DIFFUSION

Bruce E. Logan Department of Civil & Environmental Engineering The Pennsylvania State University

Email: blogan@psu.edu

http://www.engr.psu.edu/ce/enve/logan.htm

What are the mechanisms for chemical motion?

- Advection
 - Bulk transport by imposed flow. Examples: current in a stream, flow in a pipe.
- Convection
 - Transport due to fluid instability. Examples: air rising over a hot road.
- Diffusion- molecular
 - Scattering of particles (molecules) by random motion due to thermal energy
- Diffusion-turbulent
 - Scattering due to fluid turbuence. Also called eddy diffusion. This type of "diffusion" is much faster than molecular diffusion

Diffusion & Dispersion

- Diffusion is a method by which a chemical is dispersed.
- Dispersion is the "spreading out" of a chemical that can be caused by different mechanisms
- Don't confuse a molecular diffusion coefficient with a dispersion coefficient (more on dispersion will come later in the course).

Area

Net flux occurs when molecules move in a direction where there are no molecules to balance their motion back in the opposite direction.

 $Flux = \frac{Total \ flow \ rate}{Area} \quad [\frac{moles}{L^2 - t}]$

$$Flux = \frac{Total \ flow \ rate}{Area} \quad \left[\frac{moles}{L^2 - t}\right]$$

$$Flux \equiv \frac{Total \ flow \ rate}{Area} \quad [\frac{moles}{L^2 - t}]$$

We often show chemical flux graphically as concentration versus time

Distance

Fick's First Law

Fick recognized that there must be a difference in concentration to drive the net diffusion of a chemical, and formulated the law:

$$j_{Cw,z} = -c_w D_{Cw} \frac{dx_c}{dz}$$

 c_w = molar density of water dx_C/dz = molar gradient of C in zdirection $j_{Cw,z}$ = molar flux of C in z-direction

D= Diffusion constant (fitted parameter)

Fick's First Law

Fick recognized that there must be a difference in concentration to drive the net diffusion of a chemical, and formulated the law:

Fick's First Law

Fick recognized that there must be a difference in concentration to drive the net diffusion of a chemical, and formulated the law:

$$j_{Cw,z} = -c_w D_{Cw} \frac{dx_c}{dz}$$

Under isothermal, isobaric conditions, this can be simplified to:

$$j_{Cw,z} = -D_{Cw} \frac{dc_{Cw}}{dz}$$

 $c_w =$ molar density of water

 dx_C/dz = molar gradient of C in zdirection

 $j_{Cw,z}$ = molar flux of C in z-direction

D= Diffusion constant (fitted parameter)

Flux in different directions:

$$j_{Cw,x} = -c_w D_{Cw} \frac{dx_C}{dx}$$

$$j_{Cw,y} = -c_w D_{Cw} \frac{dx_C}{dy}$$

$$j_{Cw,z} = -c_w D_{Cw} \frac{dx_C}{dz}$$

$$j_{Cw,r} = -c_w D_{Cw} \frac{dx_C}{dr}$$

Typical values of Diffusion Coefficient

Gas	D _{Ca} = 10 ⁻¹ [cm ² /s]		
Liquid	D _{Cw} = 10 ⁻⁵ [cm ² /s]		
Solid	D _{Cw} = 10 ⁻¹⁰ [cm ² /s]		

EXAMPLE CALCULATION

- A jar of phenol contaminates a room with only one cylindrical vent (10 cm diameter, 20 cm deep)
- Neglecting advection, what is the rate of phenol loss through the vent if the room concentration of phenol in air is 0.05%?
- Assume: constant temperature of 20°C; a linear concentration gradient in the vent; D_{pa}=10⁻¹ cm²/s.

Solution...

$$j_{Pa,z} = -c_a D_{Pa} \frac{dy_c}{dz} = -D_{Pa} \frac{dc_{Pa}}{dz} \approx -D_{Pa} \frac{\Delta c_{Pa}}{\Delta z} = -D_{Pa} \frac{(c_{Pa,1} - 0)}{(0 - z_2)}$$
Rate: $W_{Pa,z} = j_{Pa,z} A = \frac{D_{Pa} c_{Pa,1} A}{z_2}$

$$c_{Pa,1} = y_P c_a = (0.0005)(\frac{mole}{24.1L}) = 2.1 \times 10^{-5} \frac{mol}{L}$$

$$A = \frac{\pi}{4} d^2 = \frac{\pi}{4} (10 \text{ cm})^2 = 79 \text{ cm}^2$$

$$W_{Pa,z} = \frac{(10^{-1} \text{ cm}^2 / \text{s})(2.1 \times 10^{-5} \text{ mol} / \text{L})(79 \text{ cm}^2)}{(20 \text{ cm})} \frac{10^{-3} \text{L}}{\text{cm}^3}$$

$$W_{Pa,z} = 8.2 \times 10^{-9} \text{ mol/s}$$

Fick's Second Law

What is the effect of time on the flux? Or... how does the flux change over time?

$$\frac{\text{change in conc}}{\Delta t} \propto \frac{\Delta \text{conc. gradient}}{\Delta \text{ distance}}$$

$$\frac{\Delta c}{\Delta t} = D \frac{\Delta (\Delta c / \Delta z)}{\Delta z}$$

$$\frac{\partial c}{\partial t} = D \frac{\partial (\partial c / \partial z)}{\partial z} = D \frac{\partial^2 c}{\partial z^2}$$

Fick's Second Law

How to calculate Diffusion Coefficients?

- General Approaches
 - Tabulated values- best approach
 - Correlations- many can exist
 - Experimental- can be time consuming
- Air Correlations for D_{Ca}
 - Kinetic theory of gases: many limitations, such as binary mixture.
 - Hirshfelder correlation: requires a lot of constants
 - Fuller correlation: best approach

FULLER CORRELATION: Diffusivities from Structure

Chemical "C" in gas "g"

<u>Where</u>: [these units must be used]

$$D_{Ca}$$
 = diffusion coefficient [cm²/s]

- T= temperature [K]
- P= pressure [atm]

M_C= molecular weight of chemical [g/mol]

M_g= molecular weight of gas [g/mol]

 $V_{C,d}$ = atomic diffusion volume (from formula and tabulated values) [cm³]

For chemicals in air:

$$D_{Cg} = \frac{T^{1.75} \times 10^{-3}}{P \left(V_{C,d}^{1/3} + V_{g,d}^{1/3}\right)^2} \left(\frac{1}{M_C} + \frac{1}{M_g}\right)^{1/2}$$

$$D_{Ca} = \frac{T^{1.75} \times 10^{-3}}{P \left(V_{C,d}^{1/3} + 2.73\right)^2} \left(\frac{1}{M_C} + 0.0345\right)^{1/2}$$

	Atomic a	nd Structure Dif	fusion-	Volume 1	increments, v	
С	16.5	Cl		19.5	 ==******************************	
H	1.98	S		17.0		
0	5.48	Aromatic ring		-20.2		
Ν	5.69	Heterocyclic ri	ng	-20.2		
	Diff	fusion Volumes f	or Sim	ple Moleo	cules, v	·
H ₂	7.07	Ar	16.1		H ₂ O	12.7
D_2	6.70	Kr	22.8		CClF ₂	114.8
He	2.88	CO	18.9		SF ₆	69.7
N_2	17.9	CO ₂	26.9		Cl ₂	37.7
O ₂	16.6	N ₂ O	35.9		Br ₂	41.1
Air	20.1	NH ₃	14.9		SO ₂	41.1

TABLE 3.1 Atomic Diffusion Volumes for Use in Estimating D_{c_s} by Method of Fuller et al.

Source: Welty et al., 1984.

How to calculate Diffusion Coefficients?

- Water: more on this later
- Solids
 - Less information available
 - Chemical in porous medium is in liquid phase: hindered diffusion
 - Chemical adsorbed to soil is in "solid" phase: surface diffusion
 - For hindered and surface diffusion, need to know diffusion constant in water

Examples: Diffusion constants in/on solids

Hindered diffusion

$$D_{Cw,pm} = D_{Cw,h} \frac{\theta}{\tau}$$

Where:

 $D_{Cw,pm}$ = diffusion coefficient in porous medium $D_{Cw,h}$ = diffusion coefficient in a single pore θ = porosity; typically 0.3 τ = tortuosity factor; typically 3

Surface diffusion

$$D_{Cw,h+sur} = D_{Cw,h} + \frac{(1-\theta)K * D_{Cw,sur}}{\theta}$$

Where:

D_{Cw,h+sur}= overall surface diffusion coefficient
 D_{Cw,sur}= surface diffusion coefficient
 K*= dimensionless adsorption partition coefficient

Diffusion constants: summary

- Tabulated values always best
- For air, simple correlations should be sufficient for level of our calculations
- In a porous medium, porosity and tortuosity factors probably more important than correct value for molecular diffusion in air.
- For water, situation is much more complex... more on that next.