Supporting Information

Power generation by packed-bed air-cathode microbial fuel cells

Xiaoyuan Zhang a,b, Juan Shi c, Peng Liang a, Jincheng Wei a, Xia Huang a*, Chuanyi Zhang c, Bruce E. Logan b

a State Key Joint Laboratory of Environment Simulation and Pollution Control, THU–VEOLIA Environment Joint Research Center for Advanced Environmental Technology, School of Environment, Tsinghua University, Beijing 100084, P.R.China
b Department of Civil & Environmental Engineering, Penn State University, 231Q Sackett Building, University Park, PA 16802, USA
c School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, PR China
* Corresponding author: E-mail: xhuang@tsinghua.edu.cn; phone: (86)10-62772324; fax: (86)10-62771472
Fig. S1 (A) granular activated carbon (GAC), (B) granular semicoke (GS), (C) carbon felt cube (CFC), and (D) granular graphite (GG).
Fig. S2 Voltage generation by packed-bed air-cathode MFCs with GAC and GS (under 1000 Ω)
Fig. S3 (A) Power densities and (B) electrode potentials (cathode, filled symbols; anode, open symbols) as a function of current density in MFCs using different amount of granular semicoke (GS) for packed-bed air-cathode.