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Abstract

Approaches to modeling the continuous hydrologic response of ungauged basins use observable physical characteristics of watersheds
to either directly infer values for the parameters of hydrologic models, or to establish regression relationships between watershed struc-
ture and model parameters. Both these approaches still have widely discussed limitations, including impacts of model structural uncer-
tainty. In this paper we introduce an alternative, model independent, approach to streamflow prediction in ungauged basins based on
empirical evidence of relationships between watershed structure, climate and watershed response behavior. Instead of directly estimating
values for model parameters, different hydrologic response behaviors of the watershed, quantified through model independent stream-
flow indices, are estimated and subsequently regionalized in an uncertainty framework. This results in expected ranges of streamflow
indices in ungauged watersheds. A pilot study using 30 UK watersheds shows how this regionalized information can be used to constrain
ensemble predictions of any model at ungauged sites. Dominant controlling characteristics were found to be climate (wetness index),
watershed topography (slope), and hydrogeology. Main streamflow indices were high pulse count, runoff ratio, and the slope of the flow
duration curve. This new approach provided sharp and reliable predictions of continuous streamflow at the ungauged sites tested.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Rainfall-runoff models are standard tools for hydrologic
analysis. These models are used for applications such as
water resources studies and flood forecasting, or in support
of ecological studies. Available watershed models range
from parsimonious-lumped to complex distributed physi-
cally based representations [38,47]. A problem common
to all such models is that they all require some degree of
parameter calibration to achieve reliable predictions (e.g.
[5,40]), in which process the model parameters are adjusted
(manually or automatically) until the observed and simu-
lated watershed responses match as closely as possible
(e.g. [14,19,35,43,44,37]). Even physically based models
0309-1708/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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usually require some degree of calibration since it is diffi-
cult to estimate values for all of the parameters through
field measurements. This occurs because the scale of mea-
surement is usually smaller than the effective scale at which
the model parameters are applied [5].

Problems in hydrologic modeling are accentuated fur-
ther when it comes to prediction in ungauged or altered
(e.g. land use) basins, where sufficiently long streamflow
time series for parameter estimation via calibration are typ-
ically not available. Two common approaches to overcome
this problem in ungauged situations are

(a) use of physically based models, and
(b) regionalization of model parameters using physical

characteristics of watersheds.

The hope for physically based models is that that their
parameters can somehow be strongly related to observable
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physical properties of the watershed. However, differences
in scale, over-parameterization and model structural error,
have so-far prevented this objective from being achieved
and some degree of calibration is usually still required
[4,5]. Such models are used extensively wherever a high
level of spatial detail is required from the prediction, as
for example in the prediction of inundation areas. When
simpler predictions such as streamflow response are
required, less complex conceptual lumped models have
been shown to be equally reliable and are often preferred.

To apply conceptual-type models to ungauged water-
sheds, a regionalization approach is commonly used
[46,20,28,30,1,31,15,23,43,44,22,41]. In a regionalization
approach, a parsimonious hydrologic model structure is
selected, and calibrated to observable watershed responses
for a large number of gauged watersheds. Regression equa-
tions are then developed in an attempt to explain the cali-
brated values of the model parameters from observable
physical watershed characteristics. While some of the
model parameters may be found to exhibit strong correla-
tions with physical watershed characteristics, it is common
that little or no significant correlation is found for many of
the parameters [43,44]. Wagener and Wheater [41] also
point out that this approach typically suffers from model
identification difficulties, model structure errors, and diffi-
culties in finding an appropriate calibration strategy that
appropriately preserves the physical meaning of the model
parameters. At the same time there is general agreement
that model uncertainty is inherent and unavoidable, and
therefore the best practice would be to employ an ensemble
of feasible models to provide a corresponding ensemble of
predictions for informed decision making [22]. Unresolved,
therefore, is the question of what might be a way forward
to achieve reliable hydrologic ensemble predictions in
ungauged and altered basins?

The approach introduced in this paper provides ensem-
ble predictions in ungauged basins by regionalizing model
independent dynamic hydrologic response characteristics
(or indices) to physical characteristics of watersheds in an
uncertainty framework as constraints on ensemble predic-
tions. Our objective is to achieve a progressive reduction
in predictive uncertainty by constraining the expected
watershed behavior at ungauged locations, while maintain-
ing reliable predictions, leading to an increased under-
standing of the relationship between watershed structure
and watershed response behavior. The next section reviews
the past use of indices of streamflow behavior. A case study
using 30 watersheds within the UK is utilized to develop
and demonstrate the new approach.

2. Indices of dynamic response behavior

Dynamic response characteristics (hydrologic response
behavior indices or signatures) of a watershed can be
derived from output or input–output time series measured
within the watershed, including precipitation, evapotrans-
piration (or temperature) and streamflow (or other
response variables) time series. Such response characteris-
tics are often indicative for a specific watershed and how
its response differs from others; examples include common
descriptors of hydrograph shape such as runoff ratio and
time to peak flow [33].

A wide range of biologically relevant streamflow indica-
tors of this type have been widely used by the ecological
community for the evaluation of flow regimes (e.g.
[27,29,9,16,18]). Olden and Poff [27], for example, compiled
171 (mainly statistical) hydrologic indices from a number
of published papers and examined their suitability for
describing various aspects of streamflow. They used 36
years of daily streamflow data from 420 watersheds
throughout the US to carry out their case study, in which
the indices were categorized into five classes based on their
function and form. Principal Component Analysis (PCA)
was carried out to examine redundancy in hydrologic indi-
ces. They created a statistical framework to select the rele-
vant hydrologic indices that explain most of the variability
in streamflow regimes. Olden and Poff [27] concluded that
their approach can be helpful for hydro-ecological studies
by selecting high-information and non-redundant hydro-
logic indices for a particular region in which a stream of
interest is located. A similar study by Harris et al. [17]
investigated four large watersheds in the UK to classify
their streamflow and temperature regimes by analyzing
the timing and magnitude of flow and temperature varia-
tion. They classified the annual temperature regime into
three shape classes (early, intermediate and late minimum)
and four temperature classes (cold winter and cool sum-
mer; moderate winter and cool summer; moderate winter
and hot summer; and warm winter and hot summer). Sim-
ilarly, the annual streamflow regimes were classified into
five shape categories and four magnitude categories. An
overall classification of streams was then carried out by
combining the shape and magnitude classes. Their study
followed the work by Hannah et al. [16] for classifying
diurnal discharge hydrographs from glacier basins. Hydro-
logic indices have also been used to study seasonal changes
in evapotranspiration [12]. In their work the authors’ stud-
ied three streamflow indices (long-term averaged precipita-
tion minus runoff; streamflow recession time constant; and
diurnal streamflow amplitude) as indicators of spring onset
and leaf emergence for fairly small watersheds (area
<200 km2) located on the US east coast. They also tracked
the springtime changes in the three indices along the east
coast of the US. More importantly, they found that the sec-
ond and third indices depended on two physical character-
istics of watersheds, namely, riparian area and hydraulic
conductivity.

A recent study by Chinnayakanahalli et al. [8] examined
possible links between various hydrologic indices from
Olden and Poff [27] and physical characteristics of water-
sheds to predict hydrologic flow regimes for biological
assessment in ungauged basins. They used data from 491
watersheds located in the western US to develop various
linear regression models and estimate hydrologic indices
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Fig. 1. Flowchart of procedure steps. These steps are explained in detail in
subsequent subsections.
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from physical characteristics of watershed. They found that
some of the indices of flow magnitude (e.g. mean discharge,
seven day minimum and maximum flows) could be esti-
mated from physical characteristics (with R2 values > 0.4).
In a similar study, Spate et al. [36] used a rule based
approach to regionalize a hydrologic index (runoff ratio =
long-term annual runoff/long-term annual precipitation) to
eight watershed characteristics by developing a set of
hypothesized rules. Their work, being in a very preliminary
phase did not yet provide significant conclusions, but con-
centrated on the robustness of the rule based algorithm. In
another study by Berger and Entekhabi [3], two hydrologic
indices of physiographic and climatic variability (runoff
ratio and evaporation efficiency) were related to six physi-
cal watershed characteristics to explain basin to basin
differences in modeled hydrologic response for 10 water-
sheds throughout the US. They found that the variability
in modeled hydrologic response could be attributed to ter-
rain and climatic variables within their dataset and that this
information can be extracted from topographic, soil tex-
ture and rainstorm statistics data.

Dynamic response characteristics of watersheds have
more recently been introduced in the context of hydrologic
model calibration (e.g. [51,25,32,33]). Shamir et al. [32]
derived two hydrologic indices based on the concept of peak
density developed by Morin et al. [25], and investigated
their usefulness in improving the identification of hydro-
logic model parameters. Shamir et al. [32] found that these
indices described some important channel and hill slope
routing processes and that using their rising limb density
index improved the reliability of model predictions. In a
subsequent study, Shamir et al. [33] investigated the usabil-
ity of additional hydrologic indices at different time scales to
constrain ensemble model predictions from parameters
obtained using these indices. They developed a scheme to
estimate model parameters based on extracting hydrologic
indices at different timescales and compared the resulting
parameter space with four other existing parameter estima-
tion schemes. They reported that their scheme showed bet-
ter results. Furthermore, they concluded that there is a need
to study relationships between various hydrologic indices
and physical characteristics of watersheds.

Detenbeck et al. [13] found that differences in seasonal
flow regimes – identified using different streamflow indices
– could be related to differences in hydrogeomorphology,
watershed storage and land use. They suggest that the rela-
tionship between land use and flow response found might
provide a way forward to investigate the impacts of land
use change, even in ungauged watersheds.

3. Example study of constraint regionalization

In this section we relate dynamic response characteristics
to observable physical watershed characteristics by means of
regressive relationships in a new approach to predictions in
ungauged basins (Fig. 1). The idea of regionalizing such
indices stems from the observation that the amount of
uncertainty involved in regionalizing hydrologic model
parameters can be large, particularly because it is difficult
to account for the effects of model structural error during
model calibration and because the calibration problem is
often ill-posed [41]. Watershed response characteristics on
the other hand are not model-specific. Therefore uncertain-
ties and confounding influences that might arise from the
process of model identification are eliminated (or at least sig-
nificantly reduced). Once regionalized, the behavioral infor-
mation summarized by the response characteristics can be
used as constraints on the model predictions, by facilitating
(for example) a separation into behavioral and non-behav-
ioral model sets using a binary classification approach.

3.1. Watershed climate and hydrology data

A set of 30 small to medium sized watersheds (�50–
1100 km2) located in the UK was used for the present study
(Fig. 2). The watersheds are located throughout England
and Wales and cover a wide range of soil types, topography
and land use. Soil types range from predominantly clay at
Mimram@Panshanger Park, over mostly alluvium at
Fal@Tregony, to the permeable chalk watershed Test@
Broadlands, and the very low permeable Taw@Umberleigh.
Almost all watersheds are rural with very little urbaniza-
tion except for the Isebrook@Harrowdown Old Mill,
which is considered moderately urbanized. There is a good
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Fig. 2. Map of UK showing the location of the 30 watersheds used in this study. Table shows the station numbers, name of rivers and locations of their
gauging stations. Watersheds are ranked from smallest (top and blue) to largest (bottom and red) drainage area. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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mix of topographic gradient within the watersheds with
Tywi@Nantgaredig having an altitude change of about
795 m and the Stringside@Whitebridge having a change
in altitude of only 75 m.

None of the watershed streamflow used here is signifi-
cantly affected by abstractions or other alterations, though
a few watersheds have naturalized flow. The rainfall-runoff
data for the rest are only affected by factors which are
thought to be of minor impact and have therefore been
ignored in this study. The quality of precipitation and run-
off data was the criterion deemed most important in the
selection of the 30 watersheds. A second criterion was to
achieve a reasonable distribution of three watershed char-
acteristics that are considered most relevant to pool hydro-
logically similar watersheds within the UK [6,22]:
watershed area (AREA), a base-flow index derived from
the Hydrology of Soil Types classification (BFIHOST)
and standard annual average precipitation for the period
of 1961–1990 (SAAR). Potential evapotranspiration was
calculated from temperature data using Hargreaves equa-
tion [34]. Eleven consecutive years (1980–1990) of data
were available for 29 watersheds. Time series data for the
Test@Broadlands was available from 1983 to 1996. The
period of time series used for analysis was from 1-1-1983
to 12-31-1990.

The long-term average monthly values of precipitation,
streamflow and potential evapotranspiration are plotted
in Fig. 3a–c, showing the similarity in regime between the
watersheds. A flow duration curve showing the cumulative
frequency of the normalized flow values is also shown
(Fig. 3d). The flows are normalized by their mean flow val-
ues to facilitate comparison. A steep slope in the flow dura-
tion curve indicates flashiness of the streamflow response to
precipitation inputs whereas a flatter curve indicates a rel-
atively damped response and higher storage. Fig. 3d shows
the diversity in watersheds with respect to their hydrologic
response. Fig. 3e shows the climate gradient within the data
set, and already indicates that a strong relationship exists
between runoff ratio (R/P) versus the ratio of precipitation
and potential evapotranspiration (P/EP).

3.2. Watershed physical characteristics

A comprehensive list of physical characteristics for all
the watersheds was compiled from the National River
Flow Archive (http://www.nwl.ac.uk/ih/nrfa) and the data
CD of the Flood Estimation Handbook (FEH). The main
features of these watersheds are presented in a parallel
coordinates plot in Fig. 4 (each line represents one
watershed). The plot shows that most of the watersheds
tend to have small area, small woodland and built up areas,
and large RMED-1H values (see Table 1).

Other available watershed characteristics include station
elevation, hydrogeology, climate and land use. The eleva-
tion data is derived from 50 m grid cells having 0.1 m ver-
tical resolution. Hydrogeology information consists of data

http://www.nwl.ac.uk/ih/nrfa
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representing permeability of watersheds and of another
dataset for superficial deposits or drifts. This data is impor-
tant because it is known to influence streamflow regimes
(http://www.nwl.ac.uk/ih/nrfa). Land use has 27 land
cover regions which have been broadly clustered into seven
categories. Climatic characteristics include the variability
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Table 1
Description of watershed characteristics

Characteristic Unit Description

AREA km2 Watershed drainage area
BFIHOST [–] Base-flow index derived using HOST classification
LDP km Longest drainage path
DPSBAR m km�1 Index of watershed steepness
DPLBAR km Index describing watershed size and drainage path configuration
APSBAR [–] Index representing the dominant aspect of watershed slopes
APSVAR [–] Index representing the invariability of aspect of watershed slopes
URBEXT [–] FEH index of fractional urban extent for 1990
LEVEL ST moda Elevation of gauging station above ordinance datum
MAX ALT mod Elevation of point with maximum altitude above ordinance datum
ALT95 mod 95 Percentile elevation (95% points in watershed above this elevation)
ALT5 mod 5 Percentile elevation (5% points in watershed above this elevation)
WT. ALT mod Weighted averaged altitude of watershed
WOODLAND [–] Percentage woodland within watershed
ARABLE [–] Percentage arable land within watershed
GRASS [–] Percentage grasslands within watershed
MOUNTAIN [–] Percentage mountains within watershed
BUILTUP [–] Percentage built-up land within watershed
HIGH PERM [–] Percentage soil within watershed with high permeability
MED PERM [–] Percentage soil within watershed with medium/mixed permeability
LOW PERM [–] Percentage soil within watershed with low permeability
SAAR mm 1961–1990 Standard period average annual rainfall
RMED-1D mm Median annual maximum 1-day precipitation
RMED-2D mm Median annual maximum 2-day precipitation
RMED-1H mm Median annual maximum 1-hour precipitation
P/PE [–] Ratio of average annual precipitation and average annual evapotranspiration
PVAR [–] Coefficient of variation in precipitation

a mod: meters above ordinance datum.
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an available regression equation where BFIHOST is the
dependent variable and the HOST classifications are the
independent variables [6].

These physical characteristics of watersheds were
divided into six categories depending on their function,
thus extending the work by Wagener et al. [43,44]. This
classification has been used here as well and verified by
analyzing the correlation between the watershed character-
istics. It was found that almost all of the characteristics
within each category were highly correlated. This result
was used to reduce the number of physical watershed char-
acteristics for this study, e.g. among the landform descrip-
tors (AREA, LDP and DPLBAR), only AREA was
considered for this study and the others were rejected since
they were unlikely to contain any additional information.
A list of all characteristics and their grouping is shown in
Table 2
Classification of physical characteristics of watersheds

Function Physical chara

Landform [1]LDP, [1] ARE
Topography [2] DPSBAR, [2

Land use [3] BUILTUP, [

Soil [4] BFIHOST, [

Climate [5]SAAR, [5] RM
Others MOUNTAINS

Groupings are based on linear correlation coefficient (>0.75).
Underlined response characteristics were kept for regression analysis and desi
Table 2. Only the underlined physical characteristics were
used for this study.

Not all characteristics in a group were found to be cor-
related. The ones showing significant correlation (linear
correlation > 0.75) are shown by numbered brackets pre-
ceding them. For example, BFIHOST, MEDPERM and
LOWPERM were under the same group, Soils, but were
not strongly correlated. A final choice of characteristics
was made by selecting one physical characteristic from
each correlated group, along with the ones that were not
strongly correlated with any other physical characteristic.
Additionally, ARABLE and URBEXT were the only char-
acteristics that show negative correlation. Among the
group Others, MOUNTAINS was not kept because it
was significantly correlated (correlation coefficient = 0.7)
with the physical characteristics in the group Topography.
cteristics of watershed

A, [1]DPLBAR
]LEVEL OF STATION, [2]MAX ALT, [2]ALT95, [2]ALT5, [2]WTAVALT
2]ARABLE, [3]URBEXT
4]HIGHPERM, MEDPERM, LOWPERM

ED-1D, [5] RMED-2D, RMED-1H, [5] P/PE, PVAR
, GRASS, APSVAR, APSBAR, WOODLAND

gnated by the letters within brackets.



1762 M. Yadav et al. / Advances in Water Resources 30 (2007) 1756–1774
3.3. Methodology

The earlier introduced Fig. 1 shows the stepwise proce-
dure of the approach implemented in the subsequent sec-
tions. The procedure starts by calculating the response
characteristics (hydrologic indices) for the 30 watersheds.

3.3.1. Dynamic response characteristics (Fig. 4a)

Thirty-nine dynamic response characteristics were
derived from streamflow, precipitation and evapotranspira-
tion time series at various timescales. To analyze the differ-
ent aspects of streamflow, the response characteristics were
divided into seven categories (extending the work by Olden
and Poff [27]: magnitude of high flows, magnitude of low
flows, magnitude of average flows, duration of flows, fre-
quency, rate of change in flows, and timing of flow events.
Table 3
Description and grouping of watershed response indices (D – Daily, W – Wee

S. No. Name Units Scale Description

Magnitude of high flow events

MH2 Maximum February
flow

mm M Maximum monthly

MH3 Maximum August flow mm M Maximum monthly

MH4 Maximum November
flow

mm M Maximum monthly

MH5 Maximum negative flow
change

mm M Maximum differenc

MH6 Maximum positive flow
change

mm M Maximum differenc

MH7 High flow discharge (1st
percentile)

[–] A Mean of 1st percen

MH8 High flow discharge
(10th percentile)

[–] A Mean of 10th perce

Magnitude of low flow events

ML1 Recession coefficient
(slope)

mm D Slope of the slow r

Magnitude of average flow events

MA1 Mean of daily flows mm D Mean daily flow

MA2 Median of daily flows mm D Median daily flow

MA3 Skewness in daily flows [–] D Mean daily flows d

MA4 Streamflow variability [–] D Coefficient of varia

MA6 Annual specific runoff mm A Average annual run
MA7 Runoff ratio [–] A Average annual run
MA8 Inter annual range mm A Wettest yearly flow

MA9 Time series total flow mm 11 yrs Sum of daily flows

Rate of change in flow events

R2 Slope of flow duration
curve (mid)

mm D Slope of part of cur
streamflow normali

Frequency of flow events

F2 Declining limb density week�1 W Number of peaks d

F3 High pulse count (3
times median)

year�1 A Number of annual
median daily flow d
A list of these indices is shown in Table 3 (see also
[50,2,11]).

3.3.2. Redundancy in response characteristics (Fig. 4b)

Similar to the manner in which the number of physical
characteristics was pruned, the response characteristics
must also be checked for redundancy. In the present study
the number of response characteristics was 39 and an
assessment of relationships via correlation coefficients
was considered appropriate 43,44,3]. Linear and Spearman
rank correlation coefficients were used to find patterns of
variability among the response characteristics. The group-
ing of response characteristics is shown in Table 4. Square
brackets indicate characteristics with high linear correla-
tion (>0.75) and curly brackets indicate characteristics with
high Spearman rank correlation (>0.75 and linear correla-
kly, M – Monthly, A – Annual/yearly)

Ref.

flow for February across all years Shamir et al.
[33]

flow for August across all years Shamir et al.
[33]

flow for November across all years Shamir et al.
[33]

e in magnitude of flows in a rising limb Shamir et al.
[33]

e in magnitude of flows in a falling limb Shamir et al.
[33]

tile from flow duration curve divided by median Flow Clausen et al.
[10]

ntile from flow duration curve divided by median flow Clausen et al.
[10]

ecession limb

Clausen and
Biggs [9]
Clausen and
Biggs [9]

ivided by median daily flows Clausen and
Biggs [9]

tion in Streamflow Clausen and
Biggs [9]

off divided by watershed area
off divided by average annual precipitation
minus driest yearly flow Shamir et al.

[33]
for the record period of flow Shamir et al.

[33]

ve between the 33% and 66% flow exceedance values of
zed by their means

–

ivided by cumulative duration of declining limbs Shamir et al.
[33]

occurrences during which flow remains above 3 times
ivided by period of flow

Clausen and
Biggs [9]



Table 4
Clustering of response characteristics

Function Response characteristics

MAGNITUDE (H) MH1, [1] MH2, [1] MH3, [1] MH4, [1] MH5, [1] MH6, [2] MH7, [2] MH8, [2] MH9
MAGNITUDE (L) [1] ML1, ML2, [1]ML3, ML4[3]
MAGNITUDE (A) [1] MA1, [1] MA2, [2] MA3, [2] MA4, MA5, [1] MA6, [1] MA7, [1] MA8, [1] MA9
DURATION [2] D1, -{1}D2, [2]D3, -[3] D4
RATE OF CHANGE R1, [2] R2, [3] R3, -R4
FREQUENCY F1, F2, [2] F3, [2] F4, {1}F5
TIMING [4] T1, -[4] T2
CLIMATE -[1] C1, C2

[–]: groupings based on linear correlation (>0.75). {–}: groupings based on Spearman rank correlation (>0.75) and linear correlation <0.4. Underlined
response characteristics are kept for subsequent regression analysis. Negative correlation is represented by a hyphen preceding the response characteristic.

M. Yadav et al. / Advances in Water Resources 30 (2007) 1756–1774 1763
tion < 0.6). Negative correlation is represented by a hyphen
preceding the response characteristic (one variable without
and one with hyphen would have a negative relationship,
two variables with hyphen would have a positive relation-
ship, etc.). The 13 underlined response characteristics were
retained for use in regionalization based upon their group-
ing, correlation and individual importance (Fig. 5).

3.3.3. Regionalization of response characteristics (Fig. 4c–e)

Based on the analysis described above, 28 watershed
response characteristics and 13 physical watershed charac-
teristics were retained for further analysis. The next step in
our approach was to derive relationships between the indi-
ces and the physical characteristics. This could be achieved
in a number of ways. The simplest of the methods is linear
regression which has been used in many regionalization
studies e.g. [30,43,44,3]. Other methods include nonlinear
regression, multivariate analysis, rule based classification,
cluster analysis, etc. (e.g. [27,36]). In this study, stepwise
linear regression was used to establish relationships
between multiple physical characteristics and each individ-
ual response characteristic.

To test the robustness of the regression models, a sixfold
cross validation approach was utilized, where 30 water-
sheds were divided into 6 groups of 5 watersheds each.
N
or

m
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ed
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MH2 MH3 MH4 MH5 MH6 MH7 MH8 ML1 MA1 M
0

0.2

0.4

0.6

0.8

1

<- Maximu
9.4 7.4 10.9 9.4 7.9 25.7 6.9 0.2 5.1 2

<- Minimum
0.61 0.26 0.41 0.12 0.2 1.86 1.36 0.001 0.35 0

Fig. 5. Response characteristics of watersheds shown in parallel coordinate
characteristics. (For interpretation of the references to color in this figure lege
Each group was treated as ungauged, in turn, for the pur-
pose of validation. The remaining 25 watersheds were trea-
ted as gauged to develop regression relationships. In this
manner, the proposed approach was applied to all 30
watersheds (5 validation watersheds per group) with the
results of regression developed from the remaining 25
watersheds per group. Regression was carried out for each
of the 6 groups individually and the combinations of phys-
ical characteristics for predicting response characteristics
were observed.

Linear regression equations were developed between
individual response characteristics and physical character-
istics, for the 25 watersheds in each group, based on an
equation of the following form [21]:

Y ¼ b0 þ b1x1 þ b2x2 þ � � � þ bp�1xp�1 þ � ð1Þ

where Y is the response characteristic of interest, x1,x2, . . . ,
xp�1 are p � 1 physical characteristics, b0,b1, . . . ,bp�1 are
the p regression coefficients, and e is an error term. Fig. 6
shows one of the regression relationships in watershed
group 1 between P/PE and Maximum November flow
(MH4) including estimates of uncertainty in the regression.
The coefficient of determination (r2) of this regression was
0.88. The regression includes the estimation of prediction
(dark grey band) and confidence intervals (light grey band);
A2 MA3 MA4 MA6 MA7 MA8 MA9 R2 F2 F3 

m Values ->
.4 2.8 1.9 4.8 0.8 1.5 12369 0.04 0.5 27.3

 Values ->
.24 1.1 0.36 0.33 0.2 0.2 852 0.01 0.17 0.25

s plot. Numbers on the upper axis show maximum values of response
nd, the reader is referred to the web version of this article.)
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Fig. 6. Example of single index regression for Maximum November flow
(MH4) and climatic gradient P/PE. The white circles show 25 watersheds
used to develop regression relationship. R-squared statistic for this
regression was 0.88. Three black circles, one white square and one white
diamond show 5 watersheds left out for validation. One watershed
(represented by a white diamond) lies outside the prediction limits while
the ones represented by the three black circles and a white square lie
inside. The result of MH4 as constraint on hydrologic model prediction
for the watersheds represented by white square and diamond is analyzed in
detail in the results and discussions section.
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the confidence interval is a measure of the certainty (or
uncertainty) of predicting the true (expected or mean) value
of the variable while the prediction interval is a measure of
the certainty of predicting some future (possible) value of
that variable. Since the uncertainty in prediction intervals
includes the uncertainty in the regression parameters
(b0,b1, . . . ,bp�1) and any new measurement (Y), this inter-
val is wider than the confidence interval, which considers
uncertainty in regression parameters only, while the mea-
surements themselves are assumed to be random variables.
In Fig. 6, the 25 watersheds indicated by white circles were
used to develop a linear regression relationship and the five
watersheds indicated by black circles, white square and dia-
mond were not included in the derivation of the regression
relationship. The known value of P/PE for the ungauged
watershed (e.g. black vertical line in Fig. 6 for one of the
ungauged watersheds) can then be used to calculate the
confidence and prediction limits of MH4 from the regres-
sion equations for the validation watershed. It can be seen
that three black circles and a white square lie within the
prediction interval while one does not. This means that if
MH4 is used as constraint on model prediction on the
white diamond lying outside the prediction interval, the
regionalized constraint might be too narrow. On the other
hand, the watersheds represented by three black circles and
a white square lying close to the line of regression are ex-
pected to yield better results. A detailed analysis of this is-
sue is carried out in results and conclusions section.

The technique of forward stepwise regression automati-
cally eliminates the variables that do not contribute signif-
icantly towards the prediction of the response
characteristics. This was implemented using the p-values
of individual physical characteristics for each regression
relationship. The critical value of p was set to 0.05 as sug-
gested by Kottegoda and Rosso [21]. If this value is greater
than 0.05 for a certain physical characteristic, the charac-
teristic is eliminated from the regression. For example,
Fig. 6 shows the regression between response characteristic
MH4 and physical watershed characteristic P/PE for group
1. This shows that in group 1, when stepwise regression was
carried out on MH4 and 13 physical watershed character-
istics, only P/PE showed a p-value less than 0.05. That is
why this particular relationship became a simple univariate
linear regression model. However, when stepwise regres-
sion results of MH4 in the other five groups were exam-
ined, BFIHOST and APSVAR also figured in the
regression equation along with P/PE. Stepwise regression
results for the remaining response characteristics also pre-
sented a similar situation, where different patterns of rela-
tionships were found across six groups for individual
single response characteristics.

The results of the stepwise regressions are shown in
Table 5. Here the number of times each physical charac-
teristic appears in the stepwise regression is presented,
with 6 being the maximum, since for each response char-
acteristic, separate regression relationships are developed
for 6 groups of watersheds for cross validation. The
shades of gray also indicate the same; with black indicat-
ing that the physical characteristic appears all 6 times in
the equation for a response characteristic. A blank cell
indicates that the physical characteristic does not appear
at all in the relationship for the corresponding response
characteristic. The last column in the table shows the
range of r2 statistics for all six regression equations. It
was noticed that some of the physical characteristics
(e.g. BFIHOST and P/PE) figured prominently in most
of the regression equations, while others (e.g. AREA
and WOODLAND) featured only a few times. This sug-
gests that BFIHOST and P/PE were the most important
physical (climatic) characteristics that described most of
the response characteristics.

The confidence limits and prediction limits were calcu-
lated for each response characteristic for 5 watersheds in
each group treated as ungauged. The bracketed response
characteristics in Table 5 were rejected for further analy-
sis. It was noticed that some of the response characteris-
tics did not show very good R2 statistics (e.g. MH1,
MH9, MA5, D4, R4, F1 and T1 with R2 value less than
0.6) and these were subsequently removed for further
analysis. It was also observed that confidence and predic-
tion limits for some of the response characteristics
included negative values. For example, although response
characteristics D1 and F4 in Table 5 showed good R2

statistic for the overall regression, the confidence and
prediction limits for the validation watersheds came out
to be negative and hence these response characteristics
were also removed from further analysis. An exception



Table 5
Stepwise regression analysis details

AREA 
BFI

HOST
DPS
BAR

APS
BAR

APS
VAR

WOOD
LAND GRASS

BUILT 
UP

MED
PERM

LOW
PERM

RMED
-1H P/PE PVAR r2  Range

F Statistic 
Range
(10-10)

[MH1] 6 1 5 0.59–0.74 21171–564170  

MH2 3 2 6 0.84–0.92 0.06–9.5 

MH3 6 4 5 6 0.84–0.94 0.13–14.44  
MH4 1 1 6 0.83–0.92 0.003–2.5
MH5 4 1 1 1 6 2 0.76–0.89 3.9–181.1

MH6 1 6 1 6 4 0.85–0.93 0.31–13.92  

MH7 2 5 3 1 1 5 3 0.87–0.98 0.002–20.61  

MH8 6 1 0.75–0.89 0.44 –212.8  

[MH9] 6 0.55–0.7 355.38–224150  

ML1 6 1 1 1 1 3 6 0.82–0.92 2.55–62.93  

MA1 1 1 4 6 0.91–0.94 0.0002–0.011  
MA2 6 6 6 0.87–0.94 0.01–23.5

MA3 6 5 1 5 1 0.88–0.95 0.015–9.42
MA4 6 1 5 6 0.90–0.94 0.02 – 0.53

[MA5] 5 1 3 0–0.57 991810–27041000  

MA6 1 4 6 0.91–0.93 0.0001–0.024 

MA7 6 5 2 1 1 6 1 0.82–0.93 1.47–546.93 

MA8 1 6 2 6 5 0.82–0.90 1.65–476.78  

MA9 1 4 6 0.91–0.93 0.0001–0.024  

[D1] 6 1 2 4 1 1 1 1 2 0.70–0.91 19.44–10761  

[D4] 6 1 2 1 4 0.54–0.65 97336–6243100  

R2 6 1 2 0.46–0.76 6367.4–2025300 

[R4] 5 5 4 1 0.28–0.69 56053–653226000 

[F1] 0–0 0–0 

F2 6 1 5 2 0.60–0.78 20831–386450  

F3 3 6 5 2 2 2 5 0.89–0.98 0.001–1.79 

[F4] 6 2 1 1 0.87–0.92 0.013–0.114  

[T1] 5 5 0.19–0.76 166.18–286540000 

Cell values in the table indicate number of times a physical characteristic appears in the regression for 6 bins or groups of watersheds. This number can be
visually interpreted through the color of cells also with darker shades of grey indicating a higher value. The last two columns show the ranges of R2 and F

statistic.
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to this rule is the response characteristic R2, which was
retained for further application even though the lowest
R2 value, was below the chosen threshold. R2 was
thought to be an important descriptor of the hydrologic
response and this is corroborated in the results later.

3.3.4. Hydrologic model application and Monte Carlo

analysis (Fig. 4f–j)
While the regionalized index ranges derived above pro-

vide constraints on the expected behavior of the ungauged
watersheds, the approach does not by itself provide any
predictive capability of the rainfall-runoff response. A
hydrologic model is required to gain this capability. Note
that any model structure for which the required input data
are available can be implemented in the framework devel-
oped here. For illustration of the method, we have selected
a simple and commonly used parsimonious model. The
lumped hydrologic model (e.g. [7,42,39]) chosen for this
study (Fig. 7) has 5 adjustable parameters, HUZ, b, a, Kq

and Ks (Table 6). It consists of a probability-distributed
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Fig. 7. Lumped 5-parameter model structure. ET and PP are potential evapotranspiration and precipitation respectively [mm]. OV1 and OV2 are model
simulated effective precipitation components [mm]. Xi is the state of individual buckets of the routing model. QQ is model simulated streamflow [mm].
XHUZ and XCUZ are Soil moisture accounting tank state contents [mm].
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store that describes the watershed storage as a Pareto dis-
tribution of buckets of varying depth as the soil moisture
accounting component. Excess precipitation is produced
through overflow of the buckets and routed through a par-
allel combination of a 3-reservoir Nash Cascade for quick
flow and a single reservoir slow flow routing component.
XHUZ and XCUZ are state variables describing the soil
moisture accounting content. E is potential evapotranspi-
ration, PP is precipitation, OV1 and OV2 are excess precip-
itation to the routing module generated from overflow of
the soil moisture accounting component. See Moore [24]
for a detailed description of the soil moisture accounting
model. Xq1, Xq2, Xq3 and Xs are the states of the individual
reservoirs of the routing module. Qq and Qs are the flow
values generated from the quick and slow reservoirs
respectively.

The model was run within a Monte Carlo framework
by randomly sampling 10,000 parameter sets drawn from
a uniform distribution covering the predefined feasible
parameter space. For plotting purposes, the Nash Sutc-
liffe Efficiency measure (NSE) [26, Eq. (3.12)] and the
Root Mean Squared Error measure (RMSEast) (Eq.
(3.13)) were calculated; the latter is computed using a
Box-Cox transformation applied to the observed and sim-
ulated flows,

NSE ¼ 1�
PN

i¼1ðqi � q̂iÞ2PN
i¼1 qi � 1

N

PN
i¼1qi

� �2
ð2Þ
Table 6
Description of model parameters

Parameter Description

HUZ Maximum storage capacity of watershed
b Index describing spatial soil moisture distributio
a Flow distribution coefficient
Kq Residence time of quick flow reservoir
Ks Residence time of slow flow reservoir
RMSE� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1
ðq�i � q̂�i Þ

2

r
ð3Þ

q�i ¼ ðqk
i � 1Þ=k ð4Þ

where qi is mean daily streamflow (mm), q̂i is the model
simulated daily streamflow (mm), N is the length of time
series of flow, q�i and q̂�i are Box-Cox transformed values
of daily observed and simulated stream flows respectively
(Eq. (4)), with a value of 0.3 for the transformation param-
eter k, since this value provides a good fit to low flow peri-
ods in our experience. The two measures were selected
because of their emphasis on fitting different parts of the
time series of flow (i.e. peak flows and low flows
respectively).

It is important to stress that these two model perfor-
mance measures were not used for selecting parameter sets,
since by definition a comparison to observed flows would
not be possible at ungauged locations. Instead, the region-
alized ranges of indices only (based on confidence and pre-
diction limits) were used for this purpose. Simulations that
produced indices that fall within the ranges were consid-
ered behavioral, while those that fell outside were consid-
ered non-behavioral. This step was first applied for each
of the regression equations separately, and then using com-
binations of response characteristics. The maximum and
minimum simulated flows generated by the behavioral
parameter sets (i.e. lying within the confidence and predic-
tion intervals) were determined for each time step, and
ensemble streamflow ranges were plotted.
Unit Min Max

mm 1 500
n – 0.1 2

– 0.1 0.99
s�1 0.1 0.99
s�1 0 0.1
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3.3.5. Analysis of reliability and sharpness of ensemble

predictions (Fig. 4k)

Evaluation of the performance of the approach was
done in terms of Reliability and Sharpness (precision) of
the predictive ranges obtained from the behavioral simula-
tions. Reliability is defined here as a measure of the fraction
of time the observed streamflow is within the prediction
band of the model. Reliability values are calculated by
counting the number of times the observed streamflow falls
within the prediction band, divided by the length of the
time series. How far the observations fall outside the pre-
diction bands, is not currently considered. Sharpness is a
measure of the ensemble spread. A single line would be a
sharpness of 100%, while no reduction from the original
ensemble range produced by the a priori feasible parameter
range represents a sharpness of 0%. A small value of sharp-
ness represents a small reduction in uncertainty (i.e. a wide
ensemble spread). Both measures are expressed in percent
and an optimal value for both, reliability and sharpness,
is at 100%.

To investigate the effect of response characteristics on
different parts of the hydrograph, the streamflow time ser-
Fig. 8. Dotty plots of simulated MH4 versus (a) 1-NSE and (b) RMSE*. (c) O
curves for observed and (constraint) predicted streamflow ranges for the waters
inside the prediction limits of regression equation. A warm-up period of 60 da
ies was divided into 10 levels based on flow exceedance per-
centiles of the flow duration curve. Reliability and
sharpness values of these 10 different levels for individual
response characteristics for each ungauged watershed were
noted. To visualize the large amount of data available for
analysis average values of reliability and sharpness for all
the watersheds were also noted as discussed below.

4. Results and discussion

The method described above was tested using each
watershed in turn as a ‘validation’ watershed, as stated
before. For reasons of brevity, the results from the first
group are presented in detail followed by the overall result
for single response characteristics. A detailed discussion on
the combined effect of multiple response characteristics is
presented later. The results obtained using the regression
equation (MH4 [Maximum November Flow] versus
P/PE; example of regression demonstrated in previous sec-
tions; see also Fig. 6), for the watershed (shown by white
square marker in Fig. 6) from group 1 are shown in
Fig. 8a–c. The observed value of the response characteristic
bserved and (constraint) predicted streamflow ranges. (d) Flow duration
hed W11 represented by white square marker in Fig. 6. This watershed lies
ys is shown by the dashed line.



1768 M. Yadav et al. / Advances in Water Resources 30 (2007) 1756–1774
MH4 for this watershed (denoted by W11; the first valida-
tion watershed in the first cross validation group) lies inside
the prediction limits of MH4 obtained from the regression
of MH4 with physical characteristic P/PE for 25 water-
sheds shown by 25 white circles in Fig. 6. The confidence
and prediction intervals derived from the regression analy-
sis have clearly constrained the parameter space in terms of
the performance evaluation criterion used. Fig. 8c shows
the maximum and minimum simulated flows for these
intervals and for the complete range of simulations.
Fig. 8d also shows the flow duration curves for the predic-
tive ranges of flow. The 60 day period before the dashed
vertical line was used as a model warm up period. The
observed streamflow is seen to lie almost fully inside the
prediction intervals after the warm up period. The number
of behavioral simulations when flow is constrained by pre-
diction limits of MH4 ratio was 6002 (60%), and the corre-
sponding number for flow constrained by confidence limits
of the MH4 was 2022 (20%).

Fig. 9a–c present similar plots for the watershed that is
indicated by a white diamond marker in Fig. 6. The
Fig. 9. Dotty plots of simulated MH4 versus (a) 1-NSE and (b) RMSE*. (c) O
curves for observed and (constraint) predicted streamflow ranges for the water
lies outside the prediction limits of regression equation. A warm-up period of
observed value of the response characteristic MH4 for this
watershed (denoted by W15) lies outside the prediction lim-
its of MH4 obtained from the regression of MH4 with
physical characteristic P/PE for 25 watersheds shown by
25 white circles in Fig. 6. The observed streamflow is seen
to lie almost fully within the prediction intervals after the
warm up period for this case too. The number of behav-
ioral simulations, when flow is constrained by prediction
limits of the runoff ratio, was 8639 (86%), and the corre-
sponding number for flow constrained by confidence limits
of the MH4 was 1633 (16%). Although, the number of
behavioral simulations in both the cases is similar (confi-
dence intervals), the predictive uncertainties in simulated
flow for the latter case are higher than the former case. This
is evident from a visual inspection of difference in magni-
tudes of maximum simulated flows and observed flows
from Figs. 8c and 9c.

It was seen that upper flow limits are higher for W11
than W15 during high flow periods. For low flow periods,
W11 shows more constrained flows in terms of the upper
limit. It can be seen that for W11, reliability values are high
bserved and (constraint) predicted streamflow ranges. (d) Flow duration
shed W15 represented by white diamond marker in Fig. 6. This watershed
60 days is shown by the dashed line.
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for most of the flow percentiles though predicted ranges are
too narrow for low flows. Sharpness values of high flows
for W11 are smaller than that for W15 indicating increased
uncertainty for the case of W11.

On the other hand it was also noticed that the difference
in both reliability and sharpness for the two watersheds is
small indicating that the approach might be robust for
most cases. To see if this is a conclusive statement, a
detailed study of all 19 response characteristics as con-
straints for all 30 watersheds was done. For this purpose,
the reliability and sharpness values for independent
response characteristics for all 30 watersheds were aggre-
gated to analyze their impact on different parts of stream-
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Fig. 10. Average reliability and sharpness values of response characteristics ca
prediction intervals of response characteristics. Values are shown for different
Darker shades of grey show higher values. The legend above each figure show
flow time series. It was observed that while reliability
values for all the flow percentiles were mainly above 90%,
the sharpness values varied extensively. This suggests that
there is a trade-off between these values since higher values
of both reliability and sharpness are wanted for a favorable
result. It was not possible to identify the role of individual
response characteristics with respect to reliability and
sharpness values from these figures. Thus another set of fig-
ures was developed that shows the impact of individual
response characteristics on different percentiles of flow
exceedance values (Fig. 10a–d).

Fig. 10a–d show the average reliability and sharpness
values of each response characteristic on different flow
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exceedance percentiles for all watersheds. The shades of
gray represent the relative values from white (minimum)
to black (maximum). It was observed from Fig. 10a that
almost all response characteristics showed high reliability
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Fig. 11. Dotty plots of R2 and F3 showing their impact as constraints on hydro
R2 and F3 with shades of gray representing the value of the performance measu
result of R2 and F3 as constraints. The bottom figures show the prediction ban
alone are used to constrain simulated stream flows.
values for low flows or when the percentile flow excee-
dance value is higher. A few of the response characteris-
tics (e.g. MH5, MH8, MA2, MA3, R2 and F2) also
have high reliability values for high flows. This shows that
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logic prediction. The circles in (a) and (b) show a single simulation value of
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observed low flows were almost always within the predic-
tion band obtained from the regression relationship and
that the high flows were either not characterized by most
of the response characteristics or were not simulated well
by the hydrologic model used in this study. The trade-off
between reliability and sharpness is evident from the com-
parison of using the wider prediction limits as constraints
(Fig. 10b and d) versus the narrower confidence limits
(Fig. 10a and c).

The next logical step is then to test how combinations of
constraints can be applied. As an example, Fig. 11 shows
the effect of response characteristics R2 and F3 on
Fig. 12. Histogram of reliability and sharpness values for high, medium and low
flow duration curve are used to constrain ensemble predictions (a). (b) shows
these response characteristics are used to constrain flows.
watershed W53, where both response characteristics were
used to determine whether a simulation was behavioral
(i.e. if the simulated values of both the response character-
istics for 3rd watershed in 5th cross validation group were
within their prediction limits the simulation was considered
as behavioral).

It was noticed that the number of behavioral simula-
tions decreased when the constraints imposed by the two
regression equations were applied simultaneously (see
Fig. 11c): resulting in a further narrowing of the confidence
and prediction bands (compare with Fig. 11d and e).
Again, the observed flow and best simulations lie within
flows when confidence limits of high pulse count, runoff ratio and slope of
the histogram of reliability and sharpness values when prediction limits of
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the predicted range. The confidence and prediction limits
for this case are shown in Fig. 11a and b. When the flow
was constrained by the wider ranges (prediction limits) of
both response characteristics, then the number of behav-
ioral simulations was 4421 (44%), reducing to only 642
(6%) when the flow was constrained by the narrower con-
fidence limits. The reliability values obtained from the anal-
ysis range from 81% for high flows to 100% for low flows
and the sharpness values range from 33% for high flows
to 53% for low flows. This shows that even after the
streamflow is constrained by more than one response char-
acteristic simultaneously, good reliability and sharpness
values can be obtained. However, when all 19 response
characteristics were used simultaneously to constrain the
streamflow prediction limits, it was observed that 12 out
of 30 validation watersheds did not yield any behavioral
simulations.

Since some of the response characteristics better con-
strain the low flows while others better constrain the high
flows, a sensible combination of these different response
characteristics should constrain the predictive uncertainty
even further. This was implemented by grouping the
response characteristics based on the specific portions of
streamflow time series they impact. For example, using
the prediction intervals as the constraining factor, the
sharpness and reliability values can be used to classify the
response characteristics based on their impact on either
high, medium or low flows. The following classification
was found:

(a) High Flows – MH7, MA3, F3
(b) Medium Flows – MH4, MA1, MA4, MA7
(c) Low Flows – MH8, MA2, MA3, MA4, MA6, MA7,

MA9, ML1, R2

To maintain a balance between the reliability and sharp-
ness values, three response characteristics were selected
from the above groups to constrain high, medium and
low flows respectively. These response characteristics were:
high pulse count (high flows), runoff ratio (medium flows)
and slope of the flow duration curve (low flows). Fig. 12
shows the histogram of reliability and sharpness values
for high, medium and low flows when these response char-
acteristics were used to simultaneously constrain the
ensemble flows for all 30 watersheds. The reliability and
sharpness values are seen to be high across the range of
flows.

Finally, we note that three physical characteristics
appear to explain most of the observed streamflow behav-
ior, i.e. the dominant independent variables in the regres-
sion analysis for high pulse count, runoff ratio and slope
of flow duration curve. They are the wetness index (P/
PE) describing climate, the average surface slope (DPS-
BAR) describing topography, and the base-flow index
(BFIHOST), an integrated measure of subsurface charac-
teristics. This empirical result corroborates the watershed
classification suggested by Winter [48]; see also Wolock
et al. [49] who suggests that watersheds should be grouped
by similarity in climate, topography and geology.

5. Conclusions

This study presents a novel approach to hydrologic
ensemble predictions in ungauged basins. The approach
is based on identifying relationships between physical char-
acteristics and dynamic response characteristics of water-
sheds. The relationships between physical and dynamic
characteristics found were generally higher than those com-
monly reported for hydrologic model parameters and phys-
ical characteristics e.g. [30,43,44]. The classical approach
for regionalizing model parameters requires choosing a
particular model structure and calibration of the model
parameters in the gauged watersheds – both elements are
likely to have a negative impact on correlations between
parameters and catchment characteristics since model
structural error and uncertainty in finding hydrologically
realistic parameter values are unavoidable [41]. The
response characteristics determined by our approach are
subsequently regionalized within an uncertainty framework
to provide constraints on the model behavior at ungauged
sites. The overall approach was tested on 30 watersheds
distributed throughout England and Wales. It was found
that high pulse count, runoff ratio and the slope of the flow
duration curve provided strong regionalizable constraints
while still allowing for reliable predictions, i.e. most of
the observed flow was captured by the ensemble. The dom-
inant physical characteristics are climate (wetness index, P/
PE), watershed topography (slope, DPSBAR) and subsur-
face geology and soils (base-flow index, BFIHOST). Using
too many dynamical characteristics simultaneously often
resulted in a rejection of all models.

In general, the approach yielded very promising results
and has several advantages compared to the common
regionalization of models. The main advantages are that
it (1) is applicable to any hydrologic model (lumped or dis-
tributed), (2) is not impacted by problems of parameter cal-
ibration or model structural error, (3) does not try to
establish relationships between conceptual (effective) model
parameters and watershed characteristics, and (4) yields
increased understanding about the controls on watershed
response behavior at the scale of interest, which could
guide an improved approach to watershed classification
[45].
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