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Abstract The problem of selecting appropriate objective functions for the identifica-
tion of a lumped conceptual rainfall–runoff model is investigated, focusing on the 
value of the model in an operational setting. A probability-distributed soil moisture 
model is coupled with a linear parallel routing scheme, and conditioned on rainfall–
runoff observations from three catchments in the southeast of England. Using an 
abstraction control problem, which requires accurate simulation of the intermediate 
flow range, it is shown that using the traditional RMSE fit criterion, produces 
operationally sub-optimal predictions. This is true in the identification period, when 
applied to a testing period, and to proxy catchment data. Using a second case study of 
the Leaf River in Mississippi (USA), where the focus changes to predicting flood 
peaks over a specified threshold, also suggests that the relevant flood threshold should 
govern the objective function choice. It is concluded that, due to limitations in the 
structure of the employed model, it would be counter-productive to try to achieve a 
good all-round representation of the rainfall–runoff processes, and that a more em-
pirical approach to identification may be preferred for specific forecasting problems. 
This leaves us with the question of how far hydrological realism should be sacrificed 
in favour of purpose-driven objective functions. 
Key words  hydrological forecasting; model identification; objective functions;  
rainfall–runoff models; uncertainty 

Identification de modèles pluie–débit pour des applications 
opérationnelles 
Résumé Le problème du choix des fonctions objectif appropriées pour l’identification 
d’un modèle pluie–débit conceptuel global est étudié, dans une perspective 
opérationnelle. Un modèle probabiliste de distribution de l’humidité du sol est couplé 
avec un modèle linéaire parallèle de propagation, et est calé avec des données de 
pluie–débit de trois bassins versants du sud-est de l’Angleterre. En se plaçant dans une 
problématique de contrôle des prélèvements, qui nécessite une simulation précise des 
variations des débits intermédiaires, il apparaît que l’utilisation du critère d’ajustement 
classique de l’écart quadratique moyen aboutit à des prévisions opérationnelles sous-
optimales. Cela est vérifié pour la période d’identification, lors de l’application à une 
période de test et lors de la transposition à des données de bassins voisins. L’étude de 
cas de la Rivière Leaf, au Mississipi (Etats Unis), où la problématique est la prévision 
des pics de crue supérieurs à un seuil spécifié, suggère que le seuil de crue pertinent 
doit présider au choix de la fonction objectif. Il apparaît que, en raison de limitations 
dans la structure du modèle utilisé, il serait contre-productif d’essayer d’atteindre une 
bonne représentation globale des processus de transformation pluie–débit et qu’une 
approche plus empirique d’identification peut être préférée en cas de problèmes de 
prévision spécifiques. Cela pose la question du degré de sacrifice du réalisme 
hydrologique au profit de fonctions objectif orientées par la problématique. 
Mots clefs  prévision hydrologique; identification de modèle; fonctions objectif;  
modèles pluie–débit; incertitude 

 
 
MOTIVATION AND SCOPE 
 
Water resource and flood management hydrological problems are more and more 
approached using continuous time rainfall–runoff modelling (e.g. Lamb, 2000; 
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Cameron et al., 2001, Blazkova & Beven, 2002), rather than traditional statistical or 
event-based models (e.g. NERC, 1975; Pilgrim, 1987; Institute of Hydrology, 1999). 
This is because representing the recent basin history can add to the accuracy of the 
model output, and because the temporal aspects of the flow regime (e.g. cumulative 
flow volumes, effects of successive rainfall events on flood peaks) are central to 
effective management. Also, continuous time models allow real-time control of floods 
and abstractions, and can interact with, for example, meteorological, water quality and 
supply system models. Furthermore, data availability, modelling expertise, software 
developments and computational resources now make continuous time modelling 
accessible and affordable even for operational purposes (Lamb & Calver, 2002).  
 A general feature of operational rainfall–runoff model applications is that, while it 
is generally considered advantageous to reproduce the continuous hydrograph, an 
emphasis is usually put on a certain flow regime. Applications usually tend to be 
related to high flows (e.g. flood risk), medium flows (e.g. abstraction control), or low 
flows (e.g. drought impact). One example application is abstraction control, which is 
usually defined by a lower flow threshold (below which the water company is not 
licensed to abstract, i.e. minimum environmentally acceptable flow) and an upper flow 
threshold (above which abstraction is limited by pump capacity rather than river 
flows). The reproduction of the intermediate flow regime might therefore be of 
particular importance in this case. This emphasis might shift to peaks above a certain 
threshold if the aim of the modelling study is flood risk assessment or other aspects of 
the hydrograph depending on the modelling objective. Research applications on the 
other hand often aim at reproducing all aspects of the hydrograph to show that the full 
hydrological system under study is reproduced well.  
 The class of model structures most commonly used for continuous rainfall–runoff 
modelling can be defined as conceptual (Wheater et al., 1993). In a conceptual model, 
a series of interacting storage elements reflect the simplification of the basin processes 
and states preferred by modellers. Associated parameters define, for example, the size 
of these storage elements, drainage rates, and the distribution of fluxes. Such models 
range widely in complexity (in terms of the number of parameters), although simpler 
models, with relatively few parameters, are often preferred because the calibration 
(identification) load is lower and they often achieve performances equal to those 
gained from using more complex models (Jakeman & Hornberger, 1993), while having 
more identifiable parameters (Wagener et al., 2002, 2004; Littlewood, 2003). More 
complex models attempt to explicitly represent many of the actual physical processes 
and inputs affecting streamflow, but data requirements, parameter identification 
problems and computational cost tend to make these models less practical (Wheater et 
al., 1993; O’Connell & Todini, 1996). 
 There is a large number of conceptual models; each formulated with the aim of 
improving the representation of a particular basin, or a particular type of basin 
response (Singh & Frevert, 2002a,b). Some studies have indicated that specific 
structures perform consistently better for basins that show a very well-defined 
response, e.g. they are baseflow or quick flow dominated (Wagener et al., 2004). Other 
studies have implied that differences in performance between model structures are 
often difficult to discern (Uhlenbrook et al., 1999; Lee et al., 2004, 2005), in particular 
when considering data errors and the freedom of fit given by empirical parameter 
calibration. Further studies recognize that model structural error is inevitable, and that 
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the symptoms are best managed by careful attention to parameter estimation 
techniques and consideration of the range of ultimate tasks of the model (Gupta et al., 
1998). The benefits of being able to explore the significance of alternative model 
structures and their inadequacies has led to the development of modelling frameworks 
that allow the quick implementation and comparison of alternative structures (e.g. 
Leavesley et al., 1996; Wagener et al., 2002).  
 The spatial and temporal heterogeneity of processes in a basin are aggregated into 
conceptual elements as described above. One consequence of this aggregation process 
in conceptual modelling is that most model parameters lose their direct physical 
interpretation and have to be estimated through a process of calibration or identifica-
tion. During this calibration process, observed and simulated basin responses (usually 
streamflow) are compared and the model parameters are adjusted until the best 
possible match between the two time series has been achieved. This match-up can be 
done manually (e.g. Smith et al., 2003), using mainly visual inspection of the hydro-
graphs, or, more commonly, using automated procedures (e.g. Duan et al., 1992; Vrugt 
et al., 2003a). Manual calibration is limited in value because of its high human 
resource cost, and because it cannot be used to thoroughly explore the parameter space 
to identify a population of candidate parameter sets and to estimate uncertainty (Boyle 
et al., 2000). For automated calibration, the residuals, i.e. the differences between 
observed and simulated time series, are commonly aggregated into a statistical 
measure or objective function (e.g. Nash & Sutcliffe, 1970). The calibration aim is 
then to find the parameter set that minimizes (or maximizes) this objective function. In 
recent years, this process of calibration has been evolved into one of identification in 
which the range of parameter sets is found that provides acceptable predictions for the 
purpose at hand (Gupta et al., 2005). 
 For a number of inter-related reasons, it is not necessarily true that the parameter 
set which gives the optimum objective function value during calibration or identifica-
tion is that which is most useful for extrapolating the rainfall–runoff relationship in 
time. Each parameter set that is in some way optimal fits the data in a way that 
compensates for the particular combination of model structure error and data error 
present during calibration, and may lead to significantly biased parameter estimates in 
doing so (e.g. Michaud & Sorooshian, 1994; Andreassian et al., 2001). Unless the 
biases have the same compensatory effects during model extrapolation, significant 
errors in forecasts would be expected. Errors in forecasts will also occur partly due to 
parameter equifinality (Beven, 1993), whereby different parameter sets yield equally 
good objective function values during calibration (equally good within the tolerance 
achievable considering data accuracy and model structure deficiency), leaving doubt 
about which set should be applied for extrapolation. Another, closely related reason is 
that the aggregation of all residuals into a single objective function during calibration 
does not provide detailed information about where the model is failing to perform well, 
only about the fit over the whole flow regime (Gupta et al., 1998). This loss of 
information adds to the equifinality problem (Wagener et al., 2001), and means that 
parameter sets which give good performance in the operationally relevant parts of the 
hydrograph remain unknown. While it would be preferred if models could accurately 
simulate all aspects of the hydrograph, several researchers have suggested that it is not 
possible to find an individual parameter set that fits both high and low flows using 
currently available model structures (e.g. Gupta et al., 1998; Boyle et al., 2000; 
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Wagener et al., 2001; Lee et al., 2004). In addressing the problem of model structure 
inadequacies, multi-objective analysis has been used to assess the trade-offs between 
meeting different modelling objectives and the associated parameter uncertainty, 
although the significance of this in improving model forecasts has not yet been 
explored. 
 What is the significance of the recent findings regarding model structural in-
adequacy for operational model use, when reliable representation of a certain flow 
regime is the primary concern? During identification, what balance should be given 
between fitting the most relevant flow regime and attempting to represent the rainfall–
runoff processes via fitting of the entire hydrograph? What is the consequence for this 
in terms of the hydrological realism of the parameters derived? Two case studies using 
basins in the UK and in the USA are investigated here to address these questions. After 
some justification for the underlying assumptions regarding the modelling problems 
mentioned above (e.g. no single parameter set to fit all model aspects), an example of a 
water resources study and some preliminary investigations into the optimum strategy 
for calibrating a model for flood risk estimation purposes are presented. The principles 
of operational testing of hydrological models laid out by Klemeš (1986), e.g. using 
split-test samples and proxy basins, are used.  
 
 
OPERATIONAL RAINFALL–RUNOFF MODELLING 
 
Several studies conclude that current model structures are not capable of reproducing 
the whole hydrograph with a single parameter set. What are the consequences of this 
problem for the operational use of these models? Is it appropriate to use a model that is 
calibrated exclusively for a specific flow regime, without considering the overall 
performance, and therefore the overall representativeness for the basin? Dooge (1972) 
came to the conclusion that “…in the context of water resources development a model 
is something to be used rather than something to be believed”. This implies that there 
is an inconsistency between models used for operational (engineering) purposes and 
those that withstand scientific scrutiny with respect to the realism of their system 
representation (Wagener, 2004). For operational applications, the question remains - 
is it better to be more right for the wrong reasons, or is it better to be less right, but 
simulate an overall more realistic hydrograph response and hence assume more 
confidence in model application? 
 Based on similar ideas, Klemeš (1986) suggested an operational testing scheme for 
hydrological models that directly relates tests to the anticipated modelling task. This 
scheme has since been adopted and modified by several researchers (e.g. Seibert, 1999; 
Uhlenbrook, et al., 1999; Refsgaard, 1997; Refsgaard & Knudsen, 1996). The concep-
tual framework proposed by Klemeš (1986) is based on three premises: 
(a) The hydrological model is intended for an operational application, not a pure 

scientific investigation (e.g. for planning, design and operational decision making). 
(b) The criteria for the evaluation of the model performance are defined with respect 

to the operational tasks. 
(c) The criteria are calculated by comparing model estimates with observations. 
The same premises are used in this study. An attempt is made to define performance 
criteria that closely reflect the modelling purpose and the operational situation 



Identification of rainfall–runoff models for operational applications 
 
 

 
 

Copyright  2005 IAHS Press  

739

encountered. Klemeš (1986) derived a scheme of operational hierarchical validation 
using increasingly more difficult modelling tests from his underlying premises: 
(a) Split-sample test: using two separate time periods of the same time series for 

calibration and testing. The two periods show similar characteristics (e.g. climate 
or land use). 

(b) Proxy-basin test: transferring a model calibrated in one basin to a similar second 
basin without recalibration. Manual adjustments of parameters based on different 
basin characteristics are allowed. 

(c) Differential split-sample test: The same as (a), but the periods are different in 
characteristics. 

(d) Proxy-basin differential split-sample test: combining tasks (b) and (c). 
The problem of geographical transferability of a hydrological model is, of course, of 
major importance with respect to the modelling of ungauged basins (Sivapalan, 2003; 
Sivapalan et al., 2003); with general transferability, in space and time, being the 
ultimate objective of hydrological modelling following Klemeš (1986).  
 
 
CASE STUDIES 
 
Basins 
 
The two case studies use three basins in the southeastern UK and one in the USA. The 
first case study is of the River Medway in Kent, plus two of its tributaries—the rivers 
Eden and Eastern Rother. At the Teston flow gauge, the Medway basin area is 
1256 km2, while the Eastern Rother at Udiam is 206 km2 and the Eden at Penshurst is 
224 km2. The naturalized mean flows at these locations are 11.2, 1.86 and 2.22 m3 s-1, 
respectively. Daily flow and potential evaporation data and basin-average daily rainfall 
data are available for all three basins for the period 1990–1996. The second case study 
is of the River Leaf in Mississippi, USA. The Leaf River basin area at the flow gauge 
north of Collins, Mississippi, is 1950 km2, with a mean flow of 62.3 m3 s-1. Daily flow 
and potential evaporation data, and basin-average daily rainfall data, are available for 
the period 1948–1988.  
 
 
Modelling and analysis tools 
 
The rainfall–runoff modelling (RRMT) and Monte Carlo analysis (MCAT) toolboxes 
(Wagener et al., 2002) are used in this study. All model structures that can be built in 
the RRMT consist of a soil moisture accounting (SMA) module that produces effective 
rainfall, which is subsequently input into a routing module to introduce translation 
effects. The RRMT contains a library of conceptual rainfall–runoff model components 
that can be combined to form appropriate model structures. All models are lumped (i.e. 
inputs and states are averaged over the basin area, resulting in a single output of 
streamflow at the basin outlet). The models are supported by various tools for model 
identification and Monte Carlo analysis techniques. Using the latter, a number of 
different objective functions can be simultaneously evaluated: for example the root 
mean squared error (RMSE) using the residuals over the whole time series, or just with 
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respect to high flows, medium flows, or low flows. The RRMT can be coupled with 
the MCAT, which allows model sensitivities, and parameter and output uncertainties 
to be analysed.  
 The probability-distributed soil moisture model (PDM, see Moore, 1985), which 
has been found to give relatively good performance over a range of basin types 
(Young, 2002; Wagener et al., 2004; Lee et al., 2004) is selected as the SMA compo-
nent in this study. This module represents the distribution of soil moisture capacity 
over the basin as a probability distribution. In this case a Pareto distribution is used, 
defined by shape parameter, b, and maximum soil moisture capacity over the whole 
basin, cmax. Evaporation is modelled as directly proportional to soil wetness, reaching 
a maximum of potential evapotranspiration at soil saturation, i.e. c = cmax. Runoff is 
generated by the distribution of exceeded capacities. The effective rainfall produced in 
this way is split (using parameter q) between fast and slow linear routing stores (with 
time constants k1 and k2). All the parameters, including their feasible ranges, are listed 
in Table 1. 
 
 
Table 1 Ranges of parameter values sampled in identification. 

Parameter Lower bound Upper bound Unit 
cmax   0 500 mm 
b   0     2 - 
q   0     1 - 
k1   1   10 day 
k2 10 400 day 
 
 
The Medway, Eden and Eastern Rother basins 
 
 Identification and testing Uniform random sampling is used to explore the 
feasible parameter space for this parsimonious model structure and a number of objec-
tive functions are simultaneously evaluated. This involves a large number of parameter 
sets (20 000 in this case) being randomly sampled from an a priori feasible parameter 
space defined in Table 1. Using each sampled parameter set, the model is run and 
various measures of fit to the observed streamflow are calculated (see objective func-
tions below). For each of these objective functions, the parameter set which provides 
the best fit is taken to be a good approximation of the optimum. 
 The data time series for the Medway, Eden and Eastern Rother are split into two 
periods to allow identification to be followed by a period for model testing or 
evaluation (Fig. 1). To better visualize medium- and low-flow behaviour, the time 
series has been transformed using the following Box-Cox power transformation 
(Kottegoda & Rosso, 1998): 

( )
λ

=λ
λyy*  (1) 

where y and y* are the flow time series before and after transformation, respectively. 
The degree of transformation is defined by the value of λ for which a value of 0.3 has 
been selected as a suitable transformation for visualization purposes. Two equal 
periods of about three years are used in each case. The first period is initially used for  
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Fig. 1 Plots of the available time series for the rivers (a) Medway, (b) Eden and 
(c) Eastern Rother. The dashed lines define the medium flow range. The vertical 
dashed lines show the separation between the two different time periods. * Indicates 
that a Box-Cox transformation has been performed on the time series. 

 
 
identification and the second for evaluating predictive performance, then vice versa. 
The issue of appropriate data lengths for model identification has been investigated by 
a variety of studies (e.g. Yapo et al., 1996; Jakeman et al., 1993; Sefton & Howarth, 
1998), the general result being that the required length mainly depends on data quality, 
model complexity and climatic variability. For example, Yapo et al. (1996) state that 
an 8-year period is required for the result to be independent of climatic variability, 
whereas Jakeman et al. (1993) found that a 3-year period provides a good balance 
between a required minimum length for stable identification of the model parameters 
and changes in the system. For the present study, a 3-year period was deemed to be 
adequate for a useful comparison between alternative objective functions, given the 
parsimonious nature of the model and the focus on practical applications where 
calibration data are often limited. 
 The measures of fit used during identification and testing are the RMSE for low-, 
medium-, and high-flow ranges. These ranges are pre-defined by operational require-
ments for the different rivers and are mutually exclusive (see Table 2): 
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where θ is a parameter vector; m is the modelled flow; o is the observed flow; and L, M 
and H are the number of time steps for which the observed flow is within the low-, 
medium- and high-flow ranges respectively. For comparison with these three objective 
functions, two traditional objective functions are used that measure the overall fit: 
RMSE and the complement of the Nash-Sutcliffe Efficiency (NSE, Nash & Sutcliffe, 
1970) using all N time steps (the complement of the NSE is used so that lower values 
are better): 
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Table 2 Ranges of observed flows o used to define the FL, FM and FH objective functions. 

Catchment FL flow range (mm day-1) FM flow range (mm day-1) FH flow range (mm day-1) 
Medway o ≤ 0.22 0.22 < o ≤0.42 o > 0.42 
Eden o ≤ 0.098 0.098 < o ≤ 1.13 o > 1.13 
Eastern Rother o ≤ 0.019* 0.019 < o ≤ 0.39 o > 0.39 
* There are only two time steps with flow values below this threshold. Therefore, FL cannot be used 
sensibly in this catchment. 
 
 
 Results and discussion The uniform random sampling procedure produced 20 000 
parameters sets, plus the corresponding values of each of the five objective functions. 
These large samples allow statistical and visual analysis of inter-correlation between 
the objective functions. Figure 2 is a correlation matrix of the five objective functions 
(with the correlation coefficients shown in the upper diagonals and the data shown in 
the lower diagonals) using the results for the River Medway as an example. It shows 
that the (transformed) NSE, RMSE and FH objectives are well correlated and therefore 
using them both may add little to model identification. However, the other two 
objective functions (FL and FM) are much less correlated with FH, NSE and RMSE. 
Focusing on the relevant solutions (i.e. those with small values), for example for FM 
versus RMSE, a distinct trade-off between optimizing objectives is evident, whereby  
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Fig. 2 Correlations of alternative objective functions derived using Monte Carlo 
sampling of 20 000 parameter sets for the identification period of the River Medway 
data. The individual parameter sets are plotted in the two-dimensional objective 
function space below the diagonal; above are the correlation coefficients. 

 
 
improving on the value of one of them can only be done at the expense of degrading 
the other. Results are similar for the Eden and Rother basins. 
 These results confirm the previous findings of several researchers (e.g. Gupta et 
al., 1998; Boyle et al., 2000; Wagener et al., 2001; Vrugt et al., 2003b) that a 
conceptual model cannot be expected to deliver good calibration performance simul-
taneously across the full range of flows. To take the issue one step forward, the 
implications of this are now investigated for prediction rather than model identi-
fication, addressing the question “to what degree is the forecasting ability of the model 
improved (or deteriorated) by using an objective function that is exclusive to the range 
of flows that need to be forecast in operation?”. To do this, three forecasting tasks are 
defined—high flows, medium flows and low flows. As during identification, 
performance in achieving these tasks is measured using FH, FM and FL (defined in 
Table 2) during the 3-year test period, which can be considered a surrogate for a real 
forecasting problem. This is done independently for the rivers Medway, Eden and 
Eastern Rother. 
 Table 3 part (a) shows the best RMSE, FH, FM and FL performances during the 
identification (idn) period. It also shows the test period performance measured by each 
of these four objectives when (a) the same objective function has been employed  
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Table 3 Performances associated with changing from an RMSE objective function to a task-specific 
objective function.  

River Period RMSE FH FM FL 
(a)      
Medway 1 [idn] 0.83 0.94 (0.95) * 0.24 (0.50) 0.21 (0.61) 
 2 [test] 1.41 1.56 (1.61) 0.47 (0.54) 0.34 (0.75) 
Eden 1 [idn] 1.43 1.66 (1.84) 0.39 (1.08) 0.12 (0.75) 
 2 [test] 1.59 1.97 (2.10) 0.57 (1.07) 0.49 (0.81) 
Rother 1 [idn] 1.41 1.52 (1.53) 0.17 (0.97) -† 
 2 [test] 1.36 1.45 (1.48) 0.30 (1.05)  
(b) After swapping identification and test periods: 
Medway 2 [idn] 1.28 1.42 (1.43) * 0.21 (0.68) 0.21 (0.85) 
 1 [test] 0.95 1.05 (1.06) 0.40 (0.65) 0.38 (0.77) 
Eden 2 [idn] 1.55 1.93 (1.99) 0.36 (1.09) 0.18 (1.02) 
 1 [test] 1.54 1.73 (2.00) 0.59 (1.18) 0.59 (0.52) 
Rother 2 [idn] 1.35 1.43 (1.45) 0.30 (1.11) -† 
 1 [test] 1.42 1.55 (1.52) 0.31 (1.04)  
* Values in brackets are derived using the parameter set with the best RMSE from the identification 
(idn) period. 
† Not applied, see Table 2. 
 
 
during identification, and (b) only RMSE has been employed during identification 
(shown in parentheses). Table 3 part (b) shows the result when the identification and 
test periods have been swapped around. Arguably, the results are not surprising, 
showing that performance in forecasting is consistently: (i) worse when the RMSE ob-
jective function has been used during identification rather than the task-specific 
objective function, and (ii) worse than the performance obtained during identification. 
The bias in cumulative volume was calculated over the identification period and is 
visualized in Fig. 3 to show the volumetric differences in results using the parameter 
sets optimal for the FM and those optimal for the RMSE objective functions. One can 
see that the absolute values for the bias increase by factors ranging between 3.5 and 5 
for the different basins, and that using the RMSE leads to a severe underprediction of 
the flow volume in the region of interest (the medium-flow range).  
 The results in Table 3 and in Fig. 3 provide evidence that the best identification 
strategy for operational purposes, at least when a model is identified and applied in the 
same basin, might better be strictly defined by the task, rather than using a standard 
objective function such as RMSE. It might be expected that extrapolation to a different 
but similar basin would be a more demanding test of this principle (Klemeš, 1986). To 
test this, attention is focused on the FM objective function. Table 4 shows the 
forecasting FM performances when the models calibrated at each of the three basins 
(using both FM and RMSE) are extrapolated to the other two basins. This suggests the 
same thing—that the RMSE objective function should not be used for a task-specific 
application. Table 4 also suggests that, using FM as the identification objective 
function, the deterioration in performance associated with the extrapolation to new 
basins is minimal or (in the case of extrapolating the Eden and Medway models to the 
Rother) non-existent.  
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Fig. 3 Bias (i.e. volumetric error) comparison for the medium flow range for all three 
basins in period 1 (used as identification). 

 
 
Table 4 Model FM performances in extrapolation to proxy catchments.  

River used for 
identification 

Period FM performance at 
Rother 

FM performance at 
Medway 

FM performance at 
Eden 

Rother 1 [idn] 0.17 (0.97) * 0.28 (2.10) 0.41 (2.97) 
  2 [test]  0.30 (1.05) 0.39 (2.31) 0.52 (2.70) 
Medway 1 [idn] 0.22 (0.35) 0.24 (0.50) 0.43 (1.21) 
  2 [test]  0.35 (0.49) 0.47 (0.54) 0.62 (1.13) 
Eden 1 [idn] 0.19 (0.43) 0.27 (0.51) 0.39 (1.08) 
  2 [test]  0.35 (0.57) 0.47 (0.58) 0.57 (1.07) 
* Values in brackets are derived using the parameter set with the best RMSE from the identification 
(idn) period; all other values are derived using the parameter set with the best identification period FM. 
Shaded areas show performances of parameter sets derived within the same catchment. 
 
 
The Leaf River basin 
 
 Identification and testing For the Leaf River basin, where the focus is on high 
flows, only the FH objective (equation (2)) is used for identification. Again, a uniform 
random sampling procedure is performed selecting 20 000 parameter sets from the 
feasible parameter space given in Table 1. Eleven different realizations of FH are 
defined using a series of eleven thresholds (Ti; i = 1, 2, …, 11), resulting in eleven 
realizations of the optimum parameter set (αi; i = 1, 2, …, 11). The largest threshold 
used (T1) is marginally below the maximum flood observed in the identification 
period, and the lowest (T11) includes all flows (equivalent to the RMSE). The 
remaining nine values are evenly distributed between T1 and T11. Two identification 
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periods are used; the first five years in the data series (1948–1953, with a maximum 
flood peak of 1036 m3 s-1), and the last five years (1983–1988, with a maximum flood 
peak of 685 m3 s-1), and in each case the predictive performance is tested using the 
remaining 35 years (with a maximum flood peak of 1444 m3 s-1). This includes the 
likely problem that future predictions will often lie outside the range of response 
variability available for model identification. 
 The predictive performance of the alternative optimum models is measured as the 
magnitude of the difference between the observed number of peaks (No) over a defined 
flood threshold (T ′) during the test period (1948–1983) and the number predicted by 
the model (Nc), expressed as a percentage (P): 

( ) ( )
o

jco
j N

NN
P

α−
=α  (7) 

where subscript j refers to the jth realization of the optimum parameter set α. 
Performances under different values of T ′ are measured so that one can look for 
relationships between T ′ and the corresponding most appropriate value(s) of T (i.e. to 
investigate how specific to the flood forecasting task the definition of FH should be). 
 
 Results and discussion Figure 4 shows the variation of optimal parameter 
estimates over the eleven FH thresholds, using the 1983–1988 identification period. 
The parameter values have been converted to a [0, 1] scale (where the lower bound in  
Table 1 scales to 0 and the upper bound scales to 1). This indicates how the model has 
to adapt to new objective functions. Parameters cmax and k1 become notably lower as 
T increases, indicating that the model needs to store less water and respond faster when  
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Fig. 4 Variation of calibrated parameter values (scaled) depending on the threshold 
used to define the FH objective function for the Leaf River (identification period 
1983–1988). 
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it is required to match successively higher storm peaks only, excluding more of the 
recession periods. The variation in cmax, from its upper to its lower bound, is a good 
example of how the optimum parameter value can depend as much on the chosen 
objective function as it does on the physical basin characteristics. The more random 
fluctuations in k2, and less so in b, imply that these are not well identified using the 
FH objective function, which focuses on high-flow performance, while q is consis-
tently high and therefore showing that a high proportion of effective rainfall is routed 
through the fast response store irrespective of the T value. The fact that q tends to be 
close to one for several thresholds suggests that a single store can be sufficient to 
reproduce the high-flow behaviour of the basin. 
 Table 5(a) and (b) shows the P performance values using the 1948–1953 and 
1983–1988 identification periods, respectively, for every combination of T and T ′. The 
most successful T for every T ′ is shaded, and values for which T = T ′ are outlined. 
Both sets of results generally imply that the threshold used to define FH at  
 
 
Table 5 Performance of the Leaf River model obtained using different combinations of flood thresholds 
used to test the model and thresholds used to define the FH objective function.  
(a) Leaf River, 1948–1953 identification period 

 Threshold used for testing model (T ′) 
 40 36 32 28 24 20 16 12 8 4 
50 –4 –8 –10 –29 –44 –86 –151 –281 –509 –685 
40 0 3 –2 –8 –20 –34 –77 –165 –336 –479 
36 1 3 4 0 –5 –18 –46 –123 –306 –468 
32 1 3 4 0 –5 –18 –46 –123 –306 –468 
28 1 3 4 0 –5 –18 –46 –123 –306 –468 
24 1 3 4 0 –5 –18 –46 –123 –306 –468 
20 1 3 4 0 –5 –18 –46 –123 –306 –468 
16 1 3 4 0 –5 –18 –46 –123 –306 –468 
12 2 5 6 7 7 9 –6 –46 –188 –361 
8 2 5 6 6 10 10 11 2 –30 –22 
4 2 5 6 8 10 13 19 15 –6 13 
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(b) Leaf River, 1983–1988 identification period 
 Threshold used for testing model (T ′) 
 40 36 30 26 22 18 14 10 6 2 
22 1 3 3 –1 –9 –28 –90 –198 –409 –332 
20 0 3 –1 –6 –13 –25 –71 –142 –259 –235 
18 1 3 3 –1 –9 –28 –90 –198 –409 –332 
16 1 3 3 –1 –9 –28 –90 –198 –409 –332 
14 2 4 5 3 7 –1 –6 –25 –73 39 
12 2 4 5 3 7 –1 –6 –25 –73 39 
10 2 5 5 4 7 5 1 –16 –35 38 
8 2 5 5 2 8 11 11 –4 –59 –250 
6 2 5 5 7 8 15 14 11 –30 –194 
4 2 5 7 8 11 17 23 28 –13 –154 
2 2 5 7 7 10 15 17 30 –2 –115 
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Notes: Best performance out of different identification thresholds is shaded grey. Cell representing the 
same identification and testing threshold is outlined. 
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identification should be close to, or slightly below, the threshold that defines the flood 
forecasting task. Using T1 (equivalent to RMSE) as an identification objective function 
consistently gives unnecessarily poor predictions of flood frequency. In isolated cases 
it is noted that employing T = T ′ would have resulted in an even worse prediction (e.g. 
T ′ = 20 in Table 5(a)). This might imply that a good representation of the basin state 
on the day (or days) before the flood event can be important. 
 Thresholds T ′ = 50 and T ′ = 60 were also applied, but the model failed to identify 
the incidences of floods above these thresholds (one and two incidences respectively). 
This also leads to doubt about the adequacy of the observed rainfall, as well as about 
the employed lumped model. Alternative model structure, or adjustments of the rainfall 
input (e.g. Lamb, 2000) might help to reduce this problem. 
 One limitation of this numerical experiment is that it has been assumed that the 
inputs to the identification and testing periods are independent hydrological time 
series. Arguably, because the input time series are likely to have measurement biases 
that are consistent over both periods, then they may not be independent. The model 
may perform well in testing because the “optimal” model is compensating for the same 
data biases as it was during identification, so that T ≈  T ′ is hardly a surprising result. 
In that case, a further stage of analysis would be to assess robustness of objective 
functions to input biases. 
 
 
CONCLUDING DISCUSSION 
 
This paper has attempted to expose the importance of design of objective functions for 
lumped conceptual rainfall–runoff model identification in operational settings. Two 
sets of numerical experiments have been conducted—one focusing on forecasting an 
intermediate range of flows (using the Rother, Eden and Medway basins in the UK), 
and the other focusing on forecasting frequency of peaks over a threshold (using the 
River Leaf in the USA). In both cases, the probability distributed soil moisture 
accounting model was used to model effective rainfall and two parallel linear stores 
were used to route this to streamflow at the basin outlet. Generally speaking, the 
results imply that, at least when using relatively simple rainfall–runoff models, 
attempting to achieve a good all-round fit using traditional objective functions such as 
RMSE may be counter-productive for specified forecasting tasks.  
 Results from the first study showed that there was a consistent and substantial 
deterioration in predictive performance if a traditional objective function (RMSE) was 
employed, which is usually assumed to provide a reasonable overall fit, rather than one 
specifically designed for intermediate flows. This loss in performance was, in general, 
much greater than the loss associated with extrapolating the model over time and/or to 
neighbouring basins.  
 The second study illustrated that the range of floods considered during identi-
fication should be defined by the flood magnitude most relevant to the forecasting task. 
Results provided some evidence that the threshold used to define the identification 
objective function FH (equation (3)) should be set slightly lower than the relevant 
flood threshold, if possible. It is speculated that this allows the period immediately 
prior to the defined flood event to be well-represented, without unduly weighting FH 
to periods of non-flood flows. This raises the question whether further improvements 
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could be made by using a more sophisticated version of equation (3) that includes only 
the rising limb of the floods rather than requiring the model to fit the recessions, and 
this seems a priority for further research. 
 There has been a general assumption in this study (and most other studies) that 
there are no significant errors in the streamflow data used to evaluate the models. 
Should this assumption be false, the flow data may not provide a good basis for 
measuring model performance. In particular, if the data are less accurate in particular 
flow ranges (e.g. due to difficulties in gauging and naturalizing low flows) then the 
differences in performance and parameter values between ranges may be due to data 
error, as well as model structure error. Similar issues would arise if rainfall biases were 
considered. The effect of flow and rainfall data errors on inferences about model 
reliability for different modelling tasks, and on objective function design, is a priority 
area for future research. Another issue not covered explicitly within this paper is 
parameter uncertainty. It has been assumed that the 20 000 samples provided a good 
enough approximation of the optimum parameter set for the parsimonious model used, 
for the purposes of comparing identification strategies. A possible future extension of 
the research would be to make the comparisons using stochastic representations of the 
models, considering confidence limits on results as well as deterministic performance, 
in order to consider the significance of parameter set equifinality in this context. 
 The observations made in this study arguably suggest that the employed rainfall–
runoff model is acting empirically rather than representing the basin dynamics, due to 
its failure to optimally simulate different flow ranges using one parameter set. At the 
same time, the reasonable forecasting performance (relative to identification perfor-
mance) indicates that this empiricism may be sufficient, at least for the limited 
complexity of modelling tasks specified here. Tasks that require a better representation 
of the continuous basin response, for example to model ecological responses to flow, 
or as part of a more integrated multi-purpose basin model, can be expected to pose a 
more challenging model identification problem. In general, there seems to be a 
discrepancy between optimal tools for engineering purposes and optimal tools for 
scientific investigations of the overall basin behaviour. The distance between the two is 
an indicator of the scientific progress that is still required in this field.  
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