Intermittent contact of fluidized anode particles containing exoelectrogenic biofilms for continuous power generation in microbial fuel cells

Jia Liua,b, Fang Zhanga, Weihua Heb, Xiaoyuan Zhanga, Yujie Fengb,* and Bruce E. Logana,*

aDepartment of Civil and Environmental Engineering, Penn State University, 212 Sackett Building, University Park, PA, 16802, U.S.A.
E-mail: blogan@psu.edu; Fax: +814-863-7908; Tel: +814-863-7908

bState Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
E-mail: yujief@hit.edu.cn; Tel: (+86)451-86287017; Fax: (+86) 451-86287017

*Corresponding Author
Figure S1 Schematic of S-G-RC reactor. In order to study the bio-capacitor behavior of the electrodes, the titanium mesh (shown in yellow) on the inner face of the lower anode chamber was moved to the top of the flat titanium mesh anode, resulting in greatly reduced collisions of GAC with the current collector (S-G-RC).
Figure S2 Voltage production (A) and anode potential (B) of the S-G and controls (S-G, with GAC particles, stirring; NS-G, packed bed with GAC particles, no stirring; NS-NG, no stirring, no GAC).