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Abstract  

All model analyses must include some measure of prediction accuracy regardless of the 

application.  Many metrics exist, with no one best universally applicable measure.  This paper 

presents a modification of the forecast quality index (FQI), a metric developed in meteorology.  

This metric, FQIm, was applied to a simple case study and found to be applicable to hydrological 

systems.  It includes both an amplitude- and distance-based component, although it is more 

advantageous to use the components separately as the hybrid measure is more impacted by the 

distance-based component.  The metric is useful for measuring prediction accuracy, calibrating a 

model using ensembles, and identifying the trade-off between multiple model objectives. 

INTRODUCTION   

 Computer models are an inexpensive and relatively quick method of analyzing different 

scenarios or predicting possible outcomes.  Despite this benefit, there are many issues associated 

with modeling natural systems.  How do you decide if a model accurately simulates your 

system?  Which metric is most appropriate for your application?  At what value of a metric is 

your model “good enough”?  Can metrics used in one field be applied to another? 

 Although there is no one correct answer to these questions, various disciplines have 

approached these issues differently.  This paper attempts to provide insight into the last question 

by investigating whether a metric developed for use in meteorology, the forecast quality index 

(FQI), can be applied to hydrology.  Related to this goal, this paper will also address the first 
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three questions by analyzing what FQI value corresponds to the minimal residual errors and by 

determining how appropriate the FQI is to hydrological models.  To accomplish these goals, this 

paper will first discuss the role of metrics in modeling and some commonly used methods in 

meteorology.  Then, it will describe the FQI, how hydrology differs from meteorology, and 

modifications necessary for hydrological applications.  Finally, a simple case study will be used 

to illustrate the usefulness of the modified metric to hydrology. 

VALIDATION METHODS IN METEOROLOGY 

Ensemble Prediction Systems (EPS) 

 Ensemble prediction systems are stochastic simulations with members consisting of 

either different model structures or different input parameters.  Unlike deterministic simulations 

that result in a single output, EPS result in a distribution of outputs.  This distribution can be used 

for three purposes.  First, the distribution can be used to identify the probability of a given 

outcome occurring (e.g., the probability that stream flow will exceed a threshold).  Second, the 

distribution provides an indication of the variability resulting from different parameter values.  

From a different perspective, this second purpose can be restated as determining how errors in 

the input values propagate errors in the output.  Finally, the distribution can be used in model 

calibration to identify the parameter set that minimizes the errors between the simulated and 

observed value based on a selected objective function.  There are a variety of metrics that can be 

used, with the selection dependent on the goal of the calibration.  

Overview of Metrics 

 Typical metrics familiar to hydrologists that are also used in meteorology include the root 

mean square error (RMSE), mean absolute error (MAE), Nash-Sutcliffe efficiency (NSE), and 

the correlation coefficient (R2).  In addition, there are certain metrics that are more commonly 
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used in meteorology as compared to other fields such as Talagrand diagrams (Talagrand et al., 

1997), reliability diagrams (Ebert et al., 2005), Brier skill score (Ebert et al., 2005), and the 

Wilson method (Wilson et al., 1999).  As in other fields, none of these measures is a universal 

best metric to determine the accuracy of all models.  Each of these measures is either a distance- 

or amplitude-based measure, whereas most validation attempts require a measure of both. 

Forecast Quality Index (FQI) 

 Venugopal et al. (2005) proposed a hybrid measure for validation of meteorological 

models and tested it by comparing the percentage of observed and predicted precipitation 

covered area.  This measure, the forecast quality index (FQI), consisted of both amplitude- and 

distance-based components. 
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 The numerator represents the distance-based component and is calculated using a 

normalized Partial Hausdorff distance (PHD).  The PHD measures the similarity between R1 and 

R2 by measuring the distance between all points in R1 and all points in R2. 

  ( ) ( )baBAH −= minmax,  (2) 

The norm ║a-b║ can be determined through various methods including the absolute difference 

(║a-b║ = abs(║a║-║b║)), Euclidean distance (║a-b║2 = ║a║2 + ║b║2), or “taxi-cab” distance 

(║a-b║ = ║a║+║b║), among others.  The PHD was normalized by the PHD of R1 and its 

surrogates to account for the wide variation possible in the percentage of nonzero pixels over 

time or between ensemble members.  The surrogates were generated by using the iterative 

amplitude-adjusted Fourier transform (IAAFT) algorithm of Schreiber and Schmitz (1996) which 
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preserves both the correlation structure and the probability density function or R1 (for a more in-

depth discussion of calculating surrogates, see Kantz and Schreiber (1997) and Schreiber and 

Schmitz (1996)). 

 The denominator represents the amplitude-based component and is calculated using a 

modified universal image quality index (UIQI).  The UIQI (Wang and Bovik, 2002) consisted of 

components for the correlation, brightness (bias), and distortion (variability). 
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where 
21 ,RRσ  is the covariance between R1 and R2, 1Rσ and

2Rσ are the standard deviations of the 

two fields, and 
1Rμ and

2Rμ  are the means of the two fields.  The correlation term is accounted for 

in the PHD and, as a result, Venugopal et al. (2005) only use the brightness and distortion terms 

in the FQI. 

HYDROLOGICAL APPLICATION 

Modified FQI (FQIm) 

 Modifications were made to make equation (1) more suitable to hydrology and the 

specific application being addressed in this paper. 
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where FQIm is the modified FQI to distinguish it from the published FQI, HD is the classical 

Hausdorff distance, and the remaining variables are as defined previously. 

 By comparing equation (1) and (4), it is obvious that the main modifications are in the 

numerator.  First, the 100th percentile (k = 100) was used instead of the 75th (k = 75).  By using 

the 100th percentile, the numerator of equation (1) reduced to the classical definition of the 
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Hausdorff distance (HD) as opposed to the partial distance.  The classical definition of the HD is 

more sensitive to outliers than the PHD.  However, correctly simulating the extreme values in 

hydrology (e.g., maximum annual stream flow) was deemed important enough to justify the 

increased sensitivity to outliers.  Second, the numerator was not normalized because of the 

different application of FQIm used in this project.  The application in Venugopal et al. (2005) 

compared multiple images throughout time, resulting in a time variance issue (i.e., the variation 

throughout time of the percent of precipitation covered area).  The application for this paper did 

not have the time variance issue and thus did not require normalization of the HD.  Finally, 

Venugopal et al. (2005) used the “taxi-cab” distance as the norm in equation (2) whereas 

equation (4) used the Euclidean distance, with the daily stream flow and the day as the 

“coordinates.” 

 The numerator of FQIm ranges from 0 – ∞, with the best value being 0; the denominator 

of FQIm ranges from 0 – 1, with the best value being 1.  As a result, FQIm ranges from 0 – ∞, 

with the best value being 0. 

Methodology 

 The FQIm was tested using the Leaf River data and the HyMod01 model.  The Leaf River 

data consisted of observed precipitation, potential evapotranspiration, and stream flow for 

multiple years.  The HyMod01 model consisted of a probability distribution model for soil 

moisture accounting, a Nash cascade to route quick flow, and an infinite linear tank to route slow 

flow.  For each step, the analyses and conclusions are based on a 365-day simulation.  However, 

only a 50-day section of the time series is shown in the results section in order to highlight the 

differences between ensemble members.  The methodology followed is applicable to time series 

of any length. 
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 Three steps were followed to determine the suitability and usefulness of the FQIm 

measure to hydrologic data: 

(a) Testing of FQIm on perturbed data 

(b) Calibration of the HyMod01 model using FQIm 

(c) Objective functions (OF) comparison: FQIm, FQIm,N, FQIm,D, RMSE, and NSE 

 Perturbed data The goal of this step was to confirm that the values of FQIm changed as 

expected.  In other words, if the amplitude of an ensemble member exactly matched that of the 

observed data for the entire time simulated, the denominator (FQIm,D) was expected to be one; if 

the phases of an ensemble member and the observed data matched for the entire time simulated 

(i.e., there was no lag in the simulated data), the numerator (FQIm,N) was expected to be zero.  

The expected values were tested through three scenarios: 

(a) Amplitude shifted – the amplitude of the entire hydrograph was shifted by a random amount 

(positive or negative), leaving the phase the same; expected value: FQIm,N = 0, FQIm,D = 

varies, with members closer to the observed data closer to one. 

(b) Phase shifted – the entire hydrograph was shifted forward or backward, leaving the amplitude 

the same; expected value: FQIm,D = 1, FQIm,N = varies, with members with less of a lag closer 

to 0. 

(c) Amplitude and phase shifted – the amplitude and phase were shifted by a random amount; 

ensemble members closer in shape to the observed data were expected to have FQIm,N 

approaching zero, FQIm,D approaching one, and FQIm approaching zero. 

 Calibration The goal of this step was to determine how FQIm could be applied for 

calibrating models.  Five parameters were chosen for calibration, two for the soil moisture 

accounting (Huz, and B) and three for the flow routing (Kq, Ks, and alpha).  A 10 000 member 
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ensemble was generated consisting of different input parameter sets rather than different model 

structures.  Typically, ensemble members are generated using singular or breeding vector 

approaches (Lewis, 2004) instead of non-random sampling of the probability density function 

(pdf).  However, for this application, a Monte Carlo sampling of the five parameters based on a 

uniform random distribution was used to produce the ensemble.  Each parameter set (i.e., 

ensemble member) was then used as inputs to HyMod01, generating a distribution of predicted 

stream flow data.  The best ensemble members were chosen based on the best value of FQIm,N, 

FQIm,D, and FQIm, and compared to those chosen based on the RMSE and NSE. 

 OF The goal of this step was to determine how FQIm differed from other commonly used 

OF.  The OF used were FQIm, FQIm-N, FQIm-D, RMSE, and NSE.  The same procedure used to 

generate an ensemble for the calibration step was followed and each objective function 

calculated.  The five objective functions were then plotted against each other to show the trade-

off curve. 

Results 

 Perturbed data Figure 1 shows the three cases of the perturbed data with the error 

statistics found in Table 1.  For the perturbed amplitude, ensemble member two (Amp 2) was 

better than member one for all statistics.  For the perturbed phase, member one (Phase 1) was 

better for all statistics.  For the perturbed amplitude and phase, ensemble member one (PA 1) 

was better than member two for all statistics except FQIm,D. 
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Table 1. Comparison of error metrics for six ensemble members. 

 Best 
Value Amp 1 Amp 2 Phase 1 Phase 2 PA 1 PA 2 

FQIm 0 10.08 2.57 2.01 6.01 8.59 10.59 
    FQIm,N 0 5.00 2.36 2.01 6.01 5.05 10.05 
    FQIm,D 1 0.50 0.92 1.00 1.00 0.59 0.95 
NSE 0 0.28 0.57 0.41 -0.35 -0.11 -0.36 
RMSE 1 3.92 2.36 3.24 7.38 6.06 7.48 
 
 Calibration Figure 2a shows the observed stream flow and distribution of the 10 000 

ensemble members.  The ensemble had a wide distribution around the observed data. Figure 2b 

shows the observed stream flow and the five best of the 10 000 ensemble members based on 

different metrics.  The best members were observed to vary based on the different metric used. 

 

 
Figure 2. 10 000 member ensemble results. (a) Stream flow distribution of ensemble members and 
observed stream flow. (b) Observed and best members based on FQIm,N, FQIm,D, FQIm, RMSE, and NSE.

 
Figure 1. Observed data and two ensemble members for the Leaf River from day 150 - 200. (a) Perturbed 
amplitude (b) Perturbed phase (c) Perturbed amplitude and phase. 
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 OF Figure 3 shows the graphs of OF vs. OF for FQIm, FQIm-N, FQIm-D, RMSE, and NSE, 

with the best value of each found in Table 1.  The graph for FQIm-N vs. FQIm-D is not shown 

because the same information can be found in the graphs with the combined metric, FQIm. 

Discussion 

When the amplitude of an ensemble member is closer to the observed amplitude, FQIm-D 

approaches one, as shown by the results for Amp1 and Amp2.  When the hydrograph does not 

include any lag (i.e., is not shifted) FQIm-N approaches zero, as shown by the results for Phase1 

and Phase2.  For these two ensemble members, the amplitude was not perturbed and FQIm-D for 

both members is one as expected.  One drawback is that the FQIm-N does not have an upper 

bound and, as a result, ensemble members must be compared to each other to determine which is 

Figure 3. Objective function graphs for FQIm, FQIm-N, FQIm-D, RMSE, and NSE. 
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better.  The metric thus provides a relative estimate of the magnitude of the difference between 

each ensemble member and the observed data.  When analyzing these four ensemble members, it 

is obvious that the metric does not indicate the direction of the difference.  From members PA1 

and PA2, it is obvious that FQIm is slightly biased toward the distance component (FQIm-N).  

Member PA1 was chosen as the better member based on FQIm.  The amplitude of PA1 differs 

from the observed more than PA2 although PA1 has less of a lag than PA2.  This is likely due to 

the different range of FQIm-N (0 – ∞) compared to FQIm-D (0 – 1), resulting in the numerator 

impacting the overall metric more than the denominator.  Based on these results, the metric was 

confirmed to behave as expected for hydrologic data.  Ideally the bias toward the distance 

component would be removed or at least reduced; the metric can be improved by normalizing 

FQIm-N so that it does not have an undue contribution to FQIm.  The metric would also be 

improved if it indicated whether the amplitude was under- or over-predicted and whether the 

phase shift was forward or backward. 

The calibration results show a useful intersection between EPS and FQIm.  Figure 2a can 

be used for either of the first two purposes discussed in the EPS section.  In addition, combining 

the distribution with FQIm can be used for the third purpose.  Choosing the ensemble member 

with the best value of FQIm can identify the parameter set that minimizes the residuals between 

observed and predicted stream flow.  Using different metrics (e.g., FQIm-N, FQIm-D, RMSE, NSE) 

would favor a different aspect of the hydrograph (e.g., FQIm-N minimizes lag), resulting in a 

different optimal parameter set. 

The OF results can be used to find the trade-off between different objectives.  For 

example, Figure 3c shows the variation in FQIm and RMSE over ensemble members.  The best 

parameter sets for these two objectives are represented by points in the lower left corner of the 
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graph.  Optimizing for more than two objectives is possible but would require different 

visualization techniques than are used here and is out of the scope of this paper. 

Four general conclusions and avenues of further research on FQIm can be made from the 

specific results described above.  First, in its current form, the bias of the FQIm toward the lag 

indicates that the metric proposed by Venugopal et al. (2005) does not provide any new 

information that could not be obtained separately from the PHD and UIQI.  It would be more 

advantageous to use the two components individually rather than combining them into one 

hybrid metric.    Second, it is easy to visually confirm that a simulated hydrograph has the correct 

shape (i.e., no lag) but it is one of the most difficult aspects to mathematically quantify.  Metrics 

that quantify this aspect are ideal objectives to use for validation and calibration of models.  

Based on this, the FQIm-N is determined to be the more important of the two components of 

FQIm.  Following from the first conclusion, it is recommended to use FQIm-N in combination with 

another metric that is partial to the amplitude (e.g., FQIm-D, NSE).  Third, normalizing FQIm-N 

and modifying the FQIm to reduce the bias would likely improve the usefulness of the metric.  

Finally, it would be interesting to compare FQIm results from an application with real data to one 

with binary data.  The original FQI was applied to binary data whereas this application used real 

data.  Hydrologic data can easily be converted to binary format, for example, by defining a 

stream flow threshold with flows above the threshold designated as an event occurrence.   

 

CONCLUSION 

A metric developed in meteorology has been modified and applied to hydrological 

models.  The FQIm measures how accurately a model simulates both the amplitude and the phase 

of the observed hydrograph.  However, the most advantageous application of the FQIm is by 
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analyzing its components separately rather than as a hybrid measure.  Specifically, the distance-

based component, FQIm-N, was found to be useful for hydrological applications because of its 

ability to mathematically quantify a visual aspect of stream flow, namely whether the shape of 

the hydrograph is accurately simulated.  It is recommended to combine the FQIm-N with a 

commonly accepted metric such as the NSE to provide a measure of how accurately the model 

predicts both amplitude (NSE) as well as phase (FQIm-N).  The metric can be further improved by 

reducing the bias to distance and by normalizing the distance-based component. 
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