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ABSTRACT

The case is presented for increasing attention to the evaluation of uncertainty in water quality

modelling practice, and for this evaluation to be extended to risk management applications. A

framework for risk-based modelling of water quality is outlined and presented as a potentially

valuable component of a broader risk assessment methodology. Technical considerations for the

successful implementation of the modelling framework are discussed. The primary arguments

presented are as follows. (1) For a large number of practical applications, deterministic use of

complex water quality models is not supported by the available data and/or human resources, and is

not warranted by the limited information contained in the results. Modelling tools should be flexible

enough to be employed at levels of complexities which suit the modelling task, data and available

resources. (2) Monte Carlo simulation has largely untapped potential for the evaluation of model

performance, estimation of model uncertainty and identification of factors (including pollution

sources, environmental influences and ill-defined objectives) contributing to the risk of failing water

quality objectives. (3) For practical application of Monte Carlo methods, attention needs to be given

to numerical efficiency, and for successful communication of results, effective interfaces are

required. A risk-based modelling tool developed by the authors is introduced.
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INTRODUCTION
Motivation

In the European Community, the recently introduced

Water Framework Directive (CEC 2000) requires that

member states formulate River Basin Management Plans

which identify objectives for achieving good water quality

status on a catchment-wide basis. Similar standards apply

throughout much of the world, for example catchment

management in the United States has been guided by

the Environmental Protection Agency’s Water Quality

Criteria and Standards Plan (USEPA 1998), in Australia by

the National Water Quality Management Strategy (DAFF

2000) and in China by the Environmental Quality

Standard for Surface Water (SEPA 1999). Simulation

models are a central part of these basin management

plans because they can apply the best available scientific

knowledge, conditioned by historical evidence, to

predict water quality responses to changing controls.

For example, the development of the integrated

catchment model BASINS is an explicit part of basin

management plans in the United States (USEPA 1998,

1999).

The new high expectations for the aquatic environ-

ment, incorporated into the current wave of regulations, is

prompting additional complexity with regard to modelling

spatial variability, micro-pollutants and ecological indi-

cators (Somlyody et al. 1998; Thomann 1998). Facilitated

by improved computational resources, there is a trend for

spatial discretisation to be increased, multi-media models

to be developed (e.g. Havnø et al. 1995), and for traditional

water quality determinands to be broken down into con-

stituent species (Chapra 1999). As a consequence, the

typical number of modelled components has risen

exponentially over the past years, and this growth is

expected to continue (Thomann 1998).
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Despite the increasing expectations placed upon

water quality models, contemporary deterministic models,

when audited, frequently fail to predict the most local and

basic biological indicators with a reasonable degree of

precision (e.g. Jorgensen et al. 1986). Even when models

are claimed to be ‘reliable’ following audits, a very signifi-

cant margin of error is allowed (e.g. Hartigan et al. 1983).

The application of modelling to the new era of high

ecological standards presents severe challenges, especially

given that our modelling experience is with relatively

stressed ecological systems (Beck 1997; Shanahan et al.

1998), and that the economic implications of model errors

may be relatively serious (Chapra 1997). While additional

model complexity might be expected to improve the pre-

cision of model results, this has proven to be unfounded in

a variety of studies (e.g. Gardner et al. 1980; Van der Perk

1997; also see Young et al. 1996). Furthermore, future

driving forces such as climate (Parker 1993) and distrib-

uted pollution sources (Shepherd et al. 1999) are poorly

defined and themselves cannot be modelled with much

precision. Clearly, identification of suitable water quality

policy must take account of the uncertainties associated

with both the validity of the models and the driving forces.

However, as increased model complexity hinders the for-

mal evaluation of uncertainty, due to the large number

of uncertain model components to be simultaneously

analysed, there is a danger that our ability to evaluate

uncertainty will decrease.

The challenges facing water quality modellers should

be contemplated in the wider perspective of risk-

based decision support. Firstly, a high degree of model

uncertainty is not necessarily an undesirable outcome, and

undoubtedly is preferable to no indication of reliability at

all. Secondly, uncertainty in environmental models should

be viewed as a source of risk, as is traditional in other

fields of engineering, and should be used to establish and

achieve an acceptable failure probability in terms of water

quality status, rather than be used to decry the modelling

approach (Beven 2000a). Given that risk is a concept

that can be used to integrate external criteria, such

as economics and safety, as well as integrating the

model result over the relevant model responses, express-

ing results as risk is potentially attractive and seems

inevitable. Thirdly, it is worth noting that, in the context of

decision support, we are not justified in investing

resources in modelling (including the identification of

prediction uncertainty) unless this will be instrumental

in the decisions that need to be made (Beven 1993).

Therefore, we should keep sight of the modelling task

and accept that (very) approximate solutions may be

appropriate.

To allow intelligent use of complex simulation models,

and to allow informed interpretation and application of

model predictions, it is essential that a new generation of

tools is developed and disseminated. These should be

directed at evaluation of model uncertainty, as well as its

minimisation, with respect to the modelling tasks. For

results to be justified and interpreted properly, methods

used for uncertainty analysis must be theoretically or

intuitively well-founded and transparent to the modeller.

For methods to be practical for day-to-day use, they

should be relatively easy and fast to implement. These

requirements are challenges which will be addressed

in this paper, through review of the factors contributing

to uncertainty, review of commonly employed method-

ologies used to address the problem and a proposed out-

line of a framework for risk-based water quality modelling.

A tool for modelling of river and lake water quality where

supporting resources are restricted, developed by the

authors, is introduced. The proposed framework and

associated tool are intended to be components of broader

frameworks for risk assessment and management (e.g.

DETR et al. 2000; Environment Agency 2002).

Causes of uncertainty

Uncertainty in a water quality simulation model is

inevitable due to the difficulty of identifying a single model

(including grid-scale, process formulations and parameter

values) which can accurately represent the water quality

under all required conditions.

Although we have extensive knowledge about water

quality processes from laboratory experiments, extra-

polation of this knowledge to models of the real environ-

ment has consistently proven to be difficult. This is partly

because the modelling scale is different to the laboratory

scale, and the diversity of species and heterogeneity
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found in natural environments must (to some degree) be

modelled approximately using lumped state variables. This

means that formulations and parameter values identified

at the laboratory scale can only be used as a starting point

for model design, rather than as a definitive end result.

Nor is there yet any basis for regionalisation of water

quality models. Therefore, models identified for one case

study cannot be used with any confidence for another.

Literature which describes established formulations and

parameter values (Thomann & Mueller 1987; Bowie et al.

1985; Chapra 1997) is evidence of the wide range of models

which are equally justified prior to observing a system’s

behaviour in detail, and that the uncertainty associated

with modelling water quality on the basis of prior

knowledge is extremely large.

Given that it is desirable to evaluate the performance

of models with respect to observed water quality data, the

accuracy, frequency and relevance of the available data

dictates the attainable degree of certainty in the model.

Unfortunately, water quality data can be expensive to

collect and analyse, often requiring special handling and

analysis in laboratories. This means that data to support

model identification are generally sparse, often coming

from sampling programmes which are fixed in frequency

and location for regulation purposes, rather than designed

to encapture the system’s dynamic responses as required

for successful model identification (Berthouex & Brown

1994). Also, water quality data are susceptible to noise and

bias due to sampling, handling and measurement pro-

cedures (see Keith 1990). In addition, information about

model boundary conditions, such as sources of pollution,

often suffers from the same shortcomings, especially

for distributed variables which are difficult to measure

(pollution runoff, sediment quality, etc.). In summary, lack

of data to support model identification is a major cause of

model uncertainty.

Closely related to the issue of data quality is model

equifinality (Beven 1993), whereby different models appear

equally justified at the model design stage, but may give

widely different realisations of the future. Equifinality is

caused by interactions between model parameters, and by

the near-equivalence of different model structures at the

stage of model identification. This means that the same (or

effectively the same, within the context of data errors)

response can be achieved using different models. Clearly,

the problem magnifies as both the number of interacting

parameters increases and as the precision of the data

decreases. The use of parsimonious models, i.e. models

which only include parameters which can be uniquely

identified from the data (e.g., Auer et al. 1997), is one

approach to avoiding equifinality. A parsimonious model

implies that model components that are inactive during

model identification are left out, and that strongly inter-

acting components are combined into one (Young et al.

1996; Wagener et al. 2001, 2002c). The inevitable omission

of model components which are potentially relevant

means that parsimonious models may seriously underesti-

mate the uncertainty in model forecasts (Reichart &

Omlin 1996; Beck 1999). When the aim of the modelling is

to investigate risks associated with proposed water quality

interventions or other disturbances, it is essential that the

uncertainty arising from previously unobserved behaviour

is adequately allowed for, and so parsimonious models

may be inappropriate.

The problem of equifinality and uncertainty in model-

ling environmental systems is inevitable and model pre-

dictions based on a single ‘optimal’ model will, in general,

be rather arbitrary and of very limited value. For this

reason, a number of investigators have devoted their

attention to rationalising the modelling problem and

redefining it as essentially stochastic, whereby a popu-

lation of feasible models (and, by implication, a popu-

lation of model predictions) are identified (e.g.

Hornberger & Spear 1980; Beven & Binley 1992; Reichart

& Omlin 1996; Gupta et al. 1998).

Analysis of uncertainty

Identification of a population of feasible models can

include both identification of alternative model structures

(grid-scales and process formulations) and corresponding

parameter distributions. Model structures should be of a

complexity consistent with the difficulty and scale of the

modelling task, and the supporting information and

resources. They should be consistent with prior knowl-

edge of how best to represent system processes at the scale

and complexity in question. Given adequate supporting
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data, they can be assessed and amended using various

identification techniques (e.g. Beck 1983; Qian 1997;

Wagener et al. 2002c).

If one structure can be demonstrated as the most

suitable for a particular modelling task (that is, for the

particular system and the particular information which

the modeller aims to retrieve) then it would be reasonable

to use this structure exclusively. On the other hand, if

there are justified alternatives then ideally, from an

analytical point of view, the implications of these should

also be considered (e.g. Gardner et al. 1980; Van der Perk

1997). This raises two issues. Firstly, it may be that no

structures can be identified as ‘suitable’. Then (as will be

expanded upon later) either an improved structure should

be developed, or the stringency of the model assessment

should be reviewed and the parameter uncertainty

increased. Secondly, analysis of more than one structure

may not be feasible given the available resources—such

analysis will be costly, perhaps requiring the purchase of

additional software. Even using tools which offer some

flexibility in the choice of water quality model structure,

such as DESERT (Ivanov et al. 1996) or WaterRAT

(McIntyre & Zeng 2002), exploring candidate structures

can significantly add to the burden on human and com-

puter resources. In such a case (and this tends to be the

case) all the significant model uncertainty must be repre-

sented, as far as possible, as parameter uncertainty within

a single suitable structure. From a mathematical point of

view, this has implications for the reliability of predictions

(Draper 1995), but in a management context it is justifiable

if it has insignificant bearing on the decisions being

supported. In summary, investigating the sensitivity of

decisions to different model structures is commendable,

but may be neither viable due to resource constraints, nor

worthwhile due to over-riding uncertainty in boundary

conditions and parameter values.

Given a model structure, the identification of feasible

sets of parameter values can be approached by condition-

ing (constraining) the prior population of parameter sets

so that a specified modelling objective is better achieved.

The modelling objective at this stage is generally to

simulate observed data, and is expressed objectively as

a function of the model residuals (the distances between

the model result and the observed data). In traditional

deterministic modelling, the response of this objective

function (OF) to changes in the model parameters is used

to estimate an optimum set of model parameters. This is

achieved by manual perturbations of the parameters or,

more suitably for complex models, by automatic algo-

rithms. For uncertainty analysis, a joint distribution of

parameters is identified rather than a single optimum, by

recording the response of the OF across the parameter

space. Depending partly on the algorithm which has been

used, this joint distribution may be represented as a

variance–covariance matrix, or as a discrete distribution

(point estimates of probability mass over the parameter

space), or as a population of feasible parameter sets.

Selecting an objective function to use for the con-

ditioning of an environmental model is a difficult issue

which involves a degree of speculation and subjectivity.

This is because statistically based identification of the

parameter uncertainty requires knowledge of the com-

bined error structure of the model, the data and the

boundary conditions. However, especially when data are

sparse or unreliable and the model structure is complex,

there is little or no theoretical basis for estimation of the

error structure. While parameter conditioning is often

based on statistical likelihood estimators (e.g. Van Straten

1983), the result is dependent on the simplifying assump-

tions made about the error structure. As well as being

difficult to justify from prior information, such assump-

tions can lead to significant misrepresentation of model

uncertainty (Beven et al. 2001), in which case the model

will fail to adequately explain the real system. In particu-

lar, the common assumption that the model and/or data

are unbiased can lead to a serious underestimation of

parameter uncertainties (e.g. McIntyre et al. 2002a).

As an alternative to statistical measures, the con-

ditioning of the model can be based on subjectively

derived rules, for example, ‘if the parameter set returns a

model result that is highly consistent with my belief of true

system behaviour then I will give it a high likelihood’, or

some objective expression of this, for example, ‘the likeli-

hood of each parameter set will be equal to the proportion

of the variance of the observed data explained by the

model’. Given that it is subjectively based, such an

approach allows some freedom in achieving a satisfactory

description of uncertainty, without the encumbrance of
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statistical rules and the long list of associated simplifying

assumptions. Such conditioning of an environmental

model, with the OF transformed to a likelihood without

necessarily being related objectively to the error structure,

was promoted by Beven & Binley (1992) in the context of

their Generalised Likelihood Uncertainty Estimation,

which is discussed in the next section.

Once the uncertainty in the model is estimated as

outlined above, it can be propagated to give predictions.

Methods of uncertainty propagation which are relevant

to simulation modelling can be classified as variance

propagation methods, point estimate methods and Monte

Carlo methods. McIntyre et al. (2002a) and Tung (1996)

give an overview and examples of these methods. The

choice of method partly depends on the description of the

parameter uncertainty and partly on the computational

resources, with the Monte Carlo methods generally (but

not always) being more reliable and computationally

demanding.

UNCERTAINTY ANALYSIS OF SURFACE WATER
QUALITY MODELS: PREVIOUS RESEARCH

There is a variety of literature promoting understanding

and application of uncertainty analysis in surface water

quality modelling (e.g. Beck 1983, 1987; Reckhow 1994;

Adams & Reckhow 2002; McIntyre et al. 2002a). An

overview of the important developments in methodology

and modelling tools is provided below.

Hornberger & Spear (1980) employed set theory to

identify an array of feasible models of eutrophication in

the Peel Inlet, Australia. The key step in this procedure is

identifying a characteristic range of system responses from

the observed data and subjective experience. Any model

which gives a result falling within this range is considered

to be a behavioural, feasible model, and all such models

are considered equally likely. The particular value of this

method is that it requires only simple and transparent

interpretation of the data and no assumptions about the

model structural error. Therefore, it is a particularly valu-

able approach to modelling systems for which observed

data are sparse. The method allows the sensitivity of all

uncertain parameters to be related to the relative distribu-

tions of behavioural and non-behavioural models, and

hence it is commonly known as Regional Sensitivity

Analysis (RSA). Van Straten & Keesman (1991) applied

RSA to represent uncertainty in predictions of lake

eutrophication, Whitehead & Hornberger (1984) to river

algae simulation and Wade et al. (2001) apply the pro-

cedure to a river phosphorus assimilation model. DESERT

(Ivanov et al. 1996) is a water quality modelling tool which

employs RSA for estimation of parameter uncertainty, as

discussed in more detail below.

Beven & Binley (1992) extended RSA in their

Generalised Likelihood Uncertainty Estimation (GLUE)

procedure, in which every feasible model is weighted with

a likelihood. The likelihoods (for each model structure)

are interpreted as point estimates of probability mass from

the joint parameter distribution for that model. Then,

subsequent conditioning on new data can be incorporated

in a Bayesian manner. Similarly, alternative model struc-

tures with their own feasible parameter space can be

combined using Bayes’ method. A key feature of GLUE is

that the modeller designs an objective function so that it

can be used as a measure of likelihood. That is, the

likelihood measure represents the modeller’s degree of

belief in the model validity given the available data, prior

knowledge and modelling task, and the measure can be

manipulated so that the data variance is satisfactorily

explained by the identified parameter uncertainty (e.g.

Freer et al. 1996). In this manner, the GLUE likelihood

provides a framework whereby all sources of error, includ-

ing model structural error, can be incorporated into

parameter and prediction uncertainty. GLUE has been

applied to hydrogeochemical modelling by Zak et al.

(1997) and to solute transport modelling by Hankin &

Beven (1998) and Camacho (2000). GLUE is available in

generic uncertainty analysis tools of Beven (1998) and

Wagener et al. (2002b), and further reviews are given by

Melching (1995) and McIntyre et al. (2002a).

Another Monte Carlo-based technique for model con-

ditioning is the use of Monte Carlo Markov Chains

(MCMCs). Brooks (1998) gives a detailed description of

this type of approach and Kuczera & Parent (1998) give a

useful introduction and comparison with GLUE. MCMCs

are related to GLUE in that a conditioned probability
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distribution of parameters is identified using a likelihood

measure of each of a series of sampled parameter sets.

However, unlike the random sampling generally used for

GLUE, an MCMC technique can favour samples from

near the modes of the conditioned distribution, for

example using the Metropolis algorithm (Metropolis et al.

1953). Because fewer parameter samples are taken

from irrelevant regions of the parameter space, such an

algorithm is expected to identify the modal regions more

efficiently. Although parameter values with low posterior

probability are sampled less frequently than by using

GLUE, Kuczera & Parent (1998) found that the MCMC

approach produced more reliable 90% confidence limits

on model results. Other applications of a MCMC to hydro-

logic model conditioning include Mailhot et al. (1997) and

Bates & Campbell (2001), although no evidence has been

found of its application to conditioning of surface water

quality models.

Gupta et al. (1998) advocate a multiple objective

approach to parameter identification to increase the

amount of information extracted from the available time

series and provide insights into model structural error.

Using their approach, different parameter sets may be

optimised using different aspects of the model output, and

may be associated with different components of the

model. As the optimum parameter sets for each of the

components are not mutually constrained, there is an

added degree of freedom with which the model param-

eters can compensate for model structural error or data

bias. The trade-off between alternative performance

criteria can be defined by a surface of Pareto-optimal

parameter sets (see Fonseca & Fleming 1995) and propa-

gated to define a range of equally feasible model results

(e.g. Yapo et al. 1998; Wagener et al. 2001). Another

strength of multi-objective parameter identification is that

sensitivities of a number of system components can be

reported separately (e.g. Bastidas et al. 1999). A multi-

objective approach to model conditioning is especially

relevant in the context of water quality modelling, where it

is common that multiple, inter-dependent determinands

of water quality are simulated together. Wagener et al.

(2002a) apply a novel form of multi-objective condition-

ing to a solute transport model and Meixner et al. (1999)

apply a multi-objective sensitivity analysis to a hydro-

geochemical model.

Often in water quality modelling, the prior parameter

uncertainty is not conditioned by observations using one

of the aforementioned methods, but is propagated to pre-

dictive results by Monte Carlo sampling of independent

prior distributions of values, or through first-order

approximation. Examples include Van der Perk et al.

(1997), who apply Monte Carlo simulation to a steady-

state river quality model, and Aalderink et al. (1996), who

evaluate the effect of input uncertainties on a heavy metal

model (interestingly, they conclude that distinguishing

between the effects of different pollution control scenarios

is impossible due to high uncertainty).

In the most widely used river water quality models,

formal investigation of model uncertainty is very rare.

Uncertainty identification in many contemporary models,

such as WASP5 (Ambrose et al. 1993), MIKE11 (Havnø

et al. 1995) and CE-QUAL (Cole & Wells 2000), is difficult

because they are relatively complex and often linked to

computationally intensive hydrodynamic, among other,

modules. Although these models are well founded in

theory and well established in practice (see Ambrose et al.

1996), their usefulness is arguably limited by their high

demand on resources and the unknown uncertainty in

their predictions. The large number of decision-support

applications of these models which do not include analysis

of uncertainty (amongst many others, Gunduz et al.

(1998), Warwick et al. (1999) and Mishra et al. (2001))

is evidence of this. It is reasonable to assume that unpub-

lished commercial applications of such models also

under-represent the significance of uncertainty.

The popular modelling tool QUAL2E-UNCAS

(Brown & Barnwell 1987), which is a river modelling

component of the US EPA’s BASINS tool, has a built-in

uncertainty analysis option. Reckhow (1994) recognises

QUAL2E-UNCAS as an especially useful development,

not only because it allows formal uncertainty analysis, but

the associated documentation promotes uncertainty

analysis amongst a large body of decision-makers.

QUAL2E-UNCAS relies on estimation of prediction

uncertainty through specification of feasible parameter

and boundary condition ranges and does not include a
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tool for conditioning the input uncertainties on observed

data. Nor does the model allow covariance of inputs to be

considered, meaning that uncertainty may be significantly

over- or under-estimated (Reckhow 1994; Brown 2002).

Further to his commentary on QUAL2E-UNCAS,

Reckhow (1994) notes that regulators in the USA tend to

favour relatively simple water quality models, as complex

models are too demanding on human resources, in

addition to their high data demands. The UK Environment

Agency have developed the relatively simple steady-state

SIMCAT model to support regulation of river water qual-

ity (Environment Agency 2001a). SIMCAT is based on the

recognition that model prediction uncertainties stem

mainly from limitations in the calibration and pollution

load data, rather than from the assumptions implicit in the

model equations. SIMCAT was arguably a major step

forward in the practice of river water quality modelling, in

that parameter uncertainty can be identified from data

sampling error by optimising the model parameters

against different realisations of the data. As the model

formulations used in SIMCAT are simple and easily

solved, it is practical to use the computationally intensive

sampling method. At the same time, the simplicity of the

model structure makes the model less suitable for some

tasks, such as extrapolation to changed boundary con-

ditions or simulation of dynamic events, when the effects

of model structural error are more likely to be significant.

The decision-support role of relatively simple models,

coupled with uncertainty analysis, is evident from the

continuing practices of both the UK and US environ-

mental regulators. This contrasts with the popularity of

complex, resource-intensive models such as WASP5,

MIKE11 and CE-QUAL. Accepting that both modelling

approaches may have a role, depending on the degree of

detail sought and the resources available, there is arguably

a benefit in providing tools that include a hierarchy of

models. Supplementing this with uncertainty analysis

facilities allows the limitations of both approaches to be

evaluated for specific modelling tasks.

DESERT (Ivanov et al. 1996; also see Somlyody 1997)

is a tool for catchment management optimisation which

provides a framework in which the user can design his

own one-dimensional river water quality model. DESERT

allows parameter conditioning using RSA, although the

effect of parameter interactions cannot be included in

application of the conditioned model. Based on dynamic

programming, DESERT identifies all the sets of model

inputs which conform to a series of constraints, which

can include cost constraints for pollution control inter-

ventions, as well as in-river water quality criteria. In these

respects, DESERT has the capacity for uncertainty analy-

sis and flexibility of model design which will be needed

for future water quality management problems and is a

valuable precedent for future developments.

A FRAMEWORK FOR RISK-BASED SURFACE
WATER QUALITY MODELLING

Following review of the driving forces behind water qual-

ity modelling, the inherent problems in this discipline

and previously proposed directions for addressing these

problems, an outline of a modelling framework is now

proposed and some desirable facets of a potential model-

ling tool are discussed. Beforehand, it is worth reviewing

the significance of the term ‘risk’ in the context of surface

water quality modelling.

Risk in context

In the present context, risk may be usefully defined as ‘a

combined measure of the degree of detriment to society

or the aquatic ecosystem caused by a defined event (or

combination of events), and the probability of that event

occurring’. Traditionally, in surface water quality manage-

ment, the degree of detriment is simplified to a series of

pass–fail criteria, each criterion representing a class of

water quality (e.g. Environment Agency 1998). Risk can

then be evaluated as the probability of failure to achieve

the target class. Modelling, then, has at least two

potentially valuable roles—to extrapolate point measure-

ments of water quality so that spatial and temporal criteria

can be used in water quality classification rather than

discrete, localised measurements of concentration; and to

predict the response of risk to changing controls, to allow

objective risk management.
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This brief introduction to the role of modelling in

risk-based water quality management raises a few issues.

Firstly, it is important to differentiate between the fre-

quency of failure that will actually occur due to system

variability, and the modelled probability of failure, which

includes (or should include) the influence of the uncer-

tainty in the model and in the estimates of future boundary

conditions. That is, there is a risk that any water quality

intervention will fail to achieve its objectives due to the

limitations of the modelling employed at the planning

stage. Consequently, where a modelling study implies a

management option to be high-risk, this may be mainly

due to the limited information and resources available for

model and boundary condition identification, and a clear

management priority would be to invest in more research.

Also, there may be considerable risk associated with ill-

defined objectives—that is, a water quality intervention

may fail to be successful because, at the time of planning,

the objectives were under-researched or impossible to

clearly define. For example, while it is reasonable to

suggest that there will be lengthy debate over regional

definitions of ‘good ecological status’ (Definition 22

in CEC 2000), the planning required to achieve such a

questionable status is already underway (e.g. Environment

Agency 2001b). Finally, on the point of associating risk, it

is useful to distinguish between the risk stemming from

anthropogenic system variabilities (for example, diurnal

variations in effluents) which are generally manageable,

and risk stemming from ‘natural’ system variabilities (for

example, those due to meteorological influences) which

are less manageable. In particular, if the risk of failure

were predominantly due to unmanageable natural pro-

cesses then reviewing the targets would be a logical way

forward. With the capability of exploring reasons for risk,

modelling has an essential role in not only appraising

pollution intervention options, but also in identifying

sensible precursors to intervention.

Given that we are entering an era of ecological objec-

tives where degrees of achievement, as well as probabili-

ties of failure, are extremely relevant to everyone (and

everything) involved, there is arguably a need to develop

the role of the ‘degree of detriment’ aspect of risk evalu-

ation. This implies a need for dynamic modelling of eco-

logical status, and the importance of continued research

into quantifying ecological status and linking it to

modelled frequency, concentration, assimilation and

persistence of pollution (among other influences).

Furthermore, there is going to be a need for significant

trade-offs between protection of aquatic ecology and the

resulting social and economic costs. The problem then

becomes not only of identifying the risks of failing

different criteria, but also of establishing acceptable

compromises between the risks.

A framework outline

Figure 1 outlines a general framework for risk-based

modelling of water quality. Using such a framework it is

intended that water quality managers have access to risk-

based evaluation of surface water quality and be able to

respond to and develop this evaluation by:

1. Identification of the principal factors affecting risk

to water quality status.

2. Evaluation of risk associated with alternative

pollution control strategies, including integration of

external criteria, such as social and economic costs

of water quality improvements.

3. Consideration of alternative modelling criteria in

terms of identifying feasible water quality targets,

and identifying acceptable compromises between

non-commensurate criteria (e.g. between water

quality status and need for water abstractions).

4. Consideration of different models for forecasting

water quality response to pollution interventions (to

reduce and evaluate the risk associated with model

structure uncertainty).

5. Establishing priorities for collecting more data with

which to improve model identification (reducing risk

associated with data uncertainty).

Using modelling in this manner is consistent with more

general risk assessment guidelines and frameworks used

by environmental regulators. For example, UK environ-

mental regulators (DETR et al. 2000) encourage proactive

risk management using a tiered framework of quantitative

risk assessments, whereby models, monitoring and

management options are reviewed as the analysis moves
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from risk screening to the advanced stages. This includes

analysis of how the different sources of uncertainty con-

tribute to the final risk estimate, and review of costs and

benefits. Such a tiered approach to risk assessment has

been recommended for implementing the requirements of

the Water Framework Directive (Environment Agency

2002). In applying this general risk assessment framework

to management of water quality and aquatic ecology, there

is clearly scope for iterative, model-based risk analyses,

such as that promoted by Figure 1.

3.3 Technical considerations

In pursuit of a practical modelling tool that provides such

a capacity for risk evaluation, the following tool features

are considered essential:

1. Accessibility (ease of use), flexibility and

extensibility (to cover a range of modelling tasks).

2. Efficiency of numerical techniques (to achieve the

maximum benefit from Monte Carlo simulation).

3. Sensitivity analysis and risk evaluation capabilities.

Although the former three stipulations are common goals

in the design and development of modelling tools in gen-

eral, there are important implications in the water quality

modelling context which deserve further discussion.

The need for accessibility, flexibility and extensibility

Accessibility of results is an important issue, as major

management decisions usually must be supported using

visually insightful reports, hence the benefit of an

adequate interface for the graphical reporting of results.

The obvious value of Monte Carlo-based approaches, such

as RSA and MCMC, should not be diminished by percep-

tions that they are not transparent to decision-makers and

stakeholders; effective interfaces may go a long way to

avoid or resolve this concern. Furthermore, investigation

of a variety of potential sources of risk, possibly including

a large number of pollution sources and other system

characteristics, requires careful attention to the thorough-

ness of the model input specification. This draws atten-

tion to the value of an effective interface for model

specification and data input.

Prediction and further

sensitivity analysis

Model conditioning,
sensitivity analysis and

model evaluation 

Specification of model

structure, grid scale and
prior parameter ranges

Risk 

evaluation

Pollution load

and regulation 
scenarios

Monitoring

data

Modelling

task

External

considerations

Prediction and further

sensitivity analysis

Model conditioning,
sensitivity analysis and

model evaluation 

Specification of model

structure, grid scale and
prior parameter ranges

Risk 

evaluation

Pollution load

and regulation 
scenarios
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External
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Figure 1 | A framework for risk-based modelling of water quality.
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With the general recognition that methods must suit

individual problems, the requirement for flexibility is

applicable to a number of aspects of a risk-based water

quality modelling tool. Firstly, the unavoidable subjectivi-

ties in choosing measures of uncertainty, for example

using GLUE likelihoods, means that some choice of OF

must be provided which is clearly illustrated in studies by

Freer et al. (1996) and Franks & Beven (1997). Application

of multi-objective optimisation and sensitivity analysis

(e.g. Bastidas et al. 1999) also requires flexibility in the

specification of objectives. Central to the modelling pro-

cedure illustrated in Figure 1 is the capacity to explore

different model structures, depending on the modelling

task, data and computational resources available. If the

model uncertainty is to be adequately represented by

parameter uncertainty, the modeller should have the

opportunity to identify a model structure which best

allows this. In particular, the modelling grid scale (the

spatial and temporal resolution of the model) must be

selected according to the water quality problem. Spatial

aggregations are likely to introduce uncertainty that the

modeller should be encouraged to explore, for example

using grid-halving or advanced adaptive grid schemes

(McIntyre et al. 2002b). Extensibility is essential so that

new model structures and water quality determinands can

be incorporated, and so that the tool can be linked to new

databases and other conjunctive software. In particular, as

the directives driving water quality modelling promote

integrated catchment management, the increased use of

Geographical Information Systems (GIS) as interfaces

and platforms for water quality models is inevitable, and

this should be borne in mind at the development stage,

whatever the immediate modelling applications.

The need for numerical efficiency

Monte Carlo simulation provides us with the capability to

retrieve a large amount of information about the sensi-

tivity of model results to model inputs, which is extremely

advantageous given the current limitations in the practice

of water quality modelling (as reviewed in Section 1 of this

paper). Although computational costs continue to dimin-

ish, the value of a Monte Carlo simulation will always

depend on how well the continuum of possible model

inputs/outputs is represented by a finite number of real-

isations. This would be especially relevant, for example, in

catchment-scale distributed GIS-based modelling, due to

the large amount of computation involved as well as the

large number of spatially distributed model inputs which

may be included in the analysis. There is therefore a need

to either maximise the number of realisations achievable

at a given computational cost, for example by implement-

ing efficient numerical solvers and specifying numerical

tolerances that are consistent with the overall reliability of

the analysis (McIntyre et al. 2002b), or to reduce the

number of realisations required for an adequate represen-

tation by using variance reduction techniques. One

variance reduction technique which has been found useful

in water quality modelling applications is Latin hypercube

sampling, LHS (e.g. Portielje et al. 2000). LHS is a highly

factorised, stratified sampling scheme (MacKay et al. 1979)

which, in the current context, is designed to thoroughly

sample the prior marginal distribution of each model input

while leaving the sampling of interactions to chance.

While some water quality modellers (e.g. Melching

& Bauwens 2001) have successfully employed LHS to

enormously reduce the necessary number of random

samples, Press et al. (1988) note ‘if there is an important

interaction between the design parameters, then Latin

hypercube sampling gives no particular advantage (over

simple random sampling)’.

Notwithstanding the merits of efficient sampling and

solution schemes, more fundamental precursors to suc-

cessful Monte Carlo analysis are: (1) appropriate limi-

tation of model complexity, and (2) minimisation of the

number of inputs to be sampled. Again, this draws atten-

tion to the need to match the model complexity to the

specific modelling task and the need to provide tools that

offer some flexibility in model structure choice.

The need for sensitivity analysis and risk evaluation

capabilities

Monte Carlo-based approaches, such as RSA (Hornberger

& Spear 1980), GLUE (Beven & Binley 1992) and MCMCs

(see Kuczera & Parent 1998), have found wide application

in environmental modelling, including a limited number of

applications to surface water quality modelling, as cited
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earlier. Incorporation of these methods into water quality

modelling tools is an essential part of implementing the

framework outlined in Figure 1. Firstly, they allow evalu-

ation of the suitability of a model, in terms of reviewing the

ability of the model and the associated parameter uncer-

tainty to explain observed data. Thereafter, uncertainty in

model forecasts can be estimated (e.g. Van Straten &

Keesman 1991), avoiding the need for unqualified ‘best

estimate’ forecasts. Monte Carlo methods not only have

the potential to produce summary statistics of model sen-

sitivities (e.g. Spear & Hornberger 1980; Wade et al. 2001)

but can also be used to evaluate risk to water quality status

due to individual pollution sources and system properties,

and can be extended to incorporate uncertainties in water

quality criteria (e.g. McIntyre et al. 2002c). Such an evalu-

ation has clear potential for risk-based decision-making,

particularly under conditions where data for the identifi-

cation of model and boundary conditions are limited. It

also has the potential to be extended to simulating ecologi-

cal risks, including spatial and temporal exposure as well

as probability of occurrence.

The role of multi-objective optimisation has already

been recognised in terms of identifying model structural

error, and expressing it as parameter uncertainty, for

example via the Pareto optimisation used by Gupta et al.

(1998). The description of model uncertainty which may be

obtained from such a multi-objective approach is different

from that achieved using Bayesian-type approaches such

as GLUE (Beven 2000b), and there is value in exploring

the information given by the alternative definitions (e.g.

McIntyre et al. 2001). Pareto optimisation also has a direct

role in decision-making at a management level, for

example to illustrate the trade-off between economic costs

and water quality improvements (e.g. Hosoi et al. 1996).

Figure 2 shows an iterative approach to model struc-

ture and parameter uncertainty identification, within

which any combination of the reviewed methods can be

employed.

Emphasis has been put on the value of Monte Carlo

simulation because it is a relatively straightforward way of

analysing how water quality objective functions respond

over all feasible combinations of model inputs. This can

be supplemented by alternative, computationally less

demanding, techniques of sensitivity analysis and uncer-

tainty propagation. Using first-order sensitivity analysis,

the effect on a model response of perturbing each input

variable around a specified value, while keeping the values

of all other inputs fixed, is calculated. This has the advan-

tage of being simple, and allowing for the association

of response components with individual inputs (e.g.

Melching & Bauwens 2001). However, the interactions

between inputs are not explored and non-linear responses

are not estimated, so there is very restricted scope for

exploring response surfaces, and effects (for example on

risk) of low-probability values of model inputs are likely to

be misrepresented. Also, the result will generally be

dependent on the value around which the input is per-

turbed, as well as on the fixed values of all the other inputs,

which may be quite arbitrary given the problem of model

equifinality.

To make the first-order analysis more robust to uncer-

tainties, it can be extended to a factorial analysis

(Henderson-Sellers & Henderson-Sellers 1993) which

allows for two-factor interactions between model inputs.

A two-factor factorial analysis may be regarded as the

antithesis of Latin hypercube sampling—in the factorial

analysis the prior marginal distributions of individual fac-

tors are represented by just two points so that two-factor

interactions can be explored rigorously, while Latin

hypercube sampling neglects exploration of interactions

in favour of a much more thorough sampling of the mar-

ginal form. For model screening, two-factor factorial

analysis may be preferred to Monte Carlo-based methods

of analysis, as it can be used to concentrate on the sensi-

tivities associated with extreme values (Kleijnen 1997)

(although it still cannot identify non-linearities in the

response surface). Due to this, and its attraction as a

supplement to Monte Carlo methods, two-factor factorial

analysis should be considered for inclusion in water

quality modelling tools.

Another set of methods which are not designed to

return extensive information about response surfaces, but

which can be extremely useful for propagating input

uncertainty to model forecasts, are point estimation

methods. Of these, Rosenblueth’s two-point estimation

method (Rosenblueth 1981), and Harr’s point esti-

mation method (Harr 1989) have found most application

in water resources (see Tung 1996). These methods are
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related to the GLUE methodology—in GLUE, a large

number of randomly positioned point estimates of prob-

ability mass are assumed to represent the shape of the joint

probability distribution of model inputs, and these are

individually mapped onto point estimates from the joint

distribution of model outputs; whereas in Rosenblueth’s

and Harr’s methods it is hoped that a fewer number of

carefully positioned and weighted point estimates will

represent the lower moments and correlation structure of

the input distribution and can be propagated through the

model to represent the lower moments of the out-

put distribution. Previous work (McIntyre et al. 2002a)

suggests that these methods can provide useful estimates

of the percentiles of model forecasts with substantially

reduced computational cost.

A tool for risk-based management of water quality

As part of an investigation of the role of computational

methods in the management of surface water quality in

developing countries, where supporting data are unavoid-

ably sparse, a modelling tool called WaterRAT (Water

quality Risk Analysis Tool) has been developed (McIntyre

& Zeng 2002). This tool is built around the methods and

principles outlined above, and is designed to be employed

in the manner illustrated by Figures 1 and 2. WaterRAT

allows exploration of the uncertainties arising from all

sources of prediction error—field data, model parameters,

boundary and initial conditions, model structure, scale

and numerical approximations. Model parameters,

boundary and initial conditions can all be input as

START

In-river data
available?

Adequate number of
valid parameter sets?

Adequate Stochastic
description of data?

END

Retrievable fault in
model structure?

No
conditioning

Knowledge-based
river water-quality?

Redesign
of model
structure

RSA GLUE MCMC MOFs

OF design
and data

interpretation

Yes

No

Yes

Yes

Yes

Yes

No

No

No

No

Synthesize
some data

Yes

Figure 2 | An iterative approach to model identification. RSA=Regional Sensitivity Analysis (Hornberger & Spear 1980); GLUE=Generalised Likelihood Uncertainty Estimation (Beven &

Binley 1992); MCMC=Monte Carlo Markov Chain using simulated annealing (Metropolis et al. 1953); MOFs=Pareto-based multi-objective optimisation (Gupta et al. 1998).
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distributions and can be conditioned to field data or other

designed objectives using built-in algorithms (a genetic

algorithm, Metropolis and GLUE). Four simultaneous

objectives can be specified and Pareto-optimal trade-offs

can be identified. Regional sensitivity analysis using Latin

hypercube sampling is complemented by factorial sensitiv-

ity methods. WaterRAT allows the effects of output uncer-

tainties to be evaluated in terms of the risk of failing water

quality targets, and will plot risk of failure against any one

input variable, supporting, for example, risk-based man-

agement of pollution control. Additionally, the water qual-

ity targets can themselves be assigned uncertainty, thus

incorporating risk due to poorly defined objectives.

Dynamic models are solved using an adaptive time-step

procedure, with the temporal numerical tolerances

pre-specified by the user.

The WaterRAT interface is a series of dialogue

boxes and spreadsheets so that the need for the training

of users is limited. WaterRAT contains a library of

water quality simulation models, providing a hierarchy

of models of varying complexity, and a capability for

modelling organic pollution, phytoplankton, dissolved

oxygen, various nutrients, a toxic substance, floating

and suspended oil, and total suspended solids. This is

supported by sediment models which include bio-

chemical and physical sediment–water interactions. A

thermodynamic model is available which models heat

fluxes from the atmosphere and sediment, and includes

a simulation of river ice cover. New models can easily

be added to the library, allowing extension to new

problems. The library of models is comprised of a set of

Dynamic Link Libraries which minimise processing

time and allow Monte Carlo simulation to be efficiently

applied.

SUMMARY

Uncertainty is inherent to water quality model forecasts

due to errors in model structures, boundary conditions,

parameters and in the data used for model condition-

ing. Such uncertainty is not likely to diminish with

advances in model complexity and computational

power, due to the problem of model and boundary

condition identification. Therefore, there will continue

to be a degree of risk associated with using model

predictions as a basis for water quality management

decisions.

There have been significant developments in model-

ling uncertainty and risk in environmental systems in the

last twenty years. In particular, modern computing

resources allow Monte Carlo methods of uncertainty esti-

mation and sensitivity analysis to be used more routinely

to establish directions for environmental management and

research. Despite the need, such methods have not been

applied on a wide scale to water quality modelling.

Instead, commercial model development has focused on

the refinement of process representation, on the premise

that the user can provide adequate supporting field data.

Given that this premise is unrealistic in the majority of

cases, this paper has argued that water quality modelling

should be approached by the application of appropriate

methods of uncertainty evaluation, and the develop-

ment and dissemination of modelling tools that pro-

vide alternatives to more complex, resource-demanding

models.

A computational framework, within which model

uncertainty and associated risk can be extensively evalu-

ated, has been outlined. Towards the implementation of

such a framework, the need for a tool with a number of

features and analytical methods has been argued. Monte

Carlo-based approaches to regional sensitivity analy-

sis and risk forecasting are fundamentally important.

Notwithstanding the power of Monte Carlo simulation,

alternative, less computationally onerous approaches,

including factorial experiments and point estimation

methods, have their own value for different modelling

tasks. To allow uncertainty analysis to be employed

for a range of practical applications, considerations in

tool design have been summarised as accessibility, flex-

ibility, extensibility and numerical efficiency. Such

attributes allow the complex issue of model reliability to

be addressed in modelling practice, and important

aspects of risk to be communicated to decision-makers.

A risk-based modelling tool, WaterRAT, which was

developed to implement the outlined framework, has

been introduced.
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