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Introduction

Catchment models are by definition simplified representations of the
real world system. This aggregation takes place in space and time
and has several important consequences. First, there are no gener-
ally applicable rules to perform this aggregation, and the resulting
model structure is usually a function of the modeller’s hydrological
understanding. Secondly, the model parameters cannot be measured
directly in many cases, but have to be estimated. In this process,
we usually assume that the parameters are constant in time and
representative of inherent properties of the real system. This is par-
ticularly relevant when transferring parameters to ungauged catch-
ments. The modeller’s task is to find a model, i.e. a combination of
model structure and parameter set(s), suitable for the anticipated
modelling purpose, data and catchment characteristics. Tradition-
ally, the modeller defines an objective function, i.e. some aggregated
measure of the distance between simulated and observed system
response, and minimizes (or maximizes, depending on definition) its
value, a procedure usually called calibration. The aim is to match
simulated and observed system behaviour. This is often followed by
an application of the identified model to another part of the time
series not used during calibration, to show that it can be applied
generally. This is usually called the validation step.

Many studies have shown that this type of approach is insufficient
to test adequately the suitability of a model and that the scientific
conclusions that can be drawn from such a procedure are very
limited. A commonly found result is that several, often very different,
parameter sets and even model structures are equally acceptable
system representations in this context (e.g. Beven and Freer, 2001).

Therefore, we seek to apply approaches to model evaluation that
are more discriminative. There are at least three dimensions in which
this evaluation should be performed (Figure 1): (1) performance;
(2) uncertainty; and (3) ‘realism’.

Evaluation of Performance
Evaluating performance generally means analysing how closely the
model behaviour matches the behaviour of the real system. The
traditional measure of performance is a single objective function,
as mentioned above. The (unwanted) consequence of using such a
measure is that one loses information that could otherwise be used
to discriminate between competing models. An alternative approach
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Figure 1. Dimensions of model evaluation

is to apply multiple measures of performance to
increase the amount of information retrieved from
the available data. These might, for example, be
global (e.g. overall bias) and local (e.g. low flow
performance) measures (Gupta et al., 2003). This
approach has been applied widely in recent years.
One outcome of this work is that it has become
clear that current catchment models cannot rep-
resent low and high flow behaviour of hydrologic
systems with a single parameter set. This finding
has highlighted some of the problems in current
model structures. With respect to the compari-
son of different model structures, multi-objective
approaches might enable us to allocate the perfor-
mance to individual model components. However,
currently, no objective way of defining the opti-
mal number and type of objective function exists
for this type of analysis.

Evaluation of Uncertainty
Uncertainty evaluation of models means analysing
the range of parameter sets and sometimes even
model structures that are viable for an anticipated
study. Fortunately, such an analysis is becom-
ing more and more common. The main sources
of uncertainty are input and output data, and
the model parameters and structure. Set theo-
retic approaches are often used to estimate these
uncertainties. These techniques generally assume
that all plausible models should be retained unless
and until evidence to the contrary becomes appar-
ent. Common to these approaches is the selection
or identification of a set (population) of models
(different combinations of model structures and

parameter values), and the assignment of some rel-
ative degree of believability to each member of the
set. This degree of believability is translated into
uncertainty (confidence) interval estimates on the
model output. The approaches differ in the suite
of assumptions underlying each technique, based
on which methods are used to compute the relative
degree of believability (e.g. Beven and Freer, 2001;
Vrugt et al., 2003).

The use of multiple objectives plays an impor-
tant role in this context. With respect to parameter
uncertainty, it is likely that different parameters
will be more or less identifiable for different objec-
tive functions, indicating that different model com-
ponents are important in fitting various system
response modes. A problem that may evolve, how-
ever, is the selection of a best parameter set, or a
group of best parameter sets, since a different opti-
mal set will often be identified for each objective
function. Possible options to deal with this problem
are the use of set theory rules or the identification
of that group of models (i.e. parameter sets) that is
optimal in some multi-objective sense (Beven and
Freer, 2001; Gupta et al., 2003). It is currently not
obvious how such a model population should be
derived. Alternatively, one can derive a compro-
mise solution, for example by the sequential iden-
tification of different parameter subsets using a
variety of objective functions (Hogue et al., 2000).

An even more serious problem is the fact that we
currently have no framework to separate out the
amount of uncertainty stemming from the differ-
ent sources (mainly parameters, data and model
structure). The amount of uncertainty allocated
to inadequacies of the model structure is partic-
ularly unclear and cannot be separated from the
approach(es) chosen to represent the other uncer-
tainties at the moment.

It may often be necessary to trade off perfor-
mance and uncertainty to derive a suitable level
of model complexity for the anticipated purpose
(Wagener et al., 2002; Figure 2). This is because
the information content in the data is limited
and potentially supports only a certain num-
ber of parameters to be identified (Young, 2001).
However, the use of an overparameterized model
might be justified in certain cases (Reichert and
Omlin, 1997).
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Figure 2. Model complexity evaluation

Evaluation of Realism
A third aspect has recently become part of eval-
uation studies for catchment models: testing the
‘realism’ of the model, or how far a model is
consistent with our understanding of reality. For
example: Do the model components really rep-
resent the hydrological processes we want them
to represent? Are the parameters really constant
in time?

Separating data periods of noise and informa-
tion for particular parameters can test the first
aspect. Information should be found in periods
where model components (and therefore parame-
ters) are expected to dominate. From the above dis-
cussion on performance evaluation we know that
optimum parameters often vary between high- and
low-flow periods. The question then is. Can we
find techniques to track this variation explicitly
and use the result to improve our model struc-
ture? Several approaches to do this have been
published in recent years, and they seem to give
at least some indication about potential problem
areas (e.g. Misirli Baysal, 2003; Wagener et al.,
2003). In contrast to a batch calibration approach,
these techniques estimate the parameter distribu-
tions at every time step (or possibly over a win-
dow period). A parameter that varies in optimum
value between certain response periods suggests
that some dynamic aspect of the catchment is not
properly represented in the model. This can be

used as a guideline for model structural improve-
ments, but one must be careful to ensure that any
variation detected is not due to other aspects, e.g.
errors in the data.

A potentially more powerful approach is com-
paring model states to the states of the real system,
e.g. groundwater. However, it is not always clear
how model variables relate to real-world variables,
and what influence model structural error has in
this context (e.g. Lamb et al., 1998). Additional
information on a catchment’s response to con-
strain the group of consistent models further might
be available in experimental catchments (e.g. Seib-
ert and McDonnell, 2002).

Conclusions
The evaluation of hydrological models has evolved
considerably in recent years. Multi-objective, set
theoretic, and recursive approaches are just three
techniques that can help us to better understand
the nature of current catchment models. In par-
ticular: How do (usually conceptual) parameters
relate to real-world characteristics? Answering
this question would be one step to modelling
ungauged catchments successfully.

One problem of the current state of the art
is that no single approach provides us with all
the information that we can use in evaluation
studies while explicitly considering all aspects of
uncertainty. The future will tell whether such an
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approach exists. For the time being, it might be
advisable to combine different techniques in a sin-
gle study. A collection of currently available tools
is presented by Duan et al. (2003). New and inno-
vative approaches and tools are still needed to
help us to identify hydrologically realistic catch-
ment models.
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