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ABSTRACT: A modelling toolkit is described which has been developed
to produce parsimonious model structures with a high degree of
parameter identifiability. This is necessary if sensible relationships
between model parameters and catchment characteristics are to be
established, for example for regionalization studies. The toolkit contains
two major components. The first is a rainfall-runoff modeling system
with a generic architecture of lumped, conceptual or metric-conceptual
model elements, which allows alternative model structures to be rapidly
constructed and tested. The second component is a Monte-Carlo
analysis toolbox combining a number of analysis tools to investigate
parameter identifiability, model behaviour and prediction uncertainty.
Two example applications are presented. These illustrate the use of
multiple objective functions to extract information from a single output
time-series for analysis of parameter sensitivity and identifiability, and
the trade-off between model complexity and identifiability.

1. INTRODUCTION

Hydrological models are well-established tools that are widely utilized in
engineering practice. The majority of model structures currently used can be
classified as conceptual. Adopting the definition given by Wheater et al. (1993),
conceptual model structures have  two important characteristics: (1) their model
structure is specified prior to any modeling being undertaken; and (2) (at least some
of) the model parameters do not have a physical meaning, in the sense of being
independently measurable, and have to be estimated through calibration against
observed data.
Conceptual model structures suffer from a number of problems despite their
frequent use and development over a number of decades. One of the major
constraints is the lack of parameter identifiability, i.e. different combinations of
parameters (e.g. Johnston and Pilgrim, 1976; Beven and Binley, 1992), or even
different model structures (e.g. Uhlenbrock et al., 1999) yield similar results in
terms of a defined performance measure, or objective function. This results in
difficulties in interpreting past behaviour of the catchment system, and hence in the
propagation of uncertainty into future predictions in the form of wide confidence
limits, i.e. a wide range of possible system behaviours (Wheater et al., 1986;
Mroczkowski et al., 1997).
The need for model calibration is a major limitation when ungauged catchments,
where no streamflow measurements are available, have to be modelled. One
approach to deal with this problem is the regionalization or regional transfer of
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parameters of a certain model structure (e.g. Jakeman et al., 1992). A selected
model structure is calibrated to a large number of catchments and statistical
relationships between the parameters and the characteristics of the catchment such
as size, land use or soil types are established. These relationships can then be used
to derive parameter values for an ungauged catchment. Uncertainty in the model
parameters due to a lack of identifiability significantly limits the use of models for
this kind of regionalization because it is difficult to establish sensible statistical
relationships (e.g. Moore and Clarke, 1981; Kuczera, 1983; Wheater et al., 1993). A
model structure with identifiable parameters, i.e. a high regionalization potential
(Lees et al., 1999), is therefore a prerequisite for successful regionalization.
Possible directions of improvement with respect to producing better identified
models are: (1) the reduction of model complexity to contain only the components,
and therefore parameters, that can be identified from the available data (i.e.
parsimonious modeling, e.g. Jakeman and Hornberger, 1993; Young et al., 1996;
amongst others), (2) the improved use of available information, e.g. using different
data periods to identify different parameters or groups of parameters (e.g. Wheater
et al., 1986; Dunne, 1999; Wagener et al., 2000a; amongst others), and (3) the use
of additional information, i.e. multi-response data such as water quality data,
groundwater levels, or tracer measurements (e.g. de Grosbois et al., 1988;
Ambroise et al., 1995; Kuczera and Mroczkowski, 1998; Seibert, 1999; amongst
others). It should be noted that the use of additional output variables is unlikely to
be particularly useful with respect to regionalization studies, since multi-response
data are not commonly available. Therefore this approach is not investigated further
here; instead we focus on methods of reducing model complexity and increasing the
information that can be retrieved from streamflow measurements.
To this end, a toolkit has been developed to enable the development, analysis and
comparison of model structures of different levels of complexity. The aim is to
identify the appropriate level of complexity that yields a sufficiently high level of
performance, whilst retaining an acceptable level of parameter uncertainty. The
toolkit is described, and a limited number of modeling exercises are presented to
illustrate its use.

2. PARSIMONIOUS RAINFALL-RUNOFF
MODELING

Different researchers have observed that the number of parameters required to
describe the key behaviour of environmental systems is often quite low (e.g.
Jakeman and Hornberger, 1993; Young et al., 1996). Increasing the degree of model
complexity above a certain level does not result in significantly improved
performance (e.g. Naef, 1981; Hornberger et al., 1985; Refsgaard and Knutsen,
1996). Instead, the problem arises that many parameter combinations, often widely
distributed over their individual feasible range, lead to acceptable model
performance (e.g. Beven and Binley, 1992; Spear, 1995; Kuczera and Mroczkowski,
1998).
Results from previous research in the field of rainfall-runoff modeling suggest that
up to five or six parameters can be identified from streamflow and rainfall data
using traditional single-objective calibration schemes (e.g. Kirkby, 1975;
Hornberger et al., 1985; Wheater et al., 1986; Beven, 1989; Jakeman and
Hornberger, 1993; Ye et al., 1997; Gaume et al., 1998; amongst others). Some
researchers have therefore concluded that only models with no more than half a
dozen parameters are required to describe the behaviour of a catchment with
respect to the production of streamflow (e.g. Beven, 1989; Jakeman and
Hornberger, 1993; Beck, 1987). These findings have led to the investigation of less
complex (parsimonious) model structures that capture the key response modes of the
hydrological system (e.g. Hornberger et al., 1985; Jakeman and Hornberger, 1993;
Young et al., 1996; amongst others).
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The principle of parsimony requires models to have the simplest parameterization
that can be used to represent the data (Box and Jenkins, 1976). Parsimonious
models have reduced problems of identifiability since only model parameters
justified by the evidence, i.e. the data, are kept. The principle of parsimony, also
known as Ockham's Razor, was advocated by the Franciscan monk William of
Ockham in the early 14th century in statements such as 'plurality should not be
posited without necessity', or 'what can happen through fewer [principles] happens
in vain through more' (Spade, 2000). The principle can be described as a statement
of cautious scientific method (Spade, 2000). The approach of retaining only
necessary components ensures that the model components used are positively
affirmed. However, using this approach in the context of rainfall-runoff modeling
does not guarantee that all necessary model components are identified. Careful
consideration is therefore required to ensure that the model does not omit one or
more hydrologic processes important for a particular problem. A model structure
that is too simple in terms of the number of processes represented can be unreliable
outside the range of catchment conditions (i.e. climate and land use) on which it was
calibrated (Kuczera and Mroczkowski, 1998). It is therefore vital to use data with
high information content in order to ensure that the main response modes can be
observed (Gupta and Sorooshian, 1985; Yapo et al., 1996). Young et al. (1996)
describe how the principle of Ockham's razor can be applied to the modeling of
environmental systems using a combination of Monte-Carlo techniques, dominant
mode analysis, and data-based mechanistic modeling.
Popper (1983) advocated the use of simple theories based on their degree of
testability. The justification is that simpler theories apply more restrictions on how a
system is allowed to behave and therefore are easier to test than complex theories.
System behaviour not permitted by the theory will lead to rejection or modification
of the theory. The degree of testability of a theory is therefore proportional to the
amount of behaviour prohibited by it (Popper, 1983). In the context of hydrological
modeling, it is important to consider that the testability of a model structure will
improve in cases where an increasing number of output variables exists that can be
compared to measured variables, e.g. predictions of groundwater levels or saturated
areas (Nash and Sutcliffe, 1970; Seibert, 1999). Additional information is then
available to test potential models, and hence to reject those that show behaviour
which does not conform with observations.
The basic assumption underlying this idea is that it is not possible to show that a
certain theory (model) is correct, i.e. to validate it, but that it is only possible to say
that there is insufficient evidence to refute or falsify the theory. In other words,
regardless of how often we see a white swan, we can not conclude that all swans are
white, i.e. it is not possible to verify (originating from the Latin word verus meaning
true) the hypothesis that all swans are white. However, the observation of a blue
swan would lead to the rejection of this hypothesis, i.e. it can be falsified (Magee,
1973). Different researchers discuss how this concept of falsifiability (Popper, 1983)
could be applied in the context of hydrological modeling (e.g. Dooge, 1986;
Mroczkowski et al., 1997, Seibert, 1999).
This evidence suggests that striving for parsimonious model structures is
advantageous. It is this aim that has motivated the development of the toolkit
described here.

3. ANALYTICAL MODELING FRAMEWORK
The aim of the analytical modeling framework proposed here is to achieve a balance
between the required level of model structural complexity and the complexity that
can be supported by the available data (Fig. 1).
A hydrologist's perception of a given hydrological system strongly influences the
level of conceptualization that must be translated into the model structure. The
importance of different system response modes (i.e. key processes that need to be
simulated by the model), however, depends upon the intended modeling purpose.
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Therefore, the level of model structural complexity required must be determined
through careful consideration of the key processes included in the model structure,
and the level of prediction accuracy necessary for the intended modeling purpose.

PURPOSE SYSTEM

CONCEPTUALISATION DATA

MODEL COMPLEXITY
REQUIRED SUPPORTED

PERFORMANCE UNCERTAINTY

SUFFICIENT ACCEPTABLE

Fig. 1. Proposed analytical framework for model development and
application.

The level of structural complexity actually supported by a given data set, is defined
here as the number of parameters that can be identified by the information
contained within the observed data. Unidentifiable parameters often lead to
uncertainty in model predictions, i.e. relatively wide confidence limits, which limit
the reliability of predictions and their use in any decision making process. They also
limit the suitability of the model structure for purposes such as regionalization as
described earlier.
The task therefore is to balance the performance of the model and the identifiability
of its parameters such that sufficient prediction accuracy is gained, whilst
uncertainty is reduced to an acceptable level.

4. RAINFALL-RUNOFF MODELING
COMPONENT

4.1 GENERAL
As noted above, we seek the development of a model structure of appropriate
complexity with respect to model performance and associated uncertainty. The
philosophy behind this is the recognition that no model structure is suitable for all
modeling exercises, but that the appropriate model structure is a function of
(Wagener, 1998): (1) the modeling objectives (e.g. required spatial and temporal
discretisation, relevant response modes to be simulated), (2) the characteristics of
the hydrological system under investigation (e.g. dominant processes, response
times of the system), and (3) the available data (e.g. possible discretization).
An increasing number of modeling shells with different levels of complexity can be
found in the literature (for example, Overland and Kleeberg, 1993; Woods and
Ibbitt, 1993; Leavesley, 1998; Baalen et al., 1997; amongst others). These systems
give their user the possibility to test the suitability of different model components
and to combine them in a modular fashion. Components can be modified or added if
none of the available components fulfils the problem-specific requirements. The
Rainfall-Runoff Modeling Toolbox (RRMT; Wagener et al., 1999) has been
developed in particular to produce parsimonious, lumped model structures with a
high level of parameter identifiability.
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The RRMT is a generic modeling framework or shell that allows its user to
implement different model structures in accordance with the framework outlined
above. It can be considered therefore to represent a modeling concept, rather than a
specific model structure. The RRMT is implemented in the MATLAB (Mathworks,
1996) programming environment.
The model structures that can be implemented are spatially lumped with low or
medium levels of complexity (in terms of number of parameters). They can be
classified as conceptual or hybrid metric-conceptual in type (Wheater et al., 1993).
The latter is related to a systems approach to hydrologic modeling (see examples in
Kleissen et al., 1990; Jakeman et al., 1990; Jakeman and Hornberger, 1993). The
aim of this approach is to use observations (the metric paradigm) and other prior
knowledge to test hypotheses about the structure of component hydrological stores
(the conceptual paradigm) at catchment scale (Wheater et al., 1993).
The restriction to a lumped approach could be seen as a limitation since it is often
assumed to be only suitable for small catchments that are relatively homogeneous in
terms of soil, vegetation and geology (Blackie and Eeles, 1985). However,
experience with lumped models has shown that they can be valid over a wide range
of catchment sizes, and that the aggregated response of a catchment can often be
characterized well by such a spatially aggregated model (e.g. Littlewood and
Jakeman, 1992; Jakeman and Hornberger, 1993; Jolley, 1995). Blackie and Eeles
(1985) point out that the most important criteria for the suitability of a lumped
approach is not the homogeneity of the catchment characteristics, but the stability of
the catchment system. This stability is required with respect to the spatial
distribution of precipitation, vegetation and soil.

4.2 SYSTEM ARCHITECTURE
The RRMT system architecture is based on a modular structure. The modeling
component consists of a moisture accounting and a routing module (Fig. 2); other
available modules include optimization, visual analysis, and off-line data processing
options. Different approaches can be used to represent each module, and a set of
alternatives, broadly representative of the range of current modeling practice, is
provided. However, all modules, for example routing or objective function modules,
have a specified input and output structure, and can therefore be easily replaced by
new or modified modules, so long as they conform to this structure.
The moisture accounting module, which transforms rainfall into effective rainfall,
predominantly represents evapotranspiration and associated soil moisture storage.
The routing module simulates the lateral flow processes through various pathways,
i.e. overland flow, throughflow and groundwater flow (Ward and Robinson, 2000).

HYBRID MODEL ARCHITECTURE
OPTIMIZATION

MODULES

VISUAL
ANALYSIS
MODULES

OFF-LINE DATA
PROCESSING

MODULES

MOISTURE
ACCOUNTING

MODULE
ROUTING
MODULE

ERP
T

PET

AET

MOISTURE STATUS

Q

GUI

Fig. 2. System architecture of the Rainfall-Runoff Modeling Toolbox.
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A Graphical User Interface (GUI) for the RRMT allows easy access to the toolbox
functions. However, since subsequent modeling of a large number of catchments
may be required, for example in regionalization studies, it is also possible to run the
model from the command line. This allows the user to write a batch file which loads
data, changes model settings, runs a calibration, and stores the results for many
different cases. Within the batch file, all components of the modeling procedure can
be replaced, e.g. the user can try different routing modules or different objective
functions for the same data, or perform simulations for different years of data.

4.3 MOISTURE ACCOUNTING MODULES
The moisture accounting module divides the incoming rainfall into losses, through
evapotranspiration and associated storage, and water which appears as an output
from the catchment system (i.e. effective rainfall). A general water balance equation
describing this process can be written in its implicit form as follows (e.g.
Hornberger et al., 1998; Blackie and Eeles, 1985)

AETQP
dt
dV −−= (1)

where V [L3] is the volume of water stored in the catchment, P [L3T-1] is the
precipitation rate, Q [L3T-1] is the rate of surface and subsurface runoff, and AET
[L3T-1] is the rate of actual evapotranspiration.
The moisture accounting module can be represented with varying levels of
complexity. Approaches currently implemented in the RRMT (Fig. 3) range from
conceptual water balance structures such as those based on Penman's drying curve
concept (Penman, 1949; see for example Jolley, 1995) or the Catchment Moisture
Deficit (Evans and Jakeman, 1998), to more empirical loss functions related to the
Antecedent Precipitation Index (API) such as the Catchment Wetness Index (CWI,
Whitehead et al., 1979; Jakeman et al., 1990; Jakeman and Hornberger, 1993).
These are typical approaches adopted in parsimonious moisture accounting
components, and can be found in many popular model structures.

The CWI is a simple loss function closely related to the well known antecedent
precipitation index. The proportion of rainfall rk, at every time step k, contributing
to runoff, i.e. the effective rainfall uk, is determined by the CWI, in this case based
on sk, which is an indication of the soil moisture state of the catchment, and ranges
from zero to one,
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the value for sk is calculated using the following equation,

1)(
11 −

�
�
�

�

τ
−+= k

k
kk s

t
crs , (3)

where c is a factor introduced to ensure that the total volume of modeled effective
rainfall equals the total volume of observed streamflow. The parameter c is
therefore not calibrated, but is calculated explicitly. Writing this equation in a
slightly different form provides more insight into the model structure,
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This equation shows that the modulated system moisture 'state' at time step k equals
the sum of the rainfall input at time step k and the modulated system state at time
step k-1, minus the depletion by losses to stream and evapotranspiration described
by τ(tk), see Fig. 3a.
The depletion is related to temperature, which is used as a surrogate for potential
evapotranspiration, by the following equation,

])exp[()( ftRTt kwk −⋅τ=τ (5)

where the reference temperature RT is usually fixed to a nominal value depending
on the climate (e.g. RT=10°C for England and Wales (Sefton and Howarth, 1999),
RT=20°C for warmer climates (Jakeman et al., 1994)). The two parameters which
have to be calibrated are τw, the time constant of catchment losses at RT, and the
temperature modulation factor f, which relates a unit change in temperature to the
change in loss rate. Note that the temperature can be replaced by potential
evapotranspiration when available (Niadas, 1999).
Different modifications of the CWI have been developed to account for specific
hydrologic catchment characteristics, for example a power transformation to sk has
been used successfully in catchments with a very flashy response, and the use of a
threshold for sk, below which no rainfall occurs, to enable the modeling of
ephemeral rivers (Fig., 3b; Jakeman et al. 1994).

One conceptual water balance component implemented in the RRMT is a version of
the Penman model structure used by Jolley (1995) that is based on the Penman
drying curve concept (Penman, 1949). The concept assumes that actual
evapotranspiration (ae) occurs at the potential (pe) rate while water is available in
the root zone or root-reservoir. The root zone is extended by an additional 25mm to
allow for capillary rise. The actual rate decreases to a percentage of the potential
rate when this soil zone is depleted. The parameterization of this concept is a
conceptual structure with two stores. The size of the upper store is equal to the 'root
constant' plus the aforementioned 25mm, and evapotranspiration from it takes place
at the potential rate as long as water is available. Values for the root constant can
be selected as a function of vegetation from tables (e.g., Grindley, 1970). However,
treating the root constant as a free parameter, identified by calibration, can lead to
an improvement in model performance (Sheratt, 1985). The upper store is connected
to a lower store of "notional infinite depth" (Moore, 1999) via an overflow
mechanism. Actual evapotranspiration continues at a fraction g = 8% (~1/12) of the
potential rate (as suggested by Penman, 1949) from the lower store, after the upper
store is depleted.
The amount of actual evapotranspiration from upper (aeu) and lower store (ael) is
therefore calculated as follows,
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where pe is the potential evapotranspiration, r is the rainfall input, D1 is the
moisture deficit in the upper store, and Smax1 is the size of the upper store, i.e. the
root constant plus 25mm.
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The effective rainfall u is produced through two mechanisms: (1) a percentage φ
(usually 15%, Moore, 1999) is bypassed as a direct contribution to rapid
groundwater recharge or infiltration excess overland flow,
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and, (2) saturation excess runoff is produced when both stores are full,

{ }0;21))(1(max2 DDperu −−−φ−= (8)

where D2 is the soil moisture deficit of the lower store. So that the total effective
rainfall u can be calculated as,

21 uuu += (9)

The main advantage of the Penman model structure is its efficiency in terms of the
number of parameters.

The predominantly vertical processes described by the moisture accounting
component usually imply spatial homogeneity of response. This assumption is
usually not valid for entire catchments, although good results are obtained in many
cases (Blackie and Eeles, 1985; Jakeman and Hornberger, 1993). To address this
limitation, Moore and Clarke (1981) introduced a probability distribution approach
to storage capacity to account for a heterogeneous catchment response in lumped
modeling, e.g. due to the formation of saturated areas in the catchment. A version of
this probability distribution loss function is available in the RRMT. Detailed
descriptions of this approach are available in Moore and Clarke (1981), or Moore
(1999).
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Fig. 3. Schematic plots of the different moisture accounting modules
available: (a) Catchment Wetness Index (CWI), (b) modified CWI,
(c1) Conceptual Penman model structure, (c2) Penman drying curve,
(d) Catchment Moisture Deficit model structure (CMD), (e) Storage
capacity distribution function.

4.4 ROUTING MODULES
The moisture accounting component produces that part of the rainfall that is
contributing to runoff, usually called effective or excess rainfall. One or more
routing components are typically applied to introduce retention and translation
processes occurring when the contributing rainfall moves to the catchment outlet via
different pathways. Even in complex models, these are often represented by
relatively simple structures.
The most commonly used conceptual element to describe this transfer from effective
rainfall to runoff is the conceptual reservoir or conceptual store. The behaviour of
this reservoir can be described by combining two equations.
A storage function can be defined to describe the relationship between outflow of the
reservoir and the amount of water stored,
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)()( tQatS n⋅= (10)

where S(t) is the storage [L] at time t, Q(t) is the outflow [L/T] at time t, a is the
storage coefficient [L1-nTn], and n is the coefficient of non-linearity [-].
Additionally a mass balance equation describes the change in storage S(t)/dt [L] as
the difference between inflow (u(t) [L/T]) and outflow (Q(t) [L/T]) rates,

)()()( tQtu
dt

tS −= (11)

Jakeman and Hornberger (1993) show that the non-linearity of the relationship
between rainfall and runoff can often be accounted for through the consideration of
antecedent moisture conditions in a loss function. The consequence is that the
remaining transfer from effective rainfall to streamflow can be approximated by a
linear relationship.
This leads to the most common form of the conceptual reservoir, the linear reservoir
(n = 1). In this case the parameter a becomes the residence time T [T], and the
outflow of the reservoir is directly proportional to the storage. The storage function
and the mass balance equation can be combined to yield the following model,

)]()([1 tQtu
Tdt

dQ −= (12)

The advantage of the linear reservoir model is computational efficiency since it can
be solved analytically.
It can be shown that the linear reservoir is identical to the following first-order
discrete-time Transfer Function (TF) (Lees, 2000),
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where ∆t is the discretization step size, and the backward shift operator z-i is defined
as,
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i QQz −
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Chow et al. (1988) describe how a general form of the TF model can be derived
from a general hydrologic system model (Chow and Kulandaiswamy, 1971). The
general form of an nth order single input, single output (SISO) discrete time-system
can be written as,
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where δ represents a lag element, and A(z-1) and B(z-1) are the following
polynomials,
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and
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The TF model structure is therefore described by the triad [p,m+1,δ]. This general
model can represent any combination of linear reservoirs connected in parallel
and/or series as shown in Fig. 4 (Lees, 2000), using partial fraction expansion to
perform the decomposition (Young, 1992).
The advantages of the representation of a linear conceptual reservoir in TF form
include the availability of powerful system identification techniques for optimal
parameter estimation, and increased structural flexibility (Lees, 2000). A system
identification technique that has been successfully used to identify and estimate TF
models in the context of rainfall-runoff modeling is the Simple Refined Instrumental
Variable technique (SRIV, Young et al., 1996). A TF identified by the SRIV
algorithm is one of the routing component options contained in the RRMT.

LR LR

LR

LR LR

LR outflowinflow

Fig. 4. General linear reservoir model.

The number of reservoir elements required is, amongst other things, dependent upon
the modeling time scale selected. A large number of studies have shown that the
most common configuration identified for a daily time scale, when using the SRIV
technique, is two reservoirs in parallel (e.g. Young, 1992; Jakeman and Hornberger,
1993; Lees, 2000). This structure is commonly used in rainfall-runoff modeling
(Moore, 1999), although the use of the TF approach ensures that a parallel
structure will not be used unless the data support this level of complexity, and
indeed conversely more complex structures are sometimes identified (Lees and
Wagener, 2000b;c). In the common situation where a parallel structure is
objectively identified, the two reservoirs can be considered to represent a quick and
a slow response component. These are often interpreted as quickflow and baseflow
processes, although these two components aggregate a number of hydrological
pathways (Hornberger et al., 1999; Ward and Robinson, 2000). A single reservoir is
usually sufficient in the case of a coarser discretization in time, e.g. monthly (Jolley
1995) or when a baseflow component is absent, e.g. ephemeral rivers (Jakeman et
al., 1994). Physical realism of the selected routing structure is an important
criterion if the final aim of the modeling exercise is regional transfer of model
parameters.
If the slow response component is mainly associated with contributions from
groundwater flow, use of a linear approach assumes that the outflow of the
groundwater reservoir is directly proportional to the hydraulic head (Hornberger et
al., 1998). Cases where this assumption is valid include confined aquifers with
constant thickness (Darcy's law), and unconfined aquifers where the variation in
flow depth is small, i.e. the impermeable layer is far below the river bed (Chapman,
1999). However, Wittenberg (1999) found that the behaviour of shallow
groundwater reservoirs may be more realistically represented by a non-linear
reservoir.
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Additional evidence for the need to use non-linear reservoirs in some cases is given
by the fact that three parallel linear reservoirs are required to adequately fit the
catchment response (Lees and Wagener, 2000b;c). In this case, one store normally
represents the quick response, and the slow response is divided into two stores with
different residence times. One interpretation of this result is that two independent
aquifers drain to the river (Wittenberg, 1999). This is often unlikely, and the use of a
non-linear reservoir to represent the slow response, in combination with a linear
reservoir for the quick response, may be more reasonable.
The use of a non-linear reservoir is an available option in the RRMT. Linear and
non-linear reservoirs can also be combined in parallel or serial structures.

q2=k2(S-S2)

q3=k3S
S2

S1

q1=k1(S-S1)

uuu

Q Q

S
S S

Fig. 5. Conceptual routing components available in the RRMT: (a) linear;
(b) non-linear (example); and (c) leaky catchment structure.

All routing components described so far are based on the assumption that all
subsurface runoff drains from the catchment via the stream. However, part of the
runoff leaves some catchments through subsurface pathways. A routing component
taking this into account can consist of a linear reservoir with different outlets
(Chapman, 1999; see also Sugawara, 1995; and Moore, 1999). The outflow from the
bottom outlet is the part of the effective rainfall not contributing to streamflow (Fig.
5).

4.5 OPTIMIZATION MODULES
The model structures that can be implemented in the RRMT contain parameters that
typically refer to a collection of aggregated processes. Therefore they often do not
have a direct physical interpretation and cannot be measured in the field. Instead,
they must be estimated using a calibration procedure whereby the model parameters
are adjusted until the system output and model output show an acceptable level of
agreement. The agreement is typically measured using an objective function, i.e.
some aggregation function of the model residuals, supported by visual inspection of
the calculated time series. The model, i.e. a model structure and parameter set
combination, that produces the best performance is commonly assumed to be
representative of the natural system under investigation.
Most parameters in conceptual rainfall-runoff models define non-linear model
equations. The consequence of this is that an iterative search is required to identify
the optimum parameter values. This can be done using a manual 'trial-and-error'
procedure, by an automatic search algorithm, or by a combination of both
approaches (Boyle et al., 2000). Manual calibration is time consuming and difficult
in the presence of parameter dependence. However, automatic calibration
algorithms can be applied to overcome this problem. Available search algorithms
can be separated into local and global approaches. Local search algorithms start
from an initial solution, i.e. an initial parameter set, and try to sequentially improve
this solution by repeatedly moving through the parameter space using various
schemes to find the next location. The search is stopped when a termination
criterion, e.g. a specific objective function value, is satisfied. Research has shown
that the characteristics of the response surface created by conceptual rainfall-runoff
models are usually not suitable for application of local optimization methods (Duan
et al., 1992), since the presence of multiple optima often leads to premature
convergence of the optimization at a local optimum. Global optimization methods,
working with parameter or model populations (i.e. parameter set / model structure
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combinations), have therefore been introduced. Popular approaches include
population evolution (e.g. Genetic Algorithms (GA), Wang, 1991; and the Shuffled
Complex Evolution algorithm (SCE-UA), Duan et al., 1992), or adaptive random
search methods (e.g. Price, 1987). However, various researchers have found that
different parameter sets, often widely distributed in the feasible parameter space,
lead to similar model performance with respect to a certain objective function (e.g.
Johnston and Pilgrim, 1976; Beven and Binley, 1992; etc).
These findings have led some researchers to the conclusion that the idea of 'point
identifiability', i.e. a global optimum, is not feasible in the presence of errors in data
and model structure, and limitations in parameter estimation procedures (e.g. Spear
and Hornberger, 1980; Van Straten and Keesman, 1991; Beven and Binley, 1992).
Instead, these researchers advocate the identification of 'behavioural' parameter
populations, i.e. parameter sets performing better than a certain threshold. All
parameter sets that are classified as behavioural are considered to be possible
representations of the natural system under investigation (Van Straten and
Keesman, 1991). Monte-Carlo sampling procedures (Press et al., 1992) such as
importance sampling or Markov chain sampling (e.g. Kuczera and Parent, 1998)
are sometimes used as the basis to explore the feasible parameter space in order to
identify potential models. Importance sampling based on a uniform prior
distribution is most often applied (e.g. Beven and Binley, 1992; Freer et al., 1996),
i.e. assuming no prior knowledge of parameter values, other than boundary values.
The drawback of this sampling approach is its requirement for a large number of
model runs (Spear, 1993).
Gupta et al. (1998) point out that, in the presence of (unavoidable) model structural
error, a range of parameter sets is required to adequately simulate all response
modes of natural systems. Single parameter sets will favor specific response
features, e.g. peak or low flows. This leads to the conclusion that a multi-objective
optimization problem exists even for single output model structures. The
implications of this observation are discussed further below.

In those cases where a TF model is selected as the routing component, structure
identification and parameter estimation is performed using the SRIV method of
system identification (Young, 1985; Jakeman et al., 1990; Young, 1992). Since the
TF model is linear the standard least squares normal equations can be used to
calculate the optimum parameter estimates under a number of assumptions relating
to the form of the random inputs to the system. The TF structure is identified by the
fitting of a large number of different model structures followed by an assessment of
the model performance versus parameter identifiability using a extension of the
Akaike Information Criterion (AIC; Akaike, 1974) termed Young's Information
Criterion (YIC; Young et al., 1996). This statistical assessment is combined with an
assessment of the physical validity of the model in an approach termed data-based
mechanistic modeling (Young, 1992; Young et al., 1996; Lees, 2000). In the rainfall-
runoff modeling case this means that a TF structure is only accepted if the TF
structure can be interpreted as a combination of linear stores in series and/or
parallel.

4.6. OBJECTIVE FUNCTIONS
The performance of a model, i.e. a parameter set and model structure combination,
is typically judged using an objective function, usually in combination with visual
inspection of the calculated hydrograph. Objective functions aggregate the model
residuals, i.e. the part of the observed flow not reproduced by the model, which can
be calculated using,

)|(ˆ)()|( θ−=θε tytyt (18)
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where )|t(ŷ θ  is the calculated flow at time step t using the parameter set θ , y(t) is
the observed flow at time step t, and )|t( θε  is the resulting residual at time step t
using parameter set θ .
The task is then to minimize the size of the objective function. A variety of functions
are available in the RRMT (Table 1), which can be used to evaluate different aspects
of a model’s performance.
The most commonly utilized objective functions in hydrological modeling are based
on the Simple Least Squares (SLS) function,
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θε=θ
N

t

tSLS
1

2)|()( (19)

where N is the number of flow values available. The SLS function is the maximum
likelihood estimator when the following assumptions about the residuals cannot be
rejected (Troutman, 1985; Yapo et al., 1996; Gershenfeld, 1999): (1) the residuals
are independent and identically distributed (i.i.d.), (2) the residual distribution has
homogeneous variance, (3) the residual distribution follows a normal distribution
with mean zero.

Table 1. Objective functions available in the RRMT.
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RMSE Warming
Up Period FWU RMSE of selected time steps
1 Nash and Sutcliffe (1970)
2 Sorooshian and Dracup (1980), Yapo et al. (1996)
3 American Society of Civil Engineers (1993)
4 Boyle et al. (2000)

The analysis of the characteristics of the residual distribution is also an important
step in evaluating the suitability of a model structure (see for example Yapo et al.,
1996; Mroczkowski et al., 1997; or Ljung, 1999 for details). "If a fit produces
residuals consistent with the random error assumptions, then the model has
extracted all useful information from the data leaving only noise in the residuals"
(Mroczkowski et al., 1999).
Graphical tests can be applied to evaluate the assumptions made about the
characteristics of the residuals (Draper and Smith, 1981; Kuczera, 1983). A number
of different plots are available in the RRMT to facilitate this evaluation: (1) plotting
the residuals versus predicted and calculated runoff reveals whether the variance of
the residuals increase with increasing flow values, i.e. the problem of
heteroscedascity; (2) plots of residuals versus time reveal long term effects (trends)
or dependency in time; (3) normal distribution probability scaled plots can be used
to indicate how close the residual distribution is to a normal distribution; and (4)
calculating (and plotting) the autocorrelation coefficients allows users to assess the
correlation of the residuals in time. If the assumption of zero mean cannot be
rejected, the autocorrelation coefficient of the residuals is described as (Scholz,
1995)
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where τ is a lag (τ = 0,1,2,…,N-1), and r(τ) ranges from minus one to plus one.
The 95% confidence intervals can be calculated as follows,

N
r 196.1|)(| ⋅<τ (21)

where N is the number of data points available. Not more than 5% of the residuals
should lie outside these limits.
The assumption of no autocorrelation, i.e. independence in time, is often not
satisfied in rainfall-runoff modeling applications. Residuals of small temporal
discretizations, e.g. daily, are usually related over a number of time steps.
Sorooshian and Dracup (1981), and Kuczera (1983) describe consequences and
corrective measures if this assumption is violated.
Another problem often encountered in rainfall-runoff modeling is the fact that the
residual variance increases with increasing flow values, i.e. the assumption of
homoscedascity cannot be justified (Sorooshian and Dracup, 1981). In such cases,
the variance can be stabilized through transformation of the simulated and observed
flow data, or by the use of a weighted least-squares objective function (Kottegoda
and Rosso, 1997).
A Box-Cox transformation (Kottegoda and Rosso, 1997) which can be written in the
following form is a useful transformation in this regard,
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where q is the flow and λ  is the transformation parameter.
Sorooshian and Dracup (1981) use this transformation in their Heteroscedastic
Maximum Likelihood Estimator (HMLE; Table 1, see also Sorooshian et al., 1993).
In this objective function, the parameter λ  is estimated simultaneously with the
model parameters. The HMLE is the maximum likelihood estimator when
assumptions (1) and (3) are valid, and the residual distribution has mean zero and
heteroscedastic variance, i.e. the variance is a function of the flow. Both Box-Cox
transformations and the use of the HMLE are available options in RRMT.

Another problem, already briefly indicated, occurs in terms of selection of an
appropriate objective function when automatic search algorithms are applied. The
drawback of single-criterion algorithms is that the calibration result is fully
dependent on one objective function (Gupta et al., 1998; Boyle et al., 2000). This
can lead to an unreasonable emphasis on the fitting of a certain aspect of the
response, e.g. peak flows, whilst neglecting the model performance with regard to
another aspect, e.g. low flows (Fig. 6). Hydrological models are typically not
capable of fitting all system response modes with a single parameter set due to the
presence of structural errors. This can lead to a calibration result that is not
acceptable to hydrologists, therefore constraining the usefulness of automatic
calibration (Boyle et al., 2000). A multi-criteria approach is proposed by Gupta et
al. (1998) to address this problem. The objective of this approach is to increase the
amount of information retrieved from the model residuals to: (1) find the parameter
population necessary to fit all aspects of the observed output time-series, e.g. in a
first stage of a hybrid automatic-manual calibration procedure (Boyle et al., 2000);
(2) increase the identifiability of the model parameters (Wheater et al., 1986;
Wagener et al., 2000a); and (3) to assess the suitability of the model structure to
represent the natural system, i.e. identify model structural insufficiencies (Gupta et
al., 1998; Boyle et al., 2000). Or as Yan and Haan (1991) state "…the use of
multiple objective criteria for parameter estimation permits more of the information
contained in a data set to be used and distributes the importance of the parameter
estimates among more components of the model. Additionally, the precision of some
parameters may be greatly improved without an adverse impact on other
parameters".
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Fig. 6. Plot showing predictions using two different parameter sets with an
identical model structure. Both realizations yield similar values of the
Nash-Sutcliffe Efficiency measure (0.82), but show differences in fit
when the response is analyzed closely.

A simple application of multi-objective optimization is the definition of specific
objective functions for water resources management. Often, a specific flow range,
e.g. between the minimum environmentally acceptable flow and a maximum water
supply abstraction rate, is of particular interest. Specifying an objective function
measuring the performance of the model in this range, in addition to the traditional
measures of performance, can help to assess the suitability of a model structure for
the selected purpose (Lees and Wagener, 2000b;c). Measures available in the RRMT
allow the calculation of the RMSE above (FH) and below (FL) a user specified
threshold, and within a certain flow range (FM), see Table 1.
Other multiple objectives that can be selected are the RMSE based on a modified
segmentation scheme suggested by Boyle et al. (2000, see application example for
details), or the RMSE for a warming up period to estimate initial conditions, FWU.
The RRMT allows users to add objective functions in a modular way depending on
an application’s requirements.

4.7 VISUAL ANALYSIS MODULES
Different plotting options are available in RRMT to analyze the data and the
performance of the model. Examples of these plots are: (1) double mass plots; (2)
observed versus calculated flow scatter diagrams, both on normal and logarithmic
scales; (3) flow duration curves and volumetric fit, etc. These plots are helpful tools
that enable an assessment of model performance from different perspectives.

4.8 SUMMARY
In summary, the RRMT is a generic modeling shell that allows its user to implement,
evaluate and modify lumped, conceptual or hybrid metric-conceptual model
structures. A variety of moisture accounting and routing components are provided
and the addition of new structures is straightforward. Different data manipulation,
optimization, and visualization options are available to calibrate and evaluate the
model. The implemented approach is in accordance with the requirements outlined
in the analytical framework described earlier in the text.
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5. MONTE-CARLO ANALYSIS TOOLBOX
5.1 GENERAL
The detailed investigation of model performance in terms of parameter sensitivity
and identifiability, the suitability of a particular model structure, and prediction
uncertainty, are increasingly important parts of the modeling task. The
understanding of model behaviour and performance gained increases the
transparency of the modeling procedure and helps to assess the reliability of
modeling results.
The Monte-Carlo Analysis Toolbox (MCAT, Wagener et al., 1999; Lees and
Wagener, 2000a) includes a number of analysis methods to evaluate the results of
Monte-Carlo parameter sampling experiments or model optimization methods based
on population evolution techniques, for example, the Shuffled Complex Evolution
algorithm (SCE-UA; Duan et al., 1992). Functions contained in the MCAT include
an extension of the Regional Sensitivity Analysis (RSA, Spear and Hornberger,
1980; Hornberger and Spear, 1980) proposed by Freer et al. (1996), various
components of the Generalized Likelihood Uncertainty Estimation (GLUE) method
(Beven and Binley, 1992; Freer et al., 1996), options for the use of multiple-
objectives for model assessment (Gupta et al., 1998; Boyle et al., 2000), response
surface plots, and a measure to evaluate parametric identifiability for a selected
objective function or in a dynamic fashion.

5.2 SYSTEM ARCHITECTURE
The MCAT is a collection of MATLAB (Mathworks, 1996) analysis and visualization
functions integrated through a graphical user interface (Fig. 7). It can also be
accessed through an interface from the RRMT. Note that the MCAT is not
specifically related to rainfall-runoff modeling and can be used to analyze the
results of any dynamic mathematical model.
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Fig. 7. System architecture of the Monte-Carlo Analysis Toolbox.

5.3 PARAMETER SENSITIVITY AND IDENTIFIABILITY
Sensitivity analysis is an approach to evaluating how changes in model parameters
affect the model output variable(s). This information can be used to identify
parameters that are not important for the reproduction of the system response and
can therefore be subsequently fixed or removed, reducing the dimension of the
calibration problem.
A popular sensitivity analysis method that utilizes the results of Monte-Carlo
sampling is Regional Sensitivity Analysis (RSA, Spear and Hornberger, 1980;
Hornberger and Spear, 1981), which analyzes the sensitivity of different parameters
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without referring to a certain point in the parameter space, e.g. the most likely value
for a specific parameter (Spear, 1993).
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Fig. 8. Cumulative distributions of initial ( )( xF θ ), 'behavioural'

( )|( BF xθ ) and 'non-behavioural' ( )|( BF xθ ) populations for a
sensitive parameter θθθθi, and a (conditionally) insensitive parameter θθθθj.

The RSA method starts with the Monte-Carlo sampling of N points in the feasible
parameter space based on a uniform distribution. The resulting parameter
population is partitioned into a behavioural ( B ) and a non-behavioural ( B ) group.
This division can for example be based on the predicted state of the system (Spear
and Hornberger, 1980) or on a measure of performance (Hornberger et al., 1985;
Beven and Binley, 1992, amongst others). The cumulative distributions for both
groups ( )|( BF xθ  and )|( BF xθ ) are computed (Fig. 8). A separation between the
curves indicates that the initial distribution )( xF θ  is divided by the classification
into behavioural and non-behavioural. This indicates that the parameter xθ  is
sensitive, i.e. has an important effect on the model result. The significance of the
separation can be estimated using statistical tests such as the Kolmogorov-Smirnov-
two-sample test (Kottegoda and Rosso, 1998), and a heuristic ranking scheme can
be introduced (Spear and Hornberger, 1980).
However, the lack of separation between the cumulative distributions of )|( BF xθ

and )|( BF xθ  is only a necessary, but not a sufficient condition for insensitivity of

xθ  (Spear, 1993). It is possible that it is caused by strong correlation with other
parameters. Evaluation of the parameter covariance can be used to estimate
whether this is the case (Hornberger and Spear, 1981; Hornberger et al., 1985). The
interaction between two parameters can also be investigated in the MCAT by
plotting their response surface with respect to one or different objective functions.
A modification of the RSA approach proposed by Freer et al. (1996) is implemented
in the MCAT to visually inspect the sensitivity of the different parameters with
respect to the selected objective function. Freer et al. (1996) split the parameter
population, ranked on their objective function values, into ten groups of equal size
and plot the cumulative distribution of the parameters in each group with respect to
the chosen measure of performance. Differences in form and separation of the
resulting curves indicate parameter sensitivity. Splitting the parameter population
into ten groups, instead of just dividing it into behavioural and non-behavioural
parameter sets as in the original method, avoids the selection of a threshold value,
and increases the information gained by the analysis.
The variation in performance between the different groups can be visualized using
the class plot option in the MCAT. This figure shows the response vector calculated
with the best performing parameter set in each of the groups and plots them together
with the observed response (if available).
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Fig. 9. Example of a well identified and a poorly unidentified parameter.
The top row shows scatter plots of parameter versus measure of
performance. It has to be considered that these projections into a
single parameter dimension can, however, hide some of the structure
of the response surface (Beven, 1998). The bottom row shows the
cumulative distribution of the best performing 10% of parameter sets
and the corresponding gradients within each segment of the
parameter range.

However, parameter sensitivity is only a necessary, but not a sufficient requirement
for identifiability, since values of sensitive parameters that produce an acceptable
model performance can still be distributed over a relatively wide range of the
feasible parameter space. A model, i.e. a parameter set θ within a certain model
structure, is termed (globally) identifiable if it is possible to uniquely determine its
location in the parameter space based on the model output produced. This requires
the parameter set to yield a unique response vector (Mous, 1993). However, the
specific characteristics of conceptual rainfall-runoff models (Duan et al., 1994;
Gupta et al., 1998), the often limited information content of the available time-
series, and the restrictions of single value objective functions that aggregate the
response vector into a single value, often limit the success of parameter
identification as described earlier.
The RSA procedure outlined above has been extended to investigate the
identifiability of a parameter. Reducing the analysis to the cumulative distribution of
the best performing group derived from the approach implemented by Freer et al.
(1996) allows the definition of an approximate measure of identifiability for each
parameter. The cumulative distribution of a uniform distribution is a straight line.
Deviations from this straight line indicate regions of higher identifiability. Splitting
the feasible parameter range into segments, and calculating the gradient of the
cumulative distribution in each segment leads to an indicator of identifiability. Fig.
9 shows how the gradients for a well identified and a poorly unidentified parameter
are distributed. An example of the utility of this measure is included as part of the
demonstration application described later. The identifiability measure can also be
used in a dynamic way to link parameters, and therefore model components, to
system response modes in an objective fashion. The flow-chart in Fig. 10 describes
the steps required to perform the dynamic identifiability analysis. In short, the
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identifiability measure is calculated as a function of the residuals over a period of X
days before and after the time step analyzed. The size of X is dependent upon the
number of time steps over which the parameter is influential.
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Fig. 10. Dynamic identifiability analysis flowchart.

5.4 MODEL STRUCTURE SUITABILITY
The problem of model structural error or suitability is an issue of increasing interest
in recent research (e.g. Kleissen et al., 1990; Yapo et al., 1996; Gupta et al, 1998;
Boyle et al., 2000). Gupta et al. (1998) introduced a multi-objective analysis
framework to investigate deficiencies in the model structure, which are reflected in a
structure's inability to simultaneously reproduce different aspects of the system
response with a single set of parameters. Different parameter combinations are
required to fit different response modes (Boyle et al., 2000), or output variables
(Bastidas, 1998). Defining more than one objective function to measure the model
performance with respect to different system responses, and analyzing the variation
in the resulting parameter populations can be used to estimate the degree of
structural uncertainty present. Multi-objective plots, i.e. scatter plots of different
objective functions against each other, are available in the MCAT to evaluate
whether the selected measures of performance retrieve similar information from the
residuals or whether they are uncorrelated. Uncorrelated measures show a trade-off
front, described by the Pareto set (Gupta et al., 1998). A parameter set is termed
Pareto optimal if, by changing its parameters, an improvement with respect to one
objective function results in the degradation with respect to another objective
function (Chankong and Haimes, 1993). The Pareto set can be calculated from the
available parameter population in the MCAT and the range of predictions produced
by this population can be visualized. It is also possible to plot the best parameter
sets for different objective functions on a normalized scale to see the variation
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caused by the different measures (for more details of multi-objective optimisation
see Sorooshian et al., 2000, 'Emerging paradigms for the calibration of hydrologic
models', in Vol.1).

5.5 PREDICTION UNCERTAINTY
Uncertainties in model parameters propagate to prediction uncertainties. A popular
method of estimating and propagating this uncertainty is the Generalized Likelihood
Uncertainty Estimation (GLUE) approach (Beven and Binley, 1992; Freer et al.,
1996; Beven, 1998). The underlying assumption of this approach is similar to that of
the RSA methodology described earlier, i.e. since it is not possible to find a global
optimum, only a population of possible (behavioural) parameter sets can be
estimated. The approach starts with a Monte Carlo procedure, sampling a large
number of random parameter sets from a uniform distribution. A simulation is then
performed using each parameter set and a 'likelihood' measure to evaluate the
performance of the sets is calculated. A likelihood measure in the GLUE context can
be any measure of performance so long as better performing models attain a higher
value. The likelihood values of parameter sets below a certain, user selected
threshold, are set to zero, since they are considered to be 'non-behavioural'. The
likelihood values of the retained models are use to weight the predictions calculated
with the corresponding parameter set. The uncertainty in the parameter values, and
implicitly the uncertainty in the data, is propagated into the model response in the
form of confidence limits of a specified percentile. Within the MCAT, it is also
possible to calculate a cumulative probability distribution and probability density
function for a selected variable, e.g. the peak output.

5.6 SUMMARY
In summary the MCAT aims to provide a tool which addresses the emerging
requirement to include detailed investigations of model behaviour, performance,
and prediction uncertainties as an integral part of the modeling process. Options
currently available include visualization of the parameter space (e.g. surface and
identifiability plots), various capabilities of the GLUE approach (e.g. prediction
uncertainty and extended RSA approach), and plots to analyze the role of multiple-
objectives (including the option to calculate the Pareto optimal solution and plotting
the response range produced by it). It also allows the estimation of dynamic
parameter identifiability.

6. APPLICATION EXAMPLES
To illustrate the use of the toolboxes, application examples are presented based on
the River Medway catchment (1256.1km2), which is located in South East England.
Almost seven years of daily naturalized flows, precipitation, potential
evapotranspiration and temperature data are available for use in the two modeling
exercises presented.
The model structures used are based on the Penman two-store model and different
combinations of linear and non-linear conceptual reservoirs. This model structure
has been found to be appropriate for UK catchments such as the Medway that are
characterized by a mixture of permeable (chalk) and impermeable (clay) geologies
subject to a temperate climate (annual rainfall of 772 mm and an annual PE of 663
mm (1989-96)).

6.1 USE OF MULTIPLE OBJECTIVE FUNCTIONS
The first example demonstrates how the importance of different components of a
simple model structure varies with different response modes of the catchment
system. The model structure used is the Penman two-store model, connected to two
linear reservoirs in parallel. A uniform random search (10000 samples) is used to
investigate the feasible parameter space.
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Different response modes are identified using a partitioning scheme suggested by
Boyle et al. (2000). This approach is based on the assumption that the behaviour of
the catchment is different during periods 'driven' by rainfall and periods without
rain, i.e. 'non-driven'. Further, the periods classified as non-driven can be
distinguished between periods dominated by quick-response and periods dominated
by the slow response of the catchment system. The streamflow hydrograph can
therefore be partitioned into three components, 'driven', 'non-driven quick', and
'non-driven slow'. The approach, developed for a semi-arid catchment by Boyle et
al. (2000), is slightly modified here to render it suitable for temperate catchments.

Fig. 11. A hundred day period of Medway streamflow and rainfall segmented
using the scheme modified from Boyle et al. (2000). The dots indicate
time steps classified as driven (black), non-driven quick (gray), and
non-driven slow (white).

The time steps corresponding to each period are identified through an analysis of
the precipitation data and the time of concentration of the catchment (Fig. 11). The
time steps with rainfall larger than a certain threshold (e.g. mean of the square-root
of the rainfall), lagged by the time of concentration of the catchment, are classified
as driven. Of the remaining (non-driven) time steps, those with streamflow lower
than a selected threshold (e.g. a third of the mean of the square-root of the flows)
are classified as non-driven-slow, and the rest are classified as non-driven-quick.
The model performance during these three periods (QD, QQ, and QS) is estimated
by calculating the RMSE (FD, FQ, FS) over each period.
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Fig. 12. RSA plot showing that the sensitivity of different parameters varies
with the response period of the system using the different objective
functions RMSE, FD, FQ, and FS. Darker lines indicate better
performing models.

The RSA approach described earlier can be used to investigate the response mode
specific character of the parameter sensitivity (Dunn, 1999; Wagener et al., 1999).
Fig. 12 shows how the sensitivity of the different parameters varies with the
response mode of the system even for this simple model structure. The top row
shows the parameter sensitivity with respect to the RMSE over the complete
calibration period, while the subsequent rows show the sensitivity during the
different response modes as described above. The overall RMSE and FD result in
almost identical sensitivities, while FQ and especially FS show different behaviours.
The bypass (fraction of rainfall contributing directly to runoff) and the residence
time of the linear reservoir responsible for routing the slow response reveal
increased sensitivities during the non-driven slow period. The influence of the quick
response residence time on the other hand is very low. The percentage effective
rainfall routed through the quick response reservoir, %(q), is the only parameter
that shows a similar sensitivity during all response modes.
The measure of identifiability introduced earlier in the text, i.e. the (segmented)
gradient of the cumulative parameter distribution for the best performing group, can
be used here to demonstrate that the change in the identifiability of different
parameters is similar to that of their sensitivity (Fig. 13). The results show that the
root constant parameter shows similar levels of identifiability for all periods, but the
estimated parameter value for the slow response differs considerably from that for
the other objective functions. This suggests limitations caused by the simple model
structure, compensated by changes in the parameter value to fit different aspects of
the system response. The bypass and k(q) show higher levels of identifiability for
specific measures indicating that these parameters are identifiable mainly during
certain periods. These are periods of slow response for the bypass and the
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remaining periods for k(q). More information about the parameters is available
during these periods. Parameter %(q) is identifiable during all periods. Additionally
all values are in close proximity indicating that this parameter is well identified, and
stable during all response modes. Parameter k(s) shows only a slight improvement
in identifiability during slow response periods. The identifiability values are
relatively low indicating identifiability problems with respect to this parameter.
This perceptual segmentation scheme can be supported by a dynamic identifiability
analysis. Fig. 14 shows the variation in identifiability over time for the bypass
parameter as an example. A 20 day moving window is used to estimate an
identifiability value at every time step. The result shows that this parameter is highly
identifiable during summer periods. During these periods a low bypass value is
required to avoid erroneous prediction of hydrograph peaks at the end of the
summer.

Fig. 13. Plot showing the location of the maximum identifiability value for
the different model parameters using the objective functions RMSE,
FD, FQ, and FS.

Fig. 14. Dynamic identifiability plot for the bypass parameter.
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This example demonstrates that the use of multiple objective functions can lead to
an increase of information with respect to parameter sensitivity and identifiability. A
multi-objective framework can therefore lead to improved understanding of model
behaviour during different response modes, and indicate limitations in the model
structure, as evidenced by the varying parameter values observed.

6.2 COMPLEXITY VERSUS IDENTIFIABILTY
The second example compares model structures of different levels of complexity with
respect to performance and identifiability. The model structural complexity is
increased from a simple bucket, emptied by overflow and/or potential
evapotranspiration, to a two-store model based on the Penman drying curve concept
described earlier (see Table 2). Additionally the routing component is varied using
different combinations of linear and non-linear stores. A model structure is
classified as more complex when the number of free parameters is higher or the
structural complexity is increased, i.e. a change from bucket to Penman structure.
For simplicity, no distinction is made between linear and non-linear approaches.

Table 2. Model structures used. A cross indicates the use of this particular
structural element.

Model Moisture accounting Routing
Type Structure

B1 P2S2 BP3 L4 NL5 1S6 2P7 3P8

01 (2)0 X X X
02 (2) X X X
03 (3) X X X X
04 (4) X X X X
05 (5) X X X X
06 (6) X X X X X
07 (7) X X X X

0 Number of parameters.
1 Simple Bucket emptying at potential rate as long as moisture is available.
2 Penman two store model as described earlier in the text (Bypass = 0).
3 Bypass mechanism, i.e. a percentage of the rainfall is directly contributing to
runoff.
4 Conceptual linear reservoirs.
5 Conceptual non-linear reservoirs.
6 Single reservoir.
7 Two reservoirs in parallel.
8 Three reservoirs in parallel.

The performance of each model structure is evaluated using the Nash-Sutcliffe
Efficiency (NSE, Nash and Sutcliffe, 1970, Table 1). However, the NSE criterion
favors models that are able to reproduce the catchment response at high flows
(Legates and McCabe, 1999). An improvement in performance through increased
model complexity, for example during periods of recession, could therefore go
unnoticed. This can be avoided by using the partitioning scheme already applied in
the first example, and calculating the weighted addition of the NSE for each period.
Equal weight is given to each of the periods assuming that a balanced reproduction
of the whole hydrograph is the objective. The measure of performance is calculated
as follows,

SQD NSENSENSEPEF
3
1

3
1

3
1 ++= (23)

where NSEx is the performance measure during driven (QD), non-driven quick
(QQ), and non-driven slow (QS) periods. A MATLAB implementation of the SCE-
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UA approach (Duan et al., 1992) is used to optimize the model performance with
respect to the defined objective function.
The identifiability of each model structure is investigated using the measure
described earlier in the text. A Monte Carlo sampling procedure (10000 samples)
based on a uniform distribution is used to investigate the feasible parameter space
for each model structure. The maximum identifiability value of each parameter, i.e.
the maximum gradient of its cumulative distribution, is calculated. The mean of all
parameter values for each model structure is used as an indicator of parameter
identifiability. The difference in parameter dimension between the model structures
is considered by analyzing the stability of the identifiability measure while varying
the size of the parameter population considered to calculate it.
Plotting the measures of performance and identifiability against the model
structures leads to the graph shown in Fig. 15. The result suggests that increased
model complexity leads to increased performance while the identifiability of the
model parameters decreases. A trade-off between these two features is required if,
for example, it is intended that the model structure is to be use within a
regionalization project. The decline in performance with regard to model M-7 is
caused by the more suitable slow flow component of model M-6 (a non-linear store).

Fig. 15. Performance versus identifiability plot for the different model
structures investigated.

7. CONCLUSIONS
The toolkit presented here facilitates the development and analysis of lumped,
parsimonious model structures using state-of-the-art modelling techniques. The
RRMT allows the implementation of conceptual, or hybrid metric-conceptual model
structures. Its major advantage is a high degree of structural flexibility which allows
the quick implementation and evaluation of different model structures to identify the
most suitable one for the circumstances at hand. The MCAT enables the detailed
investigation of model performance, parameter sensitivity and identifiability, model
structure suitability, and prediction uncertainty. The toolkit has been developed in
accordance with the analytical framework suggested in chapter 3 (Fig. 1). A
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tradeoff between the required levels of model complexity in terms of model
performance, and the supported levels of model complexity, in terms of
identifiability of the model's parameters, can be made to identify the most suitable
model structure for a certain modelling application. For instance, if regionalization
is required, models with highly identifiable parameters should be selected at the
expense of some loss of performance.
Both Matlab toolboxes described here are freely available for non-commercial use
from our web-site, see http://ewre.cv.ic.ac.uk/.
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