HIGH-PERFORMANCE CONCRETE

Transportation Operations and Systems Research and Development Partnership
Agreement No. 359629
Work Order 3

FINAL REPORT

Prepared for
Commonwealth of Pennsylvania
Department of Transportation

By
Dr. Paul J. Tikalsky
and
Dr. Andrew Scanlon

The Pennsylvania Transportation Institute
The Pennsylvania State University
Transportation Research Building
University Park, PA 16802-4710

March 2000

This work was sponsored by the Pennsylvania Department of Transportation and the U.S. Department of Transportation, Federal Highway Administration. The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of either the Federal Highway Administration, U.S. Department of Transportation, or the Commonwealth of Pennsylvania at the time of publication. This report does not constitute a standard, specification, or regulation.

PTI 2K16
The primary goal of this research project was to evaluate PennDOT’s current concrete mixture designs for performance characteristics and provide specific recommendations on the effective use of concrete with high-performance characteristics. Highway concrete mixtures in Pennsylvania are largely designed for strengths between 23 and 31 MPa (3,300 and 4,500 psi) and for resistance to freezing and thawing. While strength and freeze-thaw resistance are important in Pennsylvania, other parameters impact the long-term performance of concrete in highway applications. Concrete can be developed to address economic considerations, as well as multiple combinations of strength, permeability, modulus, cracking tendency, abrasion resistance, freeze-thaw resistance, alkali-aggregate reaction, internal and external sulfate attack, workability, construction scheduling, traffic openings, or other criteria.

The report defines HPC in the context of the Pennsylvania Department of Transportation; describes the characteristics and benefits derived from the use of HPC; evaluates the current state of the practice in Pennsylvania; and identifies the performance criteria that benefit PennDOT bridges, structures, and concrete pavements. It also provides a series of recommendations for consideration for the Commonwealth of Pennsylvania.
TABLE OF CONTENTS

1. **INTRODUCTION** ... 1

2. **DEFINING HIGH PERFORMANCE CONCRETE** ... 3

3. **CHARACTERISTICS OF HIGH PERFORMANCE CONCRETE** 7
 3.1. FREEZE-THAW RESISTANCE .. 9
 3.2. SCALING RESISTANCE... 11
 3.3. ABRASION RESISTANCE.. 14
 3.4. ALKALI SILICA REACTION ... 14
 3.5. CHLORIDE PENETRATION RESISTANCE ... 16
 3.6. COMPRESSION STRENGTH.. 18
 3.7. ELASTICITY .. 20
 3.8. SHRINKAGE RESISTANCE ... 21
 3.9. SULFATE RESISTANCE... 23
 3.10. TENSILE STRENGTH ... 24
 3.11. WORKABILITY ... 25
 3.12. CREEP ... 27

4. **EVALUATION OF CURRENT PENNDOT SPECIFICATIONS AND CONCRETE PERFORMANCE** .. 29
 4.1. FREEZE-THAW RESISTANCE .. 33
 4.2. SCALING RESISTANCE .. 34
 4.3. ABRASION RESISTANCE .. 35
 4.4. ALKALI SILICA REACTION .. 36
 4.5. CHLORIDE PENETRATION .. 37
 4.6. COMPRESSION STRENGTH... 39
 4.7. STRENGTH RATIO .. 41
 4.8. MODULUS OF ELASTICITY .. 42
 4.9. SHRINKAGE .. 43
 4.10 SULFATE RESISTANCE ... 45
 4.11 TENSILE STRENGTH .. 46
 4.12 WORKABILITY .. 47
TABLE OF CONTENTS (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.13</td>
<td>SPECIFIC CREEP</td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td>HIGH PERFORMANCE CONCRETE MIXTURES AND BENEFITS</td>
<td>50</td>
</tr>
<tr>
<td>5.1</td>
<td>EXTENDED LIFE CYCLE</td>
<td>50</td>
</tr>
<tr>
<td>5.2</td>
<td>REDUCTION OF LONG-TERM MAINTENANCE COST</td>
<td>50</td>
</tr>
<tr>
<td>5.3</td>
<td>EASE OF CONSTRUCTION, QUALITY CONTROL, AND EXPEDITION OF PROJECT COMPLETION</td>
<td>52</td>
</tr>
<tr>
<td>5.4</td>
<td>REDUCTION OF TOTAL NUMBER OF MEMBERS AND TOTAL VOLUME OF MATERIAL</td>
<td>53</td>
</tr>
<tr>
<td>5.5</td>
<td>INCORPORATION OF INNOVATIVE MATERIALS</td>
<td>54</td>
</tr>
<tr>
<td>5.6</td>
<td>POTENTIAL MIXTURE DESIGNS HIGH PERFORMANCE CONCRETE</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>RECOMMENDATIONS</td>
<td>59</td>
</tr>
<tr>
<td>6.1</td>
<td>SPECIFIC RECOMMENDATIONS FOR THE COMMONWEALTH</td>
<td>59</td>
</tr>
<tr>
<td>6.2</td>
<td>HIGH PERFORMANCE CONCRETE ACTION PLAN FOR IMPLEMENTATION</td>
<td>67</td>
</tr>
</tbody>
</table>

APPENDIX A. ENGINEERING GUIDE TO SPECIFYING HIGH PERFORMANCE CONCRETE A-1

APPENDIX B. COST IMPLICATIONS OF SPECIFICATION CHANGES .. B-1

APPENDIX C. ENVIRONMENTAL FACTORS FOR PENNSYLVANIA .. C-1

APPENDIX D. SUMMARY OF RECOMMENDATIONS, COMMENTS AND IMPACTS D-1

REFERENCES .. R-1
LIST OF FIGURES

Figure 1. Rate of evaporation chart for concrete construction ... 13
Figure 2. Alkali silica reaction damage on overpass ... 16
Figure 3. Effect of water content on the drying shrinkage of concrete 23

LIST OF TABLES

Table 1. Benefits from high-performance concrete .. 5
Table 2. Environmental conditions in Pennsylvania ... 6
Table 3. Classes of performance for high-performance concrete.. 8
Table 4. Effect of type of aggregate on shrinkage of concrete (Carlson 1938) 23
Table 5. Grades of performance for high-performance concrete ... 31
Table 6. Summary of performance grades for PADOT 2000 specification.......................... 32
Table 7. Approximate cost of cementitious materials ... 51
Table 8. Approximate cost of reinforcing materials ... 52
Table 9. Summary of potential HPC concrete mixtures (SI units) ... 57
Table 10. Summary of potential HPC concrete mixtures (U.S. customary units) 58
Table 11. Proposed Table A in Publication 408 .. 60
Table 12. Proposed Table B for Publication 408 ... 63
Table 13. Amendment to Publication 408 .. 66