Redox-driven dissolution of clay minerals by uranium under high pressure CO₂ conditions

Yan Liu, Fubo Luan, William D. Burgos *

Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16801-1408, United States

A R T I C L E I N F O

Article history:
Received 18 December 2013
Received in revised form 9 June 2014
Accepted 12 June 2014
Available online 21 June 2014

Editor: J. Fein

Keywords:
Carbon sequestration
Iron-bearing clay minerals
Uranium

A B S T R A C T

Geologic sequestration of supercritical CO₂ is one technology proposed to mitigate global warming. Increased acidity of brine due to CO₂ injection could lead to mineral dissolution of cap rock and well seals and mobilization of contaminants (e.g., U, Pb, As). In this study we examined the dissolution of nontronite NAu-2, an Fe(III)-rich clay mineral, and partially-reduced nontronite (R-NAu-2) in a synthetic brine (0.33 M Na₂SO₄) under high pressure CO₂ conditions (Pₓ = 9.66 bar, Pₒ₂ ≥ 8.66 bar CO₂, T = 20 °C) and in 1.40 M H₃PO₄–0.50 M H₂SO₄. Uranil(VI) or biogenic uraninite(IV) was added as a redox-active contaminant and reaction kinetics were measured over a 15 d period. Unaltered nontronite [3.4% Fe(II)] dissolved very little under high pressure CO₂ conditions. However, chemically-reduced nontronite [48% Fe(II)] dissolved more rapidly (half-life of 78.4 d under high pressure CO₂ conditions, 17.8 h in H₃PO₄–H₂SO₄). Structural Fe(II) in reduced nontronite [R-NAu-2] was preferentially dissolved compared to structural Fe(III) in unaltered nontronite [NAu-2 Fe(III)]. No redox reactions were observed between R-NAu-2 Fe(II) and U(VI). In contrast, uraninite was oxidized by NAu-2 Fe(III) faster and to a greater extent under high pressure CO₂ conditions as compared to ambient pressure conditions (Pₒ₂ = 1.0 bar, 95:5% N₂–H₂). Redox reactions between uraninite and NAu-2 Fe(III) enhanced the dissolution of both clay and U, indicative of potential risks associated with geologic carbon sequestration.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Geologic carbon sequestration (GCS) is a process where CO₂ is captured, transported and injected into underground reservoirs such as saline aquifers, depleted oil and gas reservoirs, and un-minable coal seams. The advantage of saline aquifers is their wide distribution and large capacity. It was estimated that 65% of CO₂ produced by power plants in the United States can be injected directly into deep saline aquifers below the plants (White et al., 2005). The introduction of CO₂ into saline aquifers will decrease the pH of the brine, especially if impurity gases such as NOₓ and SOₓ are present (Knauss et al., 2005; Steudel et al., 2009). In addition to acid-promoted dissolution, Fe(III)-rich clay minerals are subject to redox-promoted dissolution. Decreased pH and increased dissolved carbonate concentrations will induce dissolution and precipitation of minerals in the storage reservoir.

Mineral trapping of CO₂ into e.g. carbonate minerals would promote CO₂ sequestration but possibly decrease reservoir porosity. A number of experimental studies have taken intact cores from reservoir formations, flooded these cores with CO₂-rich fluids and measured increases in porosity and permeability (Rimmele et al., 2010; Canal et al., 2013). Other studies have reported that porosity and permeability of Stuttgart sandstone (Sell et al., 2013) and Glauconitic sandstone, Gulf Coast sediments and dunite (Xu et al., 2004) decreased after reaction with CO₂-rich fluids.

Clays and clay minerals are ubiquitous in sedimentary rocks, especially shale. More than 60% of depleted petroleum reservoirs are capped by shale (Olabode et al., 2012). Clay minerals such as bentonite are also an important component of cement used in wellbore seals for geologic carbon sequestration. While clays are generally considered as refractory materials that are difficult to dissolve, low-pH conditions and long-term exposure within storage reservoirs may promote dissolution. Shaw and Hendry (2009) developed a conceptual model for acid-promoted dissolution of clay minerals. At pH > 3, tetrahedral and octahedral sheets are not dissolved but exchangeable cations in the interlayers are replaced by H⁺. At 3 > pH > 1, octahedral sheets begin to dissolve before tetrahedral sheets. At pH < 1, tetrahedral sheets begin to dissolve. Clay minerals dissolve in strong acid, such as > 1 M H₂SO₄ or HCl, under high temperature (70 to 95 °C) for several hours (Okada et al., 2006; Steudel et al., 2009). In addition to acid-promoted dissolution, Fe(III)-rich clay minerals are subject to redox-promoted dissolution. Reduction of structural Fe(III) has been shown to promote...
clay dissolution (Stucki, 2011; Jaisi et al., 2008). Using infrared spectroscopy (Neumann et al., 2008) and Mössbauer spectroscopy (Ribeiro et al., 2009), irreversible reduction and/or reductive dissolution of structural Fe has been shown to permanently alter the clay structure.

Clay minerals have been identified as key mineral phases affecting the fate and transport of contaminants potentially mobilized by CO2 sequestration (IEAGHG, 2013). Clay minerals are expected to be important in low hydraulic conductivity zones such as the overlying cap rock and within engineered well seals. The mineralogy of sixteen candidate GCS sites from seven basins within the US DOE Regional Carbon Sequestration Partnership Programs were examined and clay minerals were identified as dominant mineral components in eleven of the sixteen sites—illite in eight, glauconite in five, chlorite in four, montmorillonite in four, and smectite in one (Griffith et al., 2011). It is reasonable to assume that some amount of structural iron exists within these clay minerals. We have constructed model systems using specimen clay minerals and U to measure redox dynamics and mineral dissolution under conditions with elevated concentrations of CO2. Concentrations of clay minerals and U were selected to promote electron transfer reactions between these components and not selected to match in situ concentrations expected at CO2 sequestration sites.

The US DOE National Energy Technology Laboratory (NETL) and the International Energy Agency (IEAGHG, 2013) have identified U as a contaminant of concern at sites proposed for GCS. While U may not be a common contaminant of concern in CO2 sequestration strata, the mobilization of U caused by CO2 leakage and reaction in overlying aquifers is of concern (Keating et al., 2010; Little and Jackson, 2010). One study examined the mobilization of trace contaminants from seventeen freshwater aquifers that overly candidate deep saline GCS sites. When these aquifer sediments were exposed to elevated concentrations of CO2, dissolved concentrations of U were found to more than double in ten of the seventeen sediments tested (Little and Jackson, 2010). Elevated concentrations of dissolved U were also reported at Chimayó, NM, where CO2 from natural sources upwells from a deep saline aquifer (Keating et al., 2010). This sedimentary basin has been described as a natural analog site for CO2 sequestration. Aquifer sediments contain illite and smectite and the brackish, CO2-rich water was enriched with both Fe and U. Model simulations (Zheng et al., 2009), laboratory experiments (Little and Jackson, 2010), and field site monitoring (Kharaka et al., 2010) have also shown increases in concentrations of As and Pb after injection of CO2.

The purpose of this research was to investigate dissolution of nontronite, uraninite and redox reactions between them under high pressure CO2 conditions. Partially-reduced nontronite (R-NAu-2) was produced using the citrate–bicarbonate–dithionite (CBD) method (Stucki et al., 1984). Reaction conditions were controlled such that 48% of the structural Fe(III) was reduced. R-NAu-2 was sequentially washed with anoxic 0.1 M NaCl, 0.01 M NaAc, 0.001 M NaCl and three times with anoxic Milli-Q water. R-NAu-2 [48% Fe(II)] stock solutions were prepared at 0.5 g/L in anoxic 0.33 M Na2SO4 for high pressure CO2 dissolution experiments and 1.0 g/L in anoxic 0.66 M Na2SO4 for other experiments. All clay mineral stock solutions were stored in flasks sealed by paraffin in an anoxic chamber (supplied with 95.5% N2; H2 gas mix).

Uraninite was likely caused by centrifugation performed outside of the anoxic chamber. Ulrich et al. (2009) also reported that treatment of biogenic uraninite with 1 M NaOH led to partial oxidation of the uraninite. At high pH conditions, water radiolysis products could serve as oxidants in otherwise anoxic water.

2. Materials and methods

2.1. Clay mineral preparation

Nontronite NAu-2, an iron-rich variety of smectite from the Uley graphite mine, South Australia (Keeling et al., 2000), was purchased from the Clay Mineral Society (West Lafayette, IN). Bishop et al. (2011) reported a solid-phase mineral composition of NAu-2 to be [Ca0.28Na0.36K0.42Al0.25Fe2+3.22Al0.56Fe3+3.71Mg0.10Ti0.06]/(Si7.19Al0.81Fe0.33 O24(OH)5). The chemical composition of NAu-2 used in this study will likely vary from this formula due to subtleties between batches and size fractionation techniques. NAu-2 was suspended in 0.1 M NaCl for 24 h and then separated by centrifugation to obtain the 0.2–2.0 μm clay-size fraction. The clay fraction was washed with distilled deionized water (Milli-Q) repeatedly until no Cl− was detected by silver nitrate and then dried at 80 °C. The NAu-2 clay fraction contained 4.46 mmol Fe/g clay and was 96.6% Fe[III] based on an anoxic HF–H2SO4 digestion method (Luan and Burgos, 2012).

NAu-2 stock solutions were prepared at 0.5 g/L in anoxic 0.33 M Na2SO4 for high pressure CO2 dissolution experiments and 1.0 g/L in anoxic 0.66 M Na2SO4 for other experiments. Chloride is usually the dominant anion in brines from deep saline aquifers selected for GCS. However, we used a sulfate-brine to avoid analytical interferences with our U(VI) method—a Kinetic Phosphorescence Analyzer (KPA). Chloride will complex with the uranyl cation (UO22+) and effectively quench the kinetic phosphorescence reaction. Sulfate is typically the next most abundant anion in saline brines, but often one to two orders of magnitude lower in concentration as compared to chloride (Emberley et al., 2004; Daneshfar et al., 2009).

Partially-reduced nontronite (R-NAu-2) was produced using the citrate–bicarbonate–dithionite (CBD) method (Stucki et al., 1984). Reaction conditions were controlled such that 48% of the structural Fe(III) was reduced. R-NAu-2 was sequentially washed with anoxic 0.1 M NaCl, 0.01 M NaAc, 0.001 M NaCl and three times with anoxic Milli-Q water. R-NAu-2 [48% Fe(II)] stock solutions were prepared at 0.5 g/L in anoxic 0.33 M Na2SO4 for high pressure CO2 dissolution experiments and 1.0 g/L in anoxic 0.66 M Na2SO4 for other experiments. All clay mineral stock solutions were stored in flasks sealed by paraffin in an anoxic chamber (supplied with 95.5% N2; H2 gas mix).
clay mineral (prepared and maintained under $P_T = 1.0$ bar, 95:5% N_2: H_2) were also established. Based on these operational methods, we have adopted the following terminology to describe our reactors. “High pressure CO_2 conditions” refer to $P_T = 9.66$ bar with $P_{CO_2} \geq 8.66$ bar (initially). “Ambient pressure conditions” refer to $P_T = 1.0$ bar, 95:5% N_2: H_2. Reaction kinetics were measured over a 15 d period by sacrificing pressure tubes.

Clay minerals were also dissolved in 1.40 M H_3PO_4–0.50 M H_2SO_4 under ambient pressure conditions using 0.5 g/L clay in 0.33 M Na_2SO_4 brine mixed in flasks inside an anoxic chamber. No-clay control reactors were prepared with all experiments. The combination and concentrations of H_3PO_4–H_2SO_4 were based on a previous analytical method developed for clay-$Fe(II/III)$ and $U(IV/VI)$ speciation (Luan and Burgos, 2012). Reaction kinetics were measured over a 3 d period.

2.4. Clay–uranium experiments

Clay–uranium experiments were initiated by mixing 1.0 g/L $NAu-2$ or $R-NAu-2$ in 0.66 M Na_2SO_4 brine with $U(VI)$ (in 30 mM NaHCO$_3$) or uraninite (in Milli-Q water) stock solution at a 1:1 volume ratio. Final concentrations in the pressure tubes were 0.5 g/L $NAu-2$ or $R-NAu-2$, 0.33 M Na$_2$SO$_4$ with 15 mM NaHCO$_3$ and 0.45 mM U(VI) for $U(VI)$ experiments, or with 0.33 mM uraninite [58% U(IV)] for U(IV) experiments. Total suspension volume in each pressure tube was approximately 10 mL. Experiments were conducted under both high pressure CO_2 conditions and ambient pressure conditions. Control reactors with clay and U were also prepared with all experiments. Control reactors with no-clay were prepared with all experiments. Control reactors with clay and U were also prepared under ambient pressure conditions.

2.5. Analytical methods

In no-uranium reaction systems, the modified HF–H_2SO_4–phenanthroline digestion method was used to measure clay-$Fe(II/III)$ speciation (Luan and Burgos, 2012). In clay–uranium reaction systems, $clay-Fe(II/III)$ was measured using a sequential acid extraction/mineral digestion method (Luan and Burgos, 2012; Figure S1). H_3PO_4–H_2SO_4-extractable $Fe(II/III)$ was measured after the mineral pellet had been extracted for 10 min in 1.40 M H_3PO_4–0.50 M H_2SO_4. HF–H_2SO_4-digestable $Fe(II/III)$ was measured using the remaining mineral pellet following the HF–H_2SO_4-phenanthroline method. Uranium (IV/VI) was measured in the dissolved and H_3PO_4–H_2SO_4-extractable fractions using an anoxic automated KPA method. Dissolved samples were collected after centrifugation (14,000 rpm for 10 min) and before H_3PO_4–H_2SO_4-extraction. $U(IV/VI)$ was speculated by analyzing samples and then re-analyzing samples after they were oxidized with 70% HNO$_3$ and heated in a boiling water bath for 45 min. Dissolved $Fe(II/III)$ was measured in the supernatant using the phenanthroline method.

Well mixed sample suspensions were filtered (0.2 μm), acidified with 70% nitric acid, and stored at 4 °C until analysis of dissolved cations. Al, Fe, Mg and Si were measured by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES).

3. Results and discussion

3.1. Dissolution of nontronite $NAu-2$ and reduced $NAu-2$

Nontronite did not dissolve to any great extent under high pressure CO_2 conditions ($P_T = 9.66$ bar, $P_{CO_2} \geq 8.66$ bar CO_2, $T = 20$ °C) during a 15 d reaction period. No differences were found in experiments conducted in 1.0 M NaCl, 0.33 M CaCl$_2$ or 0.33 M Na$_2$SO$_4$ (data not shown). There was no more than a sum total of $5 \text{mg/L of dissolved cations (Al, Fe, Mg and Si)}$ detected in these experiments, which accounted for less than 1.1% (converted to oxides) of the total clay mass. Dissolved cation concentrations were calculated from the concentrations measured in the clay-containing pressure tube minus the concentrations measured in the corresponding no-clay control (Table S1). After 1 to 15 d of reaction under high pressure CO_2 conditions, pH values of 10 g/L nontronite suspensions in 1 M CaCl$_2$ ranged from pH 3.98 to 4.15. The limited dissolution of nontronite under these conditions is consistent with the conceptual model for clay dissolution proposed by Shaw and Hendry (2009) where aluminosilicates will not dissolve until pH < 3.

In comparison, reduced $NAu-2$ (48% clay-$Fe(II)$) dissolved to a quantifiable extent under high pressure CO_2 conditions (Fig. 1a). Based on the sum of dissolved Al, Fe, Mg and Si concentrations measured at the end of the 15 d reaction period, 21% of the total mass of reduced $NAu-2$ dissolved under high pressure CO_2 conditions. Reduction of
structural Fe(III) in nontronite [referred to as NAu-2 Fe(III)] to structural Fe(II) in nontronite [referred to as R-NAu-2 Fe(II)] will result in a charge imbalance (caused by Fe$^{3+}$ converted to Fe$^{2+}$) that must be compensated within the clay mineral structure and/or through exchange of adsorbed ions. Charge compensation decreased the stability of R-NAu-2 Fe(II) compared to NAu-2 Fe(III) and led to a greater rate and extent of clay mineral dissolution. Previous studies have shown that the substitution of Fe$^{2+}$ or Mg$^{2+}$ for Al$^{3+}$ in the octahedral sheet, or the substitution of Al$^{3+}$ or Fe$^{3+}$ for Si$^{4+}$ in the tetrahedral sheet increased the solubility of illite and smectite in H$_2$SO$_4$ or HCl (Steudel et al., 2009; Pentrak et al., 2010).

The dissolution of Si from nontronite was modeled using a pseudo-first order reaction according to:

$$\frac{d[\text{Si}]_{\text{aq}}}{dt} = -k \left([\text{Si}]_{\text{T}} - [\text{Si}]_{\text{aq}} \right)$$

where k is the first order dissolution rate constant (h$^{-1}$), $[\text{Si}]_{\text{T}}$ is the initial total concentration of Si in suspension (g/L), and $[\text{Si}]_{\text{aq}}$ is the dissolved concentration of Si (g/L) evolving over time. A pseudo-first order reaction has also been used to model the dissolution of Al and Si from montmorillonite and nontronite in acid solutions (Osthaus, 1955; Zysset and Schindler, 1996; Rozalen et al., 2008). An integrated form of Eq. 1 was used to calculate k according to:

$$\ln \left(\frac{[\text{Si}]_{\text{T}} - [\text{Si}]_{\text{aq}}}{[\text{Si}]_{\text{aq}}} \right) = -k \times t + b$$

where b is an intercept value. The half-life of dissolution was calculated as $\ln(2)/k$. As noted above, the dissolution of nontronite under high pressure CO$_2$ conditions produced dissolved concentrations of Al, Fe, Mg and Si too low to calculate a statistically meaningful rate constant. The dissolution of Si from R-NAu-2, however, fit well to Eq. 2, with a half-life from 1660 to 2160 h (95% confidence interval, t-test, n = 6). As discussed below, while nontronite dissolution was not congruent, kinetic constants for the different clays under the different conditions were still valuable for comparison purposes.

The strong acid 1.40 M H$_3$PO$_4$–0.50 M H$_2$SO$_4$ significantly increased the rate and extent of dissolution of both nontronite (Fig. 1c) and R-NAu-2 (Fig. 1b). Based on dissolved Al, Fe, Mg and Si concentrations measured at the end of the 3 d reaction period, 23% of the total mass of nontronite dissolved while 70% of the R-NAu-2 dissolved. Dissolution of Si from both nontronites was well fitted by Eq. 2. A half-life from 147 to 168 h (n = 8) was calculated for nontronite in H$_3$PO$_4$–H$_2$SO$_4$ as compared to a half-life from 16.2 to 19.7 h (n = 6) for R-NAu-2 in H$_3$PO$_4$–H$_2$SO$_4$. All structural layers of phyllosilicates are expected to dissolve under these extreme acidic conditions (Shaw and Henry, 2009).

Dissolution of nontronite and R-NAu-2 in H$_3$PO$_4$–H$_2$SO$_4$ was incongruent (Fig. 2). Molar ratios of dissolved Fe to dissolved Al (Fe/Al), Fe/Si, Al/Si and Mg/Al were all essentially greater than the stoichiometric ratios reported previously (Bishop et al., 2011). As noted above, these differences likely reflect some variability in purchased materials and differences caused by our size fractionation procedures. Differences in the absolute values of these molar ratios between nontronite and R-NAu-2 were caused by the CBD reduction procedure (and clay washing) used to produce R-NAu-2. Near-constant Fe/Al ratios for both nontronite and R-NAu-2 (Fig. 2a) suggest that Fe and Al may congruently dissolve out of the octahedral layer of these nontronites. Declining Fe/Si ratios for both nontronite and R-NAu-2 (Fig. 2b) demonstrate that Fe was preferentially dissolved as compared to Si. Conceptually, Fe can be dissolved from the Si-rich tetrahedral layer (presumably accounting for ca. 8% of the total structural clay-Fe) or the Al-rich octahedral layer (92% of structural clay-Fe) (Gates et al.,...
studies (Rozalen et al., 2008; Steudel et al., 2009; Pentrak et al., 2010).

Lower pH values and higher bicarbonate concentrations under the close to the theoretical ratio of 2 mol Fe(II) per 1 mol U(VI) (Fig. 4). Overall, preferential dissolution occurred as: Mg > Fe ∼ Al > Si, consistent with several previous studies (Rozalen et al., 2008; Steudel et al., 2009; Pentrak et al., 2010).

3.2. Reactions between nontronite and uranium(VI)

Experiments were conducted with nontronite and uranium to determine if reactions between NAu-2 Fe(III) and U(IV), or R-NAu-2 Fe(II) and U(VI) would promote clay dissolution or uranium solubilization. To accurately speciate both clay-Fe(II/III) and U(IV/VI) in suspensions containing both elements, a sequential acid extraction–mineral digestion procedure was required (H₃PO₄–H₂SO₄ extraction–HF–H₂SO₄–phenanthroline digestion) (Luan and Burgos, 2012). This additional acid extraction step led to the operational measurements of dissolved, H₃PO₄–H₂SO₄-extractable and HF–H₂SO₄-digestible concentrations. Fe(II/III) were speciated in all three fractions while U(IV/VI) were speciated only in the dissolved and H₂PO₄–H₂SO₄-extractable fractions (because H₃PO₄–H₂SO₄ solubilized all U).

As expected, no redox reactions occurred between NAu-2 Fe(II/III) and U(IV) (Figure S2). U(VI) also did not participate in any redox reactions with R-NAu-2 Fe(II) (Figure S2). Fe(II) was the predominant form of dissolved Fe and the predominant form of H₃PO₄–H₂SO₄-extractable Fe. The preferential solubilization and acid extraction of Fe(II) were expected based on our results with R-NAU-2 in the absence of U. High pressure CO₂ conditions as compared to ambient pressure conditions had no effect on this result. R-NAU-2 Fe(II) was either not a strong enough reductant to reduce U(IV) or it was kinetically limited in its ability to transfer electrons to U(IV). These results are consistent with Zhang et al. (2009) who found that chemically reduced NAU-2 (27% clay-Fe(II), 20 mM clay-Fe) did not react with 1.0 mM U(VI) in a 30 mM NaHCO₃ background electrolyte over an 83 d reaction period.

While U(IV) did not participate in any redox reactions with R-NAU-2 Fe(II), U(VI) did affect the dissolution of Al, Fe, Mg and Si (Figure S3). The dissolution of Al, Fe and Mg from R-NAU-2 under high pressure CO₂ conditions decreased compared to identical experimental conditions without U, while the dissolution of Si increased slightly. We speculate that the sorption of U(IV) to edge sites of R-NAU-2 may have blocked protons from accessing these sites and re-directed proton attack towards the Si-rich basal planes.

3.3. Reactions between nontronite and uranium(IV)

NAU-2 Fe(III) was reduced and uraninite(IV) was oxidized under both high pressure CO₂ conditions and ambient pressure conditions (Fig. 3). The extent of redox reactions between U(IV) and Fe(III) was greater under high pressure CO₂ conditions. After 360 h, the overall Fe(II)/FeTOT ratio in nontronite increased from 3.4% to 18.1% under high pressure CO₂ conditions as compared to increasing to 10.5% under ambient pressure conditions (Fig. 3a). The ratio of measured concentrations of Fe(II) produced to U(IV) produced (ΔFe(II)/ΔU(IV)) was close to the theoretical ratio of 2 mol Fe(II) per 1 mol U(IV) (Fig. 4). Lower pH values and higher bicarbonate concentrations under the high pressure CO₂ conditions are expected to increase the rate of uranium oxidation (Ginder-Vogel et al., 2006) and the thermodynamic driving force for uranium oxidation coupled to Fe(III) reduction (Ginder-Vogel et al., 2010).

Concentrations of uranium in brine were significantly higher under high pressure CO₂ conditions as compared to ambient pressure conditions (Fig. 4 and Figure S4), which was caused by acid-driven and oxidation-driven dissolution. This is similar to in situ recovery mining of uranium, where oxidizing reagents such as O₂ and H₂O₂, together with CO₂, are pumped with water into a confined aquifer with permeable uranium ore (Borch et al., 2012). Oxidation-driven, acid-driven and bicarbonate-driven dissolution of uraninite enriches U in the recovered water. If geological carbon sequestration takes place in aquifers with uranium and Fe(III)-bearing clay minerals, mobilization of U could occur.
Uraninite-driven reduction of NAu-2 Fe(III) led to reductive dissolution of the clay mineral only under high pressure CO2 conditions (Fig. 5). Redox-promoted dissolution of nontronite was consistent with the enhanced solubility of R-NAu-2 as compared to nontronite. Under ambient pressure conditions, concentrations of dissolved Fe were not measureable (1.1 μM detection limit by the phenanthroline method) even after nontronite was reduced by uraninite. Nontronite did not dissolve to any measurable extent in experiments conducted with U(VI) under high pressure CO2 conditions, indicating that both U(VI) and mild acidic conditions were necessary for nontronite dissolution. Under high pressure CO2 conditions, structural Fe(II) dissolved to a greater extent over the 15 d reaction period.

Based on the different rates of uranium oxidation in the presence and absence of elevated CO2 concentrations, we can speculate on the mechanism of U(IV) oxidation by NAu-2 Fe(III). In another study, we used Mössbauer spectroscopy to characterize R-NAu-2 and found that Fe(II) was only in the octahedral sheet (Luan et al., 2014). Electron transfer from U(IV) to octahedral-Fe(III) could then occur either “directly” through edge sites (followed by electron hopping deeper into the clay structure) or “indirectly” through the basal plan [e.g., facilitated by tetrahedral Fe(III)]. Both of these mechanisms are likely operative but we are unable to determine which might be predominant. Unlike Fe(III) in nontronite, U(IV) in uraninite is not completely insoluble. Therefore, either soluble U(IV) or solid-phase U(IV) may be the form that donates reducing power to the minerals. In a GCS scenario, the addition of CO2 to the sequestration strata would increase the solubility of both U(IV) and U(VI). CO2-rich fluids could then facilitate the transport of U to the sequestration strata—cap rock interface or solubilize U from the cap rock. The co-occurrence of U(IV) and clay-Fe(III) in either strata plus the presence of elevated CO2 concentrations will promote clay mineral dissolution. Redox reactions between contaminants and host minerals, therefore, represent another process where contaminant-mineral reactions can affect matrix permeability.

Acknowledgments

This technical effort was performed in support of the US DOE National Energy Technology Laboratory’s on-going research in CO2 capture at the RES contract DE-FE-0004000. This project was funded by NETL through a support contract with URS Energy & Construction, Inc. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the US government.

Appendix A. Supporting information

Illustration of sequential experimental methods and additional data are included in supporting information. Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.chemgeo.2014.06.009.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.chemgeo.2014.06.009.

References

Fig. 5. Fe distribution in dissolved, 1.40 M H2PO4−0.50 M H2SO4 extractable, and solid forms. From left, first bar: high pressure CO2 conditions (P1 = 9.66 bar, P2O3 ≥ 8.66 bar CO2) with U(VI); second bar: ambient pressure conditions (P1 = 1.0 bar, N2O5 = 95.5%) with U(VI); all other bars represent reactions high pressure CO2 conditions with U(IV) and increasing reaction time (# of hours). Experiments conducted with 0.5 g/L NAu-2 in 0.33 M Na2SO4.

