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Conceptual modeling requires the identification of a suitable model structure
and, within a chosen structure, the estimation of parameter values (and, ideally,
their uncertainty) through calibration against observed data. A lack of objective
approaches to evaluate model structures and the inability of calibration proce-
dures to distinguish between the suitability of different parameter sets are major
sources of uncertainty in current modeling procedures. This is further complicat-
ed by the increasing awareness of model structural inadequacies. A framework for
the identification and evaluation of conceptual rainfall-runoff models is present-
ed, based on multi-objective performance and identifiability approaches, and a
novel dynamic identifiability analysis (DYNIA) method which results in an
improved use of available information. The multi-objective approach is mainly
used to analyze the performance and identifiability of competing models and
model structures, while the DYNIA allows periods of high information content
for specific parameters to be identified and model structures to be evaluated 
with respect to failure of individual components. The framework is applied to a
watershed located in the South of England.

1. INTRODUCTION

Many if not most rainfall-runoff model structures currently
used can be classified as conceptual. This classification is based
on two criteria: (1) the structure of these models is specified prior
to any modelling being undertaken, and (2) (at least some of) the
model parameters do not have a direct physical interpretation, in
the sense of being independently measurable, and have to be esti-

mated through calibration against observed data [Wheater et al.,
1993]. Calibration is a process of parameter adjustment (auto-
matic or manual), until observed and calculated output time-
series show a sufficiently high degree of similarity.

Conceptual rainfall-runoff (CRR) model structures com-
monly aggregate, in space and time, the hydrological
processes occurring in a watershed (also called catchment),
into a number of key responses represented by storage com-
ponents (state variables) and their interactions (fluxes). The
model parameters describe aspects such as the size of those
storage components, the location of outlets, the distribution
of storage volumes etc. Conceptual parameters, therefore,
usually refer to a collection of aggregated processes and
they may cover a large number of sub-processes that cannot
be represented separately or explicitly [Van Straten and
Keesman, 1991]. The underlying assumption however is
that these parameters are, even if not measurable properties,
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at least constants and representative of inherent properties
of the natural system [Bard, 1974, p.11].

The modeller’s task is the identification of an appropriate
CRR model (or models) for a specific case, i.e. a given
modelling objective, watershed characteristics and data set.
A model is defined in this context as a specific parameter set
within a selected model structure. Experience shows that
this identification is a difficult task. Various parameter sets,
often widely distributed within the feasible parameter space
[e.g. Duan et al., 1992; Freer et al., 1996], and sometimes
even different conceptualisations of the watershed system
[e.g. Piñol et al., 1997; Uhlenbrock et al., 1999], may yield
equally good results in terms of a predefined objective func-
tion. This ambiguity has serious impacts on parameter and
predictive uncertainty [e.g. Beven and Binley, 1992], and
therefore limits the applicability of CRR models, e.g. for the
simulation of land-use or climate-change scenarios, or for
regionalisation studies [Wheater et al., 1993].

Initially it was thought that this problem would disappear
with improved automatic search algorithms, capable of
locating the global optimum on the response surface [e.g.
Duan et al., 1992]. However, even though powerful global
optimisation algorithms are available today, single-objective
calibration procedures still fail to completely replace manu-
al calibration. One reason for this is that the resulting hydro-
graphs are often perceived to be inferior to those produced
through manual calibration from the hydrologist’s point of
view [e.g. Gupta et al., 1998; Boyle et al., 2000]. It has been
suggested that this is due to the fundamental problem that
single-objective automatic calibration is not sophisticated
enough to replicate the several performance criteria implicit-
ly or explicitly used by the hydrologist in manual calibration.
This problem is increased by indications that, due to struc-
tural inadequacies, one parameter set might not be enough to
adequately describe all response modes of a hydrological
system. Therefore, there is a strong argument that the process
of identification of dynamic, conceptual models has to be
rethought [Gupta et al., 1998; Gupta, 2000].

Three reactions to this problem of ambiguity of system
description can be found in the hydrological literature. The
first is the increased use of parsimonious model structures
[e.g. Jakeman and Hornberger, 1993; Young et al., 1996;
Wagener et al., 2001b], i.e. structures only containing those
parameters, and therefore model components, that can be
identified from the observed system output. However, the
increase in identifiability is bought at the price of a decrease
in the number of processes described separately by the
model. There is therefore a danger of building a model
(structure) which is too simplistic for the anticipated pur-
pose. Such a model (structure) can be unreliable outside the
range of watershed conditions, i.e. climate and land-use, on

which it was calibrated, due to the restriction to ‘justifiable’
components [Kuczera and Mroczkowski, 1998]. It is also
particularly important that the data used has a high infor-
mation content in order to ensure that the main response
modes are excited during calibration [Gupta and
Sorooshian, 1985, Yapo et al., 1996].

The second reaction is the search for calibration methods
which make better use of the information contained in the
available data time-series, e.g. streamflow and/or ground-
water levels. Various research efforts have shown that the
amount of information retrieved using a single objective
function is sufficient to identify only between three and five
parameters [e.g. Beven, 1989; Jakeman and Hornberger,
1993; Gupta, 2000]. Most CRR model structures contain a
larger number. More information can become available
through the definition of multiple objective functions to
increase the discriminative power of the calibration proce-
dure [e.g. Gupta et al., 1998; Gupta, 2000]. These measures
can either retrieve different types of information from a sin-
gle time-series, e.g. streamflow [e.g. Wheater et al., 1986;
Gupta et al., 1998; Dunne, 1999; Boyle et al., 2000;
Wagener et al., 2001a], or describe the performance of indi-
vidual models with respect to different measured variables,
e.g. groundwater levels [e.g. Kuczera and Mroczkowski,
1998; Seibert, 2000], saturated areas [Franks et al., 1998],
or measurements of streamflow salinity [Mroczkowski et al.,
1997; Kuczera and Mroczkowski, 1998]. However, the use-
fulness of additional data can depend on the adequacy of the
model structure investigated. Lamb et al. [1998] found that
the use of groundwater levels from one or only a few meas-
urement points as additional output variable(s) helped to
reduce the parameter uncertainty of Topmodel [Beven et al.,
1995]. The use of many (>100) groundwater measurement
points however, leads to an increase in prediction uncer-
tainty indicating structural problems in the model. Seibert
and McDonnell [this volume] show in a different approach
how the parameter space can be constrained when soft data,
i.e. qualitative knowledge of the watershed behaviour, is
included in the calibration process. The soft data in their
case included information, derived through experimental
work, about the contribution of new water to runoff and the
restriction of parameter ranges to a desirable range. The
result is a more realistic model, which will however yield
sub-optimal performances with respect to many specific
objective functions, in their case the Nash-Sutcliffe effi-
ciency measure [Nash and Sutcliffe, 1970]. Chappell et al.
[1998] give another example of how expert knowledge of
internal catchment dynamics (e.g. saturated areas) can be
used to constrain the parameter space.

Thirdly, some researchers abandoned the idea of a
uniquely identifiable model in favour of the identification of



a model population [e.g. van Straten and Keesman, 1991;
Beven and Binley, 1992; Gupta et al., 1998]. This can for
example be a population of models with varying degrees of
(some sort of) likelihood to be representative of the water-
shed at hand, the idea behind the Generalized Likelihood
Uncertainty Estimation (GLUE) approach [Freer et al., this
volume]. Or an approach based on the recognition that the
calibration of a rainfall-runoff model is inherently a multi-
objective problem, resulting in a population of non-domi-
nated parameter sets [Goldberg, 1989, p.201] in the pres-
ence of model structural inadequacies [Gupta et al., 1998].   

Here, we seek to increase the amount of information made
available from an output time-series and to guide the identi-
fication of parsimonious model structures, consistent with a
given model application as explained below. We use multi-
objective approaches to performance and identifiability
analysis and a novel dynamic identifiability analysis
(DYNIA) method for assumption testing. These can be inte-
grated into a framework for model identification and evalu-
ation. An application example at the end of this chapter
shows the use of the framework for a specific case.

2. IDENTIFICATION OF CONCEPTUAL
RAINFALL-RUNOFF MODELS

The purpose of identifiability analysis in CRR modelling
is to find (the) model structure(s) and corresponding param-
eter set(s) which are representative of the watershed under
investigation, while considering aspects such as modelling
objectives and available data. This identifiability analysis
can be split into two stages: model structure selection and
parameter estimation, which can, however, not be treated as
completely separate [Sorooshian and Gupta, 1985] (in order
to evaluate model structures fully, one has to analyse their
performance and behaviour which requires some form of
parameter estimation).

Traditional modelling procedures commonly contain,
amongst others, an additional third step [e.g Anderson and
Burt, 1985]. This is a validation or verification step often
used to show that the selected model really is the correct rep-
resentation of the watershed under investigation. This results
in the following three steps as part of a longer procedure:

(1) Selection or development of a model structure, and
subsequently computer code, to represent the concep-
tualisation of the hydrologic system which the hydrol-
ogist has established in his or her mind for the water-
shed under study.

(2) Calibration of the selected model structure, i.e. esti-
mation of the ‘best’ parameter set(s) with respect to
one or more (often combined) criteria.

(3) Validation or verification of this model by (success-
fully) applying it to a data set not used in the calibra-
tion stage.

It is important to stress that the original meanings of the
words validation and verification are different. Verification
is the stronger statement, meaning to establish the truth,
while validation means to establish legitimacy [Oreskes et
al., 1994]. In the context of hydrological modelling, these
terms are often used synonymously, describing a step to jus-
tify that the chosen model is an acceptable representation of
the real system. An in-depth discussion on this topic can be
found in Oreskes et al. [1994]. 

These three steps are similar to the logic of induction
often used in science. This idea of induction is founded on
the underlying assumption that a general statement can be
inferred from the results of observations or experiments
[Popper, 2000, p.27]. It includes the assumption that a
hypothesis, e.g. a chosen model structure, can be shown to
be correct, i.e. a hypothesis can be validated or verified,
through supporting evidence. The steps taken in this tradi-
tional scientific method are [for example modified from
Magee, 1977, p. 56]:

(1) Observation and experiment;
(2) inductive generalization, i.e. a new hypothesis;
(3)  attempted verification of hypothesis, i.e. proof or

disproof of hypothesis;
(4) knowledge.

However, the logical error in this approach is, (as Magee
[1977, p. 20] derives from statements by the philosopher
Hume), that no number of singular observation statements,
however large, could logically entail an unrestrictedly gen-
eral statement. In rainfall-runoff modelling this is equivalent
to the statement that, however often a model is capable of
reproducing the response of a particular watershed, it can
never be concluded that the true model has been found. It
could for example be that future measurements will capture
more extreme events, exciting a response not captured by
earlier data and therefore not included in the model.
Similarly, Popper concluded that no theory or hypothesis
could ever be taken as the final truth. It can only be said that
it is corroborated by every observation so far, and yields bet-
ter predictions than any known alternative. It will however,
always remain replaceable by a better theory or turn out to
be false at a later stage [Popper, 2000, p.33].

The idea that a model can be verified (verus, meaning true
in Latin [Oreskes et al., 1994]) is therefore ill-founded and
alternative modelling frameworks have to be found. One
such alternative approach was suggested by Popper [2000].
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He realised that, while no number of correctly predicted
observations can lead to the conclusion that a hypothesis is
correct, a single unexplained observation can lead to the fal-
sification of the hypothesis. Hence he replaced the frame-
work of verification with a framework of falsification,
allowing the testing of a hypothesis.

This framework of falsification as suggested by Popper can
be outlined as follows [modified from Magee, 1977, p.56]:

(1) The initial problem or question, often resulting from
the fact that an existing hypothesis has failed;

(2)  one (or more) proposed new hypothesis(es);
(3) deduction of testable propositions from the new

hypothesis;
(4) attempted falsification of the new hypothesis by test-

ing the propositions;
(5)  preference established between competing hypotheses. 

The procedure is repeated as soon as the new hypothesis
fails. It is thus possible to search for the truth, but it is not
possible to know when the truth has been found, a problem
which has to be reflected in any scientific method.

Additionally, Beven [2000, p.304] pointed out that it is
very likely, at least with the current generation of CRR
models, that every model will fail to reproduce some of the
behaviour of a watershed at some stage. However, even if
one knows that the model is inadequate, one often has to use
it due to the lack of alternatives. And for many cases, the use
of this inadequate model will be sufficient for the selected
purpose. Or as Wilfried Trotter put it more generally: In sci-
ence the primary duty of ideas is to be useful and interest-
ing even more than to be ‘true’ [Beveridge, 1957, p. 41].

How this general idea of hypothesis falsification can be
put into a framework for CRR modelling is described
below.

2.1. Identification of Model Structures

A large number of CRR modelling structures is currently
available. These differ, for example, in the degree of detail
described, the manner in which processes are conceptu-
alised, requirements for input and output data, and possible
spatial and temporal resolution. Despite these differences, a
number of model structures may appear equally possible for
a specific study, and the selection process usually amounts
to a subjective decision by the modeller, since objective
decision criteria are often lacking [Mroczkowski et al.,
1997]. It is therefore important to deduce testable proposi-
tions with respect to the assumptions underlying the model
structure, i.e. about the hypothesis of how the watershed
works, and to find measures of evaluation that give some

objective guidance as to whether a selected structure is suit-
able or not. However, Uhlenbrock et al. [1999] have shown
that it is difficult to achieve this using single-objective
Monte-Carlo-based calibration approaches. They were able
to derive good performances with respect to the prediction
of streamflow, from sensible, as well as incorrect conceptu-
alisations of a watershed. Mroczkowski et al. [1997]
encountered similar problems when trying to falsify one of
two possible model structures, including and excluding a
groundwater discharge zone respectively, to represent two
paired watersheds in Western Australia. This was impossi-
ble for both watersheds when only streamflow data was
used. The additional use of stream chloride and groundwa-
ter level measurements allowed at least for the falsification
of one of the model structures in case of the second water-
shed which had undergone considerable land-use changes.

Testable propositions about a specific model structure can
be either related to the performance of the model or its com-
ponents, or they can be related to its proper functioning. 

A test of performance is the assessment whether or not the
model structure is capable of sufficiently reproducing the
observed behaviour of the natural system, considering the
given quality of data. However, an overall measure of per-
formance, aggregating the residuals over the calibration
period, and therefore usually a number of response modes,
hides information about how well different model compo-
nents perform. It can be shown that the use of multiple-
objectives for single-output models, measuring the model’s
performance during different response modes, can give
more detailed information and allows the modeller to link
model performance to individual model components [e.g.
Boyle et al., 2001; Wagener et al., 2001a]. Additional infor-
mation will also be available in cases where the model pro-
duces other measurable output variables, e.g. groundwater
levels or hydro-chemical variables, as mentioned earlier. 

Evaluation of the proper functioning of the model means
questioning the assumptions underlying the model’s struc-
ture, such as: Do the model components really represent the
response modes they are intended to represent? And is the
model structure capable of reproducing the different domi-
nant modes of behaviour of the watershed with a single
parameter set? A model structure is usually a combination
of different hypotheses of the working of the natural system.
If those hypotheses are to be individually testable, they
should be related to individual model components and not
just to the model structure as a whole [Beck, 1987; Beck et
al., 1993].

One, already mentioned, underlying assumption of concep-
tual modelling is the consideration of model parameters  as
constant in time, at least as long as for example no changes in
the watershed occur that would alter the hydrological
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response, such as land-use changes. Different researchers
[e.g. Beck, 1985; 1987; Gupta et al., 1998; Boyle et al., 2000;
Wagener et al., 2001a] have shown that this assumption can
be tested, and that the failure of a model structure to simulate
different response modes with a single parameter set suggests
inadequacies in the functioning of the model.

Beck used the Extended Kalman Filter (EKF) extensive-
ly to recursively estimate model parameters and to utilize
the occurrence of parameter deviation as an indicator of
model structural failure [e.g. Beck, 1985; 1987; Stigter et
al., 1997]. For example, in the identification of a model of
organic waste degradation in a river, changes in optimum
parameter values in time from one location in the parameter
space to another were identified [Beck, 1985]. Beck con-
cluded from this observation that the model hypothesis had
failed, i.e. the parameters were changing to compensate for one
or more missing aspect(s) in the model structure. The subse-
quent step is to draw inference from the type of failure to devel-
op an improved hypothesis of the model structure. However,
there are limitations to the EKF approach. Beck concluded
with respect to the use of the EKF for hypothesis testing that
the performance of the EKF is not as robust as would be desir-
able and, inter alia, is heavily compromised by the need to
make more or less arbitrary assumptions about the sources of
uncertainty affecting the identification problem [Beck, 1987].

A trade-off in the capability to simulate different response
modes can occur, as shown by Boyle et al. [2000] for the
example for a popular complex rainfall-runoff model
(Sacramento with 13 calibrated parameters [Smith et al.,
this volume]), thus it was not possible to reproduce (slow)
recession periods and the remaining system response modes
simultaneously. Their multi-objective analysis suggests that
the cause for this problem is mainly an inadequate repre-
sentation of the upper soil zone processes. 

There are therefore ideas to address the problem of model
structure identification in a more objective way. However,
they are not without weaknesses, as the Beck statement
about the use of EKF showed earlier in the text. These need
to be addressed to derive more suitable approaches.

2.2. Identification of Parameters

The second stage in the model identification process is
the estimation of a suitable parameter set, usually referred to
as calibration of the model structure. In this process, the
parameters of a model structure are adjusted until the
observed system output and the model output show accept-
able levels of agreement. Manual calibration does this in a
trial-and-error procedure, often using a number of different
measures of performance and visual inspection of the
hydrograph [e.g. Gupta et al., 1998; Smith et al., this vol-

ume]. It can yield good results and is often a good way to
learn about the model, but it can be time consuming,
requires extensive experience with a specific model struc-
ture and an objective analysis of parameter uncertainty is
not possible. Traditional single-objective automatic calibra-
tion on the other hand is fast and objective, but will produce
results which reflect the choice of objective function and
may therefore not be acceptable to hydrologists concerned
with a number of aspects of performance [Boyle et al.,
2000]. In particular the aggregation of the model residuals
into an objective function leads to the neglect and loss of
information about individual response modes, and can result
in a biased performance, fitting a specific aspect of the
hydrograph at the expense of another. It also leads to prob-
lems with the identification of those parameters associated
with response modes which do not significantly influence
the selected objective function [Wagener et al., 2001a].
Selecting, for example, an objective function which puts
more emphasis on fitting peak flows, e.g. the Nash-Sutcliffe
efficiency value [Nash and Sutcliffe, 1970], due to its use of
squared residual values [Legates and McCabe, 1999], will
often not allow for the identification of parameters related
to the slow response of a watershed [e.g. Dunne, 1999].

An example to demonstrate this problem is briefly pre-
sented. It uses a simple model structure consisting of a
Penman two-layer soil moisture accounting component
[Penman, 1949] to produce effective rainfall and a linear
routing component using two conceptual reservoirs in paral-
lel to transform it into streamflow. A comparison of hydro-
graphs produced by different parameter sets within the
selected structure, which yield similar objective function
values, shows that these hydrographs can be visually differ-
ent. Figure 1 shows a hundred days extract of six years of
daily streamflow data, where the observed time-series (black
line) is plotted with seven different realisations (grey lines),
i.e. using the same model structure, but different parameter
sets. The objective function used during calibration is the
well known Root Mean Squared Error (RMSE). Each of the
models presented yields a RMSE of 0.60mm/d when the
complete calibration period (6 years) is considered.
However, the hydrographs produced are clearly visually dif-
ferent. The added dotty plots of the two residence times of
the (linear) routing component show that while the quick
flow residence time, k(quick) is very well identified, the
slow flow residence time, k(slow), is not. This is consistent
with the observation that the main difference between the
hydrographs can be observed during low flow periods. This
effect is due to the use of squared residuals when calculating
the RMSE.

This result demonstrates that traditional single-objective
optimisation methods do not have the ability to distinguish



between visually different behaviour [Gupta, 2000]. The
requirement for a parameter set to be uniquely locatable
within the parameter space, i.e. to be globally identifiable, is
that it yields a unique response vector [Kleissen et al., 1990;
Mous, 1993]. The unique response vector, in this case a
unique (calculated) hydrograph, might be achievable, but
this uniqueness is often lost if the residuals are aggregated
into a single objective function. Such problems cannot be
solved through improved search algorithms. They are rather
inherent in the philosophy of the calibration procedure itself. 

Clearly, the complex thought processes which lead to success-
ful manual calibration are very difficult to encapsulate in a single
objective function. This is illustrated by the requirements defined
by the US National Weather Service (NWS) for the manual cal-
ibration of the Sacramento model structure [NWS, 2001]:

(1)  Proper calibration of a conceptual model should result
in parameters that cause model components to mimic
processes they are designed to represent. This requires
the ability to isolate the effects of each parameter.

(2)  Each parameter is designed to represent a specific portion
of the hydrograph under certain moisture conditions.

(3)  Calibration should concentrate on having each param-
eter serve its primary function rather than overall
goodness of fit.

It can be seen from these requirements that manual cali-
bration is more complex than the optimisation of a single
objective function, and that traditional automatic calibration
procedures will in general not achieve comparable results. It
is for example often not possible to isolate the effects of
individual parameters and treat them as independent entities
as done in the manual approach described above. Another
aspect is that the goal of single-objective optimisation is
purely to optimise the model’s performance with respect to a
selected overall goodness of fit measure which is very dif-
ferent from requirement three. This is not to say that tradi-
tional ‘single’ objective functions are not important parts of
any model evaluation. The point is rather that they are not
sufficient and should be complemented by a variety of meas-
ures.

Gupta et al. [1998] review this problem in more detail and
conclude that a multi-objective approach to automatic cali-
bration can be successful. Boyle et al.[2000] show how such
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Figure 1. Hundred days extract of six years of daily streamflow data. Observed flow in black, seven different model
realizations in gray. Inlets show dotty plots for the time constants k(quick) and k(slow) with respect to the Root Mean
Squared Error (RMSE). The model structure used consists of a Penman soil moisture accounting and a parallel routing
component of linear reservoirs with fixed flow distribution (see application example for details).
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a procedure can be applied to combine the requirements of
manual calibration with the advantages of automatic cali-
bration. A multi-objective algorithm is used to find the
model population necessary to fit all aspects of the hydro-
graph. The user can then, if necessary, manually select a
parameter set from this population to fit the hydrograph in
the desired way. This will however, in the presence of model
structural inadequacies, lead to a sub-optimal performance
with respect to at least some of the other measures [Boyle et
al., 2000; Seibert and McDonnell, this volume]. The result-
ing trade-off of the ability of different parameter sets to fit
different aspects of the hydrograph usually leads to a com-
promise solution [Ehrgott, 2000] in cases where a single
parameter set has to be specified. The procedure of Boyle et
al. [2000] for example, analyses the local behaviour of the
model additionally to its global behaviour [Gupta, 2000].
The global behaviour is described through objective func-
tions such as overall bias or some measure of the overall
variance, e.g. the Root Mean Squared Error (RMSE). The
local behaviour is defined by aspects like the timing of the
peaks, or the performance during quick and slow response
periods [Boyle et al., 2000; 2001].

Recent research into parameter identification has thus
moved away from simply trying to improve search algo-
rithms, but has taken a closer look at the assumptions under-
lying (automatic) calibration approaches [e.g. Gupta et al.,
1998]. This has lead to the use of multi-objective (MO) auto-
matic approaches which so far have given promising results
[Boyle et al., 2000; Wagener et al., 2001a]. Further investi-
gations are required to make MO optimization a standard
method for parameter estimation. For example questions
such as the appropriate number and derivation of OFs with-
in a MO approach must be resolved, and will probably
depend on model structure and watershed characteristics
[Gupta, 2000].

3. EVALUATION OF CONCEPTUAL
RAINFALL-RUNOFF MODELS

It was established earlier that the idea of calibration and
validation of CRR models is in principle ill-founded, i.e. to
establish a model as the true representation of a hydrological
system. The model identification problem is therefore seen
here as a process of model evaluation. Within this process,
models and model structures are evaluated with respect to
different criteria and those that fail, in whatever way, are
rejected as possible representations of the watershed under
investigation. This will usually result in a population of fea-
sible models or even model structures which can then be
used for a (combined) prediction, which will result in a pre-
diction range, rather than a single value for each time-step.

This evaluation should be at least with respect to three
dimensions:

(1)  Performance, with respect to reproducing the behav-
iour of the system. 

(2)  Uncertainty in the parameters, which is assumed to be
inversely related to their identifiability.

(3)  Assumptions, i.e. are any assumptions made during
the development of the model (structure) violated.

The smaller the population of models (or even model
structures) that survives this evaluation, i.e. those that are
corroborated by it, the more identifiable is the representa-
tion of the natural system in mathematical form. Approach-
es to test models with respect to these three criteria are
described below.

3.1. Evaluation of Competing Model Structures—Multi-
objective Performance and Identifiability Analysis

Multi-objective (MO) approaches can be applied to estab-
lish preferences between competing model structures or even
model components, i.e. competing hypotheses, with respect
to their performance and their identifiability. A MO approach
is advantageous because the use of multiple objective criteria
for parameter estimation permits more of the information
contained in the data set to be used and distributes the impor-
tance of the parameter estimates among more components of
the model. Additionally, the precision of some parameters
may be greatly improved without an adverse impact on other
parameters [Yan and Haan, 1991]. More detailed descriptions
of MO model analysis can be found in the chapters by Gupta
et al. and Boyle et al. [this volume].

3.1.1. Measures of performance and identifiability. It was
already established earlier in the text that it is advantageous
to evaluate the global and the local behaviour of models to
increase the amount of information retrieved from the resid-
uals in the context of single output rainfall-runoff models.
Global behaviour is measured by traditional OFs, e.g. the
RMSE or the bias for the whole calibration period, while
different OFs have to be defined to measure the local behav-
iour. One way of implementing local measures is by parti-
tioning the continuous output time series into different
response periods. A separate OF can then be specified for
each period, thus reducing the amount of information lost
through aggregation of the residuals, e.g. by mixing high
flow and recession periods.

Partitioning schemes proposed for hydrological time
series include those based on: (a) Experience with a specif-
ic model structure (e.g. the Birkenes model structure in the
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case of Wheater et al., 1986), i.e. different periods of the
streamflow time series are selected based on the modeller’s
judgement. The intention of Wheater et al. [1986] was to
improve the identifiability of insensitive parameters, so
called minor parameters, with respect to an overall measure.
Individual parameters, or pairs of parameters, are estimated
using a simple grid search to find the best values for the
individual objective functions. This is done in an iterative
and sequential fashion, starting with the minor parameters
and finishing with the dominant ones. (b) Hydrological
understanding, i.e. the separation of different watershed
response modes through a segmentation procedure based on
the hydrologist’s perception of the hydrological system
(e.g. Harlin, 1991; Dunne, 1999; Boyle et al., 2000;
Wagener et al., 2001a). For example, Boyle et al. [2000]
propose hydrograph segmentation into periods ‘driven’ by
rainfall, and periods of drainage. The drainage period is
further subdivided into quick and slow drainage by a sim-
ple threshold value. (c) Parameter sensitivity [e.g. Kleissen,
1990; Wagner and Harvey, 1997; Harvey and Wagner,
2000], where it is assumed that informative periods are
those time-steps during which the model outputs show a
high sensitivity to changes in the model parameters
[Wagner and Harvey, 1997]. Kleissen [1990] for example
developed an optimisation procedure whereby only data
segments during which the parameter shows a high degree
of first order sensitivity are included in the calibration of
that parameter (group) utilising a local optimisation algo-
rithm. (d) Similar characteristics in the data derived from
techniques like cluster analysis [e.g. Boogard et al., 1998]
or wavelet analysis [Gupta, 2000] can be used to group
data points or periods based on their information content.
The different clusters could then be used to define separate
objective functions.

While these methods help to retrieve more information,
they also show some weaknesses. Approaches (a) and (b)
are subjective and based on the hydrologist’s experience,
and so are not easily applicable to a wide variety of models
and watersheds. Approach (c), while objective, does not
recognise the effects of parameter dependencies, and may
not highlight periods which are most informative about the
parameters as independent entities, i.e. periods where the
dependency with respect to other parameters is low. The
sensitivity of the model performance to changes in the
parameter is a necessary requirement, but it is not sufficient
for the identifiability of the parameter. Furthermore, if the
parameter sensitivity is measured locally [e.g. Kleissen,
1990], the result is not guaranteed over the feasible param-
eter space. However, Wagner and Harvey [1997] show that
this problem can be reduced by implementing a Monte
Carlo procedure where the sensitivity for a large number of

different parameter combinations is assessed using parame-
ter covariance matrices. Approach (d) is independent of any
model structure and links between the results and the model
parameters still need to be established. 

There is therefore scope to improve the objectivity, appli-
cability and robustness of approaches to hydrograph disag-
gregation, with the goal of improving model structure and
parameter identifiability.

The evaluation of the model performance should, if pos-
sible, also include objective functions tailored to fit the spe-
cific purpose of the model. An example is the use of the
model to investigate available quantities for abstraction pur-
poses. Assuming that abstraction can only take place during
periods when the water level is above a minimum environ-
mentally acceptable flow and below a maximum water sup-
ply abstraction rate allows the definition of a specific objec-
tive function. This measure would only aggregate the resid-
uals of the selected period and can give important informa-
tion about how a model performs with respect to the antici-
pated task. However, it is important to mention that this
should never be the only evaluation criterion.

However, how can one estimate the identifiability of the
individual parameters with respect to the different OFs
defined? A simple measure of parameter identifiability is
defined by Wagener et al. [2001a]. It is based on the param-
eter population conditioned by the selected measure of per-
formance (Figure 2). A uniform random sampling procedure
is performed, and the resulting OF values are transformed
so that the best performing parameter set is assigned the
highest value and all measures sum to unity (these are
termed support values in Figure 2). The best performing
10% of all parameter sets are selected and the cumulative
marginal distributions for each parameter are plotted. A uni-
form distribution would plot as a straight line, while a pop-
ulation showing a clear peak will show a curved line. The
stronger the conditioning, the stronger the curvature will be.
The range of each parameter is subsequently split into M
containers and the gradient of the cumulative distribution in
each container is calculated. The highest gradient will occur
where the conditioning of the distribution is strongest, i.e. at
the location of a peak. The amplitude of the gradient is also
indicated by the grey shading of the bar, with a darker
colour indicating a higher gradient. Other measures of iden-
tifiability are possible [e.g. Wagener et al., 1999], but this
one has been shown to be robust and easy to calculate.

3.1.2. Multi-objective framework. The above described
multi-objective performance and identifiability approaches
can be put into an analytical framework to estimate the
appropriate level of model complexity for a specific case
[Figure 3, adapted from Wagener et al., 2001a]. 
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The hydrologist’s perception of a given hydrological sys-
tem strongly influences the level of conceptualisation that
must be translated into the model structure. The importance
of different system response modes, i.e. key processes that
need to be simulated by the model, however, depends on the
intended modelling purpose. Therefore, the level of model
structural complexity required must be determined through
careful consideration of the key processes included in the
model structure and the level of prediction accuracy neces-
sary for the intended modelling purpose.

On the other hand there is the level of structural complex-
ity actually supported by the information contained within
the observed data. It is defined here simply as the number of
parameters, and therefore separate model components and
processes, that can be identified. Other aspects of complex-
ity [e.g. Kleissen et al., 1990] like the number of model

states or interactions between the state variables, or the use
of non-linear components instead of linear ones, are not con-
sidered here.

An increase in complexity will often increase the per-
formance. However, it will also often increase the uncer-
tainty, for example due to reduction in parameter identifia-
bility caused by increased parameter interaction. What
trade-off between performance and identifiability is accept-
able depends on the modelling purpose and the hydrologist’s
preference. In a regionalisation study, a more identifiable
model with reduced performance might be adequate, while
parameter identifiability might be of minor importance for
extension of a single-site record.

It was already established earlier in the text that such a
framework has to use a multi-objective approach to allow
for an objective analysis. Using various objective functions
to represent different system response modes is especially
suitable for comparison studies since it allows us to attribute
the model performance during different system response
modes to different model components, for example either
the moisture accounting or the routing components
[Wagener et al., 2001a]. Using the segmentation approach
by Boyle et al. [2000] as described earlier in the text, it is
possible to establish that a certain model structure might
perform better during “driven” periods because of a superi-
or moisture accounting component, while another model
structure containing a more appropriate slow flow routing
component could result in higher performance during “non-
driven slow” periods. A single-objective framework does
not allow the comparison of model components and conse-
quently important information relevant to identifying the
most suitable model structure is lost. Boyle et al. [2001] use

Figure 2. A measure of identifiability can be defined as follows:
an initially uniform distribution is conditioned on some OF, the
resulting dotty plot is shown in the top plots, selecting the top per-
centile (e.g. 10%) and plotting the cumulative distribution of the
transformed measures leads to the middle plots, the gradient dis-
tribution of the cumulative distribution is a measure of identifia-
bility, see bottom. The plots in the left column show an identifiable
parameter, while the plots in the right column show a non-identi-
fiable one.

Figure 3. Framework for the evaluation of competing rainfall-
runoff model structures.
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this to evaluate the benefit of “spatial distribution” of model
input (precipitation), structural components (soil moisture
and streamflow routing computations) and surface charac-
teristics (parameters) with respect to the reproduction of dif-
ferent response modes of the watershed system.

This framework will also necessarily be comparative, i.e.
different models and usually different model structures will
have to be compared to identify a suitable model or models.
The reason is that the level of performance that can be
reached is unknown, due to unknown influences of data
error and of natural randomness. Those models and model
structures that severely under-perform can be refuted and
excluded from further consideration. In cases where all
models fail, one has to go back and relax the criteria for
under performance [Beven, 2000, p. 304].

Model structures producing more than a single output
variable, e.g. groundwater levels or water quality parame-
ters, can be tested with respect to all of those variables if
measurements are available. One could say that the inform-
ative (or empirical) content of these structures is higher and
they have therefore a higher degree of testability or falsifia-
bility [Popper, 2000, p.113]. However, a hypothesis, or a
model structure in our case, which has a higher informative
content, is also logically less probable, because the more
information a hypothesis contains, the more options there
are for it to be false [Popper, 2000, p.119; Magee, 1977, p.
36]. Multi-output models are beyond the scope of this chap-
ter though. 

3.2. Evaluation of Individual Model Structures—Dynamic
Identifiability Analysis

There is an apparent lack of objective procedures to eval-
uate the suitability of a specific conceptual model structure
to represent a specific hydrological system. It has been
shown earlier how different and competing structures can be
compared. However, it is also possible to analyse individual
structures with respect to the third criterion mentioned in
the beginning of section 3, namely the model assumptions.

3.2.1. Failure, Inference and Improved Hypotheses.
Recently, Gupta et al. [1998; see also Boyle et al., 2000 and
Wagener et al., 2001a] showed how a multi-objective
approach can be applied to give an indication of structural
inadequacies. The assumption is that a model should be capa-
ble of representing all response modes of a hydrological sys-
tem with a single parameter set. A failure to do so indicates
that a specific model hypothesis is not suitable and should be
rejected, or preferably, replaced by a new hypothesis which
improves on the old one. This idea was already the basis of
some of Beck’s work [e.g. Beck, 1985], as described earlier in

the text. Wagener et al. [2001c] developed a new approach
based on this assumption. Their methodology analyses the
identifiability of parameters within a selected model structure
in a dynamic and objective manner, which can be used to ana-
lyze the consistency of locations of good performing param-
eter values in (parameter) space and in time.

In cases where the variation of parameter optima can be
tracked in time it will sometimes be possible to directly
relate changes in a particular parameter to variations in forc-
ing or state variables [examples in Beven, 2000, p. 93ff.; and
Bashford and Beven, 2000]. However, in many cases the
development of improved hypotheses will be more complex
and depend on the capability of the hydrologist.
Unfortunately(?), there is no logical way to create new
ideas; the hydrologist therefore has to apply his depth of
insight and creative imagination to derive a new hypothesis,
which can replace the old one, that has failed.

3.2.2. Dynamic Identifiability Analysis. The DYNamic
Identifiability Analysis (DYNIA) is a new approach to locat-
ing periods of high identifiably for individual parameters and
to detect failures of model structures in an objective manner.
The proposed methodology draws from elements of the popu-
lar Regional Sensitivity Analysis [RSA; Spear and
Hornberger, 1980; Hornberger and Spear, 1981] and includes
aspects of the Generalized Likelihood Uncertainty Estimation
[GLUE, Freer et al., this volume] approach, wavelet analysis
[e.g. Gershenfeld, 1999] and the use of Kalman filtering for
hypothesis testing as applied by Beck [1985].

In the original RSA approach, a model population is sam-
pled from a uniform distribution. This population is divided
into behavioural and non-behavioural models depending on
whether a model resulted in a certain response or not [Spear
and Hornberger, 1980]. Beven and Binley [1992] extended
the approach by conditioning the model population on a
likelihood measure, which in their case, can be a transfor-
mation of any measure of performance. These are the build-
ing blocks from which a new method of assessing the iden-
tifiability of parameters is created [Wagener et al., 2001c].

The steps taken in the procedure can be seen in the flow
chart in Figure 4. Monte-Carlo sampling based on a uniform
prior distribution is used to examine the feasible parameter
space. The objective function associated with each parame-
ter set, i.e. model, is transformed into a support measure, i.e.
all support measures have the characteristic that they sum to
unity and higher values indicate better performing parame-
ter values. These are shown here in form of a dotty plot (Fig.
4(a)). The best performing parameter values (e.g. top 10 %)
are selected and their cumulative distribution is calculated
(Fig. 4(b)). A straight line will indicate a poorly identified
parameter, i.e. the highest support values are widely distrib-
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uted over the feasible range. Deviations from this straight
line indicate that the parameter is conditioned by the objec-
tive function used. The gradient of the cumulative support is
the marginal probability distribution of the parameter, and
therefore an indicator of the strength of the conditioning,
and of the identifiability of the parameter. Segmenting the
range of each parameter (e.g. into 20 containers) and calcu-
lating the gradient in each container leads to the (schematic)
distribution shown in Fig. 4(d). The highest value, addition-
ally indicated by the darkest colour, marks the location
(within the chosen resolution) of greatest identifiability of
the parameter. Wagener et al. [2001a] show how this meas-
ure of identifiability can be used to compare different model
structures in terms of parameter uncertainty, which is

assumed to be inversely related to identifiability. They cal-
culate the identifiability as a function of measures of per-
formance for the whole calibration period and for specific
response modes, derived using the segmentation approach
by Boyle et al. [2000] described earlier in the text. It can be
shown that the identifiability of some parameters, and there-
fore individual model components, is greatly enhanced by
this segmentation [Wagener et al., 2001a].

Calculating the parameter identifiability at every time step
using only the residuals for a number of time steps n before
and after the point considered, i.e. a moving window or run-
ning mean approach, allows the investigation of the identi-
fiability as a function of time (Fig. 4(e)). The gradient dis-
tribution plotted at time step t therefore aggregates the resid-
uals between t-n and t+n, with the window size being 2n+1.
The number of time steps considered depends upon the
length of the period over which the parameter is influential.
For example, investigation of a slow response linear store
residence time parameter requires a wider moving window
than the analysis of a quick response residence time param-
eter. Different window sizes are commonly tested and the
ones most appropriate are used to analyse individual param-
eters. A very small window size can lead to the result being
largely influenced by errors in the data. However, this is not
a problem where the data quality is very high, for example
in the case of tracer experiments in rivers [Wagener et al.,
2001d]. Conversely, if the window size is too big, periods of
noise and periods of information will be mixed and the
information will be blurred.

The results are plotted for each parameter versus time
using a colour coding where a darker colour indicates areas,
in parameter space and time, of higher identifiability. Care
has to be taken when interpreting the DYNIA results of time
steps at the beginning and the end of time-series. Here the
full window size cannot be established and the result is dis-
torted. This is an effect similar to the cone of influence in
wavelet analysis [Torrence and Compo, 1998].

While this approach is not intended to evaluate parame-
ter dependencies in detail, the significance of dependencies
to the identifiability is implicit in the univariate marginal
distribution which is structurally represented by Figure
4(d). A strong dependency during any period would tend to
inhibit the information of a strong univariate peak, i.e. the
effect of the involved parameters cannot be singled out.
Parameter interdependence can be estimated in detail by the
investigation of the response surface or the variance-covari-
ance matrix [e.g. Wheater et al., 1986; Hornberger et al.,
1985].

A limitation of the proposed measure of identifiability
arises if any near-optimal parameter values are remote from
the identified peak of the marginal distribution, as the rele-

Figure 4. Schematic description of the DYNamic Identifiability
Analysis (DYNIA) procedure.



vance of such values would be diminished. It is therefore
important that a detailed investigation of the dotty plots is
used to verify periods of high identifiability. The approach
also requires that feasible parameter ranges are defined sen-
sibly and the selected model population (usually the best
10%) represents only the top of the distributions.

DYNIA requires that sensible feasible ranges for each
parameter can be defined and that the number of models (i.e.
parameter sets) considered reflects the shape of the response
surface. The procedure can then be applied to separate peri-
ods that do and those that do not contain information about
specific parameters, and track parameter variations in time. 

The subjective decision for a particular objective function
in this procedure is usually not critical for the result and the
mean absolute error criterion is usually adopted. 

3.3. A Combined Framework of Corroboration and
Rejection

The earlier introduced multi-objective framework
[Wagener et al., 2001a] can be extended to incorporate the
DYNIA approach as an additional step in order to derive a
framework of corroboration and rejection (Figure 5). Similar
frameworks are for example proposed by Beven [2000,
p.297ff.], and, more generally, by Oreskes et al. [1994].

The initial steps are similar to those in the multi-objective
framework described earlier. The hydrologist selects (or
develops) model structures that seem suitable for the given
modeling purpose, watershed characteristics and data. 

One can then apply a multi-objective procedure to estab-
lish preferences between the competing model structures, or
preferably structural components. Under-performing struc-
tures (components) can be rejected at this stage, based on
their performance and/or uncertainty. 

During the next stage, the DYNIA approach can be used
to further analyze the remaining model structures. Further
rejections might be possible. The suitability of a model struc-
ture not failing is further corroborated. A model structure is
(temporarily) accepted when no better performing structure
can be found and no underlying assumption is violated.

In the last stage, the parameter space ‘within’ the remain-
ing model structures can be analyzed to find all those mod-
els, i.e. parameter sets that are in line with the behavior of
the natural system. It is very likely that such a procedure
will result in a range of acceptable or ‘behavioral’ models or
even model structures. The appropriate response is to com-
bine the predictions of all models to derive an ensemble pre-
diction of the systems behavior. A popular approach to do so
is the GLUE approach [Freer et al., this volume], however,
other methods to combine the predictions of different mod-
els are possible [e.g. Shamseldin et al., 1997]. Within the

GLUE approach, a likelihood value is derived for every
model. The models are usually drawn from a uniform dis-
tribution. Basically any measure of performance which can
be transformed so that higher values indicate better models
and all measures add up to one, can be used as a likelihood
measure in this approach. The likelihoods are then used to
weight the prediction of every model at every time step. The
cumulative distribution of the weighted streamflow values,
even for different models, allows the extraction of per-
centiles, e.g. 5% and 95%, to derive the, in this case, 90%
confidence limits for the predictions. The likelihoods of dif-
ferent models could be combined through simple addition.  

4. APPLICATION EXAMPLE

4.1. Modelling Tools and Selected Model Structures

The Rainfall-Runoff Modelling Toolbox (RRMT) and
Monte-Carlo Analysis Toolbox (MCAT), developed at
Imperial College, are used here for calculation and visuali-
sation of results [Wagener et al., 1999; 2001b]. 

The RRMT has been developed in order to produce parsi-
monious, lumped model structures with a high level of
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Figure 5. The proposed modeling procedure.



parameter identifiability. It is a generic modelling shell
allowing its user to implement different model structures to
find a suitable balance between model performance and
parameter identifiability. Model structures that can be
implemented are spatially lumped, relatively simple (in
terms of number of parameters), and of conceptual or hybrid
metric conceptual type. Hybrid metric-conceptual models
utilise observations to test hypotheses about the model
structure at watershed scale and therefore combine the met-
ric and the conceptual paradigm [Wheater et al., 1993]. All
structures consist of a moisture accounting and a routing
module.

MCAT is a collection of analysis and visualisation func-
tions integrated through a graphical user interface. The tool-
box can be used to analyse the results from Monte-Carlo
parameter sampling experiments or from model optimisa-
tion methods that are based on population evolution tech-
niques, for example, the SCE-UA [Duan, this volume] or
the MOCOM-UA [Gupta et al., this volume, “Multiple …”]
algorithms. Although this toolbox has been developed with-
in the context of ongoing hydrological research, all func-
tions can be used to investigate any dynamic mathematical
model. Functions contained in MCAT include an extension
of the Regional Sensitivity Analysis [RSA, Spear and
Hornberger, 1980] by Freer et al. [1996], various compo-
nents of the Generalised Likelihood Uncertainty Estimation
method [GLUE, Freer et al., this volume], options for the
use of multiple-objectives for model assessment [Gupta et
al., 1998; Boyle et al., 2000], and plots to analyse parame-
ter identifiability and interaction.

Both toolboxes are implemented in the Matlab
[Mathworks, 1996] programming environment. 

A large variety of lumped parsimonious model structures
can be found in the literature [e.g. Singh, 1995]. However, the
range of components on which these structures are based is
relatively small. Some of the most commonly found compo-
nents are selected here in a component library shown in Figure
6. Further details about these components can be found in
Wagener et al. [2001b; and in the references given here].

The soil moisture accounting components used are:

•  The catchment moisture deficit [cmd, Evans and
Jakeman, 1998]. A conceptual bucket with a bottom
outlet to sustain drainage into the summer periods.

•  The catchment wetness index [cwi, Jakeman and
Hornberger, 1993]. A metric approach based on the
Antecedent Precipitation Index [API, e.g. Shaw, 1994].

•    The probability distributed soil moisture stores [pd3
and pd4, Moore, 1999]. A probability distribution of
conceptual buckets based on a Pareto distribution.
Evapotranspiration is either at the potential rate, as

long as soil moisture is available, or at a rate declin-
ing linearly with soil moisture content.

•    A simple bucket type structure (buc), evaporating at
the potential rate as long as soil moisture is available.

• The Penman storage model [Penman, 1949]. A lay-
ered structure of two conceptual buckets connected by
an overflow mechanism. Evapotranspiration occurs at
potential rate from the upper layer, similar to the root
zone, and at a reduced rate, 12% of PE, from the bot-
tom layer. An additional bypass mechanism diverts a
fraction of the rainfall from the SMA component to
contribute to the effective rainfall at time-steps where
rainfall exceeds PE.

The routing components used are:

•     Conceptual reservoirs in various combinations and in
linear and non-linear form [e.g. Wittenberg, 1999].
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Figure 6. Table showing the soil moisture accounting ‘component
library’ used in the application example. The components are: (a)
catchment wetness index (cwi), (b) simple bucket (buc), (c1) and
(c2) Penman structure (ic1), (d) catchment moisture deficit (cmd),
and probability distribution of soil moisture stores (pdX).



4.2. Data

The river selected for this study is the Lower Medway at
Teston (1256.1 km

2

) located in South Eastern England. Six
years (10/04/1990 – 14/07/1996) of data (daily naturalised
flows, precipitation, potential evapotranspiration (PE) and
temperature) are available. The Medway watershed is char-
acterised by a mixture of permeable (chalk) and imperme-
able (clay) geologies subject to a temperate climate with an
average annual rainfall of 772 mm and an average annual
PE of 663 mm (1990-1996). 

4.3. Methodology

Multi-objective (MO) analysis and DYNIA are performed,
based on the results of Monte Carlo sampling procedures. For
the MO analysis, 20000 parameter sets, i.e. models, are ran-
domly sampled from the feasible parameter space for each
individual model structure, based on a uniform distribution. 

For each of these models, five OFs are calculated. These
are the overall RMSE and four OFs derived for different
response modes of the watershed. The segmentation applied
is based on an approach by Wagener and Wheater [2001]
which uses the slope of the hydrograph and an additional
threshold as segmentation criteria to split the hydrograph
into different response modes. The slope separates periods
when the watershed is wetting up or is “driven” [Boyle et al.,
this volume] by rainfall, i.e. positive slope, and when the
watershed is draining, i.e. falling slope. A threshold is used
to separate periods of high and low flow, i.e. the mean flow
during driven and 50% of the mean flow during drainage
periods. Four OFs are therefore derived when the residuals
during the different periods are aggregated separately using
the RMSE criterion: FDH, “driven” flow during high flow,
FDL, “driven” flow during low flow, FQ, quick drainage
(high flows), and FS, slow drainage (low flows). This is a
modification of the initial approach by Boyle et al. [2000],
which was based on the analysis of flow and rainfall.
However, the approach presented here has been shown to be
more suitable for British watersheds as modelled in the
example presented here. These OFs are based on the
assumption that different processes are dominant during
periods of high and low flow, and during periods of water-
shed wetting-up and drainage. The residuals, i.e. the differ-
ences between observed and simulated flows are calculated
and summarised in form of the root mean squared error for
each period. The performance and identifiability analysis is
based on these measures.

The resulting parameter populations are used to rank all
models or model structures, with respect to their perform-
ance and identifiability, using the measures introduced ear-

lier. The best model structures are retained and a more thor-
ough analysis using DYNIA is performed. DYNIA is based
on a random sampling procedures using 2500 parameter sets
collected from a uniform distribution. The smaller sample
size is due to computational limitations of the current DYNIA
application in the Matlab [Mathworks, 1996] environment.
4.4. Results and Discussion

The main results of the MO analysis as shown in Figure
7 are as follows:

•   At a general level for the SMA modules (Figure 7, top):
the probability distributions of storage elements (pd3
and pd4) seem to perform best, followed by the simple
bucket (buc), and the cmd and cwi modules.

•  The cm1, i.e. a cmd that always evaporates at the poten-
tial rate, performs much more poorly than the rest with
respect to those objective functions which mainly
describe periods of high flow, RMSE(total),  FDH and
FQ. This is also the case for the cmd module, but not as
pronounced. However, the cmd and cm1 modules do
very well during low flow periods. This is caused by
the bottom outlet of the bucket, which sustains the pro-
duction of effective rainfall even during periods of
severe moisture deficits in the SMA module.

•  The overall result of the performance analysis is that the
pd3 and pd4 SMA modules in combination with 2pll or
2pln routing modules are superior. The cmd is a useful
component when the modelling purpose demands the
accurate prediction of low flow periods and periods of
high flows are of minor importance.

•  A detailed analysis of the routing components shows
that the use of a non-linear conceptual reservoir in par-
allel with a linear one (2pln), performs better at the
peaks (RMSE(total) and FDH), see Figure 7(top).

• The uncertainty analysis (Figure 7, bottom) however
reveals that the identifiability of the cmd parameters is
very low and this module is rejected here on this basis. For
some applications, this aspect might be of minor impor-
tance, however.

The pd3 and the pd4 SMA components are retained for fur-
ther analysis with the DYNIA approach. Assuming that our
interest is in low flows, e.g. for water resources purposes, only
a linear parallel routing structure (2pll) is considered. A non-
linear component would be advisable for high flow periods.

The results of the DYNIA are shown in Figures 8 and 9,
for the structures pd3-2pll and pd4-2pll. This reveals some
problems with the pd3 SMA module. 

Figure 8 shows the dynamic identifiability of the five
parameters of the pd3-2pll structure. These are: (1) cmax, the
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maximum storage capacity, (2) b, the shape parameter of the
Pareto distribution of storage capacities, (3) k(quick), the res-
idence time of the quick linear reservoir, (4) alpha, the frac-
tion of flow going through the quick flow component, and (5)
k(slow), the residence time of the slow flow linear reservoir.

The plot for the parameter cmax exposes some ambigu-
ity about the optimum values for this parameter. The con-
fidence limits (cfls) narrow into two different parts of the
parameter space, towards low values after wet periods and
towards high values during periods of wetting up, indicat-
ing inadequacies within the model structure. Similarly,
but much less pronounced, the parameter b shows a slight
shift of optimum after the wet period, i.e. the lower cfls
go up. It is mainly identifiable during low flow events
(e.g. dark areas just before time step 700). The residence
times of the routing component show the expected behav-
iour, i.e. the cfls of k(quick) narrow down on the quick
falling limbs of the hydrograph, while darker areas appear
for k(slow) during the long recessions. The cfls for
k(slow) hardly narrow during periods of identifiability,

suggesting that the peaks on the response surface are quite
small, and that the difference between different values for
this parameter is not large. Values for this parameter are
therefore still widespread, since the top 10% are selected
here. The example of the two residence times also demon-
strates the need for different window sizes. A small size
(11 time steps) is required for k(quick), whose influence
is only very local, while a much larger window (81 time
steps) is need to capture the effect of k(slow). Finally, the
parameter alpha is most identifiable during periods where
the split between quick and slow response is occurring.
However, further investigations, which are outside the
scope of this example, are required to explain the behav-
iour of this parameter. In general, this structure is too sim-
plistic to reproduce all aspects of the hydrograph with one
parameter set. This is especially reflected in the results for
cmax.

The difference between pd3 and pd4 is that, while pd3
always evaporates at the potential rate, pd4 decreases the
evapotranspiration with decreasing soil moisture content in
a linear manner. However, without adding an additional
(scaling) parameter, i.e.

AEt=St/Smax
.PEt (1)

The effect of this change can be seen in the dynamic
results shown in Figure 9. The ambiguity with respect to
cmax is removed and the cfls only narrow towards larger
values indicating a better structure.

It is interesting to remember that the MO performance
analysis had shown that the pd3 component actually per-
formed better. The reason is that the pd4 component puts an
additional constraint on the behaviour of the watershed sys-
tem. The result is that the structure becomes less flexible.
The pd3 component can therefore perform better with
respect to the different OFs. However, this is due to the
expense of a larger variation in parameter values as shown
in the dynamic analysis. This indicates that pd4 is actually
the better SMA component and should be retained, while
pd3 should be rejected. This result supports the statement by
Gupta et al. [2001] that consistency in a model is more
important than optimality.

5. SUMMARY AND CONCLUSIONS

Test everything. Hold on to the good. Avoid every kind of evil.
1 Thessalonians 5, 21:22, New International Version

The identification of suitable conceptual rainfall-runoff (CRR)
models is a difficult problem. It has been increased by the recent
awareness of the influence of model structural inadequacies.
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A framework of corroboration and rejection is present-
ed to embed the identification problem into a scientific
method as outlined by Popper [2000]. The framework
uses multi-objective and novel dynamic approaches to
the evaluation of CRR models and model structures. The

theory and methods underlying this framework are
described and an application example is presented. It
demonstrates that a range of approaches is required for
an objective analysis of the suitability of models and
model structures. 
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DYNIA is an attempt to develop an approach to comple-
ment traditional calibration methods resulting in increased
discriminative power. Advantages of the approach are its
simplicity and its general applicability (for example, an
application to a solute transport model can be found in
Wagener et al. [2001d]). Possible areas of application of
DYNIA are [see Wagener et al., 2001c for details]: (1) the
pure estimation of parameters, (2) the analysis of model
structures, (3) relating model parameters and response
modes, and (4) to investigate data outliers and anomalies.

Current work is focusing on the extension of this frame-
work to include the identification of CRR models at
ungauged sites, using parameter regionalisation approaches.

The RRMT and MCAT toolboxes are available for down-
load free of charge for non-commercial use from the
Environmental and Water Resource Engineering Section
Web-site on http://ewre.cv.ic.ac.uk/software.
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