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All rainfall-runoff models are, by definition, simplifications of the real-world system under investigation. The
model components are aggregated descriptions of real-world hydrologic processes. One consequence of this
is that the model parameters often do not represent directly measurable entities, but must be estimated using
measurements of the system response through a process known as model calibration. The objective of this
calibration process is to obtain a model with the following characteristics: (i) the input-state-output behavior
of the model is consistent with the measurements of catchment behavior, (ii) the model predictions are accurate
(i.e. they have negligible bias) and precise (i.e. the prediction uncertainty is relatively small), and (iii) the model
structure and behavior are consistent with current hydrologic understanding of reality. This article describes
the historic development leading to current views on model calibration, and the algorithms and techniques
that have been developed for estimating parameters, thereby enabling the model to mimic the behavior of the
hydrologic system. Manual techniques as well as automatic algorithms are addressed. The automatic approaches
range from purely random techniques, to local and global search algorithms. An overview of multiobjective and
recursive algorithms is also presented. Although it would be desirable to reduce the total output prediction
error to zero (i.e. the difference between observed and simulated system behavior) this is generally impossible
owing to the unavoidable uncertainties inherent in any rainfall-runoff modeling procedure. These uncertainties
stem mainly from the inability of calibration procedures to uniquely identify a single optimal parameter set,
from measurement errors associated with the system input and output, and from model structural errors arising
from the aggregation of real-world processes into a mathematical model. Some commonly used approaches to
estimate these uncertainties and their impacts on the model predictions are discussed. The article ends with
a brief discussion about the current status of calibration and how well we are able to represent the effects of
uncertainty in the modeling process, and some potential directions.

THE NATURE OF RAINFALL-RUNOFF
MODELS

The hydrology of any catchment involves complex interac-
tions driven by a number of spatially distributed and highly
interrelated water, energy, and vegetation processes. Any
computer-based model intended to represent the behavior
of a catchment must, therefore, conceptualize this reality
using relatively simple mathematical equations that involve
parameters to be specified for any particular application.
Two characteristics of the modeling process are relevant
to our discussion. First, all rainfall-runoff (RR) models,

regardless of how spatially explicit, are to some degree
lumped, so that their equations and parameters describe
the processes as aggregated in space and time. As a con-
sequence, the model parameters are typically not directly
measurable, and have to be specified through an indirect
process of parameter estimation. This process of parame-
ter estimation is often called model calibration if values of
parameters are adjusted to fit some observations made on
the system of interest. Rainfall-runoff models usually con-
tain several such “conceptual” parameters. While many of
these parameters cannot be assumed to have direct phys-
ical (measurable) interpretations, they are often assumed
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2 RAINFALL-RUNOFF ModelING

to have physical relevance, insofar as they are related to
inherent and invariant properties of the hydrologic system.
Second, the structure of the RR model is generally spec-
ified prior to any attempt to model the catchment being
undertaken (Wheater et al., 1993). While this specifica-
tion is usually based on observed characteristics of the
catchment, other factors that play a major role include
the availability of data, modeling goal, and a variety of
subjective considerations including personal preference and
experience. This article will not address the issue of model
structure specification, but will focus on the difficulties
of model calibration, assuming that a suitably representa-
tive and acceptably accurate model structure has already
been selected. The article reviews the historical develop-
ment leading to current views of model calibration, and
discusses the estimation and propagation of uncertainties in
RR modeling.

MODEL CALIBRATION

Calibration is a process in which parameter adjustments are
made so as to match (as closely as possible) the dynamic
behavior of the RR model to the observed behavior of
the catchment (Figure 1). The process therefore requires
measurements of catchment behavior, usually in terms of
the inputs (rainfall) and the outputs (e.g. streamflow at
the catchment outlet). Because, the outputs of RR models
are usually related to the parameters in a nonlinear way,
explicit linear-regression-type solutions are generally not
possible, and some degree of directed iterative guesswork
is required to arrive at a suitable solution (estimates for
the parameters). Necessary conditions for an RR model to
be “well-calibrated” are that it has (at least) the following
three characteristics: (i) the input-state-output behavior of
the model is consistent with the measurements of catchment

behavior, (ii) the model predictions are accurate (i.e. they
have negligible bias) and precise (i.e. the prediction uncer-
tainty is relatively small), and (iii) the model structure and
behavior are consistent with a current hydrologic under-
standing of reality. Note that, for the second requirement to
be met, some method for estimating and reporting model
prediction uncertainty must be included (Figure 2). Further,
the third requirement is critical if the model is to be used
to estimate the effects of perturbations to the structure of
the real system (e.g. land-use changes).

It is important to stress that the process of model identi-
fication should not be understood as that of simply finding
a model structure and parameter set that “fits the model
to the data”. It is actually a process of progressive model
identification in which the initial (large) uncertainty in our
knowledge of what constitutes a good model structure and
good parameter estimates is sequentially reduced while
constraining the model to be structurally and function-
ally (behaviorally) consistent with the available qualitative
(descriptive) and quantitative (numerical) information about
the catchment. Because, as mentioned before, any selected
model will be (at best) a structural and functional approx-
imation of the true (unknown) watershed structure and
function, the calibrated estimates of the parameters and the
resulting predictions will always contain some remaining
uncertainty. These and other uncertainties will also lead to
the result that our model will generally not be able to fit
the data perfectly, that is, we will not be able to perfectly
track the observed system behavior with our model.

Early methods for the calibration of RR models were
based on manual, so-called “trial-and-error” procedures.
The manual calibration process can be considered to have
three levels (Boyle et al., 2000). In Level Zero, the initial
uncertainty of the estimates is defined by selecting feasible
ranges for each parameter, using estimates from similar
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FIR
ST P

AGE P
ROOFS

hsa138

MODEL CALIBRATION AND UNCERTAINTY ESTIMATION 3

Time step (d)

S
tr

ea
m

flo
w

 (
m

m
 d

−1
)

50 100 150 200 250 300 350
0

1

2

3

4

5

Observed streamflow
Total uncertainty including structural errors
Uncertainty associated with parameters

Figure 2 Probabilistic streamflow prediction. Flow is shown in transformed space

catchments, look-up tables, maps, and databases. In Level
One, the hydrologist attempts to reduce the size of the
parameter uncertainty by adjusting one parameter at a time
to try and match the particular segments of the catchment
input-output (IO) response to which those parameters are
most sensitive. Parameter interaction is usually ignored
at this stage. Finally, in Level Two, the behavior of the
entire hydrograph is examined, and the parameters further
adjusted to allow for parameter interactions, while further
reducing the distance between simulated response and the
observed catchment behavior. This last stage is the most
difficult, owing to the complex nature of the parameter
interactions and the nonlinear nature of the model. A
systematic approach to Level Two parameter estimation
requires (i) a strategy to define (measure) the closeness
between the observations and the model response, and (ii) a
strategy to reduce the size of the feasible parameter space.

While the manual approach to model calibration (as
described above) is based on subjective judgment and
expertise, a trained and experienced hydrologist can often
obtain excellent results, so that the model response gener-
ates a realistic simulation of the response of the catchment.
However, the process can be very time consuming, and
because it involves subjective decisions by the modeler,
requires considerable training and practice. Further, the
knowledge and skills so obtained are not easily transferred
from one person to another. These limitations have led
to interest in methods for model calibration that can be
carried out automatically using the speed and power of a
digital computer.

The goal of the automatic calibration approach is to use
a computer to perform the difficult Level Two stage of
the three-level strategy outlined above. Level zero is still
performed manually to provide a crude description of the
feasible parameter space, and the Level One stage is gen-
erally ignored (see Wagener et al., 2003a, for a discussion
of this problem). The potential advantages of a computer-
based approach are not difficult to enumerate – properly

designed computer algorithms can be fast and objective,
while handling more complex problems (e.g. stronger non-
linearities and larger numbers of parameters). The closeness
between the simulated and observed responses is typically
measured by one (sometimes two or more) mathematical
measures (called objective functions; OFs) and the param-
eters are adjusted by an iterative search procedure (called
an optimization algorithm) towards the optimal value(s) of
the OF(s).

An objective function (OF) is a numerical summary
of the magnitude of the residuals, that is, the difference
between the observed (measured) and the simulated system
response (typically the streamflow hydrograph). The goal of
calibration is usually to minimize (or maximize depending
on definition) the value of this OF. The residuals are
calculated as follows,

e(θ) = yt
obs − yt (θ) (1)

where yt
obs is the observed response at time t , yt (θ) is the

simulated response, and θ is a vector of parameter values.
The residuals are usually aggregated using a prespecified
function,

F(θ) = F {et (θ), t = 1, 2, . . . , n} (2)

The most commonly applied OFs are of the Weighted
Least Squares (WLS) type (e.g. Sorooshian and Gupta,
1995), derived from regression theory,

F(θ) =
n∑

t=1

wt ·[yt
obs − yt (θ)]2 (3)

where wt is the weight at time t , and n is the number
of data points analyzed. In absence of additional infor-
mation, the weights are commonly set to the value 1.0
for all-time steps. This leads to the Simple Least Squares
(SLS) OF that yields unbiased parameter estimates when the
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following assumptions regarding the residual distribution
are valid: (i) the residuals are independent and identically
distributed (i.i.d.), (ii) the distribution shows a homoge-
neous variance, and (iii)] the residual distribution follows
a normal distribution with zero mean (e.g. Gershenfeld,
1999). Because these assumptions are often violated in
RR modeling, several researchers have tested the use of
alternative error models, and therefore alternative OFs (e.g.
Sorooshian and Dracup, 1980; Sorooshian et al., 1983;
Kavetski et al., 2003). Examples include the Heteroscedas-
tic Maximum Likelihood Estimator (HMLE, Sorooshian
and Dracup, 1980; Sorooshian et al., 1983), which consid-
ers a heteroscedastic variance in the system response mea-
surements, and the Bayesian Total Error Analysis (BATEA,
Kavetski et al., 2003), which also considers errors in the
input data. A more general form of OF, which can be
adjusted to be consistent with different error models, was
introduced to hydrologic modeling by •Thiemann et al.Q1

(2001), and is based on an exponential power density (Box
and Tiao, 1973).

Research into automatic methods (by the hydrologic
community) began in the 1960s and 1970s. At that time,
it was assumed that the problem of model calibration is
similar to that of estimating the parameters in a nonlin-
ear statistical regression. As mentioned above, the OF was
typically selected to be some kind of l-norm, such as the
weighted sum of squared errors (l = 2) shown in equa-
tion (3). The minimization of the OF was typically carried
out using a “Local Search” algorithm, beginning with an
initial parameter guess and employing a preprogrammed
iterative strategy to move the parameter search in a direc-
tion of local improvement.

In general, Local Search strategies belong to one of two
classes – derivative-free (direct) methods and derivative-
based (gradient) methods. Examples of popular direct meth-
ods include the Downhill Simplex (Nelder and Mead,
1965), the Pattern Search (Hooke and Jeeves, 1961), and the
Rotating Directions (Rosenbrock, 1960) algorithms. Gradi-
ent methods are potentially more powerful than direct meth-
ods, because they use additional information – estimates of
the local downhill direction based on the first and/or second
derivative of the response surface with respect to the model
parameters (Bard, 1974). Although Gupta and Sorooshian
(1985) and Hendrickson et al. (1988) showed that analyt-
ical or numerical derivatives could be computed, even for
complex conceptual RR models, Hendrickson et al. (1988)
found that, in practice, gradient methods do not perform bet-
ter than direct methods. The use of local search algorithms
for model calibration has been tested extensively (Ibbitt,
1970; Johnston and Pilgrim, 1976; Pickup, 1977; among
many others), with the general conclusion that such meth-
ods are unable to provide a reliable estimate of the globally
optimal solution to the RR model minimization problem.

Instead, the solution to a Local Search is typically strongly
dependent on the accuracy of the initial guess.

Initial responses, during the 1980s, to the failure of
automatic calibration methods based on Local Search,
were to try and put the optimization problem onto a
more rigorous statistical footing. Two (related) directions
can be found in the literature, one based on the use of
maximum likelihood theory (e.g. Sorooshian and Dracup,
1980) and the other based on the use of Bayesian theory
(e.g. •Kuczera, 1983). However, neither of these directly Q2

addressed the causes of the inability to find the optimum
for a selected OF.

Towards the end of the 1980s, with the advent of easier
access to powerful digital computers, attention shifted to
the testing of “Global Search” algorithms (e.g. Brazil and
Krajewski, 1987). A characteristic of many Global Search
algorithms is to begin with a number of initial guesses
distributed throughout the feasible parameter space, and
to evolve this population of guesses iteratively towards
promising regions of the OF response surface. Global
search algorithms that have been tested include Adaptive
Random Sampling (Masri et al., 1980; Brazil, 1988), Sim-
ulated Annealing (Kirkpatrick et al., 1983; Thyer et al.,
1999), Controlled Random Search (Price, 1987; Klepper
et al., 1991) and the Genetic Algorithm (Holland, 1975;
Goldberg, 1989; Wang, 1991). Duan et al. (1992) conducted
a detailed analysis of the properties of the OF response
surface associated with a typical RR model and found that:

• It contains more than one main region of attraction.
• It has many local optima within each region of attraction

(Figure 3).
• It is rough with discontinuous derivatives.
• It is flat near the optimum with significantly different

parameter sensitivities.
• Its shape includes long and curved ridges.

These insights were incorporated into the design of a
novel Global Search procedure called the Shuffled Complex
Evolution (SCE-UA) algorithm, which combines elements
of a number of different strategies, including the Downhill
Simplex, Controlled Random Search, and Competitive
evolution with the newly proposed idea of “Complex
Shuffling” (Duan et al., 1992, 1993, 1994; Sorooshian
et al., 1993). Extensive testing of the SCE-UA method by
numerous researchers has proven its effectiveness, ability to
consistently find the global optimum), and efficiency (low
probability of failure of any trial) in reliably finding the
global solution, when a unique solution exists.

However, these studies have also demonstrated that
numerous parameter sets usually exist, widely distributed
throughout the feasible parameter space, which have very
similar values for the selected OF. This poses difficul-
ties for local or global optimization methods, referred
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Figure 3 Three-parameter (θi ) subspace of a simple
conceptual catchment model (SIXPAR, Duan et al., 1992),
showing locations of multiple local optima

to in the optimization literature as problems of non-
uniqueness, indeterminacy, or nonidentifiability. In review-
ing this problem, Beven (1993) applied the term “equifi-
nality” to describe the generic nature of finding multiple
feasible models that make predictions consistent with any
observations available for model calibration in any reason-
ably complex modeling problem.

The consequences of this progression of events have
been some shifts in the underlying philosophy and per-
ceived objectives of model calibration. Model calibration
procedures were traditionally based on an attempt to find a
“best” (most likely) estimate of the parameter values con-
ditioned on the data, and a subsequent best (most likely)
estimate/prediction of the catchment response. Efforts were
concentrated on finding the most efficient techniques for
doing so with a view to saving computer time in model
calibration. The findings reported above have helped to
make it clear that the inherent uncertainty (indeterminacy)
in the estimated parameter values must be explicitly consid-
ered during both calibration and prediction. Approaches to
do so are discussed in the section “Considering parameter
uncertainty”.

Another response has been to look for causes of the
parameter indeterminacy and to design ways to address
them. In particular, the traditional way to pose the model
calibration problem relies on the specification of a single
OF, which provides an aggregate measure of the mean dis-
tance between observed and calibrated hydrograph over
the whole length of the data time-series, as the measure
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Figure 4 Hundred days extract of six years of daily
streamflow data. Observed flow in black, seven different
model realizations in grey. Inlets show dotty plots for the
linear reservoir residence times k(quick) and k(slow) versus
their corresponding Root Mean Squared Error (RMSE)
values. The model structure used consists of a Penman
soil moisture accounting and a parallel routing component
of linear reservoirs with fixed flow distribution

of performance. This action is now understood to result
in considerable loss of important information that can be
used to distinguish between competing parameter sets. For
example, Figure 4 shows a number of model-simulated
hydrographs (from different parameter sets) that produce
identical OF values, but are clearly visually and behav-
iorally different (Wagener et al., 2003c). Based on this,
Gupta et al. (1998) suggest that a calibration approach with
higher discriminative power is required and proposed use of
a multiobjective methodology. This approach is described
further in the section “Considering structural uncertainty”.

A special case of parameter estimation arises in pre-
dicting the response of ungauged catchments. These are
catchments for which observed records of the variable of
interest, usually streamflow, are either too short or nonex-
istent. The main approaches to estimate the parameters of
lumped rainfall-runoff models for ungauged catchments are
through physical reasoning (e.g. Koren et al., 2003), sta-
tistical analysis (e.g. Jakeman et al., 1992; Wagener et al.,
2003b), or a mixture of both. Physical reasoning in this
context means that parameters are derived from catchment
properties, either directly or through empirical equations.
Koren et al. (2003) suggest that reasonable initial esti-
mates for the parameters of the Sacramento soil moisture
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accounting (SAC-SMA) model can be derived from data
such as average field capacity or wilting point of the soil
in a catchment. The main approach to ungauged model-
ing however is the derivation of statistical relationships
between model parameters and catchment characteristics
for a large number of gauged catchments. Typically, a sin-
gle model structure is selected that is assumed suitable to
represent all the available catchments. The parameters of
this structure are derived through a calibration process for
all the gauged catchments, and an attempt is then made
to develop regression relationships between model parame-
ters and catchment characteristics. It is hoped that these
statistical relationships can then be used to predict the
parameters in ungauged catchments. See Wagener et al.
(2003b) and Chapter 144, Rainfall-Runoff Modeling ofhsa140

Ungauged Catchments, Volume 1 for a discussion on this
type of approach.

It should be noted that, regardless of the chosen approach,
it will generally be impossible to reduce the total output
prediction error, that is, the difference between observed
and simulated system behavior to zero. Even if we could be
sure that we had the correct model equations, errors in the
input data and observations used in calibration will result in
a residual prediction error. Indeed, experience suggests that
reducing the error during one system response mode, often
leads to an increase in the error during another mode (Gupta
et al. 1998). In the following sections we will discuss the
components and characteristics of the error.

It should also be noted that streamflow is not the only
catchment response that can be used in model calibration.
There is a wide range of studies where alternative hydro-
logical variables are used for this purpose. Examples are
•Lamb et al. (1997) and Blazkova et al. (2002b) usingQ3

distributed groundwater levels; Kuczera and Mroczkowski
(1998) using groundwater level observations and stream
salinity data; Franks et al. (1998) and Blazkova et al.
(2002a) using information on saturated areas; and Seibert
and McDonnell (2002) using “soft” data on the nature of
catchment responses.

ON THE SOURCES AND THE NATURE OF THE
TOTAL ERROR IN RAINFALL-RUNOFF
MODELING

There is a problem, in any modeling application, of trying
to understand the origins of the error between model
predictions of a variable and any observational data of
the same variable. The difficulty arises because there are
a variety of sources for the error but (at any given time)
only one measure of the deviation or residual between
prediction and observation (i.e. the “total error”). Thus,
disaggregation of the error into its source components is
difficult, particularly in cases common to hydrology where

the model is nonlinear and different sources of error may
interact to produce the measured deviation.

Obvious sources of error in the modeling process include
the errors associated with the model inputs and boundary
conditions, the errors associated with the model approxi-
mation of the real processes, and the errors associated with
the observed (measured) variables. A less obvious source
of error is when the variable predicted by a model is not
the same quantity as that measured (even though they might
be referred to by the same name) because of scale effects,
nonlinearities or measurement technique problems. A soil
moisture variable, for example, might be predicted as an
average over a model grid element several 100 m in spatial
extent and over a certain time step; the same variable might
be measured at a point in space and time by a small gravi-
metric sample, or by time domain reflectrometry integrating
over a few tens of cm, or by a cross-borehole radar or resis-
tivity technique, integrating over several tens or hundreds of
meters. Only the latter might be considered to approach the
same variable as described by the model (but will also be
associated with its own interpretation errors of the geophys-
ical signal in obtaining a soil water estimate). Fortunately,
in rainfall-runoff modeling, the predictions are most usually
compared with the measured discharges at the outlet from
a catchment area. The measured discharges may be consid-
ered to be essentially the same variable as that predicted by
the model, although subject to measurement errors.

In general, no satisfactory approach to separate the
sources of error that contribute to the total error has yet
been proposed. In line with traditional statistical estimation
theory, the total error is often treated as a single lumped
additive variable of the form:

Q(t) = M(�, t) + ε(t) (4)

where Q(t) is a measured variable, such as discharge, at
time t ; M(�,t) is the model prediction of that variable
using parameter set �; and ε(t) is the total remaining error.
Note that a multiplicative error form could also be used
if appropriate by taking logs of the observation and the
predicted variables. The additive form allows application
of the full range of statistical estimation techniques to
model calibration and uncertainty analysis, subject to the
limitations of dealing with the nonlinearity of the model.

Implicit in this approach, however, is the assumption that
the model structure is at least adequate, if not correct. In
catchment RR modeling we cannot generally be sure of
this. Further, it is generally necessary to make assumptions
about the structure of the total errors ε(t) – typical assump-
tions include normality of the underlying error distribution,
constancy of variance and simplicity of the correlation
structure. While such assumptions are convenient to the
application of statistical theory, they have usually not been
supported by the actual series of model residuals, which



FIR
ST P

AGE P
ROOFS

hsa138

MODEL CALIBRATION AND UNCERTAINTY ESTIMATION 7

may show variations in bias (nonstationarity), variance
(heteroscedasticity), and correlation structures under differ-
ent hydrologic conditions.

In the following sections we analyze the main con-
tributors to model error and to the uncertainty in pre-
dictions of our current models in general. Approaches to
deal with these are outlined and open research questions
are discussed.

CONSIDERING PARAMETER UNCERTAINTY

It was mentioned above that a large number of widely dif-
ferent parameter sets could, in many cases, yield practically
identical results with respect to a particular OF. Three main
responses to this problem of perceived equifinality can be
found in the literature.

First, the finding of parameter indeterminacy can be inter-
preted as an indication that the chosen model structure is
overly complex given the information about hydrologic
behavior actually observable in the data. Following this
interpretation, various researchers have tested and success-
fully applied simpler model structures such that the number
of associated model parameters is only so large as to allow
confidence in the results of the calibration (Wheater et al.,
1993; •Hornberger and Jakeman, 1993; Young et al., 1996;Q4

Young, 2001; Wagener et al., 2002, 2003c).
Second, the finding can be interpreted as supporting the

need for set theoretic approaches, which assume that all
plausible models should be retained unless and until evi-
dence to the contrary becomes apparent. Many of these set
theoretic approaches are related to the Regional Sensitivity
Analysis (RSA; also sometimes called the Hornberger-
Spear-Young approach) concept advanced by Spear and
Hornberger (1980) that evaluates the sensitivity of the
model output to changes in parameters without referring
to a specific point in the parameter space (such as a most
likely value for a parameter). These techniques commonly
apply random sampling procedures to explore the feasi-
ble parameter space in search for plausible (behavioral)
models. Examples of the set theoretic approach applied to
RR modeling include the Generalized Likelihood Uncer-
tainty Estimation (GLUE) technique of Beven and Bin-
ley (1992), the Dynamic Identifiability Analysis (DYNIA)
approach of Wagener et al. (2003a), the PIMLI approach
of Vrugt et al. (2002), the Monte Carlo set membership
(MCSM) approach of van Straten and Keesman (1991), the
explicit Bayesian approach of Kuczera and Mroczkowski
(1998), the Bayesian Recursive Estimation (BARE) tech-
nique of Thiemann et al. (2001), and the Shuffled Com-
plex Evolution Metropolis (SCEM-UA) algorithm of Vrugt
et al. (2003b).

Third, the finding can be attributed to a failure to properly
specify the (automatic) calibration problem in such a way
as to properly exploit the information contained in the data.

There are two (related) responses to this. On the one hand, a
multicriteria approach can result in better exploitation of the
information in the data, while the resulting optimal popula-
tion solution (optimal in a multicriteria sense) defines a kind
of parameter uncertainty attributable to model structural
errors. This is discussed further in the section “Considering
structural uncertainty”. In addition to the improved use of
information, recursive processing of the data can provide
better extraction of the information in the data, because
the temporal aggregation associated with batch processing
of data is reduced. Examples of recursive algorithms that
can be applied to RR models for the estimation of param-
eter uncertainty include the Kalman Filter and its exten-
sions (e.g. Kitanidis and Bras, 1980a,b; Beck, 1987), the
PIMLI approach (Vrugt et al., 2002), the DYNIA approach
(Wagener et al., 2003a), the BaRE approach (Thiemann
et al., 2001) and the application of Transfer Functions (TF)
with time-varying parameters identified using Instrumental
Variable techniques (Young, 2001). The GLUE methodol-
ogy can also be applied recursively with appropriate choice
of the Likelihood criterion. Recursive approaches can also
provide a method for checking violations of the underlying
assumption that the parameters are constant – for exam-
ple, both Wagener et al. (2003a) and Misirli (2003, BaRE2)
reported that certain parameters of the models they tested
displayed significant temporal variations, and suggested that
this may be an indication of model structural error.

We now take a closer look at four approaches rep-
resentative of the second and third responses to dealing
with parameter uncertainty, that is, the use of set theo-
retic methods, GLUE and SCEM-UA, and the application
of recursive approaches, DYNIA and BaRE. Common to
these approaches is the selection or identification of a set
(population) of models (different combinations of model
structures and parameter values), and assignment of some
relative degree of believability to each member of the
set. That degree of believability is translated into interval
estimates of the uncertainty (confidence) in model simu-
lations/predictions. The approaches differ in the suite of
assumptions underlying each technique, based on which the
methods used to compute the relative degree of believabil-
ity are derived. The idea is that, in principle, the sensitivity
of the predictions and associated uncertainty to the under-
lying assumptions of the methods are testable and can
be evaluated.

The GLUE methodology evolved out of early Monte
Carlo studies of different realizations of parameter sets in
rainfall-runoff modeling as a way of estimating the sen-
sitivity of model predictions to different parameter values
(see, e.g., Hornberger and Spear, 1981). The Hornberger-
Spear-Young approach to sensitivity analysis involves the
classification of many different parameter sets into those
that are behavioral and those that are nonbehavioral in
some predefined way. The parameter distributions for each
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of these sets are then examined to check for significant
differences between them.

The additional step in the GLUE methodology of Beven
and Binley (1992) is to associate each of the behavioral sim-
ulations with a likelihood measure (as a way of quantifying
model believability), to estimate the uncertainty associated
with the model predictions as conditioned on some calibra-
tion data used in the likelihood value calculation. Models
that perform well in the calibration period will be asso-
ciated with a high likelihood weight in prediction, those
that perform less well will carry a low likelihood weight.
Those that are considered nonbehavioral will not be used in
prediction. Such an approach allows for the equifinality of
different parameter sets in fitting the available calibration
data, it allows that different types of likelihood measure
might be used in model evaluation, and it allows for the
likelihood weights to be updated as new calibration data
become available (see the review of applications by Beven
and Freer, 2001). The steps in the GLUE methodology are
as follows:

• Decide on a model structure or structures to be used.
• Sample multiple sets of values from prior ranges or

distributions of the unknown parameters by Monte
Carlo sampling, ensuring independence of each sample
in the model space.

• Evaluate each model run by comparing observed and
predicted variables.

• Calculate a likelihood measure or measures for those
models considered behavioral.

• Rescale the cumulative likelihood weights over all
behavioral models to unity.

• Use all the behavioral models in prediction, with
the output variables being weighted by the associated
rescaled likelihood weight to form a cumulative distri-
bution of predictions, from which any desired prediction
quantiles can be extracted.

The methodology depends on obtaining an adequate sam-
ple of behavioral models. In some model applications this
may require many thousands or millions of simulations to
adequately define the behavioral regions in the multidi-
mensional model space. In most problems it remains quite
difficult to define prior distributions for effective values of
the different parameters, even in terms of simple means and
covariances. Thus, most applications of GLUE define only a
range for each parameter and sample uniformly within that
range. For cases where the region of behavioral models is
relatively small this will result in inefficient sampling and
alternatively sampling strategies may be required. However,
in many applications it has been found that behavioral mod-
els are scattered widely in the model space so that efficiency
in sampling behavioral models is difficult to achieve. It is,
of course, possible that no behavioral models will be found,
particularly where models must satisfy multiple criteria to

remain behavioral (see for example •Freer et al., 2002) giv- Q5

ing a good indication that there are problems either with the
data set or with the model structure. A statistical estimation
strategy might still find an optimal model in such a case,
but would generally assign the deficiencies to a large “total
error” component (unless other statistical inadequacy com-
ponents had been added, as for example in Kennedy and
O’Hagan, 2001).

In fact, the GLUE methodology is general, in that statis-
tical error assumptions and likelihood functions can be used
where the assumptions are satisfied, but a much wider range
of likelihood measures including fuzzy measures can also
be used. The only requirements are that the relative likeli-
hood value should increase monotonically with improving
model performance and that nonbehavioral models should
be given a likelihood of zero. These are much less strin-
gent requirements than those of statistical theory and the
GLUE approach does avoid the assumption that the model
is correct (implicit where a statistical error model with zero
bias is assumed in model calibration). As a result, unlike
a statistical approach, GLUE does not attempt to estimate
the probability of predicting an observation given the (opti-
mal) model. Instead, it predicts the probability of a model
prediction, conditioned on the ranges of model structures
and parameter values considered, the period of calibration
(or evaluation) data used and the likelihood measures used
in model evaluation. The method therefore assumes that
the error structures associated with a particular behavioral
model parameter set will remain “similar” during any pre-
diction period, so that the likelihood weights determined
in calibration can be used to weight the predictions of any
variable of interest. In this way, distributional assumptions
are avoided, and nonlinear changes in predicted distribu-
tions of variables are allowed (as demonstrated in Freer
et al., 1996, where such changes between high and low
discharges are shown to be consistent with expectations
of system response). The emphasis is on the parameter
set in obtaining a behavioral model, rather than on indi-
vidual parameters and their covariation. The approach can
be extended to including multiple model structures, pro-
vided that different models can be evaluated with respect to
the same likelihood measures. Different applications of the
GLUE methodology are described in Beven et al. (2000),
Beven and Freer (2001), and Beven (2001).

Vrugt et al. (2003b) extended the SCE-UA algorithm
(described above) to allow for both the estimation of the
most likely parameter set, and also for its underlying
posterior distribution. The authors replaced the Downhill
Simplex method used for population evolution by Duan
et al. (1992) with the Metropolis Hastings (MH) algorithm.
By merging the strengths of the MH algorithm, controlled
random search, competitive evolution, and complex shuf-
fling, the SCEM-UA is designed to evolve to a stationary
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posterior target distribution of the parameters. The stochas-
tic nature of the MH annealing scheme avoids the tendency
of the SCE-UA algorithm to collapse into a single region
of attraction (i.e. the global minimum), while the informa-
tion exchange (shuffling) between parallel sequences allows
the search to be biased in favor of better regions of the
solution space. Examination of the posterior parameter dis-
tribution allows the user to detect whether multiple and/or
large regions of the parameter space continue to remain con-
sistent with the current data, and this parameter uncertainty
can be projected into the output space as uncertainties on the
model predictions (in a manner similar to both BaRE and
GLUE). A detailed description of this algorithm appears in
the article by Vrugt and Dane (Chapter 84, Inverse Mod-hsa079

eling of Soil Hydraulic Properties, Volume 1).
The dynamic identifiability analysis (DYNIA) approach

developed by Wagener et al. (2003a) is a recursive parame-
ter identification approach, based on elements of the GLUE
methodology, the popular Regional Sensitivity Analysis
(RSA; Spear and Hornberger, 1980), aspects of wavelet
analysis (e.g. Gershenfeld, 1999), and the use of Kalman
filtering for hypothesis testing as applied by Beck (1987).
Monte Carlo sampling based on a uniform prior distribu-
tion is used to examine the feasible parameter space. In
contrast to the GLUE procedure, DYNIA uses only a win-
dow period rather than the full data period to calculate a
measure of performance. This window is moved through the
available time-series in a step-wise fashion, that is, at time
step t one considers the residuals between t − n and t + n.
The size of n is selected depending on the length of time
over which the parameter is influential, and on the quality
of the data. The performance measure is then used to con-
dition the marginal parameter distribution at that particular
time step. A threshold is applied to consider only the best
performing parameter sets (e.g. best 10%), which represent
the peak of the parameter distributions. The shape of the
resulting distribution is projected into the time-parameter
space and variation of its shape in time can be visualized.
This methodology can be applied to track the variation of
parameter optima in time, to separate periods of informa-
tion and noise, or to test whether model components (and
therefore parameter values) represent those processes they
are intended to represent (Wagener, 2003).

The Bayesian Recursive Estimation (BaRE) algorithm,
developed by Thiemann et al. (2001) based on assumptions
similar to those used in the SCEM-UA batch calibration
algorithm, employs a recursive scheme for tracking the
conditional probabilities associated with several compet-
ing parameter sets (models) in an on-line mode instead of
searching for a single best solution in an off-line mode. The
parameter probabilities are used to compute probabilistic
predictions of the desired output variables (Figure 2). Prob-
ability updating, via Bayes theorem, facilitates the assim-
ilation of new data as they become available. The BaRE

algorithm belongs to a broad class of ensemble methods,
which include the Ensemble Kalman Filter (EnKF, see e.g.
Evensen, 1994; Madsen and Canizares, 1999; Reichle et al.,
2002) and which use multiple possible model realizations
(possibly involving multiple parameter sets, model struc-
tures, error sequences, etc.). The main difference is that
BaRE employs a full nonlinear updating procedure, while
the EnKF uses a linear correlation updating rule. The initial
BaRE algorithm suffered from several shortcomings (Beven
and Young, 2003; Gupta et al., 2003; Misirli, 2003), the
most important being that the parameter distribution col-
lapsed onto a single point owing to an insufficient sampling
density. Misirli (2003) addressed this and other problems
by developing BaRE2, an improved version of the orig-
inal BaRE algorithm, introducing (among other things) a
resampling procedure to ensure an appropriate sampling
density in the high probability region. The development
of BaRE has helped to stimulate some discussion about
appropriate methods for handling various sources of uncer-
tainty, including model structural uncertainty. Please see
the comment and reply on this topic published recently in
Water Resources Research (Beven and Young, 2003; Gupta
et al., 2003).

An alternative to Monte Carlo based approaches to the
estimation and propagation of uncertainty are the “point”
methods based on first-order analysis. Such techniques can
be used to calculate the mean and variance of the pre-
dicted variable based on the mean and variance of uncertain
inputs and parameters only. They do not require computer
intensive Monte Carlo schemes to estimate the shape of
the response surface that is then mapped into the output
space. These techniques are thus particularly attractive for
practical applications. An overview of such methods can
be found in Melching (1995). They commonly apply a
Taylor series expansion of the OF or the model output
around a specific point in the parameter space, usually trun-
cated after the first-order term, hence the term first-order
analysis. In the Mean-value First-Order Second-Moment
(MFOSM) method, the selected point is the mean value.
Numerical and sometimes even analytical derivatives can
be used (Melching, 1995) to calculate the expected value
and the variance of the predicted variable (e.g. stream-
flow). An advantage of this approach is its relative sim-
plicity and computational efficiency. The main weakness
is the assumption that a single linearization of the sys-
tem performance function at the central values of the basic
variables is representative of the statistical properties of
system performance over the complete range of basic vari-
ables (Melching, 1995). This is a difficult assumption to
make in RR modeling where the system under investiga-
tion usually exhibits a strongly nonlinear behavior. The
Advanced First-Order Second-Moment (AFOSM) improves
on the MFOSM approach by using a “likely” point in the
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parameter space, instead of the mean. Rosenblueth’s point-
estimation method (Rosenblueth, 1981) uses the mean and
the covariance of the variables in a Taylor series expan-
sion and does not require the calculation of derivatives,
as do MFOSM and AFOSM. For applications of Rosen-
blueth’s approach to hydrological models, see, for example,
Rogers et al. (1985), Binley et al. (1991), Melching (1992),
or McIntyre et al. (2002). Harr’s point-estimation method
(Harr, 1989) reduces the number of simulations required for
Rosenblueth’s method from 2p to 2p, where p is the number
of model parameters. See McIntyre et al. (2002) for details
on this method and for an application in hydrology.

All of the point-estimation methods described above, are,
however, limited by some assumptions made during their
application, most importantly approximate linearity of the
model. The first two moments of the predicted variable can
sometimes be calculated accurately using these approaches
if the nonlinearity of the model (and model structural error)
and the uncertainty in the model parameters is not too large
(Garen and Burges, 1981; Kuczera, 1988; Høybye, 1998).

CONSIDERING STRUCTURAL UNCERTAINTY

RR models are, by definition, simplifications of reality that
aggregate catchment processes into simpler representations.
The process of defining a perceptual model of the catchment
and translating this model into mathematical code depends
on the imagination and hydrologic understanding of the
modeler. To corroborate or reject a model as suitable for the
anticipated purpose, a procedure of model testing and eval-
uation must be applied. The imperfect model representation
arising from the aggregation process introduces a degree of
uncertainty into the model predictions, which is difficult to
quantify. However, some of the consequences of this uncer-
tainty can be detected and even used for improvements in
the model structure.

A major consequence of model structural imperfection
is that the model is incapable of reproducing all aspects
and portions of the hydrograph equally well with a sin-
gle parameter set. Because the classical manual model-
ing/calibration approach seeks a single “best” parameter set,
the hydrologist is forced to select a trade-off between the
errors in fit to different parts of the hydrograph, thereby
arriving at some suitable compromise parameter set that
meets the needs and objectives of the modeling exercise.
The manual approach typically depends on visual exami-
nation of the “local” fit between various segments of the
simulated and observed hydrographs, while also checking
to see that some selected “global” OFs take on values that
are within acceptable distance of their “optimal” values.
The goal is to find a parameter set that produces a realis-
tic hydrograph shape while giving an acceptable level of
overall (statistical) performance. The classical single OF
automatic calibration approaches result, in essence, in an

implicit (difficult to specify or control) aggregate weight-
ing of different aspects of hydrograph fit, which, in practice,
tends to produce simulations that are biased towards specific
aspects of the observed hydrograph (e.g. high or low flows).
To date, it has not become clear if the complex thought pro-
cesses that lead to successful manual calibration could be
encapsulated into a single OF. This has fueled the recent
research on multicriteria approaches.

Gupta et al. (1998) argued that the calibration of RR
models is inherently a multiobjective problem. Their mul-
tiobjective approach offers a way forward by emulating the
ability of Manual-Expert calibration to employ a number
of complementary ways of evaluating model performance,
thereby compensating for various kinds of model and data
errors, and extracting greater amounts of information from
the data. The outcome is a set of models that are constrained
(by the data) to be structurally and functionally consistent
with available qualitative and quantitative information and
which simulate, in an uncertain way, the observed behav-
ior of the watershed. By maintaining the independence of
the various performance criteria, and by performing a full
multicriteria optimization, the entire set of Pareto optimal
solutions is identified. Chankong and Haimes (1993) define
the concept of a Pareto optimum as follows: “A solution is
said to be Pareto optimal (also synonymously known in the
literature as efficient, noninferior, and nondominated) if the
value of any OF cannot be improved without degrading at
least one of the other Ofs.” In simple language, it is pos-
sible to divide the parameter space into ‘good’ and ‘bad’
solutions, but one cannot objectively favor one of the good
solutions, since there is always another one that is better in
a certain aspect, that is, with respect to another OF.

Yapo et al. (1998), and later Vrugt et al. (2003a), pre-
sented algorithms capable of solving, in a single optimiza-
tion run, the multiobjective problem posed by this approach.
Yapo et al. (1998) developed the multiobjective complex
evolution (MOCOM-UA) algorithm that uses a popula-
tion evolution strategy (similar to the one employed by the
SCE-UA algorithm) to converge to the Pareto set. In brief,
the MOCOM-UA method involves the initial selection of
a “population” of p points distributed randomly through-
out the n-dimensional feasible parameter space �. In the
absence of prior information about the location of the Pareto
optimum, a uniform sampling distribution is used. For each
point, the multiobjective vector E(θ) is computed, and the
population is ranked and sorted using a Pareto-ranking pro-
cedure suggested by •Goldberg (1998). Simplexes of n + 1 Q6

points are then selected from the population according to
a robust rank-based selection method. The MOSIM proce-
dure, a multiobjective extension of the Downhill Simplex
method (Nelder and Mead, 1965), is used to evolve each
simplex in a multiobjective improvement direction. Itera-
tive application of the ranking and evolution procedures
causes the entire population to converge towards the Pareto
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optimum. The procedure terminates automatically when all
points in the population become nondominated.

Vrugt et al. (2003a) replaced the Downhill Simplex
approach in the MOCOM-UA algorithm with an efficient
Markov Chain Monte Carlo sampler (similar to the one
employed in the SCEM-UA algorithm), which additionally
allows for the estimation of the underlying probability dis-
tributions with respect to the different objective functions.
They also improved on some of the weaknesses of the
original approach such as the tendency of the MOCOM-
UA algorithm to cluster the Pareto solutions in the most
compromise region among the objectives, and premature
convergence of the algorithm for cases involving a multi-
tude of parameters and highly correlated performance mea-
sures. The multiobjective implementation of the SCEM-UA
algorithm is termed MultiObjective SCEM-UA (MOSCEM-
UA).

Several researchers used the fact that different parameter
sets are required to represent different response modes
of the hydrologic system in a more structured manner
(e.g. •Beck, 1985; Young, 2001; Wagener et al., 2003a).Q7

Beck (1987) applied the extended Kalman filter (EKF) to
recursively estimate optimum parameter values, and used
the variation of these optima in time to detect structural
inadequacies. He reported that the EKF was inadequate
for this purpose owing to a lack of robustness and owing
to restrictions imposed by the filter assumptions. Wagener
et al. (2003a) used the DYNIA methodology described
earlier for the same purpose and showed structural problems
in a RR model having typical structural elements by
tracking parameter variations in time.

Kennedy and O’Hagan (2001) on the other hand, focused
on deriving a more complex error model. They include
a model inadequacy function in their Bayesian calibration
framework. The goal, similar to the approach by Sorooshian
and Dracup (1980; see next section), is to produce an error
series having the desirable properties of constant variance
and independence in time and space, so that unbiased
estimates of the various parameters and correction terms can
be more easily estimated. If the model structure is at least
approximately correct, the statistical approaches lead to a
concentration on finding a probabilistic description for the
optimal values of the model and error parameters. Where
there are model structural errors on the other hand, the
statistical error model will, to some extent, be required to
compensate for those errors. It is therefore important to
carry out postcalibration diagnostic tests to ensure that the
model and error assumptions are sound.

Another approach, arising from the equifinality concept
(where more than one model or model structure appear to
provide acceptable representations of the available obser-
vations; Beven, 1993), suggests that complications arising
owing to the presence of nonlinear model structural error
make it difficult to properly apply a rigorous statistical

estimation procedure. This approach rejects the idea that
an “optimal” model exists and concentrates instead on the
task of finding a set of models that are behavioral in the
sense of being acceptably consistent with the observations
(however acceptable might be defined), or, more impor-
tantly, rejecting all those models that can be shown to be
nonbehavioral. As discussed earlier, this is the basis for the
Generalized Likelihood Uncertainty Estimation methodol-
ogy and other set theoretic approaches to model calibration,
which are easily extended to consider multiple objectives
and multiple model structures, at the expense of significant
additional computer run time. Within this framework, as
noted earlier, it is possible that all the models tried will
be rejected where such consistency with the observations
cannot be demonstrated (Freer et al., 2002), leading to the
serious reconsideration of model structure, input data, or
calibration data that would be justified in such a case.

Other researchers have also explored the same premise,
that is, the need to consider multiple model structures.
Neuman (2002), for example, suggests that not allowing
for different system conceptualizations can lead to statistical
bias and an underestimation of uncertainty. He introduces
an approach based on Bayesian model averaging (Hoeting
et al., 1999) to account for this problem, where each model
is treated as if it were the correct structure in trying to
maximize its contribution to the averaging process.

CONSIDERING DATA UNCERTAINTY

Data used for RR modeling are measurements of the
input and output fluxes of the hydrologic system, and
sometimes of its states. The input is precipitation, usually
as rainfall or snow, while output data are streamflow
and potential evapotranspiration. The latter is sometimes
replaced by measurements of temperature. State variables
that are of potential use in rainfall-runoff modeling are,
for example, measurements of groundwater levels or soil
moisture content.

Measurement errors with respect to streamflow occur
owing to underflow and bypassing of gauging structures,
and rating curve inaccuracies, especially at very high and
very low flows. Sorooshian and Dracup (1980) addressed
the problem of heteroscedastic errors in streamflow mea-
surements by deriving a likelihood estimator, which uses
a power transformation to stabilize the variance. However,
research with respect to data uncertainty and its effect on the
predictions of RR models has focused mainly on errors in
the precipitation. This focus is based on the assumption that
the dominant source of error stems from poor knowledge
of the rainfall input. One of the earliest examples in this
respect is the work of •Crawford and Linsley (1966), who Q8

used a rain gauge scaling factor as a calibration parameter
in the Stanford Watershed Model, with values up to 1.1 to
account for wind or orographic influences. The use of such
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a factor can still be found in some of today’s modeling
exercises. Kavetski et al. (2003), for example, included an
adjustment coefficient for each rainstorm within a statistical
estimation framework.

Much of the error in precipitation measurements is
related to the inability of available gauging networks to
properly capture the amount and variability of precipitation
in space and time. Not surprisingly, Beven and Hornberger
(1982) and Obled et al. (1994) found that a correct assess-
ment of the global volume of rainfall input in a variable
pattern is more important than a rainfall pattern (by itself)
for simulating streamflow hydrographs. However, the vari-
ability of the rainfall pattern can exert a strong influence on
the timing of the hydrograph peak at a downstream gauging
station. Initial studies on precipitation error focused on how
well networks of rain gages were capable of estimating the
actual total rainfall, first using synthetic data (•Wei and Lar-Q9

son, 1971; Troutman, 1983; •Watts and Calver, 1993) andQ10

then real data (Krajewski et al., 1991; Ogden and Julien,
1993, •1994; Shah et al., •1996a). Such studies commonlyQ11

Q12 assume that the highest resolution data available are approx-
imately representative of the real pattern of precipitation
behavior. The use of radar rainfall estimates has now
become increasingly common and has been tested either
individually or in combination with gauged data (e.g. Smith
et al., 1996; Moore and Hall, 2000; Morin et al., 2001;
Carpenter et al., 2001). Also under investigation is the use
of satellite-based remotely sensed information for deriving
precipitation estimates (Hsu et al., 1997; Sorooshian et al.,
2000, •2003), which has the potential of providing globalQ13

estimates of precipitation. Satellite-based precipitation esti-
mates enable some knowledge of rainfall over the relatively
extensive ungaged portions of the world (including loca-
tions that are difficult to access or are blocked from radar
coverage owing to topography), and are particularly useful
for large (regional and continental) scale hydrologic stud-
ies. Both radar and satellite estimates of rainfall, however,
are dependent on interpretative models of the recorded sig-
nals that also have parameters subject to calibration. It is
also important to consider that errors in the precipitation
data will also introduce a bias on the parameter estimates
that in turn impacts the model predictions (e.g. Troutman,
1983; Andréassian et al., 2001; Kavetski et al., 2003).

The results of the above mentioned studies suggest that
the importance of capturing the spatial variability of rain-
fall depends significantly on whether the catchments are
infiltration- or saturation-excess dominated (e.g. •OgdenQ14

et al., 1994, 2002; Koren et al., 1999). Spatial variabil-
ity of rainfall seems to be of particular importance for
infiltration-excess dominated catchments. In such catch-
ments, the location of runoff production typically shows
a stronger correlation with the location of high rainfall
intensity (Michaud and Sorooshian, 1994; Winchell et al.,

1998). On the other hand, other factors such as the topog-
raphy of the catchment can have a stronger influence on
the location of runoff production in saturation-excess dom-
inated catchments. The spatial distribution of rainfall can
also be of higher importance in cases where the catch-
ment is dry (Shah et al., 1996b). Smith et al. (1993) suggest
that results related to the importance of estimating precip-
itation variability should be treated with some degree of
caution at this early stage of research, and that it needs to
be demonstrated that the sensitivity of the models used in
the aforementioned studies is actually representative of the
sensitivity of the real catchments.

DISCUSSION AND CONCLUSIONS

This article began with the premise that all rainfall-runoff
models are (at some level) lumped and conceptual repre-
sentations of a real-world system. The main consequences
of this premise are that the model structure is defined, prior
to any modeling being undertaken, by the modeler’s under-
standing of the natural system, and that estimates of the
model parameters must be provided. Such parameter esti-
mates are typically derived through a process of model
calibration using observed system behavior. Three neces-
sary conditions for a rainfall-runoff model to be considered
as being properly calibrated are that: (i) the input-state-
output behavior of the model is consistent with the mea-
surements of catchment behavior, (ii) the model predictions
are accurate (i.e. they have negligible bias) and precise (i.e.
the prediction uncertainty is relatively small), and (iii) the
model structure and behavior are consistent with the hydrol-
ogists understanding of reality. With respect to all three
aspects, problems have been encountered that are still not
satisfactorily solved to this day. Regarding the first point, it
has been found that different parameter sets are required to
simulate different behaviors of the natural system. This is
usually taken to be an indication of model structural prob-
lems. Multiobjective approaches can be used to consider
this problem, and recursive methods can be applied to more
objectively track parameter variation in time. At this time,
however, structured approaches to improve model represen-
tations are only available for certain simple types of models
(e.g. linear). With respect to the second aspect, it is often
found that the estimate of prediction uncertainty is rela-
tively large and depends on the type of approach chosen
to analyze it. To be blunt, there is currently no unifying
framework that properly addresses uncertainty in hydrolog-
ical modeling. Statistical approaches (such as SCEM and
BaRE) require assumptions that are often difficult to jus-
tify; alternative approaches (such as GLUE and DYNIA)
require subjective decisions about model evaluations that
can also be difficult to justify. And finally, the issue of
the realism of hydrologic models in current practice is
receiving increasing attention. Many modeling approaches
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have been based on the powerful mathematics of regression
and systems theory with insufficient consideration for the
conceptual nature of the model structure and parameters.
Recent developments suggest that proper consideration of
this issue is required if successful prediction of ungauged
catchments or those undergoing land-use changes is to be
achieved (Beven, 2002, 2004).

We remain confident, of course, that other strategies to
understanding and dealing with the various sources of error,
including those arising from model structural deficiencies,
will emerge as increasing numbers of intelligent and
energetic minds are brought to bear on the problem.
If nothing else, history teaches us that the progress of
science is inexorable, and that today’s “truths” are all
too often tomorrow’s “mistakes”! However, the nature of
hydrological systems is such that even if new measurement
techniques become available in the future, uncertainty
in hydrological prediction will not be eliminated. Thus,
hydrology as science must learn to be realistic about the
uncertainties that arise in the modeling process.
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SOFTWARE LINKS TEXTBOX

Hydrologic software, including many of the above-
described algorithms (including SCE-UA, SCEM-UA,
BaRE, etc.), is available for noncommercial use at
http://www.sahra.arizona.edu/software.html

(Wagener et al., 2004). Demonstration GLUE software
can be downloaded from http://www.es.lancs.ac.uk/

glue.html. The Monte Carlo Analysis Toolbox (MCAT)
is a compilation of several techniques to analyze the
parameter and output space including the corresponding
uncertainties. Any dynamic mathematical model can be
analyzed for which a Monte Carlo sampling or a pop-
ulation evolution procedure can be run. The Toolbox
includes the DYNIA methodology, elements of the GLUE
procedure and multiobjective plots as explained later.
Copies of the MCAT can be obtained from http://ewre-

www.cv.ic.ac.uk/software. Other popular optimiza-
tion packages, not explicitly mentioned in the text, are
NLFIT (developed by George Kuczera, http://www.eng.

newcastle.edu.au/∼cegak/) and PEST (developed by
John Doherty, http://www.sspa.com/pest/).
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SOFTWARE TEMPLATE

SOFTWARE TITLE

PEST

SOFTWARE DESCRIPTION

: nonlinear parameter estimation package based on the Levenberg-Marquardt algorithm

TYPICAL APPLICATIONS

inverse estimation of soil hydraulic parameters using a hydrologic model and observed data

HYPERLINKS TO MORE DETAILED INFORMATION

http://www.parameter-estimation.com/html/pest−overview.html

PEST Software (1998). PEST: Model-Independent Parameter Estimation. Watermark Computing.
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Q7. This reference has not been listed in the reference list. Please provide the reference details.
Q8. This reference has not been listed in the reference list. Please provide the reference details.
Q9. This reference has not been listed in the reference list. Please provide the reference details.

Q10. This reference has not been listed in the reference list. Please provide the reference details.
Q11. This reference has not been listed in the reference list. Please provide the reference details.
Q12. We have changed “Shan et al., 1996” to 1996a for the first occurence and 1996b for the second one. Please confirm

if this is fine.
Q13. This reference has not been listed in the reference list. Please provide the reference details.
Q14. This reference has not been listed in the reference list. Please provide the reference details.
Q15. These references have been moved to Further Reading as they have not been cited in text. Please confirm if this is

fine.
Q16. We have changed “waterghed” to “watershed” in this reference title. Please clarify if this is fine.
Q17. Please provide the volume number and page range for this reference.
Q18. Please provide the volume number and page range for this reference.
Q19. Please provide the page range for this reference.
Q20. Please provide the page range for this reference.
Q21. Please provide the page range for this reference.
Q22. ‘Jakeman and Hornberger, 1993’ has not been cited in the text please confirm whether we can move this reference

to Further Reading
Q23. ‘Lamb et al. 1998’ has not been cited in the text please confirm whether we can move this reference to Further

Reading.
Q24. Please provide the publisher’s name for this reference.


