Frequently asked questions about MFCs and our replies (Logan lab, Penn State)

1. In the paper by Liu, H., Cheng, S. and Logan, B.E. (2005b) Env. Sci. Tech., Vol. 39(14), pp. 5488-5493, you say that you produced your own carbon paper cathode by applying a mix of 5% Nafion solution and 20% Pt (E-TEK). From the suppliers I managed to find on the internet (Sigma, http://www.cleanfuelcellenergy.com; http://www.fuelcell.sg/store/index.php?cPath=23_35) there are a range of 5% Nafion solutions available (e.g. water content is variable, purity). Which 5% Nafion solution did you exactly use, or does it not matter much?

 We used part#274704-100ml Nafion perfluorinated ion-exchange resin, 5% solution in low aliphatic alcohols/H2O mix, contains 15-20% water.

2. How were the carbon electrodes were connected to the platinum wire. And where did you buy the platinum wires from?

 You can use Pt for the wire as we did in early studies, but you can also use titanium as that is much less expensive. We purchased the titanium wire from VWR. The wire we used is: part # AA00362-G5, 0.5 mm diameter, 5 meters length, $264.60 USD, Manufacturer - Alfa Aesar.

 Paper is rigid, cloth is flexible. We are not familiar with the paper coated with PTFE.

4. Where did you purchase Vulcan XC-72 from?

 We obtained it from Cabot Corporation. A contact is Jesse Kleczka, Technical Service, Cabot Corporation, 157 Concord Road, Billerica, MA 01821, Tel: 978-670-6144, Fax: 978-670-7035, Additional Services Available at CABOTech, the e-newsletter of fine particle technology.

5. Can you tell us costs and where to get anion exchange membranes (AEM) and cation exchange membranes (CEM) membranes?

 The standard size sheet for AEM (AMI is the product) and CEM (CMI is the product) (48” x 120”) is $300.00 plus shipping, and a 40” x 40” sheet for $125.00. Contact Dwight at: http://www.membranesinternational.com/

6. Where is the conductive coating that you used in your tubular cathode paper purchased from?

 We purchased the conductive coating from Superior Graphite Co of Bedford Park, IL, 60638. Order ELC E34 Semi-Colloidal $1.455/lb, but you have to buy large quantities (45 lb pails).

7. How do you know you have a good electrical connection between the wire and electrode?

 Check the resistance of the electrodes (between the wire with carbon paper, graphite plate or cathode). The connection resistance can be important. Before you setup them into the MFC, you should have resistances with Ti wire and materials on the order of:
 - Carbon paper with Ti wire: 0.8-1.8 ohm
 - Graphite plate with Ti wire: 1-2 ohm
 - Air cathode with Ti strap: about 5 ohm

 If you find the resistance is over these values, you probably need to check what’s wrong. The followings are some tips for making a good connection:
- Remove the oxide layer on the surface of the Ti where it is connected with the electrode using sandpaper
- Before and after gluing the connection point, measure the resistance to see if the resistance is still around the above values

8. How are the carbon paper electrodes connected to the platinum wire in the cubic air-cathode MFCs? Are they glued to the carbon electrodes? Does the wire run all the way down to the bottom of the carbon cloth?

There are two holes drilled to be 1 mm in diameter on both sides of the MFC (see the CAD drawing of the cube MFC). The holes are located so that half of a platinum or titanium wire (about 2.5 cm in total length) sticks out through the top, with another part that extends inside the chamber against the wall. The carbon electrode is pressed against the Pt wire, and a rubber O-ring is used to seal the ends. These are not glued. The electrode only touches the wire in one spot and does not run all the way down to the bottom of the carbon cloth.

9. Apparently BASF (which bought out E-Tek) isn’t making the carbon cloth air electrodes any longer. Can you suggest other vendors?

We are still identifying alternate vendors. We currently order our carbon paper from Clean Fuel Energy, http://www.cleanfuelcellenergy.com. Our contact is Colleen Spiegel

Another vendor is the Fuel Cell Store. Here are some part numbers and a URL.

- **EC-CC1-060** - Carbon cloth, 19cm x 19cm, untreated
- **EC-CCC-060** - Carbon cloth, custom dimensions, maximum 3ft, untreated
- **EC-CC1-060T** - Carbon cloth, 19cm x 19cm, Teflon™ treated
- **EC-TP1-030** - Toray™ carbon paper, 19cm x 19cm
- **EC-TP1-030T** - Toray™ carbon paper, 19cm x 19cm, Teflon™ treated
- **EC-TP2-030** - Toray™ carbon paper, 38cm x 38cm
- **EC-TP2-030T** - Toray™ carbon paper, 38cm x 38cm, Teflon™ treated
- **EC-10-PTC 5grams** - Pt, 10wt.% on VULCAN XC-72 Carbon
- **EC-XC72R-50** - Vulsan Carbon, 50grams

A link to these products:

Another alternative is Ballard. See: http://www.ballard.com/Material_Products/

Most recently (11-1-11) we found a relatively inexpensive vendor of toray paper:

10. Can you describe how the salt bridge was constructed for the work by Min & Logan?

The salt bridge was made using 2% agar in 1M KCl. To make this solution, dissolve 3 g of agar in 150 ml of ultrapure water (Milli-Q water or distilled water), and then add 11.18g of KCl (1mole/L × 74.55g/mole × 0.15 L).

11. I inoculated Geobacter sp PCA in a U-tube MFC as same as your method in the paper (Zuo and Logan, AEM, 2008). But, their electricity generating performance was less than air-cathode reactor. I suspect that some ferricyanide from the cathode chamber was contaminating the anode
chamber, and that soluble FeIII reduction and/or CN$-$ inhibition was affecting Geobacter cells. I think pretreatment of CMI membrane may have caused a problem. I conducted both 80$^\circ$C (3 hr) sterilization and EtOH sterilization procedures for the CMI membrane. But after EtOH treatment, I needed to dry up the membrane for installation to the U-tube MFC. Could you provide additional information on how to install the membrane and prevent ferricyanide contamination to anode chamber?

Here are some additional suggestions:

1. When you assemble a U-tube reactor, always add a gasket between the carbon cloth anode and the CMI membrane to help seal the chamber.
2. Look down into the tube and ensure that the gasket is continuous around the perimeter of the membrane/tube interface.
3. Pour de-ionized, distilled water into one side of the tube and let the tubes sit overnight. Inspect for leakage to the other side. There should be no water loss.
4. Don’t use EtOH for sterilization.
5. Don't autoclave a completely sealed and capped system. Autoclave the system with the tubes open but covered with aluminum foil for fifteen minutes at 18-20 psi and 121$^\circ$C.
6. Visually inspect and recheck the seals after autoclaving as in steps 2. and 3.
7. Use a needle inserted into the caps when sealing to reduce the pressure inside the tubes.
8. Inject to anode first with a gentle pressure, then pour ferricyanide into the cathode and cap the cathode.
9. It may be helpful to use large rubber gaskets and membranes to be sure that you completely seal all areas.

12. Why do you add a carbon base layer between the carbon cloth and the PTFE layers? Can I coat the four PTFE layers directly?

A carbon base layer helps to reduce water loss and oxygen diffusion into the reactor, and form a better interface for oxygen reduction, resulting in increase in both CE and power. You can coat only the four-PTFE layer directly, but may not get as high a CE.

13. Why you not add a carbon based layer next to the catalyst layer? I have read many articles about the electrode assembly for the PEMFCs, and I find they all add a carbon base layer between the catalyst layer and the carbon cloth in order to improve the operating factor of the catalyst. And this layer, usually is called micro-porous layer. Would it be helpful, if we added the micro-porous too, between the catalyst layer and carbon cloth?

What we add is a mixture of carbon powder, binder (usually Nafion), and catalyst (usually Pt) right on top of the carbon cloth. In a PEM fuel cell, there are many approaches but most of them apply the carbon/binder/catalyst layer to the membrane or the cloth and then hot press a membrane to the cathode. The environment of the MFC is much different with that of PEMFC because of the liquid electrolyte (i.e. the anode solution) in the MFC versus just a solid electrolyte (Nafion) in a PEM FC. The air cathode in the MFC needs a thicker catalyst layer and a hydrophobic diffusion layer on the air side of the cathode to prevent water loss through the cathode. Commercial air cathodes have poorer performance when use in our MFCs than the ones we make. But we haven’t tried all variations on PEMFCs in our MFCs, so anything new is worth trying!

14. Who is your source for bottle brushes?
We currently purchase brushes from Mill-Rose that we use in our cube reactors, as they are less expensive than brushes we have purchased from others. Contact information is: Mill-Rose Company, Nate Zappola, Production Supervisor, 7995 Tyler Blvd, Mentor, Ohio 44060, (800) 321-3533, http://www.millrose.com/. The carbon fiber used to make these is Zoltek, Panex 35, which is .000283” (7.2 microns) in strand diameter. We usually order quantities of (50) to get the pricing below.
- 14-mm (brush diameter) x 25-mm (brush length) x 50-mm (overall length); part # 310840; $3.59 each
- 25-mm (brush diameter) x 25-mm (brush length) x 50-mm (overall length); part # 311629; $4.00 each
- 60-mm (brush diameter) x 70-mm (brush length) x 150-mm (overall length); part # 313830; $4.20 each

In the past we have used Gordon Brushes, part number 499278, for bottle brushes. Sonia Rojas is the contact there, (800) 950-7950 extension 100, sonia@gordonbrush.com.

15. Carbon cloth is expensive. Is there an alternative material that I can use?
Yes, you can use carbon mesh for the anode. Carbon mesh is very inexpensive and costs only ~ $10-50/m² depending on the vendor. See the paper by Wang et al., 2009, Environ. Sci. Technology (it is on the website). We obtained our mesh from Gaojieshi Graphite Products Company, Ltd in Fujian, China. Note that this material needs to be heated in an oven to produce good results. We use 450°C for 30 minutes. Other times may work as well. You can get these temperatures in an ordinary oven on the self cleaning cycle. Alternatively, just heat as high as it goes (about 450°F) and use a longer period of time.

A US vender that might produce the same results (we are not sure) is Jamestown distributors. See their link below.
http://www.jamestowndistributors.com/userportal/search_subCategory.do?categoryName=Carbon%20Fiber &categoryId=522&refine=1&page=GRID

Another person has suggested PANEX® 35 Tow Weave Carbon Fabrics:
Zoltek Corporation, 3101 McKelvey Rd., St. Louis, MO 63044, www.zoltek.com
Tel 314-291-5110 Fax 314-291-8536. Inquires for product and pricing: sales@zoltek.com

16. Can you recommend a supplier for Pt and for Pt on carbon?
Last time we checked, it is still possible to order Pt on carbon, or C1-10 10% Pt on Vulcan XC-72, from BASF, which is what we are using in the lab.

For Pt prices, you need to email claudia.m.ortiz@basf.com. The price varies according to the current price of Pt. If they have it in stock there is a 50 gram minimum, if they don’t have it
in stock, it will be a 100 gram minimum. Contact information for BASF Fuel Cell, Inc, 39 Veronica Avenue, Somerset, NJ 08873; phone: 732-545-5100

17. I want to make a really cheap MFC. Can you recommend how to do this?
 See the website on different approaches taken by students. Recently a very inexpensive MFC was built using earthen pots and stainless steel mesh. These materials are probably available at your corner hardware store. See Behera et al., 2009, “Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode. Bioresource Technology, doi: 10.1016/j.biortech.2009.07.089. Also, see comment #20 below.

18. I’d like to get some glass bottles made with side ports and I’m not at a university. How can I do that?
 We recently have worked with a vendor that does custom glass work at very reasonable prices. Our contact information is as follows: Sherry Schwenger, Mgr, Sales Administration, Tech Glass Company Inc, 592 NW Blvd, Vineland, NJ 08360, 1-877-691-7846 toll-free, http://www.techglassinc.com/tech.htm

19. I would like to set an electrode potential, but I can’t afford an expensive potentiostat. Is there an inexpensive alternative?
 Option 1: We’ve never tried this, but Prof. Daniel Bond (University of Minnesota) recommended in a paper that experiments can be “conducted without a potentiostat by using a precise power supply, a relatively small working electrode, and a reference electrode that acts as the electron sink (or source). In this case, a working electrode can be suspended in a small anaerobic chamber and connected to the negative pole of the power supply. The positive pole is connected directly to the reference electrode (such as a calomel electrode), which can be linked to the growth medium via a saturated KCl-filled capillary capped by a porous frit. For instance, based on the potential of the saturated calomel electrode at 30°C, if the power supply is set at 0 V, the natural potential of the reference electrode will poise the working electrode at +240 mV versus the SHE. Changing the power supply to plus or minus 100 mV will alter the potential vs. this reference. Many power supplies that can inexpensively attain the resolution necessary for this application are available, allowing posing of multiple electrodes for a fraction of the cost of using potentiostats. To monitor current, a sensitive ammeter will still be required.”
 Additional information from Daniel on this: “The pros are; hook a small (depending on what culture you have, this can be relative, but usually a cm² or so) working electrode up to a good sized calomel reference, and even in the absence of a power supply, the working electrode will be held at +0.24 V, period. Check the current with a sensitive ammeter, and you can have batches of these in the same reactor, or separate channels, with very little electronics. It works great so long as you are using small working electrodes/anodes, since you don't want to overwhelm the reference electrode which is acting as your sink. Plus, we always check our reference electrodes against a lab master reference to make sure they hadn't been used up (the voltage difference between two reference electrodes should be less than 5 mV). Cons: You do use up the reference electrode, and either have to regenerate electrochemically it or toss it
(in the long run, can get $\$\$). If you want to poise the potential higher or lower than the
reference, you wire in-line a power supply to boost or push back a few 100 mV, but off the
shelf power supplies are usually not as accurate as a good potentiostat (more like +/-10 mV)-
- this makes the amperage measurement noisy, so when you want clean data, you end up
using expensive electronics again. And, if you get a good culture that is roaring along
making a lot of current, the resistance of the frit in the end of the reference can be the
bottleneck. It's pretty much a get-what-you-pay for setup, using something in a way it is not
really designed for.

… I still use the reference trick for demos at schools or science fairs, or when I want to set up
a set of independent electrodes for screening when we have a crazy idea. I think people
always want to use larger electrodes, which can overwhelm this kind of system, and that is
the main cautionary point.”

Option 2: There is now a way to build an inexpensive potentiostat. You can find information
on this on the webpage of Dr. Largus Angenet, of Cornell University. See the website:
http://angenent.bee.cornell.edu/potentiostat.html
This potentiostat has only one channel, but it can be used to set potentials. The paper
describing this is Freidman et al. (2012), “A cost-effective and field-ready potentiostat that
poises subsurface electrodes to monitor bacterial respiration”. Biosens. Bioelectron. 32, 309-
313.

20. Where can I buy an MFC?
We know of several places now where you can buy MFCs that can be used without
additional purchases, or you can get the materials yourself.

Places to buy them:
- PhyChemi sells single chamber MFCs of the same design that we make our single
chamber systems. A link to their site is http://www.phychemi.com/en/cp/class/?76.html
These are the only place I know of to buy our cube type MFCs. They also sell a very nice
two-chamber system as well. Full contact information is: Phychemi Company Limited, 23/F,
Seaview Commercial Building, 21-24 Connaught Road West, Sheung Wan, Hong Kong, Tel:
(852) 2816 7037 ext. 625 (Hong Kong), (86 10) 6040 4693(Beijing); Contact Andy Yan, Cell:
(86)189 1057 1718, email: andy.yan@phychemi.com; website: www.phychemi.com;
phychemi.instrument.com.cn
- KeegoTech sells a sediment type of MFC (the price was $45 last time we checked). They
have a website at http://www.keegotech.com/. This is the only company that we are
aware of that sells a pre-made MFC.
- Cambrian Innovations sells a kit for a two-chamber MFC. They sell them direct or
through Amazon.com
 http://www.amazon.com/BES-Research-
 Kit/dp/B004XVZVDS/ref=sr_1_3?ie=UTF8&qid=1306866512&sr=8-3
 http://www.cambrianinnovation.com/products-services/bes-kits/
- MicroOrganic Technologies sells systems for ~$100. See their website at:
 http://microrganitech.com/products/list/microbial-fuel-cell-kits/
- Carolina.com sells a fuel cell that works with yeast and a mediator (methylene blue), and
 ferricyanide cathode, and sells for about $260.
Places to get parts to make your own:
- Bottle reactors can be made in custom formats by Adam & Schittenden Scientific Glass,
 http://adamschittenden.com/Microbial%20Fuel%20Cells.html. When we asked about
 price, we were told “The prices vary with size and number of ports. The glass bottles run from around
 $170 to $250 for a set of two; the clamp and seal set from $65 to $91. The GL14 caps and port connections
 are a few dollars. If you need the crimp seal fittings, the price for the glass would go up a bit.”
- You can also make very inexpensive MECs, which require a power source, but are better
 sealed than other reactors (to avoid contact with solution outside of a controlled hood
 environment). Information on these is currently being published, but contact the logan lab
 throughput bioelectrochemical research based on small scale microbial electrolysis cells. Biosen.
 Bioelectron. 26 (2011) 4526– 4531”

21. Where can I get a fan that can run from the current produced by the MFC?
 You need a few milliwatts to make the fan run. We purchased one from Home Science Tools,
 1-800-860-6272, cat#EL-Motor and EL-Propell, which is a 0.5 to 6 V motor (and blade) for
 $19.25. See https://www.hometrainingtools.com/motor-electric-dc-0-5-6-volt/p/EL-MOTOR/

22. We are planning to build a single chamber fuel cell, and I have found a source for some
 graphite felt for our electrodes. However, I am having some trouble finding insulated
 titanium wire. Could you possibly tell me where your lab gets this? I thought I should stay
 away from copper because of corrosion and toxicity issues, but perhaps this is not as big a
 concern if our fuel cells are only in use for a few months.
 We do not use insulated titanium wire because this is very corrosion resistant, and thus it can
 be in contact with solution. See above for other information about Ti wires (#2). As for
 copper, you can use it but only if insulated, and where it is not (where it contacts the
 electrodes) it must be sealed with epoxy (you can get this at any home depot type store).
 Copper corrosion can result in false current (corrosion current) or if large amounts, toxicity
 to bacteria and reduced current.

23. (1) Is the ammonia treatment described on your website required on the brush anodes? We
 all recalled you mentioning a heat treatment, but were unsure about this ammonia part.
 We don’t use the ammonia treatment anymore as it is difficult to do and so we just heat treat
 the brush electrodes at 450 deg C for 30 minutes. This is described in a paper by Feng et al.
 (Journal of Power Sources 195 (2010) 1841–1844), that I am attaching to this email.

24. I read your procedure for making the PVA separator, but am looking into any commercially
 available sheets/membranes. Are you aware of any commercially available PVA sheet?
 Separators are not necessarily ion exchange materials, and therefore they can be cloth fabrics
 or other materials such as glass fiber mats. We are not aware of PVA sheets you can buy, but
 we haven’t really looked. It probably would require a commercial lab to custom make sheets.

25. I am designing a circuit to boost a voltage from MFC. I saw your paper, “Capturing power
 at higher voltages from arrays of microbial fuel cells without voltage reversal”. When I
connected the digital output pin from Arduino Microchip to pin1 of DPDC(G5V-2), the output of Microchip is decreased to about 2V while the original is 5V. As a result, the DPDC cannot be switched under this voltage. So I want to ask if you have encountered this problem. If so, how did you solve that?
To solve this use multiple pins to output the same 'high' signal to drive the switches. For instance output a high signal (or low signal) to pins 1,2,3,4 simultaneously and then connect these to a column in the bread board, which you then wire directly to the DPDT switches. Depending on how many switches you use, you may have to use as many as 5-10 pins to output your signal.

26. Has anyone ever done an art exhibit using MFCs?
An MFC was shown running a fan at the London Science Museum in 2012 to 2013. The only art demonstration I know about was by Mick Lorusso, see www.micklorusso.net, where he exhibited sediment type MFCs running lights.