Reference Electrode Placement Affects the Accuracy of Measurement in Microbial Electrochemical Systems

Fang Zhang¹, Jia Liu¹, Ivan Ivanov¹, Marta C. Hatzell¹, Wulin Yang¹, Yongtae Ahn¹,² and Bruce E. Logan¹*

¹ Department of Civil and Environmental Engineering, Penn State University, 212 Sackett Building, University Park, PA 16802, USA

² Department of Energy Engineering, Gyeongnam National University of Science and Technology, 33 Dongjin-ro, Jinju, Gyeongnam 660-758, Korea

* Corresponding Author, blogan@psu.edu; +1-814-863-7908 (phone), +1-814-863-7304 (Fax)
Figure S1. The reaction resistance R_{rxn} (sum of R_{ct} and R_d) of (A) SPA-3 and (B) SEA-3 with the different RE positions. (Error bars based on tests with triplicate reactors.)

Figure S2. The reaction resistance R_{rxn} (sum of R_{ct} and R_d) in the SPA-3M configuration, with the RE placed either inside or outside the current path. (Error bars based on triple tests with triplicate reactors.)
Figure S3. CVs of anodes with different RE positions in the SEA-3 configuration without IR compensation. The CVs were independent of the RE position in the SEA-3 setup even without IR compensation.