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ABSTRACT

This study compares mean areal precipitation (MAP) estimates derived from three sources: an opera-
tional rain gauge network (MAPG), a radar/gauge multisensor product (MAPX), and the Precipitation
Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) satellite-
based system (MAPS) for the time period from March 2000 to November 2003. The study area includes
seven operational basins of varying size and location in the southeastern United States. The analysis
indicates that agreements between the datasets vary considerably from basin to basin and also temporally
within the basins. The analysis also includes evaluation of MAPS in comparison with MAPG for use in flow
forecasting with a lumped hydrologic model [Sacramento Soil Moisture Accounting Model (SAC-SMA)].
The latter evaluation investigates two different parameter sets, the first obtained using manual calibration
on historical MAPG, and the second obtained using automatic calibration on both MAPS and MAPG, but
over a shorter time period (23 months). Results indicate that the overall performance of the model simu-
lations using MAPS depends on both the bias in the precipitation estimates and the size of the basins, with
poorer performance in basins of smaller size (large bias between MAPG and MAPS) and better perfor-
mance in larger basins (less bias between MAPG and MAPS). When using MAPS, calibration of the
parameters significantly improved the model performance.

1. Introduction

Many hydrologic simulation studies, whether related
to climate change scenarios, flood forecasting, or water
management, depend heavily on the availability of

good-quality precipitation estimates. Difficulties in es-
timating precipitation arise in many remote parts of the
world and particularly in developing countries where
ground-based measurement networks (rain gauges or
weather radar) are either sparse or nonexistent, mainly
due to the high costs of establishing and maintaining
infrastructure. This situation imposes an important
limitation on the possibility and reliability of hydrologic
forecasting and early warning systems in these regions.
For example, recent monsoon flooding (June–July
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2004) in Bangladesh caused massive damage to the
land, infrastructure, and economy and affected more
than 23 million people.

The International Association of Hydrological Sci-
ences (IAHS) recently launched an initiative called the
Decade on Predictions in Ungauged Basins (PUB),
aimed at achieving major advances in the capacity to
make reliable predictions in “ungauged” basins (Siva-
palan et al. 2003). Ungauged is used to indicate loca-
tions where measurements of the variables of interest
are either too few or too poor in quality, or not avail-
able at all. In particular, where measurements of the
system response (e.g., streamflow) are lacking, prior
estimates of the model parameters cannot be improved
via calibration (Gupta et al. 2005). However, where
measurements of the system input (e.g., precipitation)
are missing, the model cannot even be driven to pro-
vide forecasts.

Recent improvements in the ability of satellite-based
precipitation retrieval algorithms to produce estimates
(with global coverage) at high space and time resolu-
tions makes them potentially attractive for hydrologic
forecasting in ungauged basins. This study provides a
test of the Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks
(PERSIANN; see section 3d for description) satellite-
based product using several basins in the southeastern
United States where other sources of precipitation es-
timates (rain gauge, weather radar) exist for compari-
son. The National Weather Service (NWS) is the
agency responsible for providing river forecasts for the
United States. For this purpose, the NWS routinely
uses mean areal precipitation estimates from rain gauge
networks and recently from radar/gauge multisensor
products to drive the Sacramento Soil Moisture Ac-
counting Model (SAC-SMA; Burnash et al. 1973; Bur-
nash 1995). Hereafter, MAPG, MAPX, and MAPS will
denote basin mean areal precipitation (MAP) estimates
derived from the rain gauge network, the Weather Sur-
veillance Radar-1998 Doppler (WSR-88D) multisensor
product, and the PERSIANN satellite-based system,
respectively.

The research questions addressed in this study are as
follows.

1) How do precipitation estimates based on the rain
gauge network, radar/gauge multisensor product,
and satellite-based algorithm compare at the space–
time scale currently utilized by the NWS for opera-
tional hydrologic forecasting procedures within the
selected study basins (basin MAP at 6-h intervals)?

2) How does the performance of a hydrologic model
change when the rain gauge–based precipitation es-

timates are replaced by satellite-based estimates? In
other words, how do differences between precipita-
tion estimates affect the resulting simulated flow
forecasts?

The importance of the second question is twofold. If
the model adequately captures the dynamics of water
distribution and movement in the basin and the calibra-
tion is robust, a comparison of the simulated and ob-
served flow will serve as an independent check on the
accuracy of the precipitation estimates. Further, be-
cause the rainfall-runoff transformation acts as a low-
pass filter, it is interesting to determine whether the
bias error in the precipitation estimates becomes at-
tenuated, thereby helping to clarify what level of input
accuracy is required for hydrological prediction (An-
dreassian et al. 2001).

The paper is organized as follows. Relevant back-
ground information is presented in section 2. Details of
the study area, datasets, and the hydrologic model are
given in section 3. Methods and calibration procedure
are presented in section 4. The results are summarized
in section 5, and conclusions and recommendations are
offered in section 6.

2. Background

Whether measured directly by rain gauges or indi-
rectly by remote sensing techniques, all precipitation
estimates contain uncertainty. While rain gauges pro-
vide a direct measurement of precipitation reaching the
ground, they may contain significant bias arising from
coarse spatial resolution (yielding underestimation es-
pecially during events with low spatial coherency, i.e.,
convective showers), location, wind, and mechanical er-
rors among others (Groisman and Legates 1994). Ac-
cording to Legates and DeLiberty (1993) rain gauges
may underestimate the true precipitation by about 5%.
Radar estimates hold promise for hydrologic studies by
providing data at high spatial and temporal resolution
over extended areas but suffer from bias due to several
factors including hardware calibration, uncertain Z–R
relationships (Winchell et al. 1998; Morin et al. 2003),
ground clutter, brightband contamination, mountain
blockage, anomalous propagation, and range-depen-
dent bias (Smith et al. 1996). Recent advances in satel-
lite-based remote sensing have enabled scientists to
develop precipitation estimates having near-global
coverage, thereby providing data for regions where
ground-based networks are sparse or unavailable (So-
rooshian et al. 2000). However, this advantage is offset
by the indirect nature of the satellite observables (e.g.,
cloud-top reflectance or thermal radiance) as measures
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of surface precipitation intensity (Petty and Krajewski
1996).

In general, satellite-based precipitation estimation al-
gorithms use information from two primary sources.
The infrared (IR) channels from geosynchronous satel-
lites are used to establish a relationship between cloud-
top conditions and rainfall rate at the base of the cloud.
This relationship can be developed at relatively high
spatial (�4 km � 4 km) and temporal (30 min) resolu-
tion. The microwave (MW) channels from low-orbiting
satellites are used to more directly infer precipitation
rates by penetrating the cloud, but a low-orbiting sat-
ellite can retrieve only one or two samples per day. The
relative strengths and weaknesses of various sources
have been exploited in the development of algorithms
that combine and make the best use of each source. The
NWS uses a multivariate objective analysis scheme to
merge radar and rain gauge estimates (Fulton et al.
1998). In the case of satellite-based estimates, algo-
rithms have been designed that merge satellite imagery
with other kinds of satellite imagery (Sorooshian et al.
2000; Kuligowski 2002), numerical weather prediction
(NWP) models (Grimes and Diop 2003), rain gauges
(Adler et al. 2000; Huffman et al. 2001), and rain gauges
and NWP models (Xie and Arkin 1997).

Numerous studies have compared precipitation esti-
mates from different sensors to validate the algorithms
with a view to improve the quality of estimates. For
example, intercomparison studies focusing on radar-
based estimates include Johnson et al. (1999), Young et
al. (2000), Stellman et al. (2001), and Grassotti et al.
(2003). Studies focusing on satellite-based estimates in-
clude Adler et al. (2001), Krajewski et al. (2000), Ro-
zumalski (2000), and McCollum et al. (2002). We build
on this previous work by comparing all three types of
precipitation estimates and take the evaluation further
by examining the adequacy of satellite products for use
in basinscale hydrologic modeling.

Previous radar-based precipitation intercomparison
studies in the Southern Great Plains have reported that
hourly digital precipitation (HDP) radar estimates
(Smith et al. 1996) and radar/gauge merged stage III
estimates (Johnson et al. 1999; Young et al. 2000) tend
to underestimate the rain gauge estimates. Smith et al.
(1996) showed that HDP estimates suffer from range-
dependent underestimation bias varying between 14%
and 100% depending on the season. Young et al. (2000)
also observed range-dependent bias in the stage III es-
timates, but less than that in the HDP estimates. Smith
et al. (1996) further reported that more than 30% sys-
tematic difference between precipitation estimates
from adjacent radars may be present because of radar
calibration differences. Grassotti et al. (2003) reported

a seasonal bias between radar-only estimates developed
by the Weather Service International Corporation
(WSI) and rain gauges; the bias took the form of un-
derestimation during the cold season and overestima-
tion during the warm season. Over the Culloden Basin
in Georgia, Stellman et al. (2001) found that MAPX
was similar to MAPG during summer but suffered from
underestimation (�50%) during the cold season.

In a study to quantify the error variance of the
monthly Global Precipitation Climatology Project
(GPCP) satellite-based estimates, Krajewski et al.
(2000) noted significant geographical and seasonal vari-
ability in the error statistics. Their Oklahoma site
showed a positive bias during the summer and a nega-
tive bias during the winter while the Georgia site
showed a negative bias in the summer and winter. In a
validation study over the United States, McCollum et
al. (2002) found that an algorithm using microwave
channels of the satellites overestimates precipitation in
summer and underestimates in winter, with an east-to-
west bias gradient. Rozumalski (2000) evaluated the
IR-based AutoEstimator (A-E) algorithm over the Ar-
kansas–Red Basin and reported that the A-E skill di-
minished when moving from warm to cold season and
that 24-h A-E totals overestimated stage III precipita-
tion by a factor of 2 during the warm season and un-
derestimated by a factor of 0.61 during the cold season.

The effect of different precipitation scenarios on hy-
drologic model parameters and simulated hydrographs
has been studied by various researchers (Finnerty et al.
1997; Winchell et al. 1998; Koren et al. 1999; Johnson et
al. 1999; Andreassian et al. 2001; Grimes and Diop
2003; Tsintikidis et al. 1999). Among others, Grimes
and Diop (2003) investigated the use of the Meteosat
thermal IR imagery–based satellite precipitation esti-
mation algorithm for flow forecasting and indicated
that the inclusion of NWP model output improved the
quality of modeled hydrographs. In a feasibility analysis
to estimate mean areal precipitation based on visible
and IR Meteosat imagery, Tsintikidis et al. (1999) in-
dicated that semidistributed hydrologic model param-
eters should be recalibrated with satellite-based pre-
cipitation using spatially variable parameter values.
The study of Finnerty et al. (1997) showed that SAC-
SMA model parameters derived at a particular space
and time scale cannot be applied at different scales
without introducing significant runoff bias.

A general conclusion from the above studies is that
the accuracy of both radar and satellite-based precipi-
tation estimates depends on the calibration procedure
used, the season, and the geographic location, and that
the differences in these estimates can affect hydrologic
predictions. This study therefore seeks to gain insight
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into the utility of the satellite-based estimates for hy-
drologic forecasting by analyzing the differences be-
tween MAPG, MAPX, and MAPS and by exploration
of the corresponding performance of a hydrologic
model.

3. Study area, datasets, and hydrologic model

a. Study area

The study area includes seven NWS operational ba-
sins of varying size and geographic location within the
relatively humid southeastern United States (Fig. 1;
Table 1). The area is free of snow and the radar beams
are not blocked by mountains. The basins AYSG1,
CLUG1, and REDG1 lie within the responsibility of
the NWS’s Southeast River Forecast Center (SERFC),
and the basins CLSM6, DARL1, PLAM6, and SJOA4

lie within the responsibility of the NWS’s Lower Mis-
sissippi River Forecast Center (LMRFC).

b. Rain gauge data

The RFCs use an operational rain gauge network and
the National Weather Service River Forecast System
(NWSRFS) to derive MAPG. We obtained the opera-
tional MAPG from RFC archives because they have
already been subject to quality control procedures (and
also because not all rain gauges used in the operational
network are reported to other agencies). In an opera-
tional basin, 6-h MAPG is calculated as follows: (i) pre-
cipitation values obtained from operational network
are accumulated to derive daily totals for each rain
gauge, (ii) missing data are estimated by a distance
weighting procedure, (iii) daily MAPG is computed us-
ing the Theissen polygon method and distributed to 6-h

FIG. 1. Location map of the study area.

TABLE 1. Study basin characteristics and relevant information; P is annual precipitation (rain gauges) and Q is flow.

Basin ID Basin name Elev (m) Area (km2) P* (mm yr�1) Q* (mm yr�1)

PLAM6 Pearl River near Burnside, MS 114.7 1346 1636.0 568.5
DARL1 Amite River near Darlington, LA 44.4 1502 1343.5 439.4
CLSM6 Leaf River near Collins, MS 60.2 1954 1660.9 562.1
SJOA4 Buffalo River near St. Joe, AR 170.8 2147 1085.0 460.5
REDG1 Ohoopee River near Reidsville, GA 22.5 2939 1171.5 271.1
AYSG1 Satilla River near Waycross, GA 20.2 3281 1243.0 243.6
CLUG1 Flint River near Culloden, GA 102.0 4774 1335.5 374.5

* Based on water years 2002–03.
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values based on the 1- or 6-h rain gauges closest to the
centroid of the basin in each of four quadrants
(Johnson et al. 1999). Unfortunately, MAPG is unavail-
able for the period from May 2001 to September 2001
for the SERFC basins.

c. Radar data

The RFCs calculate operational MAPX using a mul-
tisensor product derived by merging the operational
hourly rain gauge and radar (WSR-88D) precipitation
estimates. The early version of the merging algorithm,
known as stage II, is the result of a multivariate optimal
estimation procedure (Seo et al. 1997). The mosaic of
stage II product over each RFC is quality controlled by
RFC personnel and termed as stage III (Fulton et al.
1998). Operational experience with the stage II/III al-
gorithms led to development of the Multisensor Pre-
cipitation Estimator (MPE) to mitigate some of the ra-
dar deficiencies such as range degradation and beam
blockage. The main objective of the MPE product is to
reduce both spatially mean and local bias errors in ra-
dar-derived precipitation using rain gauges and satellite
so that the final multisensor product is better than any
single sensor alone (Fulton 2002). The RFCs have ini-
tiated the switch from stage II/III to the MPE algo-
rithm. SERFC and LMRFC have switched from the
stage III algorithm to the MPE algorithm in October
2002 and in October 2003, respectively. Radar/gauge
multisensor products are mapped on a polar stereo-
graphic projection called the Hydrologic Rainfall
Analysis Project (HRAP) grid (�4 km � 4 km). The
RFCs compute MAPX by averaging the precipitation
values from each HRAP bin contained in the basin
(Stellman et al. 2001). We obtained the operational
MAPX values from the LMRFC. Missing data for the
LMRFC and all the data for the SERFC were calcu-
lated by downloading the hourly radar/gauge multisen-
sor product from the National Oceanic and Atmo-
spheric Administration (NOAA) Hydrologic Data Sys-
tems Group Web site (http://dipper.nws.noaa.gov/hdsb/
data/nexrad/nexrad_data.html) and following the
procedures listed on the NWS Hydrology Laboratory
Web site (http://www.nws.noaa.gov/oh/hrl/dmip/
nexrad.html). For the SERFC basins, MAPX is un-
available for August 2000 and April 2001.

d. Satellite data

The PERSIANN system (Hsu et al. 1997, 1999, 2002;
Sorooshian et al. 2000) uses an artificial neural network
to estimate 30-min rainfall rates at 0.25° � 0.25° spatial
resolution using IR images from geosynchronous satel-
lites [Geostationary Operational Environmental Satel-

lite (GOES), Geostationary Meteorological Satellite
(GMS), and Meteosat] and a previously calibrated neu-
ral network mapping function. The system classifies sat-
ellite images according to cloud-top IR brightness tem-
perature and texture at and around the estimation
pixel. For each class, a multivariate linear mapping
function is used to relate the input features to the out-
put rain rate. Whenever an MW-based rainfall mea-
surement (Ferraro and Marks 1995; Kummerow et al.
1998; Weng et al. 2003) from a low-orbiting satellite
[Tropical Rainfall Measuring Mission (TRMM);
NOAA-15, -16, -17; Defense Meteorological Satellite
Program (DMSP) F-13, -14, -15] is available, the error
in each pixel is used to adjust the parameters of the
associated mapping function. MAPS values are calcu-
lated by area weighting each PERSIANN grid over the
basin. The PERSIANN dataset starts in March 2000.
Because of an algorithm failure reported by the devel-
opers of the PERSIANN system, we removed the pe-
riod from 29 January through 15 February 2003 from
precipitation comparison and model simulation analy-
sis.

e. Hydrologic model

The SAC-SMA (Burnash et al. 1973; Burnash 1995)
is a lumped, conceptual rainfall-runoff model com-
posed of a thin upper layer representing the surface soil
regimes and the interception storage, and a thicker
lower layer representing the deeper soil layers contain-
ing the majority of the soil moisture and groundwater
storage (Brazil and Hudlow 1981). Percolation from the
upper to the lower layer is controlled by a nonlinear
process dependent on the contents of upper-zone free
water and the deficiencies in the lower-zone storages.
The model utilizes six soil moisture states and 16 pa-
rameters to describe the flow of water through the ba-
sin. The SAC-SMA model inputs are 6-h MAP and
daily mean areal potential evaporation (MAPE), and
output is the daily runoff. Output from the SAC-SMA
is then routed through a unit hydrograph (obtained
from the RFCs) to obtain streamflow values. MAPE
values are obtained from the RFCs and constitute the
midmonth values.

4. Methods and calibration procedure

a. Methods

The first objective of this study is to analyze the dif-
ferences between MAPG, MAPX, and MAPS over a
variety of basins, and to determine the dependence of
relative bias on seasonality, size of the basin, and geo-
graphic location. The analysis compares datasets at the
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monthly time scale as total precipitation and at the 6-h
time scale using scatterplots and statistical measures
[linear correlation coefficient (CORR), relative mean
bias (BIAS), and normalized root-mean-square error
(NRMSE)];

BIAS �

�
i�1

n

�MAPei � MAPri�

n
, �1�

NRMSE � ���
i�1

n

�MAPei � MAPri�
2

n
��

��
i�1

n

MAPri

n
� , �2�

where MAPe and MAPr denote the precipitation esti-
mates under comparison (MAPe denotes either MAPX
or MAPS, and MAPr denotes either MAPG or
MAPX), and n is the number of 6-h dataset pairs in the
analysis. The NWS utilizes a 6-h precipitation input for
hydrologic forecasting in the selected study basins. Sta-
tistical measures are based on 6-h data pairs in which
either of the datasets in the analysis reported precipita-
tion [i.e., for the MAPX–MAPG analysis, a pair is in-
cluded if either MAPX or MAPG �0 mm (6 h)�1].
Time periods when at least one dataset is unavailable
for a basin (see sections 3b–d for time periods) were
excluded from the statistical measures for all dataset
comparisons for all study basins. The study time period
was selected to run from March 2000 through Novem-
ber 2003 based on data availability and was subjectively
subdivided into cold (October through March) and
warm (April through September) seasons in an effort to
separate stratiform precipitation (large-scale organiza-
tion of shallow warm clouds) from convective precipi-
tation (small-scale patterns of thick clouds with gener-
ally cold cloud tops). A further differentiation was
made to discriminate between summer (June, July, Au-
gust) and winter (November, December, January).

To evaluate the utility of satellite-based precipitation
estimates for flow prediction, 6-h MAPG and MAPS
were used as input to the SAC-SMA model, and the
resulting mean daily flows were compared with each
other and with the observed flow measured at U.S.
Geological Society (USGS) stations. MAPX has been
excluded from this analysis due to change in the pro-
cessing algorithm employed by SERFC (section 3c).
Simulations were performed with parameter sets ob-

tained through 1) manual calibration by an NWS hy-
drologist using historical data from a rain gauge net-
work (hereafter RFC parameters), and 2) automatic
calibration via a multistep automatic calibration scheme
(MACS; Hogue et al. 2000) using data from a 23-month
time period. Note that the RFC parameters are opera-
tional parameters employed by the RFCs throughout
the study time period. Although the SAC-SMA param-
eters should be considered tied to the space and time
scales for which they were calibrated (Finnerty et al.
1997), comparing MAPS-simulated flow using RFC pa-
rameters and specifically calibrated parameters will
provide some insight as to whether the performance of
the hydrological model improves with calibration. The
model calibration period was set from October 2001 to
November 2003, because this is the wettest period for
which continuous precipitation data were available.
Model initialization was performed using the Shuffled
Complex Evolution–University of Arizona algorithm
(SCE-UA; Duan et al. 1992) to optimize the initial
states [using the root-mean-square error of the log-
transformed flow (hereafter called LOG) as the objec-
tive function] of the model using the RFC parameters
and MAPG as input (for October and November 2001).
After establishing estimates of the initial states, param-
eter calibration was performed (using a 3-month warm-
up period) for January 2002–November 2003. The veri-
fication period was set to May 2000–April 2001 based
on data availability (using a 2-month warm-up period).
Model initialization for the verification period was
again performed using SCE-UA in a manner similar to
the calibration period. We note that the verification of
the model performance over one year with only a few
high flows together with short warm-up period (2
months) may yield insufficient information about the
model performance, and results should therefore be
viewed as preliminary. Model performance evaluations
are based on visual inspection of observed and simu-
lated hydrographs, and overall statistical measures in-
cluding the percent bias (% BIAS) and the Nash–
Sutcliffe efficiency index (NSE):

% BIAS �

�
i�1

n

�SIMi � OBSi�

�
i�1

n

OBSi

�100�, �3�

NSE � 1 �� �
i�1

n

�SIMi � OBSi�
2

�
i�1

n

�OBSi � OBSmean�2� , �4�
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where SIM is the simulated daily flow, OBS is the ob-
served daily flow, OBSmean is the mean of the observed
daily flows, and n is the number of days in the analysis.
NSE can vary between �	 and 1, with higher values
indicating better agreement. Analysis of the timing cor-
respondence between the five highest observed and
simulated peak flows was also performed and is pre-
sented together with the hydrographs. The SJOA4 ba-
sin was excluded from flow analysis because the RFC
parameters for this basin vary by season (G. Tillis,
LMRFC, 2004, personal communication).

b. Calibration procedure

Calibration of the SAC-SMA model was performed
using MACS (Hogue et al. 2000), which uses the SCE-
UA global search algorithm and a step-by-step process
to emulate the progression of steps followed by the
NWS hydrologists during manual calibration. The step-
by-step process is as follows: 1) Initial calibration uses
the LOG objective function with 12 SAC-SMA param-
eters to optimize lower-zone parameters by placing a
strong emphasis on fitting the low-flow portions of the
hydrograph, 2) the lower-zone parameters are subse-
quently fixed and the remaining parameters are opti-
mized with the daily root-mean-squared (DRMS) ob-
jective function to provide a stronger emphasis on
simulating high flow events, 3) refinement of the lower-
zone parameters is performed using the LOG criterion
and keeping the upper-zone parameters fixed. Twelve
parameters of the SAC-SMA model were calibrated
while the rest were set to RFC values.

5. Results

a. Intercomparison of precipitation datasets

Because of the enormous volume of results, detailed
analyses will only be shown for two representative ba-
sins, CLSM6 and CLUG1 (Fig. 1). Analysis of other

basins will be provided as summary statistics, and im-
portant points will be discussed as necessary. Note that
MAPS has a known detection failure during 29 January
through 15 February 2003. It is worth mentioning that
the following comparison is aimed at analyzing the rela-
tive differences between each precipitation dataset
(MAPG, MAPX, and MAPS). These relative differ-
ences are likely due to a combination of many factors
including differences in precipitation sampling area for
each dataset, MAP calculation procedures, and other
error characteristics (see section 2) inherent to the in-
dividual precipitation dataset.

Comparison of the monthly total precipitation
amounts for the CLSM6 basin (Fig. 2) demonstrates a
seasonal trend with both MAPX and MAPS overesti-
mating (underestimating) MAPG during the warm
(cold) season. For example, during the year 2001 warm
season, MAPG reported 775.5 mm of precipitation
whereas MAPX and MAPS reported 1046.1 and 990.1
mm of precipitation respectively, resulting in 34.9%
and 27.7% more precipitation than MAPG. However,
during the year 2001/02 cold season, MAPG reported
773.4 mm of precipitation whereas MAPX and MAPS
reported 598.0 and 560.3 mm, respectively (22.7% and
27.5% less than MAPG). This general trend was ob-
served throughout the study time period within the
CLSM6 basin at varying degrees. In PLAM6, DARL1,
and SJOA4 basins, this general seasonal trend was evi-
dent for some periods but not for others. These trends
will be discussed later, together with the summary sta-
tistics.

In the CLUG1 basin (Fig. 3), MAPS and MAPG
monthly totals are in good agreement throughout the
time period, without any evidence of seasonal bias.
MAPX also shows good agreement with MAPG during
the cold season with only a slight underestimation.
However, MAPX significantly overestimates MAPG
and MAPS during the 2000 and 2002 warm seasons. For
example, during the 2002 warm season, MAPG re-

FIG. 2. Total monthly precipitation for the CLSM6 basin reported by MAPG, MAPX, and MAPS binned by month for Mar
2000–Nov 2003 (cold and warm seasons are separated by vertical lines).
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ported 518.0 mm of precipitation whereas MAPX and
MAPS reported 821.9 and 517.0 mm, corresponding to
58.7% overestimation and �0.2% underestimation, in-
dicating that MAPS more closely follows MAPG
monthly totals than MAPX. MAPX is in good agree-
ment with MAPG, with a slight underestimation start-
ing from September 2002 through the end of the study
time period. Examination of the CORR statistic for the
6-h MAPG–MAPX pairs binned by month (not shown)
also reveals improved correlations during this time pe-
riod. This change in MAPX behavior coincides with the
approximate time that the SERFC changed the multi-
sensor processing algorithm from stage III to MPE
(section 3c). The April–May 2003 period is marked by
dramatically high monthly precipitation reported by
MAPS, resulting from a high number of false detec-
tions. Overall, the same trend between MAPG, MAPX,
and MAPS observed in CLUG1 was also evident in
other Georgia basins (REDG1 and AYSG1). Progress-
ing to 6-h time scales will allow greater insight into the
results obtained from the monthly analysis.

Scatterplots in Figs. 4 and 5 result from aggregation
of all available 6-h datasets for the winter and summer
for the CLSM6 and CLUG1 basins, respectively. Fig-
ure 4 illustrates the same trend obtained from the
monthly comparison at the 6-h time scale for the
CLSM6 basin. MAPG is overestimated by MAPS [0.62
mm (6 h)�1 BIAS] and MAPX [0.85 mm (6 h)�1 BIAS]
during summer (Figs. 4a,c) and underestimated by
MAPS [�0.94 mm (6 h)�1 BIAS] and MAPX [�1.09
mm (6 h)�1 BIAS] during winter (Figs. 4d,f). Compari-
son of MAPX–MAPG, both in the summer and winter,
results in better statistics than the MAPS–MAPG
comparison, as indicated by the higher (lower) CORR
(NRMSE). This is expected since the radar/gauge mul-
tisensor product is already corrected with the rain
gauges. MAPX shows better agreement with MAPG
during winter (CORR � 0.92) as opposed to summer
(CORR � 0.75) (Figs. 4c,f). This may be due to pos-
sible rain gauge catch deficiency during local, short-

duration summer convective storms. Smith et al. (1996)
reported that even very high density rain gauge net-
works are unable to represent the high-rainfall-rate re-
gions of the storm systems. Also, the procedure for
disaggregating the daily rain gauge values into 6-h val-
ues employed by the RFCs may not be representative
for the timing of the convective summer storms (Stell-
man et al. 2001). For the summer season, the compari-
son of MAPS–MAPG and MAPS–MAPX (Figs. 4a,b)
reveals that MAPS and MAPX provide similar magni-
tudes for some of the high-precipitation events. The
same characteristics were also observed in daily scat-
terplots (not shown). This behavior may be an aggre-
gate effect of the rain gauge catch deficiency explained
above and a similar behavior of MAPX and MAPS
during convective storms.

In the CLUG1 basin (Fig. 5), a seasonal trend is not
evident between MAPS and MAPG. Figures 5c and 5f
show a general trend with MAPX overestimating
MAPG during the summer [0.58 mm (6 h)�1 BIAS] and
underestimating MAPG during the winter [�0.33 mm
(6 h)�1 BIAS]. Significantly high total monthly MAPX
estimates during summer (Fig. 3) can be explained by
consistent overestimation of MAPG and MAPS by
MAPX, which is evident in the scatterplots (Figs. 5b,c).
MAPS, highly scattered around MAPG (Fig. 5a), shows
reduced bias in monthly totals. Clearly, MAPX and
MAPG are in better agreement during the winter than
during the summer (CORR � 0.85 and 0.76, respec-
tively) (Figs. 5c,f). In the summer, the MAPS–MAPX
comparison results in higher CORR (0.63) than the
MAPS–MAPG comparison (CORR � 0.52), indicating
better agreement between MAPX and MAPS. It
should also be noted that the Georgia basins receive
much less precipitation during the analysis time period
when compared to other study basins (see scatterplots)
and that they contain fewer hourly rain gauges than
other study basins, where almost 30% of the 6-h pre-
cipitation estimates were obtained by uniformly distrib-
uting daily estimates. Also, the Georgia basins are

FIG. 3. Same as in Fig. 2, but for the CLUG1 basin.
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larger then the other study sites, and thus more satellite
precipitation estimation grids are used for areal aver-
aging, likely smoothing out the localized high precipi-
tation rates. In the CLUG1 basin, the highest rainfall
rates occur in April–May 2003. During this time period
MAPS overestimates both MAPG and MAPX (Fig. 3).

To summarize the general trends between the pre-
cipitation datasets, statistical measures are presented
for each study basin for summer and winter (Fig. 6).
Note that basins are listed from left to right in order of
increasing area and that the last three basins are located
in Georgia (REDG1, AYSG1, and CLUG1). There are
general trends between the datasets among the study
basins. Starting with the MAPX–MAPG comparison
(Figs. 6a–c), the CORR (NRMSE) statistic is higher
(lower) during winter than summer for all study basins.
Possible reasons were explained earlier in the discus-
sion of Figs. 4 and 5. The SJOA4 basin has the highest
(lowest) CORR (NRMSE) statistic between MAPX–
MAPG. The SJOA4 basin, located within elevated ter-
rain in Arkansas, receives precipitation in terms of

short-term rapid outbreaks. The Automated Local
Evaluation in Real Time (ALERT) network of the
NWS established within the basin enables a large num-
ber of hourly rain gauges, thus improving the bias cor-
rection of the radar estimate. The REDG1 basin statis-
tics result in the lowest (highest) CORR (NRMSE),
especially during the summer season. Daily rainfall
comparison shows a similar behavior (not given). A
possible reason is the small number of rain gauges
within the REDG1 basin. MAPX overestimates
MAPG for every study basin (Fig. 6b) during the sum-
mer (indicated by positive bias). However, during the
winter, MAPX underestimates MAPG in five out of
seven basins. In the SJOA4 and DARL1 basins, MAPX
shows a general trend of overestimating MAPG
throughout the study time period, but this is more pro-
nounced during the summer season. Note that these are
the aggregate statistics. There were changes in the
agreement between the MAPX and MAPG throughout
the study time period (cf. agreement between the
MAPX and MAPG for summer 2002 and 2003 in

FIG. 4. Intercomparison of 6-h precipitation (mm) from MAPG, MAPX, and MAPS for the CLSM6 basin for (a), (b), (c) summer
(Jun–Jul–Aug) and (d), (e), (f) winter (Nov–Dec–Jan). Here, nGS � number of data pairs where the first term estimate shows no
precipitation while the second term estimate shows precipitation [i.e., rain gauge � 0 mm (6 h)�1 and PERSIANN � 0 mm (6 h)�1].
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Fig. 3). General CORR, BIAS, and NRMSE statistical
trends for the MAPS–MAPG comparisons (Figs. 6d–f)
over PLAM6, DARL1, CLSM6, and SJOA4 basins are
similar to the MAPX–MAPG comparisons, but lower
(higher) CORR (NRMSE) statistics indicate reduced
agreement. MAPS is underestimating (overestimating)
MAPG during the cold (warm) season for PLAM6,
DARL1, CLSM6, and SJOA4 basins (Fig. 6e). The hy-
etograph comparison (not shown) indicated that under
dry winter conditions, MAPS overestimates MAPG
due to false precipitation detection, but given that high
precipitation rates are observed by MAPG, underesti-
mation by MAPS is evident. The MAPS–MAPG com-
parison (Fig. 6e) for Georgia basins (CLUG1, AYSG1,
and REDG1) shows almost no bias in summer and win-
ter seasons. A possible explanation is the fewer number
of high-precipitation-rate events occurring in Georgia
as opposed to other study basins. As an example, the
SJOA4 and REDG1 basins are similar in size (areas are
2147 and 2939 km2, respectively), but the SJOA4 basin
is located in elevated terrain in Arkansas and receives
much higher rainfall rates during the summer compared
to the REDG1 basin located in Georgia. Figure 6e

shows that MAPS has the highest overestimation of
MAPG for the SJOA4 basin during the summer while
no bias is observed for the REDG1 basin. The MAPS–
MAPX comparison (Figs. 6g–i) reveals that the CORR
(NRMSE) statistic is higher (lower) especially for the
Georgia basins when compared to the MAPS–MAPG
analysis (Figs. 6d–f). A possible explanation is that
MAPS shows better agreement in timing of precipita-
tion with MAPX than MAPG, possibly due to the
smaller number of 1–6-h rain gauges.

There are several possible reasons for the observed
seasonal differences between the precipitation datasets.
First, rain gauges tend to underestimate local, short-
duration summer convective precipitation, while pro-
viding better estimates of the larger-scale, longer-
duration liquid precipitation events during the winter.
However, IR-based satellite estimates tend to overesti-
mate both area and magnitude of summer convective
precipitation (Scofield and Kuligowski 2003; Rozumal-
ski 2000; Petty and Krajewski 1996; Xie and Arkin
1995), which usually occupies only a small fraction of
cold cloud area detected by the sensor. Further, IR-
based techniques may produce misidentification be-

FIG. 5. Same as in Fig. 4, but for the CLUG1 basin.
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cause some cold clouds, such as cirrus, may not gener-
ate any rainfall (Kidd 2001). Underestimation by
MAPS during cold seasons is likely because stratiform
precipitation characterized by warm cloud tops is un-
likely to give rise to a signal that can be detected by any
passive (microwave or infrared) technique (Scofield
and Kuligowski 2003; Petty and Krajewski 1996). Spe-
cial Sensor Microwave Imager (SSM/I) (DMSP satel-
lite) precipitation rates may also result in underestima-
tion because it is sensitive to scattering by frozen pre-
cipitation particles in the upper portions of the cold
clouds, but not all rain-bearing clouds contain such ice
particles (Petty and Krajewski 1996). In basins where a
fewer number of satellite precipitation estimation grids
are used, these biases are expected to become more
pronounced.

Finally, underestimation by MAPX in the winter
months is due mostly to shallow stratiform precipitation
systems in which the radar beam overshoots the upper
level of rainfall, especially at far range (Fulton et al.
1998; Stellman et al. 2001; Grassotti et al. 2003). Over-
estimation by MAPX during summer is likely due to

the presence of mixed precipitation (i.e., hail, graupel,
ice falling through melting layers, etc.), which produces
unreasonably high rain rates within a Z–R relationship
(Fulton et al. 1998; Grassotti et al. 2003). The seasonal
bias observed in the stage III multisensor product dur-
ing various periods over several study basins was also
observed by Grassotti et al. (2003) in a radar-only prod-
uct (WSI). This similarity may indicate the lack of a
sufficient number of rain gauges for radar bias correc-
tion and inadequate quality control procedures for the
stage III multisensor product.

b. Evaluation of flow predictions

This subsection analyzes the utility of satellite pre-
cipitation estimates for flow prediction. The MAPG-
and MAPS-driven SAC-SMA model-simulated flows
were generated using both the RFC parameters (RFC-
MAPG, RFC-MAPS) and calibrated parameters
(CAL-MAPG, CAL-MAPS) and evaluated in terms of
overall statistical measures, (% BIAS) and NSE (Fig.
7), and visual examination of hydrographs, residuals,
and peak timing (Figs. 8–11). To better visualize the

FIG. 6. Statistics of 6-h precipitation for (a), (b), (c) MAPX–MAPG; (d), (e), (f) MAPS–MAPG; and (g), (h), (i) MAPS–MAPX
dataset pairs for summer and winter.
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FIG. 7. Evaluation of model performance over study basins for the (a)–(f) calibration and (g)–(l) verification period. (Lines denote
the improvement in performance when model parameters are changed from RFC to CAL.)
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FIG. 8. CLSM6 basin calibration period. RFC parameters simulation (a) hydrographs, (b) RFC-MAPG
residuals, and (c) RFC-MAPS residuals. MACS parameters simulation (d) hydrographs, (e) CAL-
MAPG residuals, and (f) CAL-MAPS residuals. The number of peak events predicted within 
1 day
time window around the five highest observed peak flows is also provided with the hydrographs.
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FIG. 9. Same as in Fig. 8, but for the verification period.
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FIG. 10. Same as in Fig. 8, but for CLUG1.
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FIG. 11. Same as in Fig. 8, but for the CLUG1 verification period.
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flow performance over the full range of flows, hydro-
graphs are plotted in the transformed space

Qtransformed �
�Q � 1�� � 1

�
, �5�

where Q is the flow and � is a transformation param-
eter, which is set to 0.3 (after evaluating the visual ef-
fect provided by a full range of � values).

1) RFC PARAMETERS

The overall statistics (Fig. 7) show that the RFC-
MAPG simulation generally resulted in reasonable
NSE statistics with a minimum for the PLAM6 basin
(NSE � 0.5). An exception is the CLSM6 basin where
poor performance (NSE � 0.1) is observed, possibly
due to the large overestimation of the observed peaks
during October–December 2002 and poor matching of
the peak timing (Fig. 8a). Overall, a large positive %
BIAS results from the RFC-MAPG simulations (reach-
ing up to 38% for the PLAM6 basin during the calibra-
tion period). Verification period statistics also show a
large positive % BIAS for RFC-MAPG (especially in
the Georgia basins), most likely due to the prevailing
dry conditions. RFC-MAPS, on the other hand, re-
sulted in negative NSE statistics for CLSM6, DARL1,
PLAM6, and CLUG1 basins during the calibration pe-
riod, indicating simulation predictions are not as good
as simply using the observed mean as a predictor. In the
CLSM6 basin, the RFC-MAPS (Figs. 8a,c) significantly
overestimated peak flows during spring–summer 2003.
A major overestimation is evident around 9 April 2003
with an observed peak flow of 266 cm. During this
event, MAPS reported 197 mm of rainfall in three days
with a peak flow of 1073 cm (300% BIAS) on the same
day, while MAPG reported 83.5 mm and a peak flow of
307 cm (15% BIAS) one day earlier than observed.
Overestimation of peak flows during spring and sum-
mer are also evident in the PLAM6 and DARL1 basin
RFC-MAPS simulations (not shown). In the CLSM6
basin, RFC-MAPS (Figs. 8a,c) resulted in a general un-
derestimation of flows during the winter, with the ex-
ception of several overestimated peak flows (see mid-
D e c e m -
ber 2002). Throughout the calibration period RFC-
MAPS shows both false (mid-May 2003) and missed
(mid-October 2002) peak flows, which are properly de-
picted by the MAPG.

In the CLUG1 basin, RFC-MAPG results in good
overall performance (Fig. 7f) (0.87 NSE; 11% BIAS)
and a good match between the observed and simulated
hydrographs (Figs. 10a,b). RFC-MAPS, on the other
hand, has particular difficulty with both over- and un-
derestimations during winter 2002 and spring 2003. A

major overestimation of peak flow by RFC-MAPS is
evident on 9 May 2003 with an observed flow of 1014
cm. During this event, MAPS reported 183.7 mm of
rainfall in 4 days with a peak flow of 2235 cm (120%
BIAS) while MAPG reported 97 mm and a peak flow
of 798 cm (21% BIAS). Another interesting event oc-
curs in early October 2002, when RFC-MAPS missed a
peak flow, which is properly diagnosed by RFC-
MAPG.

During the verification period (Figs. 7g–l), the RFC-
MAPS for the CLSM6 and PLAM6 basins show better
model performance than the RFC-MAPG as indicated
by higher (lower) NSE (% BIAS). This situation can be
explained using Fig. 9a, in which RFC-MAPG simula-
tions overestimated the high-flow events. This result
may be due to error in the MAPG estimates, but also to
error in the evapotranspiration estimates since overes-
timation was also seen in winter/early fall 2002 (Fig.
8a).

2) CALIBRATED PARAMETERS

The previous subsection illustrated that model per-
formance significantly reduces when utilizing satellite-
based precipitation estimates with RFC parameters.
This subsection introduces model calibration efforts to
analyze whether an improvement in the performance of
a model driven by MAPS and MAPG can be achieved
based on calibration using a relatively short period of
data (23 months).

The overall statistics (Figs. 7a–f) show comparatively
better model performance with calibrated parameters
compared to the RFC parameters for both MAPG and
MAPS simulations. In the CLSM6 basin, a significant
improvement in the calibration period is observed for
CAL-MAPG when compared to RFC-MAPG (NSE
changed from 0.1 to 0.8), followed however by only
minor improvement for the verification period. Analy-
sis of the hydrographs for the calibration period (Figs.
8a–e) shows that the improvement in model perfor-
mance is mainly due to the better estimation of flows
during October–December 2002 and better matching
in timing of the peak flows. Another significant im-
provement with CAL-MAPG, both in terms of NSE
and % BIAS, is obtained for the PLAM6 basin, which
is also followed by significant improvement in the veri-
fication period. For the DARL1, CLUG1, AYSG1,
and REDG1 basins, CAL-MAPG resulted in minor
improvements in model performance. CAL-MAPS, on
the other hand, yields performance improvements for
every basin during the calibration period, but the
CLSM6 and PLAM6 basins still suffer from poor per-
formance. Improvement in model performance for
the CLSM6 basin, when using CAL-MAPS, is mainly
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due to a decrease in overestimation of peak flows and
also a better simulation of peak timing (Figs. 8a,d).
While parameter adjustments compensated for some
of the error in the MAPS input, calibration also re-
sulted in increased errors during the recessions and low
flows (see April, May, and August 2003). In the
CLUG1 basin (Figs. 7f, 10), model performance im-
provement is mainly due to the elimination of false high
flows by CAL-MAPS compared to RFC-MAPS. For
example, the highest observed flow event (1014 cm)
occurring on 9 May 2003 was reduced from 2350 cm
(120% BIAS) for RFC-MAPS to 1200 cm (18% BIAS)
for CAL-MAPS. In the CLUG1 basin, the verification
performance for CAL-MAPS (0.65 NSE and �6.5%
BIAS) is in line with the calibration performance and
slightly poorer than the CAL-MAPG performance dur-
ing verification (0.89 NSE and �7.5% BIAS). In the
CLUG1 basin verification period (Fig. 11d), both CAL-
MAPS and CAL-MAPG had difficulty in predicting
peak flows during March–April 2001, but CAL-MAPG
better represented the lower peak flows (see Septem-
ber and December 2000).

In the AYSG1 basin (Figs. 7e,k), although the cali-
brated parameters resulted in slightly improved per-
formance over the RFC parameters during the calibra-
tion period, they failed to capture the observed flows
during the verification period (NSE ��1 and BIAS
�100%). The REDG1 basin (Figs. 7d,j) shows im-
proved model performance due to model calibration,
not only during the calibration period but also during
the verification period. In the verification period, CAL-
MAPS resulted in even better performance than CAL-
MAPG. Analysis of the hydrographs (not shown) indi-
cates that both CAL-MAPG and CAL-MAPS tend to
strongly overestimate the dry conditions prevailing dur-
ing May–September 2000 in the REDG1 basin, but it
also revealed that the CAL-MAPG simulations over-
estimate the relatively high flow conditions during win-
ter/spring 2001. The SERFC has also reported particu-
lar difficulty in calibration of the AYSG1 and REDG1
basins (J. Bradberry, SERFC, 2004, personal commu-
nication).

As an overall summary, calibration of the SAC-SMA
model with satellite precipitation estimates has im-
proved the model performance in both the calibration
and verification periods when compared to the model
simulations with RFC parameters. But MAPS-driven
model performances were still poor for the PLAM6,
DARL1, and CLSM6 basins, which are smaller in size
and produced high biases between MAPG and MAPS.
Poor model performance even for the calibration pe-
riod is an indication of an inability of the model and the

calibration procedure to filter out the variation and er-
ror in MAPS. Better performances obtained for the
CLUG1 (slightly poorer than rain gauge calibration)
and REDG1 (better than rain gauge calibration during
verification period) basins are probably due to the large
size of these basins and a smaller bias between MAPG
and MAPS. Again, note that short calibration and veri-
fication time periods may also have an effect on these
results.

6. Conclusions and recommendations

The objective of this study was to evaluate the utility
of satellite-based precipitation estimates for hydrologic
forecasting, as they may provide the only source of pre-
cipitation for areas where ground-based networks are
unavailable. The results of our precipitation intercom-
parison study performed at seven basins within the
southeastern United States show that agreements be-
tween the precipitation datasets vary from basin to ba-
sin and also temporally within the basins. General con-
clusions from the three-way intercomparison of the
datasets are provided below. Please note that these are
relative comparisons only.

1) MAPS tends to provide larger estimates than
MAPG during the warm season and smaller esti-
mates than MAPG during the cold season for the
basins located in Mississippi, Louisiana, and Arkan-
sas. This warm-season trend is most pronounced for
the Arkansas basin. In the Georgia basins, a sea-
sonal trend was not evident between the MAPG and
MAPS, and fairly good agreements in terms of
monthly totals and overall bias were observed.

2) MAPX tends to provide slightly larger estimates
than MAPG for the basins in Louisiana and Arkan-
sas regardless of the season; however, this tendency
is more pronounced during the warm season. In the
Mississippi basins, MAPX tends to provide larger
estimates than MAPG during the warm season and
smaller estimates during the cold season. In the
Georgia basins, the MAPX–MAPG comparison
shows large variation. MAPX provides considerably
larger estimates than MAPG during the warm sea-
son in the earlier time periods, but better agreement
(with slightly smaller estimates) in the later time
period. This change is probably due to the change in
the radar-processing algorithm (from stage III to
MPE) implemented by the SERFC. At the 6-h time
scale, the correlation between MAPX and MAPG is
higher for winter stratiform precipitation than sum-
mer convective precipitation. This difference is
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more pronounced for the two basins in Georgia, in
which a fewer hourly rain gauges are present.

3) The MAPS–MAPX comparison shows smaller bias
than the MAPS–MAPG comparison at some time
periods but larger bias in other periods. This is
mainly due to a similar MAPX and MAPS response
to stratiform and convective precipitation patterns
in some basins (although for different reasons), but
is complicated by calibration differences between
radars, availability of hourly rain gauges for radar
bias correction, degree of radar quality control, and
geographic location.

Results from the evaluation of the hydrological
model performance show that, when using satellite-
based precipitation estimates, even short time periods
of model calibration can considerably improve model
performance compared to manually calibrated param-
eters using historical rain gauge data (RFC param-
eters). Of course, the degree of improvement may vary
with basin size and location. These results can be sum-
marized as follows.

1) When MAPS is used to drive the model with RFC
parameters, major deterioration in model perfor-
mance is observed when compared with the MAPG-
driven model. We observe positive streamflow pre-
diction bias in all study basins, and negative Nash–
Sutcliffe efficiencies in four out of six basins.
Calibration improves model performance in all ba-
sins as expected, but the results are not satisfactory
for basins in Mississippi and Louisiana (even for the
calibration period). The better calibration perfor-
mance obtained with MAPG (indicated by NSE and
% BIAS statistics) suggests problems with the
MAPS product. The poor MAPS results may be at-
tributed to the large differences between MAPS and
MAPG over these basins, which may be partly due
to the fact that these basins are smaller in size and
therefore there is less smoothing of the precipitation
variation and error. For the two Georgia basins,
model calibration using MAPS resulted in signifi-
cantly improved model performance (for both cali-
bration and verification periods)—these are also the
basins showing better agreement between MAPS
and MAPG. Note, however, that for all the studies
conducted here the calibration and verification pe-
riods used were for relatively short and dry condi-
tions—those results should therefore be only viewed
as preliminary.

2) Changes/improvements in the radar/gauge multisen-
sor precipitation-processing algorithms (such as
transition from stage III to MPE) affect the behav-
ioral characteristics of this dataset. These behavior-

al changes must be properly taken into account
when such data are used for model calibration and/
or evaluation in future studies.

As a future extension of this analysis, different hy-
droclimatic regions (e.g., semiarid) over different parts
of the world will be selected with varying basin sizes
and rain gauge network densities to further test the
possible benefits of using satellite-based precipitation
estimates for flow prediction. The availability of these
estimates at finer spatial scales will improve their ap-
plicability to basin-scale hydrologic applications, espe-
cially when using distributed models. Also, inclusion of
error estimates associated with satellite-based precipi-
tation products will enable hydrologists to define con-
fidence limits on the hydrologic predictions. As a natu-
ral extension of this work for ungauged basin studies,
satellite-based precipitation estimates will be used to-
gether with model parameters derived from basin char-
acteristics, rather than calibrated through observed
streamflow.

We have demonstrated that although satellite-based
precipitation estimates contain errors that can affect
flow predictions, there is clear potential for use of
these products in hydrologic forecasting and water
management. This potential is expected to increase
with the launch of new satellites. The neural network
structure of the PERSIANN system can easily be
adapted to incorporate new information as it becomes
available.
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