
Designing Public Safety Mobile Applications for
Disconnected, Interrupted, and Low Bandwidth

Communication Environments

Peter Erickson, Andrew Weinert,
and Dr. Paul Breimyer
MIT Lincoln Laboratory

244 Wood Street
Lexington, MA 02420-9108

Email: peter.erickson@ll.mit.edu

Matt Samperi, Jason Huff,
Carlos Parra, and Dr. Scarlett Miller

Pennsylvania State University
101 Hammond Building

University Park, PA 16802

Abstract—Public Safety emergency communication systems
are crucial to effective incident and disaster response. Lack
of situational awareness and communications are of the most
cited factors that hamper Public Safety’s ability to make critical
decisions. In partnership with the Department of Homeland
Security Science and Technology Directorate (DHS S&T), MIT
Lincoln Laboratory (MIT LL) developed the Next-Generation
Incident Command System (NICS) to improve collaborative
situational awareness. NICS is a reliable, distributed, and scalable
architecture that enables a common situational awareness picture
to enhance collaboration. The NICS user interface is web-based
and Public Safety is increasingly adopting mobile devices, which
are likely to operate in disconnected, interrupted, low-bandwidth
environments. To address these issues, this paper will describe
a Public Safety mobile application based upon feedback from
Public Safety personal.

Due to the strong open-source development community and
API flexibility, the Android operating system was selected for
development. Development of the native Android application was
driven by popular NICS features and Public Safety feedback.
Foremost, the application was required to provide and display
geolocation information, enabling basic situational awareness.
In addition to geolocation, the application enables users to
report incidents, broadcast messages, and transmit images. These
functions and their designs were driven by interviews with Public
Safety personnel from different organizations (law enforcement,
fire, etc.). Usability testing with Public Safety personal was
conducted. Users envision that the application will enhance
the situational awareness capability for mobile Public Safety
personnel while laying the foundation for future work leveraging
mobile technologies. Based on this testing and lessons learned
from development, a set of Public Safety mobile application design
considerations were developed.

The nation’s emergency response capabilities have received
significant attention because of the continued need to prevent,
protect from, respond to, and recover from natural disasters,
technological compromises to critical systems, and terrorist
attacks. These events involve thousands of responders from
multiple jurisdictions and agencies working on response, relief,
and recovery efforts. Organizing, coordinating, and command-
ing these efforts are significant technical and operational chal-
lenges, requiring timely collection, processing, and distribution
of accurate information from disparate systems and platforms.
The difficulties in effecting efficient disaster response during

large-scale rapidly-evolving events are well documented. Lack
of situational awareness and communications is one of the
most cited factors that hampers Public Safety’s abilities to
make critical decisions. Currently, it is difficult to enable
shared situational awareness and collaborative command and
control across all participating responders and agencies, par-
ticularly when infrastructure outages destabilize the communi-
cation environment [1].

The Public Safety community requires an integrated sens-
ing and command and control systems that enable collaborative
command during disasters. In partnership with the Department
of Homeland Security Science and Technology Directorate
(DHS S&T), MIT Lincoln Laboratory (MIT LL) developed the
Next-Generation Incident Command System (NICS) to address
this need [2]. NICS is a reliable, distributed, and scalable archi-
tecture that enables a common situational awareness picture to
enhance collaboration. Currently, users can access NICS via a
browser web-based interface. With users increasingly adopting
mobile broadband devices [3], the benefits of NICS can be
enhanced with support for these devices.

Previous research has indicated that mobile devices can
have a positive impact on the work of law-enforcement [4].
Recently, the New York City Police Department distributed
approximately 400 dedicated Android smartphones to its offi-
cers that enable them to retrieve a person’s criminal history and
verify their identification by quickly gaining access to comput-
erized arrest files, police photographs, and state Department
of Motor Vehicles databases [5]. FirstNet, responsible for the
future nationwide broadband Public Safety network, is also
planning a Public Safety specific application store [6].

Furthermore, users are likely to operate mobile devices in
disconnected, interrupted, low-bandwidth environments where
access to a central server is limited or non-existent. To meet
this need, an Android native application was developed for
testing NICS in poor communication environments and to
identify key features and design choices for any Public Safety
mobile application. It was developed as part of the airborne
remote communications (ARC) communication project [7].

This work is sponsored by the U.S. Department of Homeland Security under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, 
conclusions, and recommendations are those of the author and are not necessarily endorsed by the United States Government.



I. APPLICATION REQUIREMENTS

To develop a useful mobile application, a series of cus-
tomer interviews were conducted to understand Public Safety
officials’ needs during an emergency. These interviews were
carried out with a group of first responders consisting of
three police officers, four firefighters, and two Emergency
Medical Technicians (EMTs). Their ages ranged from 18 to
50, and their experience varied from one year to more than 30
years. The information was collected through semi-structured
conversational interviews, with a list of specific topics to cover.

The interview questions were designed to identify the
most common tasks for Public Safety during emergencies.
For example, they were asked what kind of feedback is vital
to incident response, what type of information needs to be
sent when requesting help, and what other types of features
would they require in order to efficiently and accurately report
a Public Safety incident. Based on the information collected
during these interviews, an initial set of base capabilities for the
application was planned. These features were centered around
the sharing of voice, text, location, and multimedia data, with
an emphasis on error-proofing the input and transmission of
this data.

A. Geolocation and Situational Awareness

Foremost, it was essential that the application provide
location information to the user, enabling basic situational
awareness. A user needs to be able to identify their own
location, and find the locations of other Public Safety officials
or landmarks quickly and easily. The locations of dangerous
or suspicious activities, or other areas in need of Public Safety
support should also be available to users through the applica-
tion. Locations disseminated by this service should be error-
proof, to prevent false location information from interfering
with Public Safety operations. This geolocation functionality
will also address a National Institute for Occupational Safety
and Health recommendation that the Incident Commander re-
ceives pertinent information, such as location, from occupants
on scene and information is relayed to crews during size-up [8].

B. Support/Resource Requests

The ability to request support or resources in the event of
criminal activity, personal injury, or fire ranked highly among
desired capabilities from interviewed first responders. Broad-
casting these types of requests to all Public Safety officials
involved in an event provides an efficient way of reaching
all available personnel, spanning multiple organizations (Law
Enforcement, Fire, etc.).

C. Reporting and Messaging

Similar to requesting support or resources to help mitigate
adverse Public Safety events, the capability of reporting and
collaborating via messages or multimedia was identified as
a top priority from these interviews. This capability would
enhance situational awareness for mobile Public Safety person-
nel, while laying the foundation for future work in leveraging
mobile technologies. The ability to share images was a com-
mon feature request. For example, an image sharing capability
would augment the evaluation of suspicious packages.

D. Standard Interfaces

The geolocation, requests, and messages capabilities inter-
face with NICS, which leverages a variety of open standards
and formats [9], including the Open Geospatial Consortium
Web Feature Service (WFS) standard [10] and JavaScript
Object Notation (JSON) format [11]. By leveraging these
standards and common practices, NICS can integrate new data
sources by adding different data services. For example, due
to NICS’s modular and loosely coupled architecture, it was
able to quickly ingest information from NORTHCOM and
the National Guard to support operational use [9]. A Public
Safety mobile application should leverage open standards
and common practices to maximize integration and minimize
integration development time with Public Safety architectures,
such as NICS.

E. Disadvantaged Communication Capability

An additional consideration for first responders was the
status of the communication environment during an emergency
or Public Safety event. The proposed application should be
able to function, at least minimally, in a disadvantaged com-
munication environment, with limited bandwidth and possible
network outages.

II. APPLICATION MODALITY

Once the requirements of the application were identified,
the next step was to evaluate whether a native or web ap-
plication was appropriate. A native application is one that
is downloaded and installed onto a mobile device. A web
application is analogous to a web site, in that it “lives” on
a remote server that is accessed via a mobile web browser
via a network. Both native and web applications offer unique
benefits. Since a native application “lives” and operates on the
device itself, it has special access to the device’s underlying
hardware (connectivity, sensors, and computing architecture).
A web application benefits from ease of deployment, capability
of maintenance, and platform independence.

The advantages of web-based applications are especially
attractive to the Public Safety domain. The ability to rapidly
deploy a web application to a large group of first responders, all
using heterogeneous mobile platforms, could greatly improve
common situational awareness. For some of these reasons,
NICS was created as a web application, intended for desk-
top/laptop users. While NICS benefits from many of these
advantages, there are drawbacks to this application modality,
particularly in the mobile development space.

First, a web application requires an Internet connection
that may not be available in a disadvantaged communication
environment. A native application can run on a completely
disconnected platform once installed on a mobile device [12].
This is a common occurrence in Public Safety operations.
Second, the client side of a web application exists inside the
sandbox of the mobile web browser, which restricts access
to the device hardware. A native application is given broad
access to underlying hardware through powerful application
programmer interfaces (APIs).

Another key difference between native and web applica-
tions is the design and implementation of user interfaces. Most



native platforms provide simple, yet powerful, abstractions for
common user-interface controls and experiences. Native user
interface design patterns are typically familiar and intuitive
to mobile device users, since they are typically published
by manufacturers, and meant to appear visually and behav-
iorally similar to the desktop operating system applications.
The limitations of mobile browsers and API access to web
rendering engines restricts the ability to develop user interfaces
in web applications [13]. Furthermore, a web application
user interface designed to appear visually similar to a native
application runs the risk of falling prey to the “Uncanny
Valley” problem [14]. This occurs when an application that
appears visually similar to the real thing – in this case a native
application – but behaves slightly differently, causes a user to
be uncomfortable and have a difficult time interacting with the
system.

For these reasons, a native application was prototyped,
and this application modality enabled access to the device’s
sensors, the local storage on the device, and a more responsive
application than a web-based alternative.

III. OPERATING SYSTEM

Once the decision to pursue native application development
was made, mobile operating systems were evaluated to deter-
mine an appropriate platform given the application’s require-
ments. Android and iOS were the two logical candidates, since
together they composed 91.1% of the mobile operating system
market in the fourth quarter of 2012, shown by Table I [15].
Also, Android and iOS collectively gained 15.2% of market
share between 2011 and 2012, indicating market growth. Due
to highly available and well documented developer support, as
well as wide consumer adoption, only Android and iOS were
considered.

Android is an open source mobile operating system, built
on Linux and developed by Google and the Open Handset
Alliance, that uses Java for application development [16]. Hun-
dreds of smartphones and tablets from various manufacturers
run the Android operating system (OS). The phenomenon
of devices with different form factors and capabilities using
a single operating system is known as fragmentation [17].
Fragmentation can hinder rapid application development by
requiring developers to make special considerations for dif-
ferent devices and capabilities. Since fragmentation is widely
prevalent in Android, libraries are provided to developers to
transparently mitigate the cost of supporting different devices.

iOS is a closed source operating system developed by
Apple that uses Objective C for application development [18].
The iOS platform is restricted to iPhone, iPad, iPod, and
AppleTV devices. Due to the limited number of supported

TABLE I. TOP FIVE SMARTPHONE OPERATING SYSTEMS [15]

Operating System 4Q12 Market Share 4Q11 Market Share

Android 70.1% 52.9 %

iOS 21% 23%

BlackBerry 3.2% 8.1%

Windows Mobile 2.6% 1.5%

Linux 1.7% 2.4%

Other 1.3% 12.1%

models, fragmentation is less of an issue for iOS development.
However, iOS provides fewer transparent options for support-
ing these devices, and can therefore in many cases be more
complicated than the Android equivalent. For example, multi-
ple views are often necessary to support both iPhone and iPad
devices, whereas Android view libraries make unified support
for smartphones and tablets transparent to the developer.

Fragmentation benefits users by providing a selection of
thousands of devices with different capabilities. The device
fragmentation experienced by Android OS has helped it to
dominate market share through widespread consumer adoption.

With cost, ease of development, and consumer adoption
in mind, Android was selected as the target platform. The
Android OS offers minimal cost of entry, a well-supported
API, and a strong open source development community. Frag-
mentation, which introduces some development complexities,
also provides significant device diversity that’s important for
the Public Safety community.

IV. ANDROID PLATFORM

After selecting the Android platform, it was important to
identify the base version that the application will support;
selecting a base Android version directly affects the device
models that the platform can support because devices are only
compatible with certain versions of Android. One developer
has observed over 2000 different device models that down-
loaded their application [19]. Newer versions of the platform
provide better capabilities, but are less widely distributed to
devices, since older devices will not necessarily be upgraded
to the latest version (often due to technical limitations). The
Android platform API is backward compatible; older API
features are available in future APIs. To help developers,
Google provides a bi-monthly report of platform versions,
screen sizes (and densities), and Open GL versions using data
collected by all devices that access the Google Play Store,
shown in Table II [20].

In deciding which Android version to target, the capability
requirements of the application were considered. Since GPS,
camera, and Wi-Fi connectivity capabilities are supported by
all versions of the platform, these played no role in this deci-
sion. However, newer versions of the platform provide easier
to use, more intuitive user interface design patterns. Therefore,
the newest version of the operating system that reaches a large
percentage of the device distribution was desirable. Selecting
Android version 2.3.2, “Gingerbread,” enabled the application
to be compatible with 98.4% of reported devices. This was a
calculated tradeoff between the higher functionality of newer
platform versions and wider device support.

TABLE II. ANDROID PLATFORM VERSIONS FROM JUNE 3, 2013 [20]

Version Codename Distribution

1.6 Donut 0.1%

2.1 Eclair 1.5%

2.3 – 2.3.2 Gingerbread 0.1%

2.3.3 – 2.3.7 Gingerbread 36.4%

3.2 Honeycomb 0.1%

4.0.3 – 4.0.4 Ice Cream Sandwich 25.6%

4.1.x Jelly Bean 29%

4.2.x Jelly Bean 4%



V. USER INTERFACE DESIGN

Google and the Open Handset Alliance provide extensive
documentation for Android user interface (UI) best practices.
These range from style recommendations to interface patterns
and building blocks. For example, themes, colors, typography,
icon design, and writing style, as well as the action bar,
tabs, lists, dialogs, and input fields are included. Additionally,
guidelines for effective UI content, such as simplicity, clarity,
and brevity are described in the context of the Android OS
and the provided UI libraries [21].

Using the requested capabilities as a goal, and with the
Android UI best practices in mind, a user interface was
prototyped on paper. The application would feature three
unique views: Map, Requests, and Messages. A tabbed layout,
provided by the the standard Android UI library, was used to
switch between these different modes. Separating these three
major views simplified the design. This is important because
it allows first responders to quickly find what they need and
conforms to the Android design principle of “only show what
I need when I need it [22].” Existing images stored on mobile
devices and on-demand photography were chosen as a sharable
forms of imaging data instead of video in order to conserve
bandwidth in communication-limited environments. However
video sharing can easily be incorporated in the future if the
user requirements warrant it. Figure 1 provides screen shots
of the basic map and request tabs.

A. Action Bar

One of the features of newer APIs that is not available in
Android 2.3.2 is the action bar. The action bar is a reserved
portion of the screen that shows application information and
allows for navigation between different windows or tabs. It is
meant to reduce user interface clutter and maximize the con-
sistency of user interaction with the application. This feature is
available with version 3.0 and above and is a key feature of the
current Android design principles. Fortunately, since the action
bar was received very positively by the Android developer
community, a library was created to provide the action bar
features to platforms down through version 2.0. This library,
ActionBarSherlock [23], was incorporated into the application.

(a) Map (b) Requests (c) Messages

Fig. 1. NICS mobile application screenshots

Fig. 2. Mobile NICS Action Bar

The action bar library provides multiple methods of chang-
ing application modes, including drop-down list selection,
fullscreen list selection, and tabs. Tabs were chosen as an
easy way for users to both see the current application mode
(the currently selected tab), and see or select other application
modes. A settings button is also displayed on the action bar.
The same action bar interface is displayed across all operating
modes of the application for consistency. According to the
Android design guidelines, this interface provides ease-of-use
and intuitiveness expected by mobile device users. Figure 2
shows the action bar for this application.

B. Map Tab

One of the most powerful features of NICS is the shared
map display, enabling a common situational awareness picture.
When developing the mobile application, it was important to
include access to the same map information and allow users
to collaboratively modify content. Map APIs where evaluated
for their ability to support common overlays (lines, polygons,
text, etc.) with a visually intuitive interface.

Google Maps is a well-known candidate for a map API
because Google is the main developer of Android and it is
well supported. However, the newest version of the API lacks
support for older device versions, specifically devices running
OpenGL 1.1 or below, which includes some devices at or above
the targeted OS version of 2.3.2 [24]. Upon further research
into available libraries, the MapQuest Android API [25] sat-
isfied all overlay requirements and supports devices running
older Android platforms (including older versions of OpenGL).
The MapQuest API is provided under a free license, and
allows access to free, open map data, such as OpenStreetMap.
Additionally the Mapquest API is designed as a “drop-in”
library; incorporating the Google Maps API in the future would
be a straightfoward integration task if desired.

NICS provides access to geospatial collaboration data
via numerous standard formats, including Web Map Service
WMS and Web Feature Service endpoints [26]. In order
to reduce communication overhead, the mobile application
was designed to load data from this endpoint using JSON.
JSON is well supported in Android due to the native JSON
encoder and parser, org.json [27]. JSON tends to be a more
lightweight communication format than other alternatives, such
as eXtensible Markup Language (XML). The loading and
parsing of NICS data was designed to be independent from the
chosen mapping implementation, to allow for plug-and-play
geospatial visualizations. This allows the map icons, features,
and colors to be identical between the mobile application and
the NICS web-based interface. This architecture demonstrates
the common software principles of low coupling and high
cohesion [28].



The MapQuest API was leveraged for the display of NICS
geospatial data. A fullscreen map is presented to the user under
the ’Map’ tab, and allows for panning and zooming. The user’s
location is detected via the GPS sensor and automatically sent
to NICS at a configurable interval. Overlays from NICS are
also overlaid, which includes other users’ locations.

C. Support/Resource Requests Tab

The ‘Requests’ tab was designed to provide an easy way for
Public Safety officials to report incidents and request support
or resources. Various types of incidents were identified from
the customer needs interviews, ranging from criminal activity
to personal injury to fire. As such, this tab is divided into
three categories: Criminal, Accident, and Fire. Originally, each
of these categories occupied its own tab, but this was later
reduced to a single ‘Request’ tab for multiple reasons. First,
limited mobile device screen real estate made it difficult to
see all of these categories without requiring the user to scroll
the action bar horizontally, which was deemed less intuitive
by users. Second, there was confusion about whether a single
request could be made that spanned multiple categories at
once: for example, a criminal incident that resulted in personal
injuries and a fire. Users indicated that requesting resources
and reporting incidents are similar activities, and therefore the
unified ‘Requests’ tab was more intuitive.

Reports can be made for incidents including explosives,
driving under the influence, and suspicious activity. Requests
for backup, rescues, fire control, and many other options were
deemed important by interviewed first responders. Addition-
ally, a text field can be populated by typing or using speech-to-
text. Users indicated that the speech-to-text capability was par-
ticularly valuable given the small form factor of mobile devices
and the prevalence of protective gloves for first responders.
The application allows users to attach a photograph by either
selecting an existing image from the device’s picture gallery or
taking a new picture. The user location is also included with
the submission.

D. Messages Tab

The ‘Messages’ tab consists of three parts: an inbox of
received messages, an outbox of sent messages, and a form to
compose new messages. The Messages tab title displays the
number of new, unread messages in the inbox for convenience.
This is visible at all times, regardless of which tab is active
on the screen, to draw the attention of the user.

Tabs within the Messages screen were initially intended to
allow users to switch between the inbox and outbox. However,
tabs within tabs are not natively supported by Android, and are
discouraged by the Android design guidelines, due to concerns
about confusing the user. Instead, the “spinner” pattern, or
drop-down list, was adopted. The currently selected mode is
displayed and a list allows the user to change to a different
mode. Incoming messages are received when the map overlays
from NICS are updated. The update rate can be configured by
the user in the application’s settings page.

A button to compose a new message is always present
at the bottom of the Messages window. The new message
screen allows for a typed or speech-to-text message to be
composed and users can attach images as well. Like requests,

messages always include the location of the user at the time
of submission.

The inbox is populated with any requests or messages
sent from any other user. The outbox is populated with
any requests or messages sent by that device. As previously
mentioned, requests and messages have no specific destination;
they are broadcast to all users participating in the incident
response/recovery.

VI. USABILITY TESTING

A usability study of the mobile application was conducted
with nine participants: four firefighters, four EMT’s and one
police officer. Future studies will strive to expand the user
validation group. Each subject was asked to sign a confiden-
tiality form and participants were provided fifteen dollars per
interview.

During the test, the subjects were asked to perform eight
different tasks on the medium fidelity prototype on an android
phone. The number of clicks each subject required to complete
each task was recorded, as well as the time it took them to
complete each task. The order in which the tasks were given
to each subject was randomized in order to avoid any ordering
effect. The subjects were videotaped while performing the
tasks, and the student organizers read the tasks, recorded the
number of clicks, and timed each task. The eight tasks are as
follows:

• Report a house fire, with two people inside;

• Report an incident of public drunkenness;

• Report a suspicious activity with a brief description
and take a photo;

• Report a car accident where one person is seriously
injured;

• Request a helicopter;

• Send a message indicating you are going on break;

• Check date and time of last sent message; and

• Find the nearest intersection.

After completing the tasks, each user was asked the fol-
lowing questions:

• How realistic were the tasks to your typical needs?

• How useful do you feel each feature was?

• In relation to other software used, how does this
prototype compare?

• What do you think about the application’s design and
layout?

The results from the post-test questionnaires showed that
the user group participants found the concepts of the system
to be favorable and useful in performing their tasks as first
responders. Often during conversations with the participants
they openly discussed potential situations where such a system
would have been beneficial. The Public Safety users deemed
the application interface to be sufficiently intuitive for navi-
gation and use by any first responder, from complete novices



to proficient Android users. All users completed all assigned
tasks without major concerns or confusion.

Two of the EMT’s we studied were search and rescue
specialists, and they found the application map and personnel
tracking capability to be extremely helpful in performing a
successful grid search. Several subjects emphasized that the
ability to send pictures of suspicious packages or wanted
individuals to all first responders in the area was extremely
useful.

The developed mobile Android application was deemed
intuitive to learn and operate. First responders were able to
quickly use the application without any prior instruction. Many
of the features in the application were found to be useful, with
the map feature universally deemed the most impactful.

VII. CONCLUSION

Public safety is increasingly adopting mobile devices and
applications to enhance incident and disaster response. These
applications must support existing architectures, such as NICS,
and operate in disconnected, interrupted, and low-bandwidth
communication environments. A mobile application was de-
veloped with Public Safety feedback to identify important mo-
bile application development considerations. Based on lessons
learned and usability testing, the following Public Safety
mobile application development high level considerations were
identified:

• When developing a native application, consider de-
veloping for Android first because of its significant
market share. Android fragmentation also prevents
Public Safety users from being committed to a single
device manufacturer;

• Although Android fragmentation exists, developers
can take advantage of backwards compatibility and
third party APIs to maintain a consistent and current
design across Android devices;

• It is not recommended to build a web-only application
if it is intended for poor communication environments.
Most current web applications are limited without a
consistent network connection; and

• Although Public Safety organizations have different
missions, their basic mobile requirements are very
similar.

In a separate and independent effort, Metron Inc. recently
released SARApp, a search and rescue smart phone appli-
cation [29], sponsored by the Defense Advanced Research
Projects Agency (DARPA). SARApp, which also supports
NICS integration, follows many of the identified considera-
tions. It is compatible with Android 2.1 and forward; designed
for general Public Safety users; communicates with NICS; and
can operate in a poor communication environment. The inde-
pendent implementation of the design considerations provides
some validation of the results presented in this paper.

Future work will focus on leveraging the computational
power of the mobile device for processing, exploitation and
dissemination of shared Public Safety information; developing
algorithms and techniques to maximize effectiveness in poor

communication environments; and developing deeper NICS
integration.

ACKNOWLEDGMENT

The authors greatly appreciate the support and assistance
provided by Dr. Bob Griffin, Marc Caplan, Jose Vazquez,
and K. Phil Waters from the U.S. Department of Homeland
Security Science and Technology Directorate. Additionally the
authors wish to thank the Student Space Programs Laboratory
and Dr. Sven Bilen. Finally, the authors would also like
to thank MIT LL staff members Kimberly Chang, Gregory
Hogan, and Charles Rose.

REFERENCES

[1] B. S. Manoj and A. H. Baker, “Communication challenges in emergency
response,” Communications of the ACM, vol. 50, no. 3, pp. 51–53, 2007.

[2] A. Vidan and G. Hogan, “Integrated sensing and command and control
system for disaster response,” in 2010 IEEE International Conference
on Technologies for Homeland Security (HST), 2010, pp. 185–189.

[3] J. Cohen, “AppComm.org the application community,” Westminster,
CO, Jun. 2013.

[4] S. G. Straus, T. K. Bikson, E. Balkovich, and J. F. Pane,
“Mobile technology and action teams: Assessing BlackBerry use
in law enforcement units,” Computer Supported Cooperative Work
(CSCW), vol. 19, no. 1, pp. 45–71, Sep. 2009. [Online]. Available:
http://link.springer.com/10.1007/s10606-009-9102-2

[5] W. Ruderman, “New tool for police officers: Quick access
to information,” The New York Times, Apr. 2013. [Online].
Available: http://www.nytimes.com/2013/04/12/nyregion/new-tool-for-
police-officers-quick-access-to-information.html

[6] P. Suh, “Applications summary,” Westminster, CO, June 2013.
[7] A. Weinert, P. Breimyer, S. Devore, J. Miller, G. Brulo, R. Teal,

D. Zhang, A. Kummer, and S. Bilen, “Providing communication ca-
pabilities during disaster response: Airborne remote communication
(ARC) platform,” in Homeland Security (HST), 2012 IEEE Conference
on Technologies for, 2012, pp. 395–400.

[8] C. Fischer and H. Gellersen, “Location and navigation support for
emergency responders: A survey,” IEEE Pervasive Computing,
vol. 9, no. 1, pp. 38–47, Jan. 2010. [Online]. Available:
http://comp.eprints.lancs.ac.uk/2259/

[9] R. Di Ciaccio, J. Pullen, and P. Breimyer, “Enabling distributed com-
mand and control with standards-based geospatial collaboration,” in
2011 IEEE International Conference on Technologies for Homeland
Security (HST), 2011, pp. 512–517.

[10] “Web feature service | OGC(R),” Jun. 2013. [Online]. Available:
http://www.opengeospatial.org/standards/wfs

[11] D. Crockford, “The application/json media type for JavaScript
object notation (JSON),” Jul. 2006. [Online]. Available:
http://tools.ietf.org/html/rfc4627

[12] J. White, “Going native (or not): Five questions to ask mobile
application developers,” The Australasian Medical Journal, vol. 6, no. 1,
pp. 7–14, Jan. 2013, PMID: 23424610 PMCID: PMC3575060. [Online].
Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575060/

[13] A. Charland and B. Leroux, “Mobile application development: web vs.
native,” Commun. ACM, vol. 54, no. 5, p. 4953, May 2011.

[14] B. Higgins, “The uncanny valley or user interface design,” 05 2007.
[Online]. Available: http://billhiggins.us/blog/2007/05/17/the-uncanny-
valley-of-user-interface-design/

[15] “Android and iOS Combine for 91.1% of the Worldwide
Smartphone OS Market in 4Q12 and 87.6% for the Year,
According to IDC,” Press Release, February 2013. [Online]. Available:
http://www.idc.com/getdoc.jsp?containerId=prUS23946013

[16] “Android,” Jan. 2013. [Online]. Available: http://www.android.com/
[17] A. Cotas, “Androids fragmentation problem is moving

in the right direction,” Jun. 2013. [Online]. Avail-
able: http://au.businessinsider.com/androids-fragmentation-problem-
improves-2013-6



[18] “Apple - iOS 6,” Jun. 2013. [Online]. Available:
http://www.apple.com/ios/

[19] “Android fragmentation visualized - OpenSignal
- OpenSignal,” Aug. 2012. [Online]. Available:
http://opensignal.com/reports/fragmentation.php

[20] “Dashboards — android developers,” Webpage, June 2013. [Online].
Available: http://developer.android.com/about/dashboards/index.html

[21] “Design — android developers,” Webpage, Google, Inc., June 2013.
[Online]. Available: http://developer.android.com/design/index.html

[22] “Design principles,” Jun. 2013. [Online]. Available:
http://developer.android.com/design/get-started/principles.html

[23] “ActionBarSherlock - home,” Jun. 2013. [Online]. Available:
http://actionbarsherlock.com/

[24] “Google maps android API v2 google
developers,” Jun. 2013. [Online]. Available:
https://developers.google.com/maps/documentation/android/start

[25] “Android maps API - MapQuest devel-
oper network,” Jun. 2013. [Online]. Avail-
able: https://developer.mapquest.com/web/products/featured/android-
maps-api

[26] C. E. Rose, C. Mayer, and D. P. Breimyer, “Optimizing map server
performance in resource constrained networks,” in Free and Open
Source Software for Geospatial (FOSS) 2011, 2011.

[27] “org.json,” Jun. 2013. [Online]. Available:
http://developer.android.com/reference/org/json/package-summary.html

[28] R. S. Pressman and D. Ince, Software engineering: a practitioner’s
approach. McGraw-hill New York, 1992, vol. 5.

[29] “SARApp home.” [Online]. Available: http://www.sarapp.com/




