Owner:

Project Scope:

Project Information:

Existing Conditions

40 Continental Boulevard, Merrimack, NH 03054

2,367,100 SF 2 Story building

114,000 SF

Fidelity Investments Atrium Medical Corporation/ Maquet Getinge Group

Existing Renovation 101,200 SF New Addition

Existing 100,000SF Building to be Renovated

Jeffrey Martin | Advisor: Dr. Robert Leicht | Final Presentation

Proposed 101,200 SF New Addition (Footprint)

Ref: www.google.com/maps

Table of Contents

Title Page

Depth Analysis 1 Depth Analysis 2 Depth Analysis 3 Conclusion & Recommendations Acknowledgements

Project Information

- Existing Conditions
- **Owner Information**
- **Building Information**

Project Information:

Project Owner:

Previous Owner: Reason for Purchase:

Divisions of Work:

Owner Information

Atrium Medical Corporation/ MAQUET/GETINGE Group Fidelity Investments Company Expansion Bring all 450 + Employees Into One Facility. Manufacturing, Storage, Business Offices, R&D, **Engineering Shops**

- Specializes in R&D and Manufacturing
 - Cardiology
 - Radiology
 - Chest Trauma
 - Thoracic Drainage
- Business unit of MAQUET Cardiovascular (Structured Alliance)

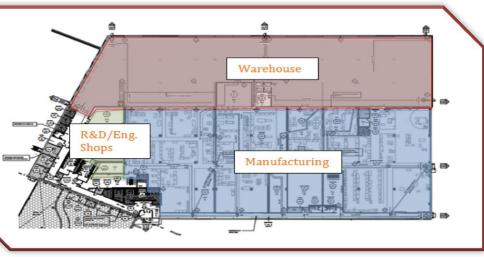
Ref: www.theiddoctor.info

• Member of GETINGE Group of companies Jeffrey Martin | Advisor: Dr. Robert Leicht | Final Presentation

Table of Contents

Title Page

Depth Analysis 1 Depth Analysis 2 Depth Analysis 3 Conclusion & Recommendations Acknowledgements

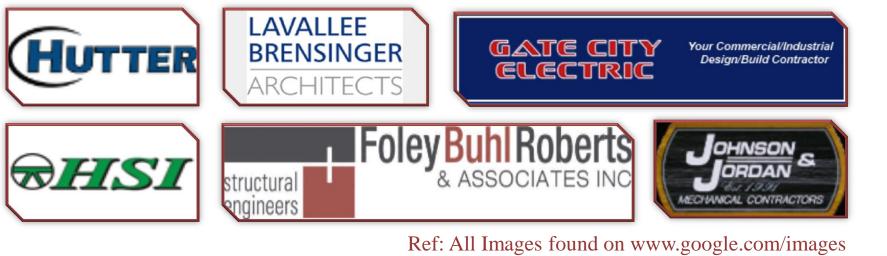

Project Information

- Existing Conditions
- **Owner Information**
- **Building Information**

Project Location: • Building Size: Zoning: Description: •

Project Information:

Ref: Atrium Medical Project Documents


40 Continental Boulevard, Merrimack, NH 03054

101,200 SF

I-3 Industrial Single Story Building Interior Mezzanine

Building Information

- CM Firm:
- Architect:
- Structural Engineer:
- Civil Engineer:
- Mechanical Engineer:
- Electrical Engineer:

Jeffrey Martin | Advisor: Dr. Robert Leicht | Final Presentation

Hutter Construction Lavallee Brensinger Foley Buhl Roberts Hayner Swanson Inc. Johnson & Jordan Inc. Gate City Electric

Table of Contents

Title Page **Project Information**

Depth Analysis 2 Depth Analysis 3 Conclusion & Recommendations Acknowledgements

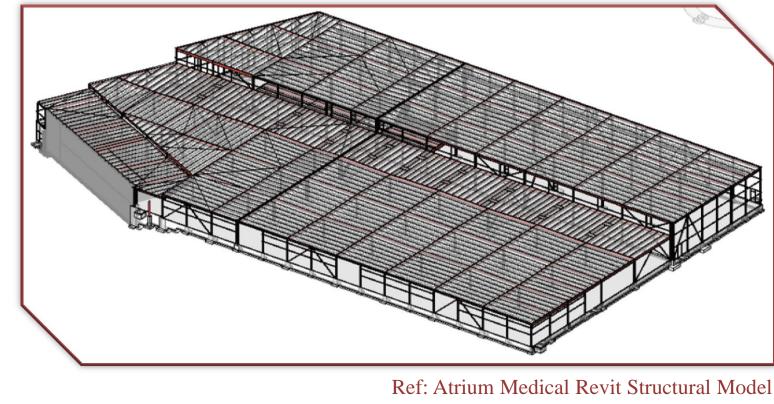
Depth Analysis 1

- Problem Statement
- Proposed Solution
- Structural Breadth
- Total Design Summary
- Analysis Results

Depth Analysis 1:

Description of Structure:

- Structure:
- Beams:
- Columns:
- **Roof Joists:**
- Lateral Bracing:
- Foundations:


Problem:

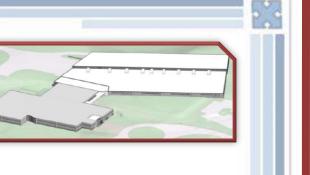
Problem Statement

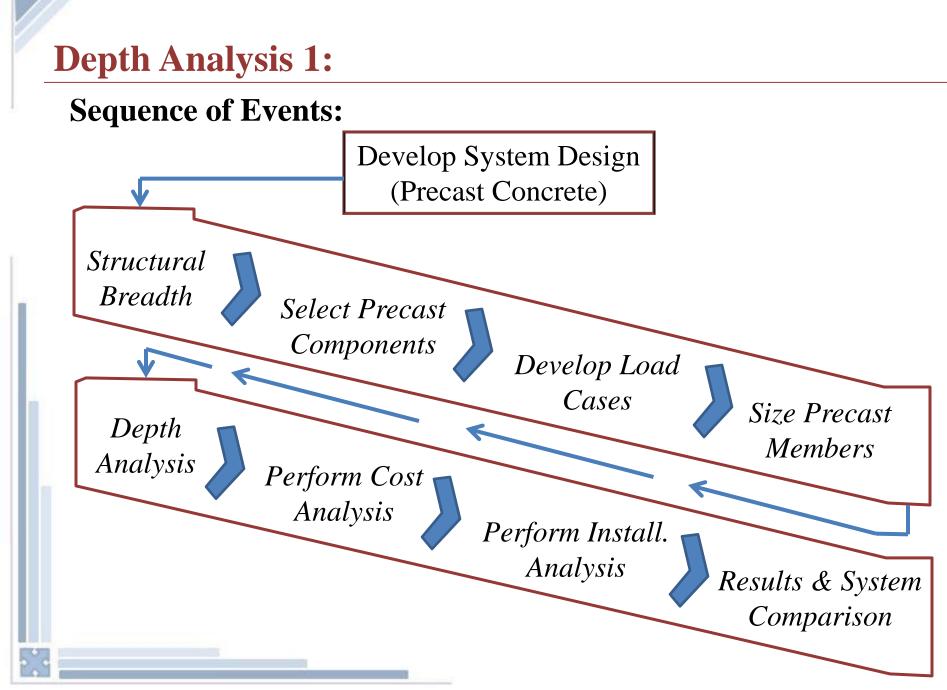
Steel Superstructure Wide Flange Steel Beams Wide Flange Steel Columns **K-Series Joists** HSS Steel Sections Concrete spread & strip footings and piers

Owner not utilizing the opportunity to develop a more efficient structure, in regards to either cost or scheduling.

Steel Structure: Atrium Medical Corporation

Table of Contents


Title Page **Project Information**


Depth Analysis 2 Depth Analysis 3 Conclusion & Recommendations Acknowledgements

Depth Analysis 1

- Problem Statement
- Proposed Solution
- Structural Breadth
- Total Design Summary
- Analysis Results


Proposed Solution

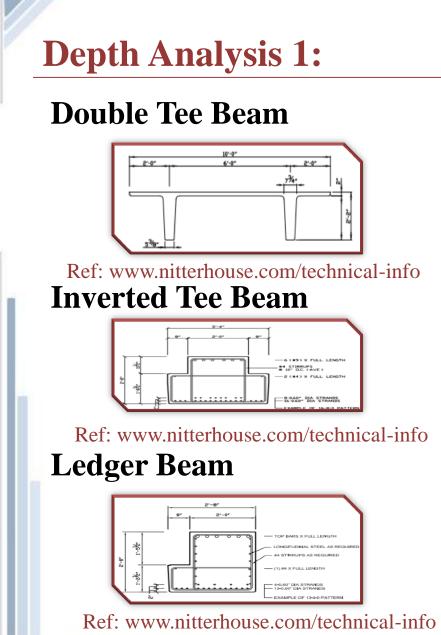
Advantages of Precast Structures:

- Decrease in Project Schedule
- Saves Space on-site
- Saves Money (labor)

Disadvantages of Precast Structures:

- Availability
- Timing
- Small Margin of Error
- High Material Cost

Table of Contents


Title Page **Project Information**

Depth Analysis 2 Depth Analysis 3 Conclusion & Recommendations Acknowledgements

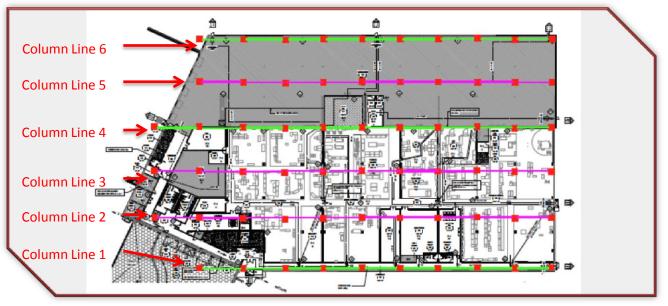
Depth Analysis 1

- Problem Statement
- Proposed Solution
- Structural Breadth
 - Developing a Design
 - Determining Loads
 - Sizing Members
- Total Design Summary
- Analysis Results

Ref: www.concretetech.com


Ref: www.dynaspan.com

Ref: www.cpm-group.com


Structural Breadth:

Square Concrete Columns

Ref: www.condor-rebar.com **Proposed System Layout**

Developing a Design

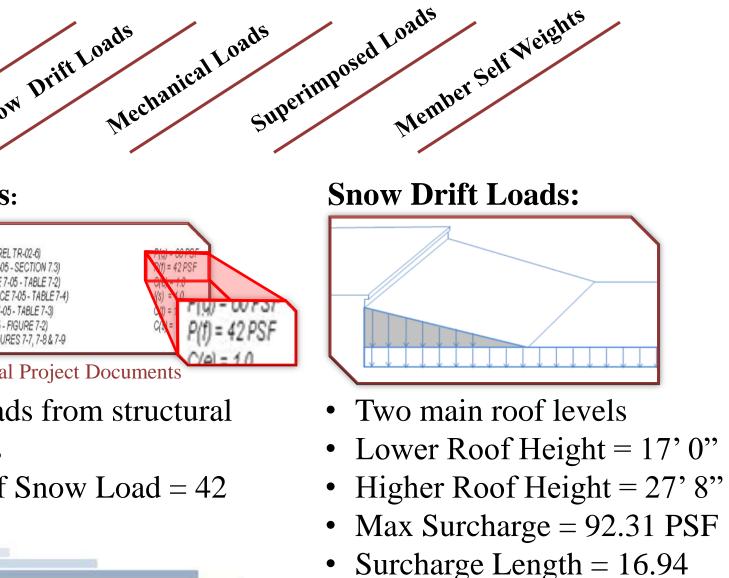
Ref: www.timesunion.com

Ref: Atrium Medical Project Documents Jeffrey Martin | Advisor: Dr. Robert Leicht | Final Presentation

Table of Contents

Title Page Project Information

Depth Analysis 2 Depth Analysis 3 Conclusion & Recommendations Acknowledgements

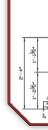


Depth Analysis 1

- Problem Statement
- Proposed Solution
- Structural Breadth
 - Developing a Design
 - Determining Loads
 - Sizing Members
- Total Design Summary
- Analysis Results

Depth Analy
Snow Loads Snow J
Snow Lot Snow
Snow Loads:
SNOW LOADS A. GROUND SNOW LOAD - [ERDC/CRREL TR-02-4 B. FLAT ROOF SNOW LOAD - (ASCE 7-05 - SECTI C. SNOW EXPOSURE FACTOR - (ASCE 7-05 - TABL D. SNOW IMPORTANCE FACTOR - (ASCE 7-05 - TABL F. ROOF THERMAL FACTOR - (ASCE 7-05 - FIGURE SNOW DRIFT - PER ASCE 7-05 - FIGURES 7-7,
Ref: Atrium Medical Pr
Snow loads
drawings
Flat Roof St
PSF

ysis 1:

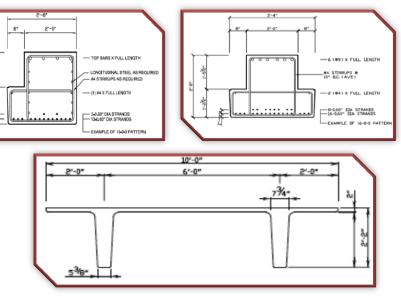


Structural Breadth:

Mechanical Loads

- Loads due to (8) AHU's and (4) RTU's
- Act as point load(s) throughout roof
- Maximum AHU load = 9000 lbs.

Member Self Weights & Superimposed Loads


- Loads from:
 - Double Tees
 - Ledger & Inverted Tee Beams
 - Superimposed Dead = 15 PSF

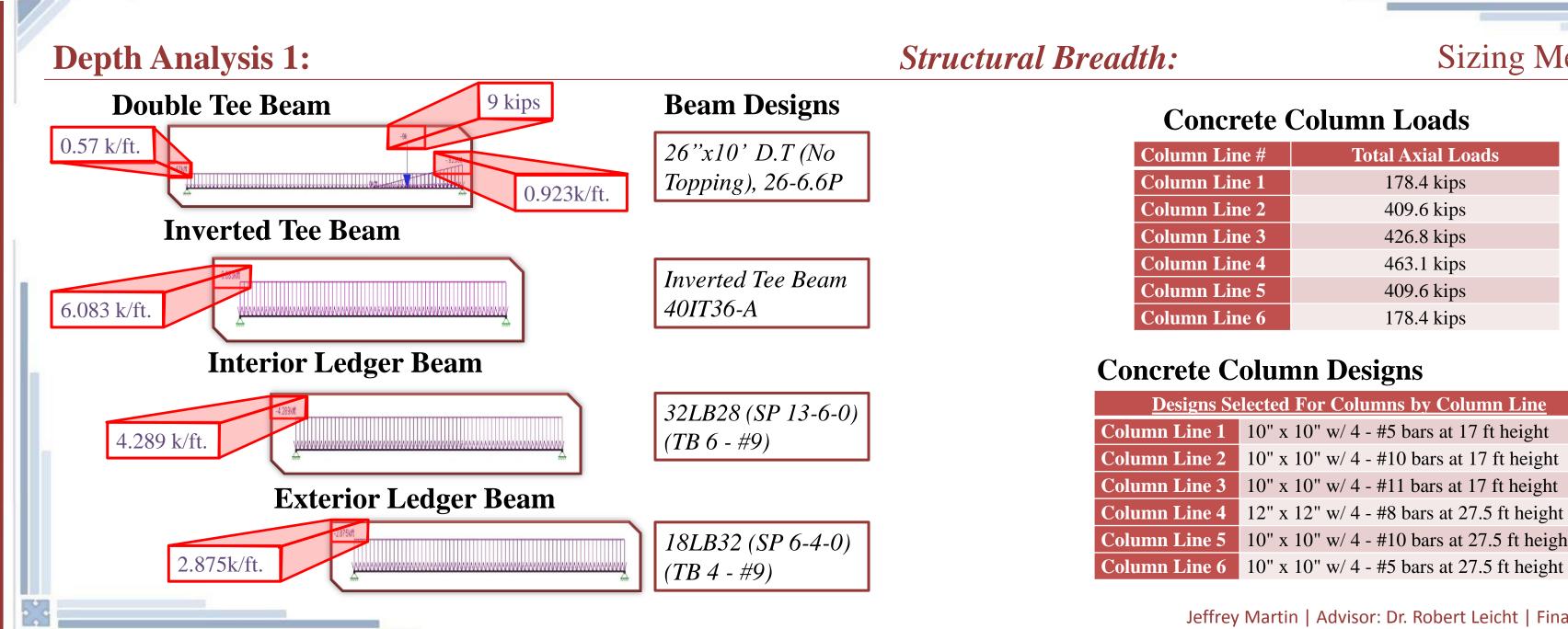
Ref: www.nitterhouse.com/technical-info Jeffrey Martin | Advisor: Dr. Robert Leicht | Final Presentation

Determining Loads

Ref: www.trane.com

Table of Contents

Title Page **Project Information**


Depth Analysis 2 Depth Analysis 3 Conclusion & Recommendations Acknowledgements

Depth Analysis 1

- Problem Statement
- Proposed Solution
- Structural Breadth
 - Developing a Design
 - Determining Loads
 - Sizing Members
- Total Design Summary
- Analysis Results

Sizing Members

Total Axial Loads

178.4 kips 409.6 kips

426.8 kips

463.1 kips

409.6 kips

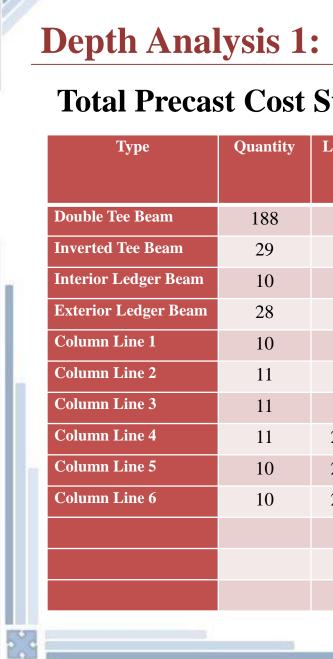
178.4 kips

Designs Selected For Columns by Column Line

Column Line 5 10" x 10" w/ 4 - #10 bars at 27.5 ft height

Column Line 6 10" x 10" w/ 4 - #5 bars at 27.5 ft height

Table of Contents


Title Page **Project Information**

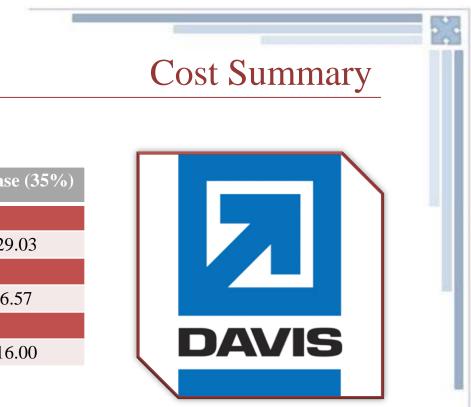
Depth Analysis 2 Depth Analysis 3 Conclusion & Recommendations Acknowledgements

Depth Analysis 1

- Problem Statement
- Proposed Solution
- Structural Breadth
- **Total Design Summary**
 - Cost Summary
 - Installation Summary
- Analysis Results

Total Precast Cost Summary:

Quantity	Length	Unit	Mat'l Cost/Unit	Total Mat'l Cost	Labor/Equip. Cost/Unit	Total Labor/Equip. Cost
188	50	LF	\$18.00	\$169,200.00	\$700.00	\$131,600.00
29	40	LF	\$275.00	\$319,000.00	\$700.00	\$20,300.00
10	40	LF	\$275.00	\$110,000.00	\$700.00	\$7,000.00
28	40	LF	\$275.00	\$308,000.00	\$700.00	\$19,600.00
10	17	LF	\$275.00	\$46,750.00	\$700.00	\$7,000.00
11	17	LF	\$275.00	\$51,425.00	\$700.00	\$7,700.00
11	17	LF	\$275.00	\$51,425.00	\$700.00	\$7,700.00
11	27.5	LF	\$275.00	\$83,187.00	\$700.00	\$7,700.00
10	27.5	LF	\$275.00	\$75,625.00	\$700.00	\$7,000.00
10	27.5	LF	\$275.00	\$75,625.00	\$700.00	\$7,000.00
			Total	\$1,290,237.00	Total	\$222,600.00
			Total Initial System Cost		\$1,512,837.00	


Total Design Summary:

Additional Footing Cost:

Footing Type	Original Cost	Cost Increas
Spread Footings	\$69,225.81	\$24,229
Strip Footings	\$25,675.92	\$8,986
Additional	Concrete Cost	\$33,216

Initial System Cost:	\$1,5
	+
Additional Footing Cost:	\$33
	=
Total System Cost:	\$1,

Jeffrey Martin | Advisor: Dr. Robert Leicht | Final Presentation

512,837.00

8,216.00

,546,053.00

Table of Contents

Title Page **Project Information**

Depth Analysis 2 Depth Analysis 3 Conclusion & Recommendations Acknowledgements

Depth Analysis 1

- Problem Statement
- Proposed Solution
- Structural Breadth
- **Total Design Summary**
 - Cost Summary
 - Installation Summary
- Analysis Results

Total Precast Installation Summary:

Туре	Quantity
ible Tee Beam	188
erted Tee Beam	29
rior Ledger Beam	10
erior Ledger Beam	28
umn Line 1	10
umn Line 2	11
umn Line 3	11
umn Line 4	11
umn Line 5	10
umn Line 6	10
al Members	318
cks per day	~ 6 to 8
s for completion	40 to 53 Days

Total Design Summary:

Ref: www.timesunion.com

Ref: www.dynaspan.com

Total System Installation Time:

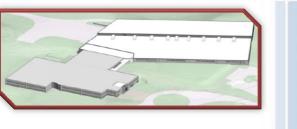
Jeffrey Martin | Advisor: Dr. Robert Leicht | Final Presentation

Installation Summary

Ref: www.concretetech.com

40 to 53 days

Table of Contents


Title Page **Project Information**

Depth Analysis 2 Depth Analysis 3 Conclusion & Recommendations Acknowledgements

Depth Analysis 1

- Problem Statement
- Proposed Solution
- Structural Breadth
- Total Design Summary
- Analysis Results

Depth Analysis 1:

Overall Systems Comparison and Analysis Results:

Precast Structur (Proposed Syste

Steel Structural (Original System

Difference

Issues:

- Cost is too high

	Total Cost	Installation Time (days)
ral System em)	\$1,546,053.00	53 to 40
n)	\$1,273,160.00	45
	(+) \$272,893.00	(+) 8 to (-) 5

Solution:

• Schedule decrease not significant

• Add another crane on-site

Adjusted Costs and Installation Times:

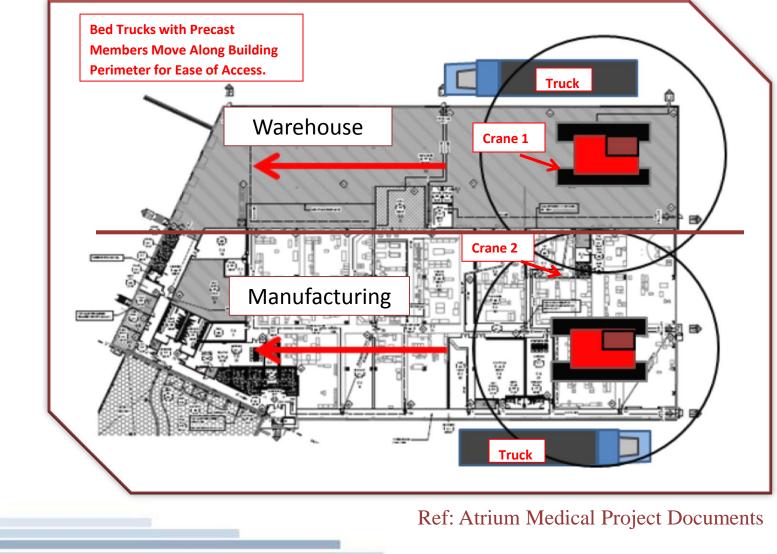
Costs	
100 Ton Crane Rental Cost	\$18,000.00
Add'l Cost of Precast System	\$272,893.00
Total System Cost	\$290,893.00
	φ270,075.00
Installation Times	
Total Steel Member Qty.	318
# Picks per day (one crane)	~6 to 8
# Picks per day (two cranes)	~12 to 16
Total System Installation Time (days)	20 to 26.5
Revised Precast System Cost:	\$1,564,05.
Revised Precast System Installation Time:	20 to 26.5

Jeffrey Martin | Advisor: Dr. Robert Leicht | Final Presentation

days

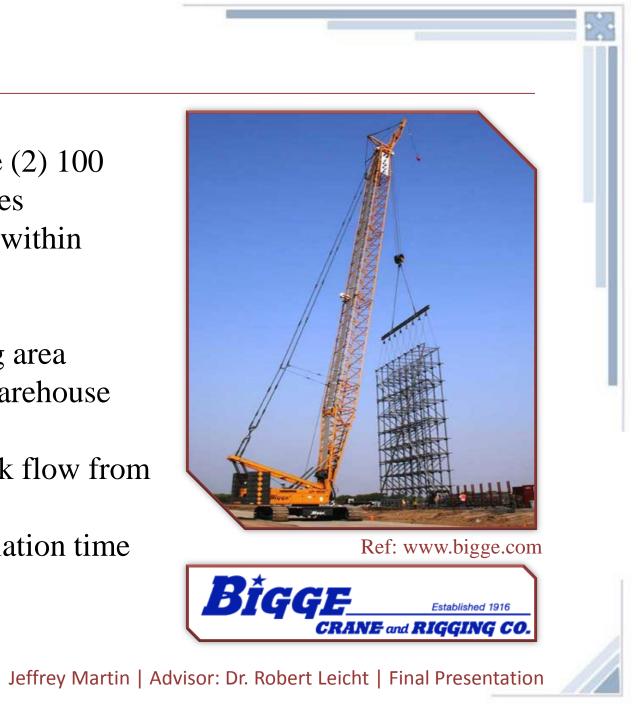
Table of Contents

Title Page **Project Information**


Depth Analysis 2 Depth Analysis 3 Conclusion & Recommendations Acknowledgements

Depth Analysis 1

- Problem Statement
- Proposed Solution
- Structural Breadth
- Total Design Summary
- Analysis Results



Analysis Results

- Project will utilize (2) 100 Ton Crawler Cranes
- Cranes will move within building footprint
 - (1) crane in Manufacturing area
 - (1) crane in Warehouse Area
- Movement of work flow from East to West
- Gives Total Installation time = 20 to 26.5 days

Table of Contents

Title Page Project Information Depth Analysis 1

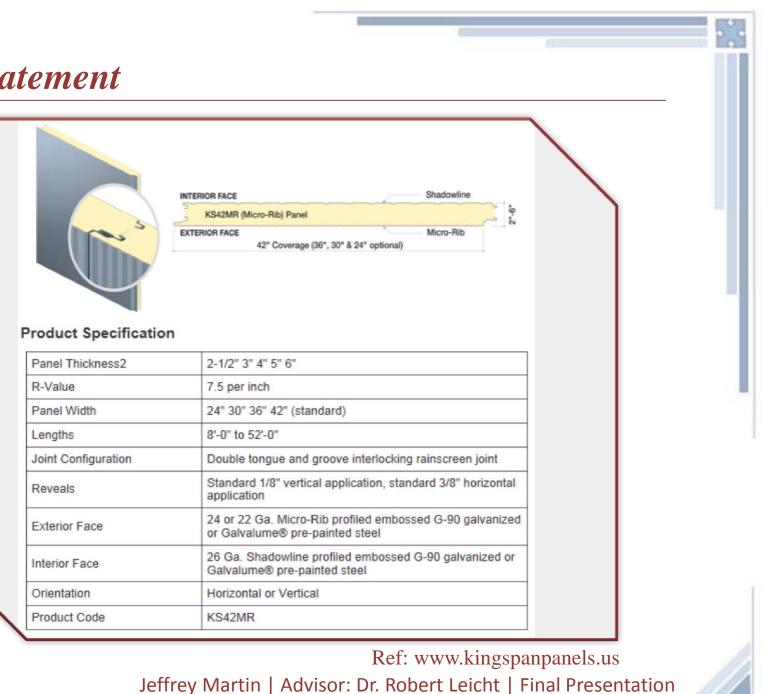
Depth Analysis 3 Conclusion & Recommendations Acknowledgements

| Depth Analysis 2

- Problem Statement
- Proposed Solution
- Mechanical Breadth
- Total Design Summary
- Analysis Results

Description of Envelope:

- Design
- Location:
- Area (SF)
 - Souther
 - Eastern
 - Norther
 - Western


Problem:

Problem Statement

Kingspan Micro-Rib Insulated Metal Panels Exterior Warehouse Area

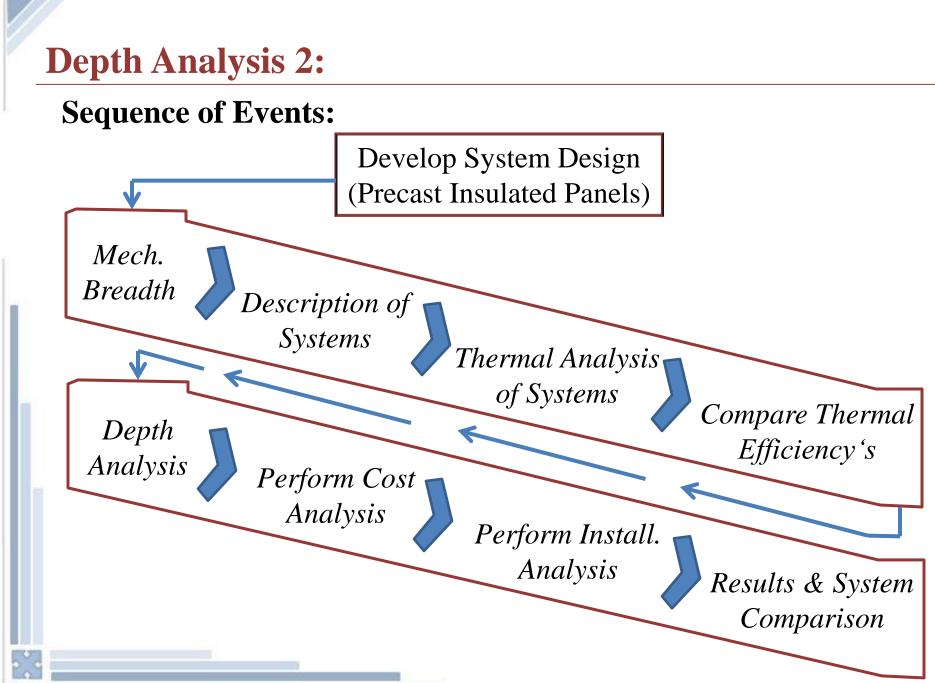
3,106 SF
2,788 SF
10,401 SF
4,016 SF

Owner not utilizing the opportunity to create a more efficient building envelope surrounding the warehouse area.

Panel Thickness2	2-1/2" 3" 4" 5" 6
R-Value	7.5 per inch
Panel Width	24" 30" 36" 42"
Lengths	8'-0" to 52'-0"
Joint Configuration	Double tongue
Reveals	Standard 1/8" ve application
Exterior Face	24 or 22 Ga. Mi or Galvalume®
Interior Face	26 Ga. Shadow Galvalume® pre
Orientation	Horizontal or Ve
Product Code	KS42MR

Table of Contents

Title Page **Project Information** Depth Analysis 1


Depth Analysis 3 Conclusion & Recommendations Acknowledgements

| Depth Analysis 2

- Problem Statement
- Proposed Solution
- Mechanical Breadth
- Total Design Summary
- Analysis Results

Proposed Solution

Advantages of Precast Insulated Panels:

- Decrease Time in Project Schedule
- Versatility
- Energy & Thermal Efficiency
- Fire Resistance

Disadvantages of Precast Insulated Panels:

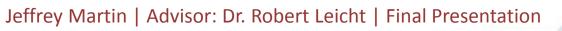

- High Materials Cost
- Timing

Table of Contents

Title Page Project Information Depth Analysis 1

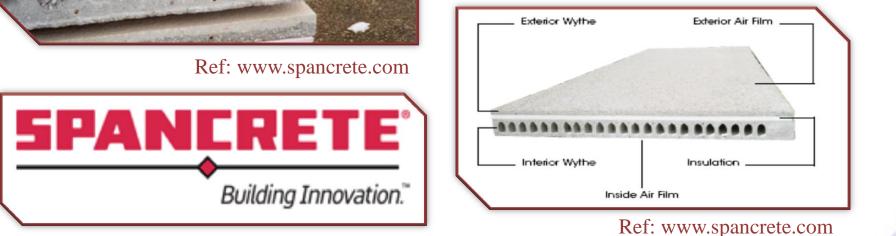
Depth Analysis 3 Conclusion & Recommendations Acknowledgements

Depth Analysis 2

- Problem Statement
- Proposed Solution
- Mechanical Breadth
 - Description of Systems
 - Thermal Analysis & Results
- Total Design Summary
- Analysis Results

Depth Analysis 2:

Original System: Insulated Metal Panels



Ref: www.kingspanpanels.us

Mechanical Breadth:

Proposed System: Precast Insulated Panels

Jeffrey Martin | Advisor: Dr. Robert Leicht | Final Presentation

Description of Systems

Ref: www.spancrete.com

Table of Contents

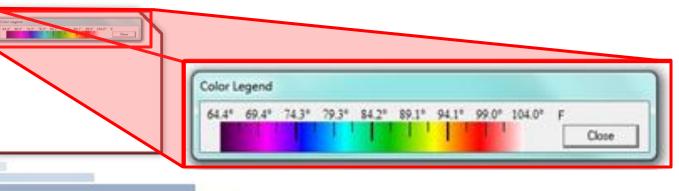
Title Page Project Information Depth Analysis 1

Depth Analysis 3 Conclusion & Recommendations Acknowledgements

Depth Analysis 2: Insulated Metal Panels: Summer Conditions **Insulated Metal Panels** Therma Outside (Ta)(°C) = Interior Temp. Int. Film Metal Panel Insulation Metal Panel Ext. Film

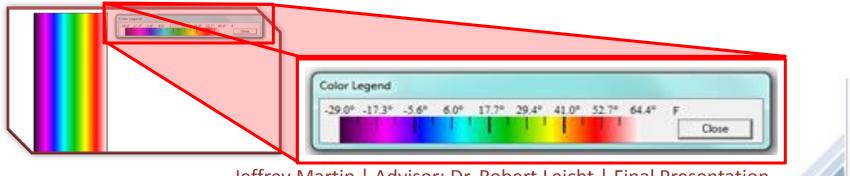
- Problem Statement
- Proposed Solution

Depth Analysis 2


- Mechanical Breadth
 - Description of Systems
 - Thermal Analysis & Results
- Total Design Summary
- Analysis Results

Mechanical Breadth:

al	Analysis: Heat	Transfer (Extreme	Summer Cond.	Int = 64.4°F, Ex	t = 104∘F)	
=	40	Inside (Td)(°C) =	18	ΔTi = L	ΔTi = U * (Ta-Td) * Ri	
	Conductivit	Thickness (m)	Conductance	Resistance	ΔΤ	T (∘C)
	y (k)		(Ci)	(Ri)		
						18.00
	N.A.	N.A.	8.3	0.120481928	0.6797791	18.68
	18	0.00045466	39,590.02	2.52589E-05	0.0001425	18.68
	0.02	0.074985	0.27	3.74925	21.153894	39.83
	18	0.00075946	23,701.05	4.21922E-05	0.0002381	39.83
	N.A.	N.A.	34	0.029411765	0.1659461	40.00
			DCI Total -	2 200		


RSI Total =	3,899	
R-Value =	22.140	
U-Value =	0.256	

Insulated Metal Panels: *Winter Conditions*

Insulated Metal Panels

Thermal Analysis: Heat Transfer (Extreme Winter Cond. Int = 64.4°F, Ext = -29°F)								
Outside (Ta)(°C) =	-34	Inside (Td)(°C) =	18	18 ΔTi = U * (Ta-To		Ri		
	Conductivity (k)	Thickness (m)	Conductance (Ci)	e Resistance (Ri)	ΔΤ	T (∘C)		
Interior Temp.						18.00		
Int. Film	N.A.	N.A.	8.3	0.120481928	-1.60675	16.39		
Metal Panel	18	0.00045466	39,590.02	2.52589E-05	-0.00034	16.39		
Insulation	0.02	0.074985	0.27	3.74925	-50.0001	-33.61		
Metal Panel	18	0.00075946	23,701.05	4.21922E-05	-0.00056	-33.61		
Ext. Film	N.A.	N.A.	34	0.029411765	-0.39224	-34.00		

Thermal Analysis & Results

RSI Total =	3 899	
R-Value =	22.140	
U-Value =	0.256	

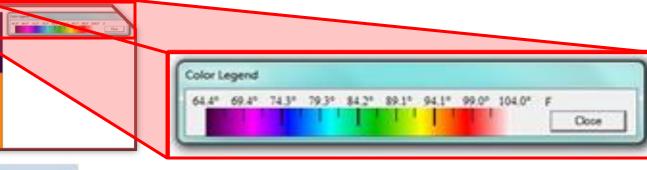
Table of Contents

Title Page Project Information **Depth Analysis 1**

Depth Analysis 3 Conclusion & Recommendations Acknowledgements

Depth Analysis 2: Precast Insulated Panels: Summer Conditions Precast Insulated Panels Therma Outside (Ta)(°C) = nterior Temp. nt. Film Concrete nsulation Concrete Ext. Film 10 BC 37 97 81 81 9 Color Legend 64.4" 69.4" 74.3" 79.3" 84.2" 89.1"

Depth Analysis 2


- Problem Statement
- Proposed Solution
- Mechanical Breadth
 - Description of Systems
 - Thermal Analysis & • Results
- Total Design Summary
- Analysis Results

Thermal Analysis & Results Mechanical Breadth:

a	l Analysis: Heat	Transfer (Extreme	Summer Cond	. Int = 64.4∘F, E	xt = 104∘F)	
	40	Inside (Td)(°C) =	18	ΔTi =	: U * (Ta-Td) *	Ri
	Conductivity (k)	Thickness (m)	Conductance (Ci)	Resistance (Ri)	ΔΤ	T (∘C)
						18.00
	N.A.	N.A.	8.3	0.120481928	0.6326882	18.63
	0.7	0.1524	4.59	0.217714286	1.1432856	19.78
	0.02	0.074985	0.27	3.74925	19.688481	39.46
	0.7	0.0508	13.78	0.072571429	0.3810952	39.85
	N.A.	N.A.	34	0.029411765	0.1544503	40.00

RSI Tot	al = 4.189
R-Valı	ue = 23.788
U-Valu	ue = 0.239

Precast Insulated Panels: *Winter Conditions*

Precast Insulated Panels

Thermal Analysis: Heat Transfer (Extreme Winter Cond. Int = 64.4°F, Ext = -29°F)						
Outside (Ta)(°C) = -34		Inside (Td)(°C) =	18	∆Ti = U	* (Ta-Td) * F	Ri
	Conductivity (k)	Thickness (m)	Conductance (Ci)	Resistance (Ri)	ΔΤ	T (∘C)
Interior Temp.						18.00
Int. Film	N.A.	N.A.	8.3	0.120481928	-1.49544	16.50
Concrete	0.7	0.1524	4.59	0.217714286	-2.70231	13.80
Insulation	0.02	0.074985	0.27	3.74925	-46.5364	-32.73
Concrete	0.7	0.0508	13.78	0.072571429	-0.90077	-33.63
Ext. Film	N.A.	N.A.	34	0.029411765	-0.36506	-34.00

RSI Total =	4.189	
R-Value =	23.788	
U-Value =	0.239	

Table of Contents

Title Page Project Information Depth Analysis 1

Depth Analysis 3 Conclusion & Recommendations Acknowledgements

Depth Analysis 2: Precast Insulated Panel Cost: Loca Southe Easter Northe Weste Loca Southe Easter Northe Weste

| Depth Analysis 2

- Problem Statement
- Proposed Solution
- Mechanical Breadth
- **Total Design Summary**
 - Cost Summary
 - Installation Summary
- Analysis Results

Total Design Summary:

ation	Area (ft ²)	Unit	Material \$/Unit		Material \$
ern Face	3106	SF	18	\$	55,908.00
rn Face	2788	SF	18	\$	50,184.00
ern Face	10401	SF	18	\$	187,218.00
rn Face	4016	SF	18	\$	72,288.00
				\$	365,598.00
ation	Quantity	Unit	Labor/Equip \$/Unit	La	bor/Equip \$
ern Face	14	Ea.	700	\$	9,800.00
rn Face	13	Ea.	700	\$	9,100.00
ern Face	47	Ea.	700	\$	32,900.00
rn Face	18	Ea.	700	\$	12,600.00
				\$	64,400.00
			Total Cost	Ś	429,998.00
				Ļ	425,550.00

Additional Footing Cost: Cost Increase (35%) \$14,221.00 \$14,221.00

Footing Type	Original (
Spread Footings	\$40,631.
Additional C	Concrete Cost

Initial System Cost:

Additional Footing Cost:

Total System Cost:

Jeffrey Martin | Advisor: Dr. Robert Leicht | Final Presentation

Cost Summary

\$429,998.00 \$14,221.00 <u>\$444,219.00</u>

Table of Contents

Title Page **Project Information** Depth Analysis 1

Depth Analysis 3 Conclusion & Recommendations Acknowledgements

Depth Analysis 2: Precast Insulated Panel Install Time: Loc Southe

Easte North

Weste

- Depth Analysis 2
- Problem Statement
- Proposed Solution
- Mechanical Breadth
- **Total Design Summary**
 - Cost Summary
 - Installation Summary
- Analysis Results

Total Design Summary:

ation	Area (ft ²)	Member Area (ft2)	Quantity (Area/Member Area)
ern Face	3106	221.36	14
rn Face	2788	221.36	13
ern Face	10401	221.36	47
rn Face 4016		221.36	18
Total Quantity			92
# Picks per Day			~6 to 8
r	Fotal Installation 7	12 to 15	

Ref: www.spancrete.com

Total System Installation Time: 12 to 15 days

Installation Summary

Ref: www.spancrete.com

Table of Contents

Title Page Project Information Depth Analysis 1

Depth Analysis 3 Conclusion & Recommendations Acknowledgements

> | Depth Analysis 2

- Problem Statement
- Proposed Solution
- Mechanical Breadth
- Total Design Summary
- Analysis Results

Analysis Results

Ietal Panel System Cost			
	\$354,400.00		
ost (+)	\$46,355.00		
ost (-)	\$31,007.00		
Cost	\$369,748.00		

Ref: www.bossteel.com

Ref: www.bossteel.com

Insulated Metal Panel Installation Time:

nel System Installation Time =		67 Days	
уре	Area (ft^2)	% of Install. Time	Total Install. Time (days)
Panels	7,112	26%	17
al Panels	20,311	74%	50
Total =	27,423	100%	67

Overall Systems Comparison and Analysis Results:

	Total Cost	Installation Time (days)
Precast Insulated Panels	\$444,219.00	12 to 15
Insulated Metal Panels	\$369,748.00	50
Difference	(+) \$74,471	(-) 38 to (-) 35

Table of Contents

Title Page **Project Information** Depth Analysis 1 Depth Analysis 2

Conclusion & Recommendations Acknowledgements

Depth Analysis 3

- Problem Statement
- Proposed Solution
- PtD Industry
- System Selection
- Typical Steel Connections
- NISD Details
- Analysis Results

Depth Analysis 3:

Problem:

Summary of Safety Plan:

- Formal safety plan for field and office staff *during* construction
- Superintendents have OSHA 30-Hour training
- All other employees have OSHA 10-Hour training.
- Weekly toolbox talks
- Basic construction safety (i.e. PPE,

Equip. Safety etc.) Ref: www.hutterconstruction.com

> Owner not utilizing the opportunity to plan and design for safety consideration prior to project's construction.

Problem Statement

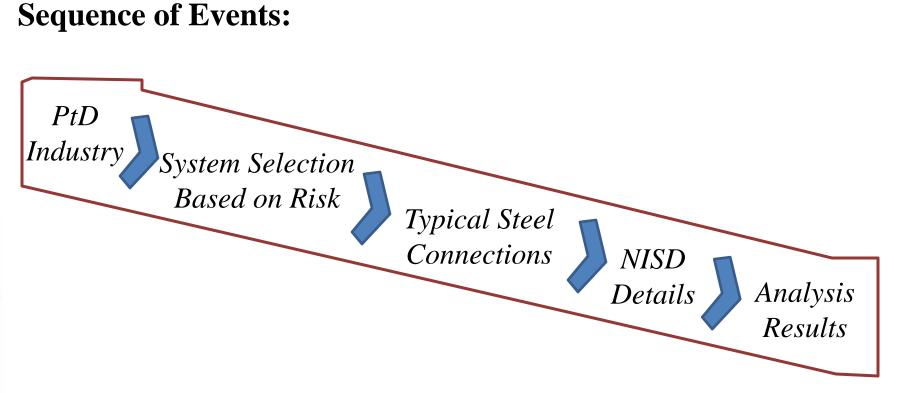
Hutter Construction on *Safety*:

"Training is an integral part of Hutter's safety commitment. In addition to the traditional weekly toolbox talks, ongoing safety training is regularly provided by outside professionals. Among the topics continually addressed: competent persons, confined space, boom lifts, forklifts, snorkel lifts, CPR and first aid. All of our employees, including project managers have received the OSHA 10-Hour certified training and new employees receive the training within 30 days of hire. All of our superintendents have received OSHA 30-Hour training."

Table of Contents

Title Page **Project Information** Depth Analysis 1 Depth Analysis 2

Conclusion & Recommendations Acknowledgements



Depth Analysis 3

- Problem Statement
- Proposed Solution
- PtD Industry
- System Selection
- Typical Steel Connections
- NISD Details
- Analysis Results

Depth Analysis 3:

PtD

Proposed Solution

Benefits of Implementing a Design Guide:

- Increase Safety Consideration
- Increase in Quality Control
- Reduce Delays
- Increase in Productivity
- Increase Collaboration between Designer & Constructors

Barriers of Implementing a Design Guide:

- Designer's Liability
- Additional Costs
- Lack of Expertise

Table of Contents

Title Page **Project Information** Depth Analysis 1 Depth Analysis 2

Conclusion & Recommendations Acknowledgements

Depth Analysis 3

- Problem Statement
- Proposed Solution
- PtD Industry
- System Selection
- Typical Steel Connections
- NISD Details
- Analysis Results

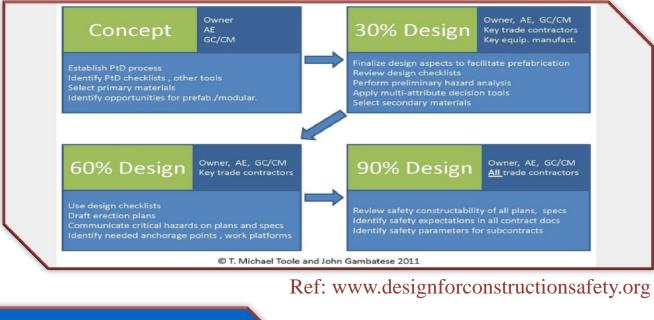
Depth Analysis 3:

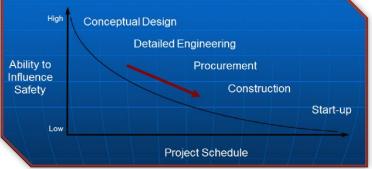
Prevention through Design (PtD):

- Industry developed to prevent hazards from occurring during construction
 - Began in late 90's
 - design phase
 - Ensures safety of workers during construction

- Construction tasks & processes
- viewed during conceptual and

Ref: www.lhsfna.org


Ref: www.asse.org



Ref: www.asse.org

Prevention through Design Industry

Prevention through Design Process:

Ref: www.elcosh.org

As the timeline of the project schedule increase, the ability to influence safety on the project decreases.

Table of Contents

Title Page **Project Information** Depth Analysis 1 Depth Analysis 2

Conclusion & Recommendations Acknowledgements

Depth Analysis 3:

SliDeRulE Information:

- construction safety risk for a particular project. • Determining the level of safety risk for an entire building and each system within that
- Safety in Design Risk Evaluator • Program designed to interpret the level of • This program is used primarily for:
- building
 - Comparing designs based on risks
 - Learning about design features that could
 - potentially increase or decrease risk
 - Creating building designs that minimize the risk of injury for construction workers

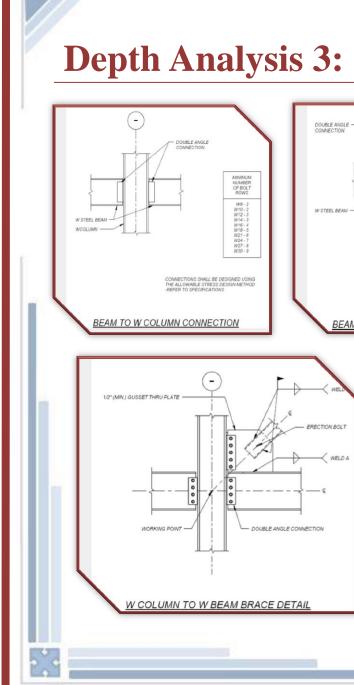

Depth Analysis 3

- Problem Statement
- Proposed Solution
- PtD Industry
- System Selection
- Typical Steel Connections
- NISD Details
- Analysis Results

System Selection

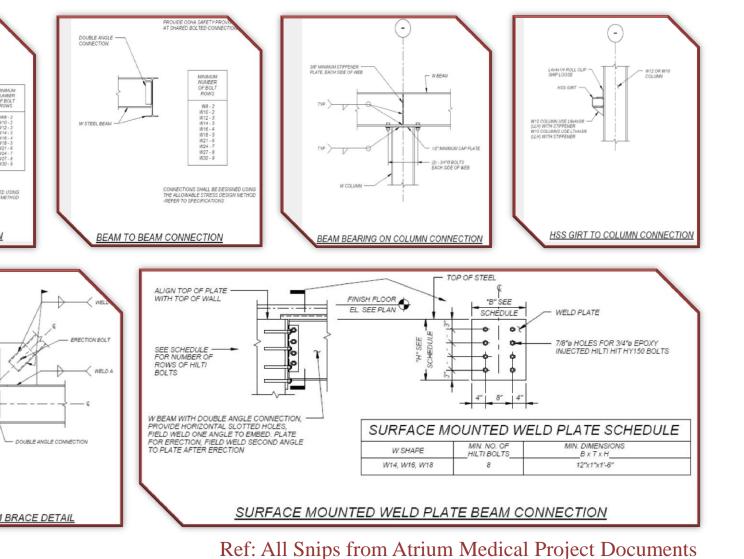
SliDeRulE Results

System Name	<u>Safety Risk</u>	<u>Risk Percent</u>
Foundation		4%
Structural Frame		28%
Exterior Enclosure		18%
Roof		15%
Interiors		5%
Plumbing		1%
HVAC		17%
Electrical		13%


Table of Contents

Title Page Project Information Depth Analysis 1 Depth Analysis 2

Conclusion & Recommendations Acknowledgements



Depth Analysis 3

- Problem Statement
- Proposed Solution •
- PtD Industry
- System Selection
- Typical Steel Connections
- NISD Details
- Analysis Results

Typical Steel Connections

STRU	CTURAL	STEEL FRAMING		
51.		STRUCTURAL STEEL WORK SHALL CONFORM TO THE AISC "SPL AISC "CODE OF STANDARD PRACTICE FOR STEEL BUILDINGS A		
52.	WELD	WELDING SHALL BE IN ACCORDANCE WITH AWS "D1.1 2006-STR		
33.	STRU A. B.	CTURAL STEEL SHALL CONFORM TO THE PLATES STRUCTURAL TUBING	FOLLOWING, UNI ASTM A5	
	С.	ALL OTHER SHAPES	ASTM A9	
54.	CONNECTIONS MAY BE BOLTED OR WELDED, UNLESS SPECIFIC AND DETAILED IN ACCORDANCE WITH AISC STANDARDS, USING			
\$5.	CONNECTIONS SHALL BE WELDED TO CONFORM TO ASTM A23. BOLTS.			
6.	PROVIDE 3/4" DIAMETER MINIMUM HEADED TYPE ANCHOR ROD			
57.	FURN	ISH AND INSTALL ONE WASHER AND ONE	HEAVY HEX NUT	
S8.		Y SUPPORTED BEAM-TO-BEAM CONNEC TEEL CONSTRUCTION", UNLESS SPECIFIC		
<u>9</u>	PLATE	IDE A 1/4" THICK LEVELING PLATE UNDER ES. LEVELING PLATE SHALL BE SET AND (ATTAINED DESIGN STRENGTH BEFORE E	GROUTED WITH A	
610.	SPLICING STRUCTURAL MEMBERS WHERE NOT DETAILED ON D ARCHITECT.			
611.	STRUCTURAL STEEL EXPOSED TO THE WEATHER IN THE FINIS ASTM A123. CANOPY STEEL SHALL BE PRIMED AND PAINTED.			
512.	STRUCTURAL STEEL EXPOSED TO VIEW IN THE COMPLETED PI STEEL (A.E.S.S.). ALL COLUMNS AND BRACES ON GRID LINES H AESS STEEL. REFER TO SPECIFICATIONS.			
613.	REFE	R TO THE SPECIFICATION FOR PAINTING	AND SURFACE PR	
514.	NEW	CONTRACTOR SHALL PROVIDE ALL NECES STRUCTURE FOR WIND AND CONSTRUCT IRED FOR STABILITY OF THE STEEL FRAM	TON LOADS. TEMP	

ECIFICATION FOR STRUCTURAL STEEL BUILDINGS - 360-05" AND ND BRIDGES - 2005", AS MODIFIED BY THE SPECIFICATIONS.

UCTURAL WELDING CODE-STEEL"

NLESS NOTED. ASTM A36 500 GRADE B

 $F_V = 36KSI$ Fy = 46KSI (SQUARE & RECTANGULAR TUBING), Fy = 42KSI (ROUND TUBING) 992 OR A588 GRADE B Fy = 50KSI

ICALLY NOTED OTHERWISE. CONNECTIONS SHALL BE DESIGNED IG THE ASD METHOD.

3, E70 SERIES, OR BOLTED TO CONFORM TO ASTM A325, TYPE N

S AT COLUMNS AND POSTS. UNLESS NOTED OTHERWISE.

WITH ALL ANCHOR RODS, UNLESS NOTED.

DOUBLE ANGLE TYPE IN CONFORMANCE WITH THE AISC "MANUAL HERWISE ON THE STRUCTURAL DRAWINGS.

BASE PLATE FOR USE IN ALIGNING ANCHOR RODS AND BASE IN APPROVED NON-SHINK, NON-METALLIC GROUT. GROUT SHALL

RAWINGS IS PROHIBITED WITHOUT PRIOR APPROVAL OF

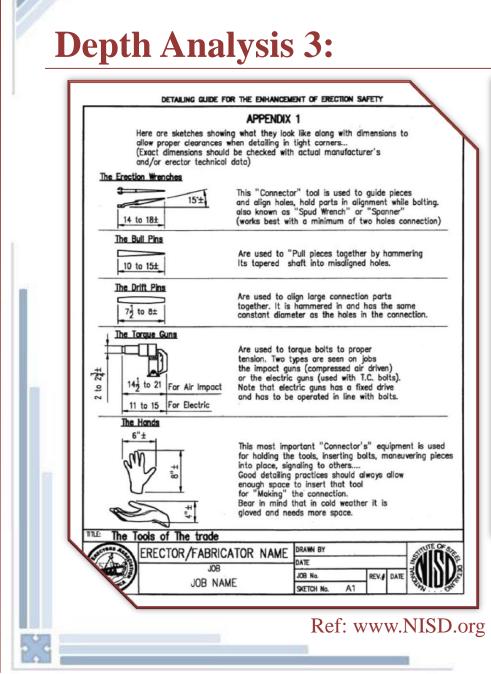
HED PROJECT SHALL BE HOT DIP GALVANIZED TO CONFORM TO

ROJECT SHALL BE ARCHITECTURALLY EXPOSED STRUCTURAL I AND K SHALL BE AESS STEEL. ALL STEEL IN THE CANOPY SHALL BE

REPARATION REQUIREMENTS

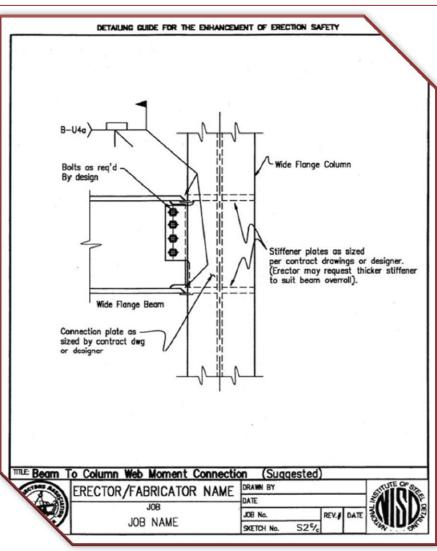
RY GUYING AND BRACING REQUIRED TO ERECT AND HOLD THE PORARY SUPPORTS SHALL REMAIN IN PLACE UNTIL ALL ELEMENTS

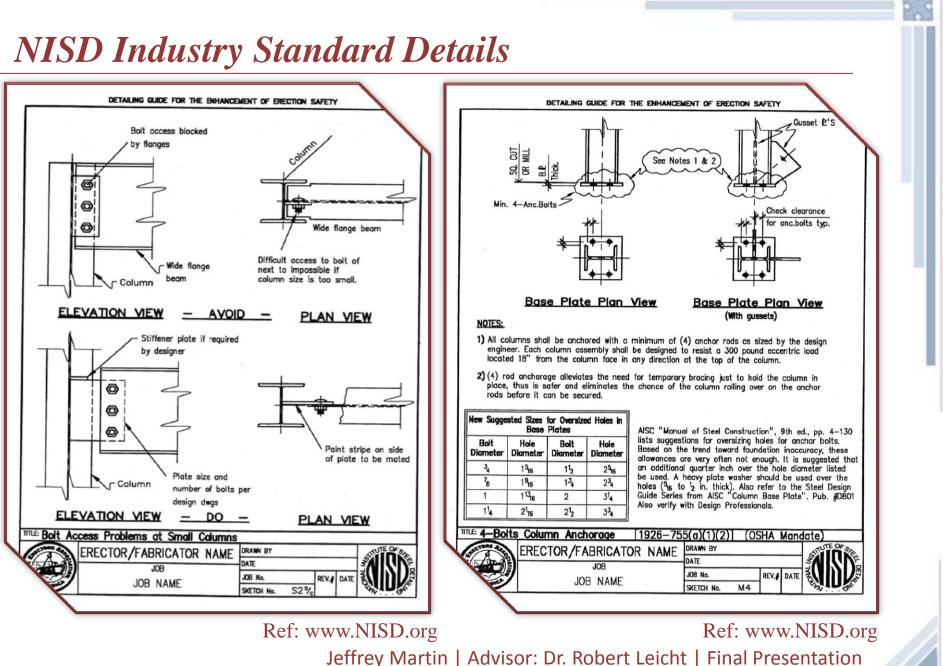
Ref: Atrium Medical Project Documents


Table of Contents

Title Page **Project Information** Depth Analysis 1 Depth Analysis 2

Conclusion & Recommendations Acknowledgements





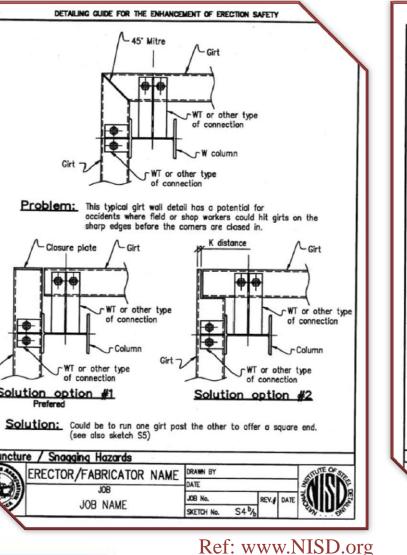
Depth Analysis 3

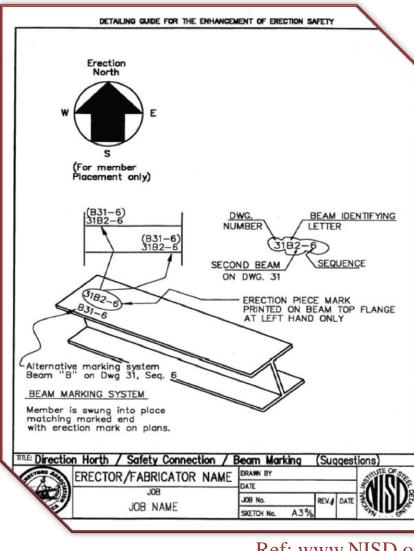
- Problem Statement
- Proposed Solution •
- PtD Industry
- System Selection
- Typical Steel Connections
- NISD Details
- Analysis Results

Ref: www.NISD.org

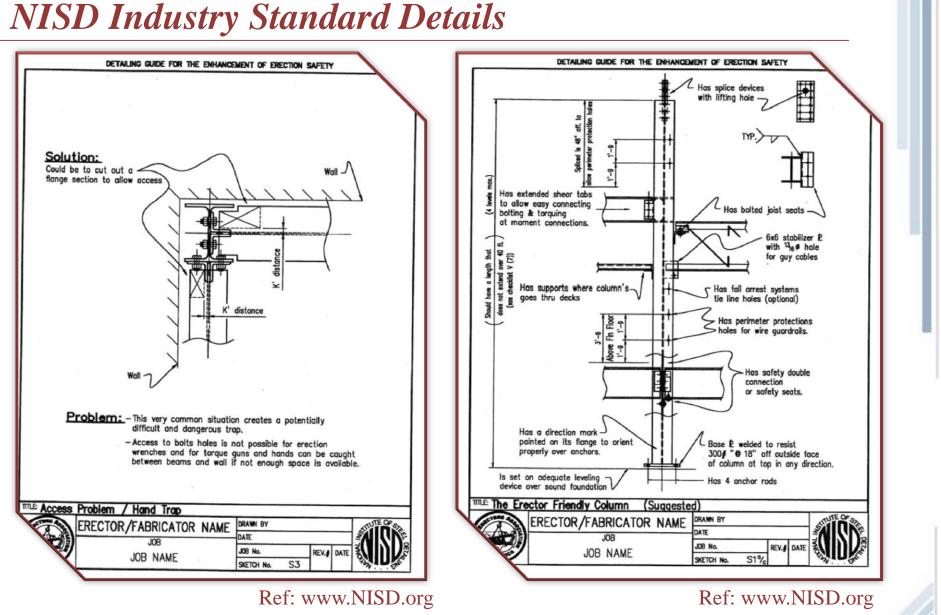
Table of Contents

Title Page **Project Information** Depth Analysis 1 Depth Analysis 2


Conclusion & Recommendations Acknowledgements



Depth Analysis 3


- Problem Statement
- Proposed Solution •
- PtD Industry
- System Selection
- Typical Steel Connections
- NISD Details
- Analysis Results

Depth Analysis 3: Closure plate Column rWT or other type of connection Solution option #1 TRE: Puncture / Snagging Hazards ERECTOR/FABRICATOR NAME DRAWN BY JOB NAME

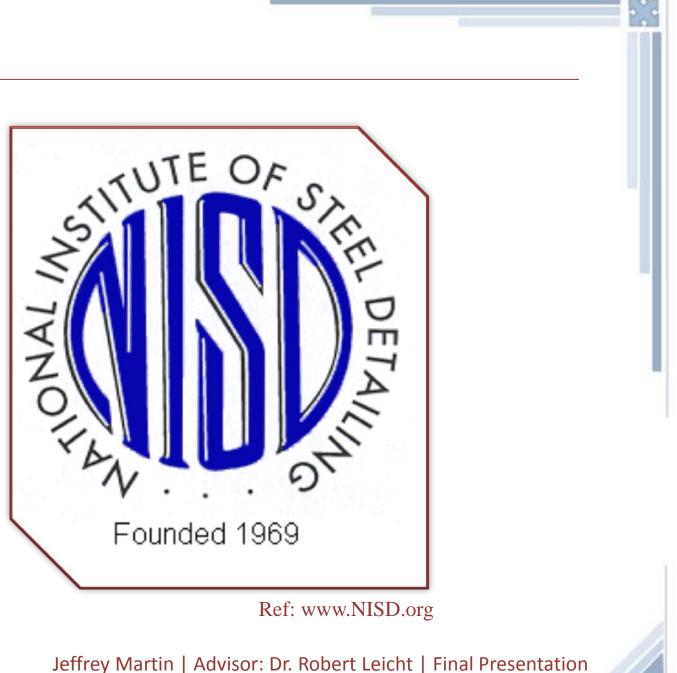
Ref: www.NISD.org

Table of Contents

Title Page Project Information Depth Analysis 1 Depth Analysis 2

Conclusion & Recommendations Acknowledgements

Overall Benefits of a Design Guide


- Developed to ensure safety of workers during construction
- If properly implemented, problems can be foreseen and therefore prevented

Depth Analysis 3

- Problem Statement
- Proposed Solution
- PtD Industry
- System Selection
- Typical Steel Connections
- NISD Details
- Analysis Results

- Encourages collaboration between designer and constructor
 - Creates a better working relationship,
 - less "lost in translation" incidents
 - Ensures quality control, as issues during design can be managed and adjusted if necessary

Table of Contents

Title Page **Project Information** Depth Analysis 1 Depth Analysis 2 Depth Analysis 3

Acknowledgements

Conclusions & Recommendations

Depth Analysis 1:

Conclusion

- Precast structural system imposed a \$1,564,053.00 cost, with the use of (2) 100 ton crawler cranes and 20 to 26.5 days for installation

Recommendation

Install the precast concrete structure, to save time on the critical path of the project schedule

Conclusions & Recommendations

- Cost is \$290,893.00 greater than original steel structure
- 18.5 to 25 days less than structural steel installation

Depth Analysis 2:

Conclusion

- Precast insulated panels cost a total of \$444,219.00, and require 12 to 15 days for installation. The panels also have a thermal efficiency (R-Value) of 23.78
 - Cost is \$74,471.00 greater than original envelope system
 - Installation time is 35 to 38 days less than original envelope
 - R-Value of this system is 1.64 greater than original envelope

Recommendation

Install the precast insulated panels to save time during installation

Depth Analysis 3:

Conclusion

• Design guide focused on basic steel installation/connection issues, as well as specific details pertaining to connections typically found within Atrium Medical

Recommendation

• Pay the additional upfront fee to hire design professionals and implement a design guide

Table of Contents

Title Page Project Information Depth Analysis 1 Depth Analysis 2 Depth Analysis 3 Conclusion & Recommendations

Acknowledgements

Acknowledgments

Alyssa Stangl - fellow AE student/girlfriend Garrett Schwier – fellow AE student/chair

Academic Acknowledgements Thank you:

Dr. Robert M Leicht Dr. Ali M. Memari, P.E. Moses D.F. Ling, P.E., RA

Special Thanks to:

All of my family and friends

Industry Acknowledgements Thank you:

David Lage Les Somero

Bill Moyer Daniel Zartman

Jeffrey Martin | Advisor: Dr. Robert Leicht | Final Presentation

Sean Landry

Table of Contents

Title Page Project Information Depth Analysis 1 Depth Analysis 2 Depth Analysis 3 Conclusion & Recommendations Acknowledgements

Questions?