Perot Museum of Nature and Science Final Lighting Design Presentation

Yucheng Lu, Lighting | Electrical, Adviser: Shawn Good

Dallas Museum of Natural History

• Established in 1936, Dallas Museum of Natural History is a collectionsbased, research-driven public natural history museum dedicated to document and describe Texas' vast natural diversity.

Dallas Museum of Natural History

• Established in 1936, Dallas Museum of Natural History is a collectionsbased, research-driven public natural history museum dedicated to document and describe Texas' vast natural diversity.

Dallas Museum of Nature and Science

• In 2006, the Dallas Museum of Natural History merged with two other institutes: Science Place and The Dallas Children's Museum, became the Dallas Museum of Nature and Science.

Dallas Museum of Natural History

• Established in 1936, Dallas Museum of Natural History is a collectionsbased, research-driven public natural history museum dedicated to document and describe Texas' vast natural diversity.

Dallas Museum of Nature and Science

• In 2006, the Dallas Museum of Natural History merged with two other institutes: Science Place and The Dallas Children's Museum, became the Dallas Museum of Nature and Science.

Perot Museum of Nature and Science

The merge turns out to be successful and allowed the museum to relocate into its new victory park campus in 2012.

Project History

Building Overview

Design Concept

Project History

Building Overview

Design Concept

Building name: Perot Museum of Nature and Science

Location and site: 2201 N Field St, Dallas, TX 75201

Occupancy : Public Museum

Size: 180,000 ft^2

Total Levels: 5

Dates of construction: 05/2010 – 12/2012

Project History

Building Overview

Design Concept

PLINTH PEROT MUSEUM OF NATURE & SCIENCE

• Artificial landscape plinth is built around the museum, serving as the roof of basement and theater.

Project History

Building Overview

Design Concept

CUBE PEROT MUSEUM OF NATURE & SCIENCE

- Artificial landscape plinth is built around the museum, serving as the roof of basement and theater.
- Precast concrete panel is assembled into a iconic textured facade. A 150 riding experience.

Lighting | Electrical | Daylighting | Acoustical | Architectural

feet long escalator cartridge is attached on the facade to provide a unique

Project History

Building Overview

Design Concept

ATRIUM **PEROT MUSEUM OF NATURE & SCIENCE**

- \bullet of basement and theater.
- Precast concrete panel is assembled into a iconic textured facade. A 150 riding experience.
- Atrium on the south east corner of the building replaced precast concrete with glazings, brings daylight into the space as well as a excellent view.

Lighting | Electrical | Daylighting | Acoustical | Architectural

Artificial landscape plinth is built around the museum, serving as the roof

feet long escalator cartridge is attached on the facade to provide a unique

Project History

Building Overview

Design Concept

CORE PEROT MUSEUM OF NATURE & SCIENCE

- \bullet of basement and theater.
- Precast concrete panel is assembled into a iconic textured facade. A 150 riding experience.
- Atrium on the south east corner of the building replaced precast concrete with glazings, brings daylight into the space as well as a excellent view.
- Core structure of the building formed an isolated space from the open \bullet exhibition hall to host electrical and mechanical devices as well as elevator well.

Lighting | Electrical | Daylighting | Acoustical | Architectural

Artificial landscape plinth is built around the museum, serving as the roof

feet long escalator cartridge is attached on the facade to provide a unique

Project History

Building Overview

Design Concept

"I envision Victory Park as an u

- Ross Perot, Donor & Developer

Lighting | Electrical | Daylighting | Acoustical | Architectural

e destination"

Project History

Building Overview

Design Concept

"I envision Victory Park as an u - Ross Perot, Donor & Developer

"Once museums were combined, the ambition was to replace them with a new building that would seamlessly **unite** these variegated strands"

"We are Excited to bring some amazing family attractions"

- Nicole Small, Museum CEO

Lighting | Electrical | Daylighting | Acoustical | Architectural

e destination"

Project History

Building Overview

Design Concept

"I envision Victory Park as an u - Ross Perot, Donor & Developer

"Once museums were combined, the ambition was to replace them with a new building that would seamlessly **unite** these variegated strands"

"We are Excited to bring some amazing **family attractions**"

- Nicole Small, Museum CEO

"The experience is about a sequence of moving, a journey. The whole building is about being didactic and itself is an exhibit."

"The building is compelling and will expand user's imagination. Everywhere in the building will be left transparent and you will understand architecture"

- Thom Mayne, Morphosis Architect

Lighting | Electrical | Daylighting | Acoustical | Architectural

edestination"

Project History

Building Overview

Design Concept

Educate

Design lighting solutions that help demonstrate unique architectural features and inspire visitors.

Peace

Create a relaxing atmosphere, allow the museum to function as a retreat from fast paced urban life.

Entertain

Treat lighting system as part of the exhibition, adding visual interest into \bullet the museum.

Lighting | Electrical | Daylighting | Acoustical | Architectural

P10

Classroom

Design Criteria

Theater

Façade

Summary

Design Approach

Design Result

Dimensions: Length = 31 ft Width = 25 ft Area = 735 ft^2 Ceiling Height = 12 ft Roof Height = 28 ft in average Light Well Height = 16 ft

Classroom

Lighting | Electrical | Daylighting | Acoustical | Architectural

P11

Classroom

Design Criteria

Theater

Façade

Summary

Design Approach

Design Result

Design Criteria

Create an atmosphere remarkably distinct from typical education facilities to offer an **exciting learning experience**.

Incorporate light well system into the design to create a three dimensional lighting scheme that demonstrates Architectural feature.

Space Type	Eh	Ev	Avg : Min
Classroom	200 lux	75 lux	2:1
White Board		150 lux	3:1

Target Power Density: 1.28 W/SF

Theater

Classroom

Façade

Summary

Design Criteria

Design Approach

Design Result

Design Approach

Lighting design focus on simulating an underground cave theme, using the light well as the only natural light.

Classroom

Theater

Façade

Summary

Design Criteria

Design Approach

Design Result

Design Approach

Lighting design focus on simulating an underground cave theme, using the light well as the only natural light.

Typical cave elements such as stalactites and Cave plants are simulated though luminaire and finishing to enhance the theme.

Theater

Classroom

Façade

Summary

Design Criteria

Design Approach

Design Result

Spring Equinox, 12 PM

Summer Solstice, 12 PM

Winter Solstice, 12 PM

Design Approach

Lighting design focus on simulating an underground cave theme, using the light well as the only natural light.

Typical cave elements such as stalactites and Cave plants are simulated though luminaire and finishing to enhance the theme.

Program based daylighting simulation is also used to assist with lighting layout and control strategy design.

Fall Equinox, 12 PM

Theater

Classroom

Façade

Summary

Design Criteria

Design Approach

Design Result

Design Result

LED tubes are arranged in a way to surround the light well, gathering attention on it.

Wide distribution floodlight inside the light well made the entire structure itself a luminaire, distributing light throughout the space uniformly.

Whiteboard is illuminated by wall washer to guarantees sufficient light level.

Space Type	En	Ev	Avg : Min
Classroom	268 lux	128 lux	2.19 : 1
White Board		215 lux	2.17 : 1

Actual Power Density: 1.05 W/SF

Façade

Summary

Design Criteria

Design Approach

Design Result

Façade

Summary

Design Criteria

Design Approach

Design Result

Façade

Summary

Design Criteria

Design Approach

Design Result

P16

Classroom

Theater

Façade

Summary

Design Criteria

Design Approach

Design Result

Theater

Dimensions

Approximate Area = 3726 ft² Length = 69 ft Width at Front Row = 43 ft Width at Back Row = 64 ft Ceiling Height at Front Row = 22 ft Ceiling Height at Back Row = 18 ft

Classroom

Theater

Façade

Summary

Design Criteria

Design Approach

Design Result

Design Criteria

Lighting design should be integrated with acoustic feature and reinforces its visual impact.

Lighting solution should dominate the space with a **inspiring theme**, allow audience to see things from an unusual perspective.

Space Type	Eh	Ev	Avg : Min
Theater	50 lux	30 lux	2:1

Target Power Density: 0.52 W/SF

Introduction	
IIIIIUuuuuuu	

Design Criteria

Theater

Design Approach

Façade

Summary

Design Result

Design Approach

Lighting features are used to mimic a integrated circuit, demonstrating the working philosophy of electronic devices.

Introduction	
IIIIIUuuuuuu	

Design Criteria

Theater

Design Approach

Façade

Summary

Design Result

Design Approach

Lighting features are used to mimic a integrated circuit, demonstrating the working philosophy of electronic devices.

Introduction	
IIIIIUuuuuuu	

Design Criteria

Theater

Design Approach

Façade

Summary

Design Result

Design Approach

Lighting features are used to mimic a integrated circuit, demonstrating the working philosophy of electronic devices.

Theater

Façade

Summary

Design Criteria

Design Approach

Design Result

Design Result

Linear LED distributed in a seemingly random pattern to provide visual impact. Uniformly distributed downlights regulates the flow of 'circuit' from being too random and create hot spot.

Space Type	Eh
Theater	124 lux

Actual Power Density: 0.52 W/SF

Classroom

Theater

Façade

Summary

Design Criteria

Design Approach

Design Result

Facade

The iconic façade texture of this building is definitely one of the most popular features known by public. During the day textures on the façade cast shadow under sun lighting and from unique scenery. To make those texture properly lighted at night is no doubt a challenge for exterior lighting practice.

Dimensions

Approximate Area = 19856 ft² Length = 146 ft Height = 136 ft

Classroom

Theater

Façade

Summary

Design Criteria

Design Approach

Design Result

Design Criteria

Lighting design should highlight the facade texture for visual interest.

Non-uniform distribution is preferred to create a relaxing atmosphere according to John Flynn's model.

To maintain the nighttime identity of the museum, lighting solution should also guarantee a majority of the facade is illuminated.

Space Type	En	Εv	Avg : Min
Facade		20 lux	5:1

Target Power Density: 0.75 W/SF

Theater

Façade

Summary

Design Criteria

Design Approach

Design Result

Design Approach

The façade is made of precast concrete panels 6 inch thick. Texture on the panel varies from 2 to 4 inch wide. Textures can be easily observed under daylight because the shadow they can formed a contrast with the bright façade itself. Beam with large incident angle can easily eliminate the shadow and make texture hard to be detected. Design for this space should somehow simulate the daytime situation in a different way.

To maintain the nighttime identity of the museum, lighting solution should also provide sufficient amount of light level on the façade surface.

Classroom

Theater

Design Criteria

Design Approach

Façade

Design Result

Summary

Design Result

The design solution did achieve the target of highlight façade texture at nighttime. However there are also many issues exist with this solution.

First, with most luminaire aiming towards the sky, about 20% of the lighting output is released into the night sky, causing energy waste and might even face code issue for certain district.

Also, narrow distribution require in this design is only available in a high wattage, making the solution provide twice as much light as needed.

Space Type	Eh	Εv	Avg : Min
Facade		39 lux	11:1

- Actual Power Density: 1.28 W/SF

Classroom

Theater

Façade

Design Criteria

Design Approach

Design Result

Summary

Classroom

Theater

Façade

Design Criteria

Design Approach

Design Result

Summary

Classroom

Theater

Façade

Design Criteria

Design Approach

Design Result

Summary

Classroom

Theater

Façade

Design Criteria

Design Approach

Design Result

Summary

Classroom

Lobby

Façade

Theater

Escalator

Summary

Summary

Lighting design for classroom is intended to highlight the unique light well system, creating a **natural** cave theme.

Classroom

Lobby

Façade

Theater

Escalator

Summary

Summary

Lighting design for classroom is intended to highlight the unique light well system, creating a **natural** cave theme.

Theater space employed a lighting scheme that simulating integrated circuit, telling the story of how modern science discovery have changed the world.

Classroom

Lobby

Façade

Theater

Escalator

Summary

Summary

Lighting design for classroom is intended to highlight the unique light well system, creating a **natural** cave theme.

Theater space employed a lighting scheme that simulating integrated circuit, telling the story of how modern science discovery have changed the world.

Façade lighting is designed to achieve an iconic visual effect, promoting the nighttime identity of the building in a urba n environment.

Classroom

Lobby

Façade

Theater

Escalator

Summary

Summary

Lighting design for classroom is intended to highlight the unique light well system, creating a **natural** cave theme.

Theater space employed a lighting scheme that simulating integrated circuit, telling the story of how modern science discovery have changed the world.

Façade lighting is designed to achieve an iconic visual effect, promoting the nighttime identity of the building in a **u** n environment.

Kevin Parfitt Shawn Good Kevin Houser **Richard Mistrick** Leslie Beahm Thom Mayne Arne Emerson

Enrique Peiniger Jean Sundin

Jennifer Scripps

Acknowledgements

Director of Senior Thesis Program Thesis Faculty Adviser Faculty of Architectural Engineering Faculty of Architectural Engineering Faculty of Architectural Engineering

Design Director, Morphosis Architects Design Director, Morphosis Architects

Principal, Office for Visual Interaction inc Principal, Office for Visual Interaction inc

> Business and Partnership Director, Perot Museum of Nature and Science

Refrigerating and Air

Houser, Mistrick, and Stefy. The IESNA Lighting Handbook 10th ed. New York, NY: Illuminating Engineering Society of North America, 2011

National Electric Code 2011, Quincy, MA: National Fire Protection Association, Inc. 2011

Metha, Johnson and Rocafort. Architectural Acoustics: Principles and Design. Prentice Hall PTR, 1999

Reference

ASHRAE Standard 90.1-2010. Atlanta, GA: American Society of Heating,

Condition Engineers, Inc. 2010

http://www.morphosis.com/

https://texasarchitects.org/v/article-detail/Coy-Talley-on-the-Landscape-Architecture-of-the-Perot-Museum/b3/ http://photographyblog.dallasnews.com/2013/06/today-in-dallas-photo-history-1936-texas-centennial-exposition-opens.html/ http://commons.wikimedia.org/wiki/File:Museum_of_Nature_%26_Science_(Fair_Park).JPG http://www.architecturaldigest.com/architecture/2013-02/best-architectural-projects-slideshow_slideshow_item7_8 http://morphopedia.com/projects/perot-museum-of-nature-and-science-1 http://gallery.mobile9.com/topic/?tp=circuit&ty=wp&ii=3413 http://blog.alpineinstitute.com/2014/02/route-profile-joshua-trees-dappled-mare.html http://fredturpin.wordpress.com/2012/02/29/wind-blowing-across-fields-of-the-heart/ http://www.nipic.com/show/4/79/5397132k512204e2.html http://www.amazon.com/Vinyl-Wall-Mural-Decal-Branches/dp/B008CL4U3W http://www.houzz.com/photos/5334641/3d-nature-marble-panel--3d-nature-marble-wave-panel--3d-stone-tile-modern-tile-other-meo http://www.dreamstime.com/illustration/milk-drop.html http://www.anypics.ru/tags/%F0%E0%E7%E2%EE%E4%FB/ http://matthewdurrphotography.com/2012/06/11/lens-review-nikon-35mm-f2-5-series-e/

Image Source

and YOU

Thanks for your support!

Туре	Unit	Lamp/Wattage	Manufacturer	Description	Location	Quantity
C1	Per 2'-0" lengths	LED 13 W	GE	LED T8 tube suspended 45 degrees from horizontal facing towards the center of the room. Suspention cable varies from 6' to 20' in length.	Classroom	7
C2	Per 4'-0" lengths	LED 22 W	GE	LED T8 tube suspended 45 degrees from horizontal facing towards the center of the room. Suspention cable varies from 6' to 20' in length.	Classroom	10
C3	Per 5'-0" lengths	LED 27 W	GE	LED T8 tube suspended 45 degrees from horizontal facing towards the center of the room. Suspention cable varies from 6' to 20' in length.	Classroom	4
C4	Per 4'-0" lengths	T5HO Fluorescent 57 W	COOPER	Neo-Ray recessed wallwasher	Classroom	4
C5	Each	LED 42 W	WE-EF	FLC 142 Surface mounted floodlight instaled inside the skylight structure to simulate daylight.	Classroom	3
E1	Per 4'-0" lengths	LED 20 W	ELECTRIX	L101 recessed linear LED, high output	Escalator Cartridge	32
F1	Per 3'-0" lengths	LED 45 W	PHILIPS	Vaya Linear LED with 10 deg narrow distribution	Façade	560
L1	Per 4'-0" lengths	T5HO Fluorescent 32 W	REGENT	FLOW pendant luminaire with direct light emission and translucent housing	Main Lobby	59
L2	Each	Compact Fluorescent 46 W	BEGA	L5211 pendant sphere luminaires with three-ply opal glass with satin matte finish. Integral electronic ballasts included. 1ft in diameter.	Main Lobby	31
L3	Each	Compact Fluorescent 62 W	BEGA	L5212 pendant sphere luminaires with three-ply opal glass with satin matte finish. Integral electronic ballasts included. 1.5ft in diameter.	Main Lobby	18
L4	Each	Metal Halide 70 W	WE-EF	FLC 132 floodlight mounted on track	Main Lobby	3
T1	Per 1'-0" lengths	LED 2.2 W	ELECTRIX	L101 recessed linear LED, standard output	Theater	925
T2	Each	Compact Fluorescent 18 W	Edison Price	DTT 13/6 recessed combination downlight.	Theater	21

LED T8 tubular lamps

Product information

saving alternatives to standard Fluorescent T8 lamps.

- The GE LED T8 range offers safe, reliable and affordable energy
- Available in 2'/60cm, 4'/120cm and 5'/150cm lengths, GE LED T8s can be quickly fitted as a replacement into luminaires operating on electro-magnetic control gear or on electronic gear with a simple re-wire (for further details see intallation guide).

Features

- Energy saving up to 60% (on mains connection versus T8 fluorescent lamps on electro-magnetic gear)
- High light output up to 3000Lm
- Instant-on light
- Long lifetime: up to 50,000 hours L70
- High Power Factor: 0.9
- Wide 130° light distribution
- Compatible with existing installations

SPECIFICATION FEATURES

construction

lousing is one-piece, die-formed, cold rolled steel. Standard 2', 3', 4'and 5' fixture lengths.

Electrical

120, 277, 347 or Universal Voltage electronic ballast. Fixtures and electrical components certified to UL and CUL standards. Note: Please consult factory, Fifthlight may not be available in some configured options.

Finish

Durable, low gloss, white, powder coat acrylic. Optional custom finish.

Mounting

Recessed.

WALL WASH 23XR Gen II

1**T**5 **1T5HO**

Wall Wash Direct-Indirect

ight Distribution Indirect = 1% Direct = 99%

Туре	Unit	Lamp/Wattage	Manufacturer	Description	Location	Quantity
C1	Per 2'-0" lengths	LED 13 W	GE	LED T8 tube suspended 45 degrees from horizontal facing towards the center of the room. Suspention cable varies from 6' to 20' in length.	Classroom	7
C2	Per 4'-0" lengths	LED 22 W	GE	LED T8 tube suspended 45 degrees from horizontal facing towards the center of the room. Suspention cable varies from 6' to 20' in length.	Classroom	10
C3	Per 5'-0" lengths	LED 27 W	GE	LED T8 tube suspended 45 degrees from horizontal facing towards the center of the room. Suspention cable varies from 6' to 20' in length.	Classroom	4
C4	Per 4'-0" lengths	T5HO Fluorescent 57 W	COOPER	Neo-Ray recessed wallwasher	Classroom	4
C5	Each	LED 42 W	WE-EF	FLC 142 Surface mounted floodlight instaled inside the skylight structure to simulate daylight.	Classroom	3
E1	Per 4'-0" lengths	LED 20 W	ELECTRIX	L101 recessed linear LED, high output	Escalator Cartridge	32
F1	Per 3'-0" lengths	LED 45 W	PHILIPS	Vaya Linear LED with 10 deg narrow distribution	Façade	560
L1	Per 4'-0' lengths	T5HO Fluorescent 32 W	REGENT	FLOW pendant luminaire with direct light emission and translucent housing	Main Lobby	59
L2	Each	Compact Fluorescent 46 W	BEGA	L5211 pendant sphere luminaires with three-ply opal glass with satin matte finish. Integral electronic ballasts included. 1ft in diameter.	Main Lobby	31
L3	Each	Compact Fluorescent 62 W	BEGA	L5212 pendant sphere luminaires with three-ply opal glass with satin matte finish. Integral electronic ballasts included. 1.5ft in diameter.	Main Lobby	18
L4	Each	Metal Halide 70 W	WE-EF	FLC 132 floodlight mounted on track	Main Lobby	3
T1	Per 1'-0" lengths	LED 2.2 W	ELECTRIX	L101 recessed linear LED, standard output	Theater	925
Т2	Each	Compact Fluorescent 18 W	Edison Price	DTT 13/6 recessed combination downlight.	Theater	21

PRODUCT DESCRIPTION

DESCRIPTION

BEAM TY

LAMP TYP

LUMER

CONTROL GE

NC	663-4622 FLC142 LED Wall Luminaires / Surface Mounted
YPE	symmetric, wide beam
PE	24 LED white 36W (4000K)
NS	3777
EAR	electronic gear

Vaya Linear

BCP420 18xLED-HB/RD 100-240V 10 CE CQC

Vaya Linear - 18 pcs - LED High Brightness - Narrow beam angle 10°

With budgets under pressure, property owners and developers are looking, more than ever, for value for money when it comes to capital expenditures.Vaya Linear is a cost-effective and reliable fixture that minimizes the initial investment, while offering extreme flexibility to create grazing lighting effects. It features a discreet design and is available in two different lengths to suit the application. The robust Vaya Linear also offers a choice of two tones of white with a simple on-off switch, and changing colors with a standard DMX512 controller. It is extremely easy to install and to aim thanks to its adjustable mounting bracket.

Туре	Unit	Lamp/Wattage	Manufacturer	Description	Location	Quantity
C1	Per 2'-0" lengths	LED 13 W	GE	LED T8 tube suspended 45 degrees from horizontal facing towards the center of the room. Suspention cable varies from 6' to 20' in length.	Classroom	7
C2	Per 4'-0" lengths	LED 22 W	GE	LED T8 tube suspended 45 degrees from horizontal facing towards the center of the room. Suspention cable varies from 6' to 20' in length.	Classroom	10
C3	Per 5'-0" lengths	LED 27 W	GE	LED T8 tube suspended 45 degrees from horizontal facing towards the center of the room. Suspention cable varies from 6' to 20' in length.	Classroom	4
C4	Per 4'-0" lengths	T5HO Fluorescent 57 W	COOPER	Neo-Ray recessed wallwasher	Classroom	4
C5	Each	LED 42 W	WE-EF	FLC 142 Surface mounted floodlight instaled inside the skylight structure to simulate daylight.	Classroom	3
E1	Per 4'-0" lengths	LED 20 W	ELECTRIX	L101 recessed linear LED, high output	Escalator Cartridge	32
F1	Per 3'-0" lengths	LED 45 W	PHILIPS	Vaya Linear LED with 10 deg narrow distribution	Façade	560
L1	Per 4'-0" lengths	T5HO Fluorescent 32 W	REGENT	FLOW pendant luminaire with direct light emission and translucent housing	Main Lobby	59
L2	Each	Compact Fluorescent 46 W	BEGA	L5211 pendant sphere luminaires with three-ply opal glass with satin matte finish. Integral electronic ballasts included. 1ft in diameter.	Main Lobby	31
L3	Each	Compact Fluorescent 62 W	BEGA	L5212 pendant sphere luminaires with three-ply opal glass with satin matte finish. Integral electronic ballasts included. 1.5ft in diameter.	Main Lobby	18
L4	Each	Metal Halide	WF-EF	ELC 132 floodlight mounted on track	Main Lobby	3
T1	Per 1'-0" lengths	LED 2.2 W	ELECTRIX	L101 recessed linear LED, standard output	Theater	925
Т2	Each	Compact Fluorescent 18 W	Edison Price	DTT 13/6 recessed combination downlight.	Theater	21

L101 LumiLine | Dry

Construction:

Electrical:

- UL listed for dry locations

Performance:

Output	Watts/Ft	3000K white	4000K white
Standard	2.2 watts/ft	65 lumens/ft	84 lumens/ft
High	7.4 watts/ft	275 lumens/ft	354 lumens/f

PROJECT NAME :

LUMINAIRE TYPE :

· Extruded aluminum housing with satin anodized finish · Low profile design with lengths ranging from 12" to 96" · Proprietary optics are UV stable and optimized for transmission · Numerous stainless steel and aluminum mounting solutions

 Dimmable, high quality light available in either 3000K or 4000K Solid state low voltage luminaires powered with 24V DC • Luminaires can be wired in series up to 32' with standard power and 9.75' with high power · Electronic power supplies can be remotely mounted up to 32' **

 Average rated LED life of 50,000 hours @ 70% lumen output* · IES files can be downloaded at www.electrix.com · All values below are based on initial lumens per foot

FEATURES

DTT13/4 is an efficient 4" aperture recessed low brightness downlight designed for use with a 13-watt compact fluorescent lamp. The fixture provides a shielding angle of 32°. One basic housing allows interchangeable use of the downlight and wallwash reflectors. This permits housings to be installed first and reflectors installed or changed at any time.

DTT13/4 uses a 13-watt, 4-pin lamp providing 900 lumens, and it consumes only 16 watts when operated at 120 volts. Compact fluorescent lamps have a 10,000-hour life, a color rendering index (CRI) of 85, and are available in a range of color temperatures as warm as 2700°K (nearly duplicating the color qualities of incandescent).

Reflectors are available in clear, natural aluminum in two finishes: EvenTone, our standard clear finish, partially diffuse, anti-iridescent and gently luminous in appearance; and EasyTone, diffuse and luminous. Additionally, reflectors are available in champagne gold, wheat, pewter and bronze. Wallwash (120°), corner wallwash (210°) and double wallwash (2x120°) reflectors are also available.

DTT13/4 includes a pair of mounting bars (¾" x 27" C channel). Specialty bars for wood joist and T-bar installations are available as accessories.

PRODUCT CODE

For complete product code, list basic unit and select one item from each following box.

Basic Unit	DTT13/4
Reflector Type	
Downlightno suffix	Corner WallwashCWW
Wallwash WW	Double Wallwash DWW

)/	7												E		51B)	
		ROOM BA	SEMENT TELECOM RM-0-111		VOL	TS 480	Y/277\	/ 3P	4W	AIC 65,000		ROOM RESTAURANT-1ST FLOO						
		MOUNTING	SURFACE		BUS	AMPS	100			MAIN BKR MLO					N	OUNTING	SURFACE	
		FED FROM				TRAL 1				LUGS STANDARD								
		NOTE	MOC	NEO INNE 100%						E003 STANDARD					FED FROM ELS2 NOTE			
										1							1	
	CKT	CKT			KVA LO		NOTE		СКТ			VA LO		NOTE	CKT	CKT		
NOTE	#	BKR	CIRCUIT DESCRIPTION	A	В	C	NOTE	1.122.01		CIRCUIT DESCRIPTION	A	В	С	NOTE	#	BKR	CIRCUIT DESCRIPTION	
	1	20/1	AL4	1.32				2			0.74	10000			1	20/1	(EGRESS LTG) AL27E	
	3	20/1	AL55		0.275			4	20/1	C5		0.16			3	20/1	(EGRESS LTG) AL44,	
	5	20/1	E5	1 70		0.11		6		AL44			0.6		5		(EGRESS LTG) AL27A	
	/	20/1	AL30	1.38	4 77			8	/		0.04					30/3	XFMR TEP1B	
	9	20/1	AL16, AL49, AL9		1.33	1.00		10		E5		1.54			9			
	17	1 20/1 3 20/1	AL30 AL21	0.5		1.08			20/1	AL43	0.00		1.2		11	1 1 1	T1, EXIT	
	15	5 20/1	E1, LN. FL.	0.5	0.585			16	20/1 20/1	AL9 AL9	0.06	0.48			15	20/1 20/1	T1, ENTRANCE	
	10	20/1	AL9		0.565	0.48		18		E1		0.48	0.195			20/1	T1	
	10	20/1	AL9 AL43	0.15		0.40			20/1		0.52		0.195			20/1	T2	
	21	1 20/1	C4	0.15	0.29			22		SPACE	0.52	0			21		SPACE	
	27	3 20/1	SPACE		0.20	0			20/1	SPACE		0	0			20/1	SPACE	
	25	5 20/1	SPACE	0				26			0		0		25	20/1	SPACE	
	27	7 20/1	SPACE	U	0			28		SPACE	l	0			27	20/1	SPACE	
	29	20/1	SPACE		ľ	0		30		SPACE		ľ	0		29	20/1	SPACE	
	31	1 20/1	SPACE	0		Ŭ			20/1		0		Ŭ		31	20/1	SPACE	
	33	3 20/1	SPACE		0			34		SPACE	Ĩ.	0			33	20/1	SPACE	
	35	5 20/1	SPACE		03/74	0		36		SPACE			0		35	20/1	SPACE	
	37	7 20/1	SPACE	0		1999			20/1		0		S		37	20/1	SPACE	
	39	20/1	SPACE		0			40		SPACE		0			39	20/1	SPACE	
		1 20/1	SPACE		1.00	0		42	20/1	SPACE		19250	0		41	20/1	SPACE	
										TOTAL CONNECTED KVA BY PHASE	4.71	4.66	3.67					
										TOTAL CONNECTED AMPS BY PHASE	17	16.8	13.2					
			CONN. KVA CALC. K	VA						CONN. KVA CALC. KVA							C	
				(125%)					CONTINU								LIGHTING	
				(125%)					HEATING								LARGEST MOTOR	
				(100%)						ITINUOUS 0 0 (100%)							OTHER MOTORS	
			RECEPTACLES 0 0 (50%>10))				KITCHEN								RECEPTACLES	
										N/DIVERSE 0 0 (N/A)								
									TOTAL P	KVA 13 16.3								
							BALAN	CED	THREE F	PHASE AMPS 19.6								

3									
S	TAURANT-1ST FLOOR		VOLT	rs 480`	Y/277V	/ 3P	4W	AIC 22,000	
G	SURFACE		BUS	AMPS	100			MAIN BKR MLO	
M	ELS2		NEU.	TRAL 10	00%			LUGS STANDARD	
Т			VA LOA	10		СКТ	CKT	KVA LOAD	
	CIRCUIT DESCRIPTION	A	B	C	NOTE	#	BKR	CIRCUIT DESCRIPTION A B	С
T	(EGRESS LTG) AL27B	1.41				2	20/1	(EGRESS LTG) AL27A 0.57	
	(EGRESS LTG) AL44, AL27A	20021028	1.83			4	20/1	AL18 0.28	
	(EGRESS LTG) AL27A			1.02		6	20/1	EXIT LTGS (LIFE SAFETY) 0.	.085
	XFMR TEP1B	1.54				8	20/1	(EGRESS LTG) AL27A 0.18	
			2.07			10	20/1	(EMERGENCY) E4, E2, E5 0.7	1.000000000
				1.83		12	20/1		.144
	T1, EXIT	0.12	20			14	20/1	E4 0.165	
	T1, ENTRANCE		0.1			C19832	20/1	(EGRESS LTG) AL18, E4 0.355	
	T1	0.15		2.34		18	20/1		.32
	T2	0.45				20	20/1	AL62 0.224	
	SPACE		0	0		22 24	20/1	E4, E2 0.37 AL62 0.37	050
	SPACE	0		0		24	20/1 20/1	E2 0.455	.256
	SPACE	0.	0			1.	20/1	(EGRESS LTG) AL27A 0.21	
- 1	SPACE		0	0		30	20/1	SPACE 0.21	
- 1	SPACE	0				32	20/1	SPACE	
	SPACE		0			34		SPACE	
	SPACE		Ŭ	0		1000	20/1	SPACE	2
	SPACE	0		т. Г		38	20/1	SPACE 0	
	SPACE		0			40	20/1	SPACE	
	SPACE			0			20/1	SPACE	2
1								TOTAL CONNECTED KVA BY PHASE 5.11 5.92 6	
T								TOTAL CONNECTED AMPS BY PHASE 18.4 21.49 2	1.7
-	CONN. KVA CALC. KV	/A						CONN. KVA CALC. KVA	
		(125%)					CONTINU	US 0 0 (125%)	
		(125%)					HEATING	0 0 (100%)	
		(100%)					NONCONT		
	RECEPTACLES 1.72 1.72 (50%>10)					KITCHEN		
								DIVERSE 0 0 (N/A)	
							TOTAL K		
					BALAN	CED	THREE PH	ASE AMPS 28.6	

EL	_S	бОА											
	R	OOM			VOLT	S 480	Y/277V	3P	4W	AIC 14,000			
	M	IOUNTING	SURFACE		BUS	AMPS	100			MAIN BKR 100			
	F	ED FROM	ELS2		NEUT	TRAL 10	00%			LUGS STANDARD			
	N	OTE											
	CKT	CKT		ĸ	VA LOA	AD.		СКТ	CKT		ŀ	KVA LO	AD
NOTE	#	BKR	CIRCUIT DESCRIPTION	A	В	С	NOTE	#	BKR	CIRCUIT DESCRIPTION	A	В	С
	1	20/1	AL61A, AL46B	1.4				2	20/1	AL59	0.88		
	3	20/1	AL61A, AL46B		1.58			4	20/1	AL59		0.64	
	5	20/1	AL61A, AL61B			1.75		6	20/1	AL54	100000000		1.4
	7	20/1	AL15	0.75	0.005			8	20/1	(EGRESS LTG) E3	0.32		
	9	20/1	AL50		0.825	0.045		10	20/1	AL59		0.16	0.15
	11 13	20/1 20/1	(EGRESS LTG) AL47A AL47A	0.945		0.945		12 14	20/1 20/1	AL45	1.95		0.15
		20/1	(EGRESS LTG) AL47A	0.945	0.945			16	20/1	AL56 AL56	1.95	0.6	
		20/1	F1		0.945	2.2		18	20/1	AL36 AL21		0.0	0.5
		20/1	F1	4.5		66			20/1	AL55	0.175		0.0
	21	20/1	F1		2.2			22	20/1	F1		4.5	
	23	20/1	F1		010000	2.2		24	20/1	SPACE			0
	25	20/1	SPACE	0				26	50/3	XFMR TEPOA	4.59		
	27	20/1	F1	_	2.2			28	1			4.37	
		20/1	AL45			0.15		30	1				5.09
		20/1	E5	1.21						EXIT LTGS (LIFE SAFETY)	0.125		
	33	20/1	AL49		0.144			34	20/1	E5, E2		0.435	
		20/1	AL21	0.5		0.5				(EGRESS LTG) AL62, AL7	0.000		0.808
		20/1 20/1	AL55 (EMERGENCY) E8, E3	0.5	0.632				20/1 20/1	AL62, AL18 AL57	0.808	0.19	
		20/1	(EGRESS LTG) AL4		0.032	0.99				AL37 AL47A		0.19	1.13
		20/1	(EGRESS LTG) AL9	1.26		0.55		44	20/1	(EMERGENCY) E2	0.325		1.15
	45	20/1	SPACE	1.20	0					SPACE	0.525	0	
		20/1	SPACE			0			20/1	SPACE		-	0
										TOTAL CONNECTED KVA BY PHASE	19.7	21.7	20.1
										TOTAL CONNECTED AMPS BY PHASE	71	78.4	72.5
										enterioristi internati successi anternati			
			LARGEST MOTOR 0.1 0.125 (OTHER MOTORS 0 0 (A 125%) 125%) 100%) 60%>10)					TOTAL K	0 0 (100%) TINUOUS 6.63 6.63 (100%) EQUIP 0 0 (N/A) /DIVERSE 0 0 (N/A) VA 66 80.1 0			
							BALAN	CED	THREE PH	HASE AMPS 96.3			

Reverberation time is the most commonly applied standard for acoustic performance evaluation.

RT = 0.05*V/Sum(S* α)

- V = room volume
- S = surface area, per material
- α = absorption coefficients

Floor, wall and ceiling area are calculated form the AutoCAD model, while the surface area of seated audience Assume a 60% occupancy, 5 ft² per seated seat and 2 ft² per unoccupied seat.

A_{occupied} = 0.6 * 300 * 5 = 900 ft² Aun_{occupied} = 0.6 * 300 * 2 = 360 ft²

	Area	Sa125	125 HZ	S0250	250 HZ	Sa200	500 HZ	Sq1000	1000 HZ	S@2000	2000 HZ	Sa4000	4000 HZ
J+J Invision carpet tiles	4031	161.2	0.04	120.9	0.03	241.9	0.06	403.1	0.1	80.62	0.02	80.62	0.02
Fabritrak system with Knoll and Maharem fabric acoustic wall	3761	564.2	0.15	<mark>488.9</mark>	0.13	902.6	0.24	1692	0.45	3084	0.82	2407	0.64
Fabritrak system with Knoll and Maharem fabric acoustic ceiling	6028	180.8	0.03	241.1	0.04	663.1	0.11	1025	0.17	1447	0.24	2110	0.35
Occupied Seats	900	414	0.46	612	0.68	531	0.59	477	0.53	594	0.66	594	0.66
Unoccupied Seats	360	126	0.35	198	0.55	169.2	0.47	147.6	0.41	212.4	0.59	198	0.55
SUM S*α		1446		1661		2508		3745		5418		5389	
RT		2.39		2.08		1.38		0.92		0.64		0.64	

