NucE 521 – Neutron Transport Theory

Prof. Kostadin N. Ivanov

206 Reber, 865-0045, kni1@psu.edu

Topics

The integral form of the transport equation; the calculation of escape and transmission probabilities; collision probability and interface current (response matrix) methods.

The P_N, DP_N and SP_N approximations to the transport equation and the relevant boundary conditions.

The discrete ordinates method in one spatial dimension; the equivalence between S_N, P_{N-1} and $DP_{(N-2)/2}$ approximations; special problems of curvilinear geometries.

Diamond-difference approximation, boundary conditions, marching algorithms and acceleration of convergence in discrete ordinates.

Multidimensional discrete ordinates methods, level-symmetric quadrature sets, marching algorithms for Cartesian geometries.

Method Of Characteristics (MOC) - Method of Long Characteristics and Method of Short Characteristics. Applications of MOC in 2-D and 3-D geometries.

Textbook
Class notes and handouts

References

Prerequisite
NucE 403: Advanced Reactor Design

or

Phys 406: Subatomic Physics
Outline

1. The neutron transport equation: forward, adjoint modes; and integral forms.
2. Numerical methods for solving the transport equation:
 a. Stochastic: Monte Carlo
 b. Deterministic: integral and difference methods
3. Time discretization – fixed source and criticality calculations.
4. Energy discretization: multigroup transport equations
5. Angle discretization: Discrete Ordinates and Spherical Harmonics methods.
7. Solution algorithms: inner/outer iterations; and fission/scattering source.
9. Advanced topics: Ray effects; optimization; sensitivity analysis.

Grading

<table>
<thead>
<tr>
<th>Grading</th>
<th>Homework Assignments</th>
<th>20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam 1</td>
<td></td>
<td>20%</td>
</tr>
<tr>
<td>Exam 2</td>
<td></td>
<td>20%</td>
</tr>
<tr>
<td>Exam 3</td>
<td></td>
<td>20%</td>
</tr>
<tr>
<td>Computer Project</td>
<td></td>
<td>20%</td>
</tr>
</tbody>
</table>

The computer project will be with CASMO-4, or DRAGON-4.2.