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Abstract

We consider scaling of flow within a stirred tank with increasing Reynolds number. Experimental results obtained from two different
tanks of diameter 152.5 and 292.1mm, with a Rushton turbine operating at a wide range of rotational speeds stirring the fluid, are
considered. The Reynolds number ranges from 4000 to about 78,000. Phase-locked stereoscopic PIV measurements on three different
vertical planes close to the impeller give phase-averaged mean flow on a cylindrical surface around the impeller. The scaling of�- and
plane-averaged radial, circumferential and axial mean velocity components is first explored. A theoretical model for the impeller-induced
flow is used to extract the strength and size of the three dominant elements of the mean flow, namely the circumferential flow, the jet
flow and the pairs of tip vortices. The scaling of these parameters with Reynolds number for the two different tanks is then obtained.
The plane-averaged mean velocity scales with the blade tip velocity above a Reynolds number of about 15,000. However, parameters
associated with the jet and tip vortices do not become Reynolds number independence untilReexceeds about 105. The results for the two
tanks exhibit similar Reynolds number dependence, however, a perfect collapse is not observed, suggesting a sensitive dependence of the
mean flow to the finer details of the impeller.
� 2005 Published by Elsevier Ltd.
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1. Introduction

Scaling of flow and mixing within a stirred tank reactor is
of significant practical importance. For lack of a satisfactory
understanding, the design of production-scale stirred tanks
often evolves through a number of stages that iterate between
laboratory experiments and pilot plants, a time-consuming
and expensive step-by-step scale-up process. Part of the dif-
ficulty is that mean flow and turbulence quantities, such as
rms fluctuation and dissipation, often scale differently with
increasing tank size and operating speed. As a result the
scaling of mixing within the tank can be complex.
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The last three decades have seen several high quality
experimental measurements of flow inside stirred tanks us-
ing modern techniques such as laser doppler anemometry
(LDA) and particle image velocimetry (PIV) (Desouza and
Pike, 1972; Van’t Riet and Smith, 1975; van der Molen and
van Maanen, 1978; Kolar et al., 1984; Costes and Couderc,
1988; Dong et al., 1994; Sturesson et al., 1995; Stoots and
Calabrese, 1995; Ducoste et al., 1997; Kemoun et al., 1998;
Lamberto et al., 1999; Montante et al., 1999; Mahouast
et al., 1989; Schaffer et al., 1997; Derksen et al., 1999;
Escudie and Line, 2003; Escudie et al., 2004). In particular,
several of these experimental investigations have considered
flow and mixing inside stirred tanks of varying size operat-
ing over a range of speeds and, thus, have addressed, directly
or indirectly, the scaling of mean and turbulence quantities
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with Reynolds number (Desouza and Pike, 1972; Van’t Riet
and Smith, 1975; van der Molen and van Maanen, 1978;
Kolar et al., 1984; Costes and Couderc, 1988; Dong et al.,
1994; Sturesson et al., 1995; Stoots and Calabrese, 1995;
Ducoste et al., 1997; Kemoun et al., 1998; Lamberto et al.,
1999; Montante et al., 1999). These studies together cover a
wide range of Reynolds number from 10 to 1.2×105, where
Reynolds number is defined in terms of impeller blade-tip
diameter,D, and the number of blade rotations per second,
N, asRe=ND2/� (� is the kinematic viscosity of the fluid).
However, the range ofReconsidered in each investigation
is limited. At higher Reynolds numbers relevant to turbulent
flow, the overall time-averaged mean flow and rms turbu-
lent fluctuations appear to scale with the impeller blade-tip
velocity.
Costes and Couderc (1988)have addressed the problem

of scaling of mean flow and turbulence using two different
sized tanks over three different Reynolds numbers. Their
results suggest that velocity statistics such as, mean, rms,
spectra and autocorrelation scale with the blade-tip velocity.
However, higher order turbulence statistics, such as dissipa-
tion, do not show complete collapse when scaled appropri-
ately in terms of impeller diameter and rotation rate. The
results ofStoots and Calabrese (1995)on deformation rate
over a Reynolds number range of 29,200–45,800, however,
show a reasonable Reynolds number independence when
nondimensionalized by the inverse time scale.
van der Molen and van Maanen (1978)emphasized the

importance of blade-tip trailing vortices. They pointed out
that the time-averaged flow in the laboratory frame of ref-
erence (as measured by a fixed probe) averages out the in-
fluence of tip vortices as they sweep past the probe along
with the blades. The resulting time-averaged mean flow
was observed to scale well with the blade-tip velocity. The
effect of tip vortex pairs was carefully isolated through
phase-average, and the tip vortex strength did not scale per-
fectly with blade-tip velocity. Some dependence on tank
size was observed.Van’t Riet and Smith (1975)also investi-
gated the scaling of blade-tip vortices over a wide Reynolds
number range of 300–90,000. The vortex trajectory was ob-
served to be Reynolds number dependent at lower, transi-
tional Reynolds numbers, but Reynolds number indepen-
dent, within experimental uncertainty, above a Reynolds
number of 15,000. Other quantities such as vortex strength,
when appropriately scaled, also tended towards Reynolds
number independence at higher Reynolds numbers.
In spite of the above efforts the scaling of flow and mixing

within a stirred tank with increasing tank size and impeller
speed remains not fully understood. In this paper, we address
the question of scaling with experiments performed in two
different tanks with impeller speed varying over Reynolds
numbers ranging from 4000 to 80,000. The two tanks were
constructed to be geometrically similar. Both employ a lid
at the top of the tank in order to prevent free surface (Froude
number) effects. The flow is entirely driven by the rotat-
ing impeller and the operational speeds are such that Mach

and Rossby numbers are irrelevant. Reynolds number is ex-
pected to be the only relevant parameter of the problem. The
results for each tank, when appropriately nondimensional-
ized by the blade tip radius and velocity, show Reynolds
number independence with increasing impeller speed at suf-
ficiently high Reynolds number. However, surprisingly the
results for the two different tanks do not exhibit a perfect
collapse, suggesting sensitive dependence on small differ-
ences, especially in the geometric scaling of their impellers.
Stereoscopic PIV measurements were made on three

different vertical planes within the tank. The instantaneous
measurements are phase-locked with the blade position and
ensemble averaging over many such realizations yields the
phase-averaged mean velocity. The measurement on the
three planes, which are located close to the impeller swept
volume, are interpolated to obtain all three components of
the phase-averaged mean velocity on a cylindrical plane of
constant radius located just beyond the impeller tip. The
velocity on this cylindrical plane is the impeller-induced
inflow and it can be considered to dictate the flow over
the entire tank at large (Yoon et al., 2002). Thus, here we
consider the scaling of velocity measured over this plane as
a proxy for scaling of flow over the entire stirred tank.
The phase-averaged mean flow within the tank stirred

with a Rushton turbine can be considered to be made up of
three different basic flow elements: circumferential flow, a
jet flow and pairs of tip vortices associated with the impeller
blades. This simple decomposition has been shown to be ef-
fective in modeling the impeller induced flow, particularly
in the neighborhood of the impeller (seeYoon et al., 2001).
Here we investigate the scaling of each of these elements
individually with increasing tank size and impeller rotation
rate. By looking at the scaling of parameters, such as the
strength and size of the jet and tip vortex pairs individu-
ally, we hope to address the question of mean flow scaling
in more detail. In particular, it is of interest to establish the
minimum Reynolds number necessary for these parameters
to be Reynolds number independent.
Here we will also investigate the scaling of both vorticity

and dissipation for the two tanks and in particular, address
when they become Reynolds number independent. If the
scaling of the mean flow were to be uniform over the entire
tank, we expect the scaling of these higher order quantities
to follow that of the mean flow. However, it can be antici-
pated that the Reynolds number independence of the nondi-
mensional vorticity and dissipation will be delayed to much
higher Reynolds numbers, since these derivative quantities
give more importance to the smaller scales of motion. Thus,
the results on the scaling of vorticity and dissipation can be
used to interpret the scale-dependence of mean flow scal-
ing. The present work is limited to investigation of only the
scaling of velocity field. Practical factors relevant to indus-
trial mixing such as mixing time, heat and mass transfer, and
multiphase flow are not considered in this study. However,
the scaling properties of the flow to be discussed here will
likely have an effect on these additional complex processes.
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Fig. 1. Overhead schematic of experimental apparatus and data acquisition system.

2. Experimental methodology

2.1. Apparatus

The experiments were an extension of more limited ex-
periments first reported byHill et al. (2000). A schematic
overhead view of the set-up for the current stereoscopic PIV
experiments is shown inFig. 1. To assess the influence of ge-
ometric scaling, two geometrically similar test sections were
considered. In both cases, an acrylic, unbaffled1 circular
cylinder was mounted within a slightly larger square tank.
The diameters of the two circular tanks wereT1=152.5 cm
andT2= 292.1 cm. The cylinder was filled with de-ionized
water to a depth equal to its diameter and the volume be-
tween the cylindrical and the square tanks was also filled,
in order to reduce the optical distortion due to the curved
surface. A lid, with a small hole to accommodate the im-
peller shaft, was placed on top of the liquid. The purpose of

1The use of baffles is a practical means by which to impede the
rotation of the fluid. However, one purpose of these experiments was to
obtain detailed data for comparison to CFD results, so the simple baffle-
free geometry was chosen.

the lid was to suppress the free-surface displacement, which
becomes significant otherwise at higher speeds of impeller
rotation. The tolerances between the shaft, lid, and the cylin-
drical tank were all very tight.
The two tanks were geometrically similar. The lid on top

eliminates any free surface and associated Froude number
effect. The flow within the tank is completely determined
by the impeller rotation and therefore in the present prob-
lem the rotational and velocity scales are not independent
(Rossby number becomes irrelevant). Furthermore, the ve-
locities considered are quite low that Mach number effect
can be ignored. Thus dynamic similarity between the two
tanks could be achieved by simply matching the Reynolds
numbers. However, some subtle differences in the impellers
of the two different arrangements must be noted. The Rush-
ton impeller for the small tank was supplied by Lightnin,
Inc., and the impeller for the large tank was custom made
by Proprmix, Inc.Fig. 1 also shows the detailed sketch of
the impeller geometry with the corresponding measurements
for the two tanks. While the diameter of the impeller, blade
length, blade height and diameter of the disk were geomet-
rically scaled, the blade thickness, disk thickness, sleeve
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Fig. 2. Side and top view details of the tank and the impeller. Details of
the three data acquisition planes and the cylindrical interpolation surface.

diameter were not perfectly scaled between the small and
large tanks. The ramifications of these seemingly minor dif-
ferences will be discussed later.
The Rushton turbine was mounted at mid-depth along the

axis of the cylinder. The shaft extends through the impeller
to the bottom of the tank, where it was held in place by a
small nylon sleeve bearing. The bearing eliminated ‘wobble’
of the impeller. Detailed views of the experimental tank
and impeller are shown inFig. 2. Two different Lightnin
Labmaster mixers drove the impellers: the first with a speed
range of 50–1800 rpm and the second with a speed range of
20–550 rpm. Details, such as the mounting of the impeller,
position of the top lid, etc., for the two tanks are maintained
geometrically similar.
The flow was seeded with 8-�m particles from Pot-

ters Industries. New-Wave Nd:Yag lasers, operating at
∼ 50mJ/pulse, illuminated the flow with a light sheet ap-
proximately 1mm thick. Two TSI PIVCAM 10–30 CCD
cameras (1K× 1K resolution), equipped with Nikon AF
MicroNikkor 60mm lenses, acquired images of the illumi-
nated particles. The included angle between the angularly
offset cameras was roughly 45◦. Scheimpflug lens mounts
were used to reduce the required depth of field and to im-
prove focusing over the field of view. A TSI Laser Pulse
Synchronizer and a PC equipped with TSI Stereo Insight
software completed the image acquisition package.

2.2. Experimental procedure

Because of the lid, the only upper bounds on impeller
speed were those placed by the power and speed limits of

Table 1
Rotational speed and Reynolds numbers of experimental data sets

Small tank Large tank

� (rpm) Re = ND2/� � (rpm) Re = ND2/�

100 4293 27 4229
150 6440 41 6421
367 15,756 100 15,662
551 23,655 150 23,492
734 31,512 200 31,323
1102 47,311 300 46,985
1469 63,066 400 62,646

500 78,308

the mixers. As a result, it was possible to cover Reynolds
numbers ranging from 4000 to 80,000.Table 1details the
experimental dimensions for both tanks.
As indicated inFig. 2, data were obtained on three vertical

planes located very close to the tips of the impeller blades.
An optical encoder, focused on the impeller shaft, was used
to trigger acquisition such that the impeller blades were in
the position shown for each realization. For the small tank
experiments, these planes were located at distances of 23.22,
25.13, and 27.67mm from the impeller shaft. For the large
tank experiments, these planes were located at distances of
45.12, 48.77, and 53.64mm. For each combination of im-
peller speed and acquisition plane, an ensemble of 500 re-
alizations was obtained.
The raw images from the left and right cameras were

individually interrogated and then validated. Finally, the
two two-dimensional vector fields were combined, using
a mapping determined by calibration, into a single three-
component velocity vector field on a planar surface. The in-
dividual data sets were first ensemble averaged to yield a
mean velocity field.2 The mean velocity fields on the three
vertical planes for a given rotational speed were then in-
terpolated, using a second-order fit, onto a 60◦ segment of
a cylindrical shell of radiusR, as illustrated inFig. 2. Fi-
nally, the Cartesian velocity components were rotated into
polar cylindrical coordinates, yielding radial, circumferen-
tial and axial velocity components,〈ur 〉, 〈u�〉 and 〈uz〉, on
the curved cylindrical plane, i.e., forr = 1.06, 0���60◦
and −0.6�z�0.6 (seeFig. 2 for coordinate definition).
Here angle brackets indicate an average over the ensem-
ble. Note that here and in what follows all lengths are
nondimensionalized by the blade tip radius(D/2) and the
velocities have been nondimensionalized by the blade-tip
velocity (�ND).

2With regards to the present data, the term “mean flow” denotes
phase-averaged flow obtained from the ensemble average of the phase-
locked measurement. It is therefore dependent on all three coordinates.
Any further space average of the mean flow will be explicitly stated in
what follows.
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3. Results

3.1. Mean flow scaling

The mean flow ensemble-averaged over all the realiza-
tions (〈ur 〉, 〈u�〉, 〈uz〉) and interpolated onto the cylindrical
surface is shown inFig. 3 for the small tank at the low-
est rotation speed, corresponding toRe = 4300. InFig. 3
frame (a) shows the in-plane velocity vector plot and frame
(b) shows the out-of-plane (radial) velocity contours. Only
a 60◦ sector is shown, and the view is limited to the top half
of the tank with the region below the center-plane obtained
by symmetry. The�-dependence of the flow field is due to
the presence of the tip vortices, whose impact is most evi-
dent in the figure around�=18±1◦ andz ≈ 0.1±0.1. The

Fig. 3. (a) The in-plane velocity vector plot and (b) the out-of-plane radial
velocity contours of the phase-averaged mean flow atRe = 4300 for the
small tank. (c) The in-plane velocity vector plot and (d) the out-of-plane
radial velocity contours atRe = 63,180 for the small tank.

Fig. 4. (a) The in-plane velocity vector plot and (b) the out-of-plane radial
velocity contours of the phase-averaged mean flow atRe = 4299 for the
large tank. (c) The in-plane velocity vector plot and (d) the out-of-plane
radial velocity contours atRe = 62,646 for the large tank.

tip vortex pair cuts the cylindrical plane at an angle, and its
sense of rotation is such that it enhances the radial velocity
due to the jet at the midplane(z = 0), but opposes the jet
sufficiently away from the midplane. In fact, the negative
radial velocity and its localized peak around� = 18◦ and
z ≈ 0.2 is a clear signature of the tip vortex. This obser-
vation is quite consistent with the recent measurements of
Escudie et al. (2004). Fig. 3(frames c and d) shows the mean
flow for the small tank corresponding to a higher Reynolds
number of 63,180. Although the in-plane and radial veloc-
ity components are qualitatively similar to the low Reynolds
number case, measurable quantitative differences can be ob-
served, indicating a Reynolds number effect. For example,
the peak (positive and negative) radial velocities are some-
what lower at the higher Reynolds number than at the lower
Re. Fig. 4 shows the mean flow results for the large tank at
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Re = 4229 and 62,646. They are, again, qualitatively com-
parable to those shown inFig. 3. Some differences can be
observed, in particular, the signature of the tip vortex moves
closer to the blade (smaller values of�), suggesting some
difference in the tip vortex location and orientation. Again,
a comparison ofFig. 4b with 4d reveals that the intensity of
radial velocity appears to decrease with increasing angular
velocity of the blade. However, for about the same Reynolds
number the radial velocity for the large tank is somewhat
stronger than the small tank.
The normalized mean radial, circumferential and axial ve-

locities averaged over�, 〈ur 〉, 〈u�〉, 〈uz〉, (overbar indicates
�-average) are shown inFig. 5 for the small tank. Upon�-
average the effect of tip vortex pairs gets averaged, and the
contribution to the mean flow from the jet stands out, being
clearly evident as the rapid increase in the radial velocity as
the midplane is approached. The weak negative peak in the
radial velocity aroundz = 0.2 is due to the tip vortex pair.
Such negative radial velocity above and below the blade has
been observed in other measurements as well (Escudie and
Line, 2003). However, here due to circumferential averaging
the negative peak is much weaker than observed in (Escudie
and Line (2003). The asymptotic negative radial velocity ap-
proached for largez is due to the broad return flow back
towards the impeller region. The jet has a strong circumfer-
ential component oriented in the direction of blade rotation
(note that� is measured in the direction opposite to blade
rotation). At this radial location(r = 1.06) the radial com-
ponent of the jet is larger than the circumferential compo-
nent. As can be seen inFig. 5b, asz increases the circum-
ferential velocity approaches a constant value, suggesting a
background circumferential flow, which is only weakly de-
pendent onz. The magnitude of the radial velocity steadily
decreases with increasing Reynolds number, while the mag-
nitude of circumferential velocity increases withRe. How-
ever, a tendency towards Reynolds number independence
for these normalized velocity profiles is observed with in-
creasing Reynolds number. The axial velocity component is
muchweaker inmagnitude, and it arises from the jet-induced
entrainment and also from the large tank-wide circulation.
Although the variation with increasingReis not monotonic,
a tendency towards Reynolds number independence can be
observed here, as well.
The above results for the small tank compare favorably

with those for the large tank shown inFig. 6. The jet ampli-
tude for the large tank appears to be slightly stronger than
that for the small tank. Apart from this difference, the com-
parisons of all three components of velocity inFigs. 6and
5 are quite good, especially in the high Reynolds number
range. This observation, along with the differences observed
earlier betweenFigs. 3and4, suggests that the tip vortex
pairs depend on tank size. This may be due to the critical
dependence of tip vortices on the impeller geometry and the
small difference in the impellers between the two tanks may
be contributing to this small, but noticeable, difference in
the tip vortex signatures.
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Fig. 5. The normalized phase-averaged mean (a) radial, (b) circumferen-
tial and (c) axial velocities averaged over the circumferential direction
(〈ur 〉, 〈u�〉, 〈uz〉); overbar indicated�-average) as a function ofz for the
different Reynolds numbers for the small tank.
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Fig. 6. The same asFig. 5 for the large tank.

Fig. 7a shows the normalized mean radial, circumferen-
tial and axial velocities averaged over the entire�–z plane,

〈ur 〉, 〈u�〉, 〈uz〉, (the double overbar indicates a planar
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Fig. 7. (a) The normalized phase-averaged mean radial, circumferential

and axial velocities averaged over the entire�.z plane (〈ur 〉, 〈u�〉, 〈uz〉)
(the double overbar indicates a planar average) as a function of Reynolds
numbers for the two different tank sizes. (b) The maximum (over the�.z
plane) phase-averaged mean radial, circumferential and axial velocities as
a function of Reynolds number for the two different tanks.

average) as a function ofRefor the two different tank sizes.
Above a Reynolds number of about 15,000 the results for
all three components of velocity show very little variation.
The average velocities in the two different tanks are in
reasonable agreement asRe increases, except for the radial
component of velocity. The scaling of the maximum value
of 〈ur 〉, 〈u�〉 and 〈uz〉, maximum over the�–z plane, is
shown inFig. 7b as a function ofRe for the two different
tank sizes. Even the axial component of velocity shows a
weak dependence on tank size in its asymptotic value ap-
propriate at largeRe. These differences in the results for the
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two tanks must have their origin in the subtle departures
from a perfect geometric scaling of the two impellers.
Here, it should be pointed out that in some of the ear-

lier efforts (van der Molen and van Maanen, 1978; Ducoste
et al., 1997) the comparison of different tank sizes is per-
formed while maintaining the volume averaged mean dissi-
pation rate to be the same. Since dissipation scales asN3D2,
it can be expected to go asRe3 in a fixed tank with in-
creasing blade tip velocity, or asD−4 with increasing tank
size for a fixedRe. Fixed dissipation rate implies that with
increasing tank size one must consider increasing blade tip
velocity such thatRe ∝ D4/3. The good degree of Reynolds
number independence exhibited in both the tanks inFig. 7
suggests that the lack of perfect collapse between the two
tanks will persist even when compared on the basis of con-
stant volume averaged mean dissipation rate.
It is interesting to note that for the large tank at the low-

estReconsidered the maximum circumferential velocity ex-
ceeds the blade tip velocity (possibly due to the tip vor-
tex influence). With increasing Reynolds number, however,
the magnitude of peak circumferential velocity is reduced
below the blade tip velocity. While the peak radial veloc-
ity remains comparable to the peak circumferential veloc-
ity, in terms of the surface-averaged mean, the radial veloc-
ity is an order of magnitude weaker than the circumferen-
tial component. This is to be expected, since a radial return
flow is required to satisfy continuity, and as can be seen in
Figs. 5and6, even a short distance away from the impeller
(for |z| >0.2) the radial velocity is negative.

3.2. Decomposition of mean flow

The theoretical model presented inYoon et al. (2001),
considered the impeller-induced phase-averaged mean flow
as a superposition of a circumferential flow, a circular jet and
a pair of tip vortices associated with each impeller blade.
Their superposition for themean flow, in a frame of reference
rotating with the blade, can be expressed as

u(r, �, z) = uc(r, z) + ujet(r, z) + uvort(r, �, z), (1)

whereuc is a purely circumferential flow. Its strongest vari-
ation is along the radial direction, and it is only weakly de-
pendent onz. In the laboratory frame of reference the time-
averaged flow is axisymmetric as the effect of the impeller
blades gets averaged out and remains invariant to�. The ef-
fect of the impeller blades and the associated tip vortices can
be better accounted for in the mean flow in a frame of refer-
ence that rotates with the blades. In the rotating frame, the
blades remain fixed in position and the time-averaged mean
flow is periodic over the 60◦ sector between the blades. Thus,
the above superposition in the rotating frame of reference
allows for the description of a complex impeller-induced
flow, with all three (radial, circumferential and axial) compo-
nents of velocity strongly dependent on all three coordinate
directions.

In the case of a Rushton turbine the jet flow slowly
changes direction from a circumferential direction to a
more radial direction with increasing radial distance from
the axis (Kolar et al., 1982, 1984; Kresta and Wood, 1991).
Thin shear layer theory can be applied and an approxi-
mate self-similar solution can be obtained for the jet (see
Yoon et al., 2001). At any radial distance,r, from the
axis of the tank the self-similar jet is directed at an angle
�jet= cos−1(

√
r2 − a2/r) to the radial direction and the jet

velocity along this direction is given by

ujet = A

r1/2(r2 − a2)1/4

{
1− tanh2

(
�z√

r2 − a2

)}
. (2)

The jet flow is fully characterized by three parameters: A—a
measure of the jet momentum, 1/�—a measure of the jet
thickness anda—the virtual origin.
The tip vortices are generated from the roll-up of the shear

layers as flow accelerates around the rotating impellers (van
der Molen and van Maanen, 1978; Stoots and Calabrese,
1995; Yianneskis et al., 1987). The tip vortices are at their
peak strength close to the impellers and weaken as they ex-
tend radially out into the tank. The backbone of the tip vor-
tex pair is curved backwards in the circumferential direction
opposite to the direction of rotation. The tip vortices remain
coherent, and as shown in the recent large eddy simulations
(Yoon et al., 2002), at any instant in time they extend over
180◦ along the circumferential direction. While their head
remains anchored behind the rotating blades, their tail oscil-
lates in position over time as they extend into the tank. Upon
time averaging, a tip vortex pair’s extent into the tank is
somewhat reduced to about 60◦ along the circumferential di-
rection.Yoon et al. (2001)observed that the strength and size
of the average tip vortex pair changes along its backbone.
The full details of the tip vortex pair along its entire back-

bone cannot be obtained from the present PIV measure-
ments. But, velocity fields such as those shown inFigs. 3
and4 can be used to characterize the tip vortex pair as it cuts
through the cylindrical planer ≈ 1.06. On this plane the
location of tip vortex pair is characterized by�v, the angle
between the vortex center and the nearest blade and±zv,
the axial location of the vortex centers from the midplane.
The vortex backbone cuts the cylindrical plane,r ≈ 1.06, at
an oblique angle and thus the local orientation of the vortex
pair is additionally characterized by the angle,�v, between
the backbone and the local radial direction. To good approx-
imation the vortex pair can be taken to be viscous vortices.
Therefore the azimuthal velocity (different from circumfer-
ential or� component of velocity) in the neighborhood of
any of the vortex on a plane normal to the vortex backbone
can be expressed as

uazim= �
�

[1− exp(−	�2)], (3)

where � is the normal (shortest) distance from the vor-
tex backbone to the point at which the velocity is evalu-
ated. The other two parameters that characterize the vortex
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Table 2
The vortex parameters:±zv , the axial location of vortex center from the
midplane,�v , the angle between the vortex center and the nearest blade,
�v , the angle between the vortex backbone and the local radial direction
at the point where it intersect the cylindrical plane

Re = ND2/� ±zv �v (◦) �v (◦)
4300 0.08 18 56.3
6450 0.08 19 56.43

15,785 0.085 19 52.23
23,700 0.085 24 55.6
31,570 0.087 21 57.87
47,400 0.087 21 58.63
63,180 0.087 21 59.35

4229 0.087 12 48.41
6421 0.091 12 51.94

15,662 0.092 15 57.1
23,492 0.093 16 57.15
31,323 0.094 16 57.5
46,985 0.096 15 59.27
62,646 0.09 13 58.4
78,308 0.09 16 59.61

are:�, the strength (or circulation) of the vortex and, 1/
√

	,
the vortex core diameter. The above five parameters com-
pletely characterize the effect of the tip vortices, at least in
the neighborhood of the impeller.

3.3. Tip vortex scaling

The influence of circumferential flow and circular jet can
be subtracted from the experimental measurements to iso-
late the contribution from the tip vortex pairs. Following a
procedure similar to that inYoon et al. (2001)we extract the
parameters associated with the tip vortex pair that yield the
best match to the experimental measurements.Table 2shows
the location of the tip vortex centers on the cylindrical plane
(r ≈ 1.06) in terms of their axial position(±zv)with respect
to the midplane and circumferential(�v) position measured
with respect to the nearest blade in the direction opposite to
the direction of impeller rotation. In nondimensional terms,
the axial location of the vortex center about the midplane
remains nearly independent of Reynolds number and shows
a slight increase with the size of the tank. The nondimen-
sional total height of the blade is 0.4; thus the vortices are
located roughly halfway between the center plane and the
top or bottom edge of the blade. The circumferential location
of the vortex center also does not show a strong dependence
on Reynolds number, however, with increasing tank size the
vortex center is observed to move closer to the blade.
Van’t Riet and Smith (1975)observed the curvature of the

vortex trajectory and as a result the circumferential location
of the vortex,�v, to decrease initially with Reynolds number.
However, forRegreater than about 5000 they observed the
vortex trajectory to be nearly Reynolds number independent
within the uncertainties of the experimental measurement.
The Reynolds number range for present investigation is in

general larger than 5000. Nevertheless, the slight increase
in �v with increasing Reynolds number seen inTable 2,
opposes the trend observed byVan’t Riet and Smith (1975).
Also shown inTable 2is the angle,�v, the vortex back-

bone makes with the radial direction at the point where it in-
tersects the cylindrical plane(r ≈ 1.06). For both the small
and large tanks the angle,�v, shows a slight increase with
increasing Reynolds number, indicating a more circumfer-
ential orientation for the tip vortex trajectory at higherRe.
This result is consistent with the observed slight increase
in �v with Reynolds number. At lower Reynolds numbers
the tip vortex backbone is directed closer to the radial di-
rection in the large tank than in the small tank. However,
asRe increases to larger values, for both tanks�v appears
to asymptote to an angle of about 60◦. Within the impeller
swept volume (forr <1) on the leeward side of the rotating
blades the tip vortex pairs lie parallel to the blade and have
a near radial orientation. Within a short distance away from
the blade tip the tip vortices sharply curve backwards. As
can be seen fromTable 2, for all cases considered�v is no-
ticeably higher than 45◦, indicating a more circumferential
local orientation for the vortex backbone.
Fig. 8a shows a plot of the nondimensional vortex

strength as a function ofRe for the two different tanks
considered (nondimensionalized by�ND2/2). The nondi-
mensional vortex strength decreases with increasingRe,
with the rate of decrease higher at lowerRe. A tendency
towards Reynolds number independence can be inferred,
although even for the highest Reynolds number considered
this asymptotic state is not yet attained for the large tank.
From the figure it appears that for both tanks an asymptotic
value of about 0.017 may be appropriate forRe greater
than about 105. The above scaling indicates that the relative
importance of the vortex pair is higher at lower Reynolds
number and levels off at higher Reynolds numbers. The ob-
served dependence of nondimensional vortex strength with
tank size may be due to the subtle differences in the actual
impellers employed for the small and large tanks. Interest-
ingly the measurements ofvan der Molen and van Maanen
(1978) also shows a dependence of tip vortices on tank
size.
Themeasure of vortex size, 1/

√
	, is shown inFig. 8b. For

the small tank the nondimensional size decreases slightly
from a value of about 0.085 at lowerRe to an asymptotic
value of about 0.07 with increasingRe. The relative size
of the vortex is somewhat small for the large tank. With
increasingRe the asymptotic value of 1/

√
	 for the large

tank is about 0.055. The large tank is twice bigger than the
small tank, and therefore in dimensional terms the vortex
size for the large tank is only about factor 1.5 bigger than
that for the small tank.

3.4. Scaling of the circular jet

Fig. 9a shows the nondimensional jet momentum pa-
rameter,A (nondimensionalized by�ND2/2) for varying
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Fig. 8. (a) The scaling of nondimensional vortex strength,� and (b) the
nondimensional vortex size, 1/

√
	, as a function of Reynolds numbers

for the two different tank sizes.

Reynolds number for the two different tanks. For the small
tank an asymptotic constant value of about 0.165 is reached
for Regreater than about 45,000. For the large tank a com-
plete Reynolds number independence is not observed even
for the largest Reynolds numbers considered. However, a
tendency towards Reynolds number independence may de-
velop atRe exceeding 75,000. The strength of the jet in
nondimensional terms is observed to be somewhat stronger
for the large tank and that is consistent with the differences
between the two tanks seen inFigs. 5and6.
Fig. 9b shows that the inverse jet thickness,�, for the two

different tanks exhibits better collapse than the jet momen-
tum. The nondimensional jet thickness decreases with in-
creasing Reynolds number at lower Reynolds numbers, and
above a Reynolds number of about 30,000, the jet thick-
ness appears to level off and become nearly independent
of Re. The asymptotic value of nondimensional inverse jet
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Fig. 9. (a) The scaling of the nondimensional jet momentum,A; (b) the
inverse jet thickness,�; and (c) the virtual origin,a, as a function of
Reynolds number for the two different tanks.
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thickness for the two tanks is,�asym≈ 6. Note that the im-
peller radius is the length scale used in the nondimension-
alization and hence, in dimensional terms, the jet width is
about one-sixth (0.166) of the impeller radius. This can be
compared with the height of the impeller blade, which is
approximately 0.4 times the impeller radius.
Fig. 9c shows the variation of virtual origin,a, with re-

spect toRe for the two different tanks. A similar trend is
exhibited for both tanks with the virtual origin progressively
increasing with increasing Reynolds number. The rate of in-
crease is, however, somewhat larger for the large tank. For
both tanks a clear asymptotic behavior is not reached even
for Reynolds number as large as 75,000. The approach of
the virtual origin closer to blade tip(r = 1) suggests that as
Reynolds number increases the importance of circumferen-
tial component of jet velocity increases at the expense of the
radial component, which is again consistent with the veloc-
ity profiles shown inFigs. 5and6. However, as pointed out
earlier, at the radial location of velocity measurement the
radial component of the jet is somewhat stronger than the
circumferential component over the entire Reynolds number
range considered.

3.5. Scaling of the circumferential flow

At the plane of interpolated experimental mean flow data
(at r ≈ 1.06) the jet is neither completely radial nor purely
circumferential. The jet flow has a circumferential compo-
nent, which for increasing Reynolds number can be inferred
to be slightly larger for the large tank than for the small tank
(owing to the somewhat larger value ofa for the large tank).
This contribution alone does not fully account for the mea-
sured�-velocity and the circumferential impeller-induced
flow, uc, is defined to account for the balance (note thatuc

is directed purely in the circumferential direction).Figs. 10a
and b show the circumferential flow,uc, as a function of axial
location atr ≈ 1.06 for the varying Reynolds numbers for
the two different tanks. Only the region close to the impeller
(z <0.5), where the measurement is made, is shown. For
comparison the blade extends from−0.2< z <0.2, while
the tank from bottom to top is given by−3< z <3.
In the rotating frame of reference the impeller-induced

circumferential flow is directed opposite to the direction of
blade rotation. The circumferential flow,uc, is weakly de-
pendent on the axial direction for the small tank and only
slightly more dependent in the large tank, close to the im-
peller blade. A clear Reynolds number dependence occurs
in both the tanks. The magnitude of the circumferential flow
initially increases with increasing Reynolds number, but,
above a Reynolds number of about 45,000 saturation occurs.
For the small tank the magnitude of the nondimensional cir-
cumferential flow increases from a value of about 0.4 at
Re = 4300 to a value of about 0.5 at the higher Reynolds
number. For the large tank the magnitude of increases from a
value of about 0.44 atRe=4229 to a value of about 0.5 at the
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Fig. 10. The circumferential flow,uc, as a function of axial location at
R ≈ 1.06 for the varying Reynolds numbers for (a) the small tank and
(b) the large tank.

highest Reynolds number considered. Thus, at sufficiently
large Reynolds number the circumferential flow scales with
the blade-tip velocity.
On the cylindrical surface of interpolated mean velocity

the effect of tip vortices is the strongest on the leeward side
of the blade (that is for small values of�). On this surface the
velocity field at large values of� is dominated by the jet and
the circumferential flow. Thus the efficiency of the jet and
the circumferential flow models in capturing the measured
mean flow variation can be evaluated from the data at large
�. As an example,Fig. 11a shows the experimental mean
radial, circumferential and axial velocity components as a
function ofz at � = 55◦ for the small tank atRe = 23,700.
The corresponding result for the large tank atRe = 23,492
is shown inFig. 11b. The excellent representation for the
circumferential velocity component is due to the fact that
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Fig. 11. The experimental phase-averaged mean radial, circumferential
and axial velocity components as a function ofz for (a) the small tank
at � = 55◦ and Re = 23,700 and (b) the large tank at� = 50◦ and
Re = 23,492. Also shown for comparison are the corresponding velocities
from the theoretical jet model.

the circumferential component,uc, has been defined to yield
the best agreement for large�. Good representation can be
observed for the radial velocity, except the model is con-
strained to approach zero radial velocity with increasingz,
while a small negative radial inflow is observed in the exper-
iment for largez for the small tank. The agreement for the
axial velocity is reasonable; however the magnitude of axial
velocity is significantly smaller than the other two compo-
nents. Similar comparison has been made for both the tanks
over the entire range ofRe.

3.6. Vorticity and dissipation scaling

The measurement of all three components of the mean
velocity on three parallel planes allows for accurate evalu-
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Fig. 12. (a) The square-root of surface-averaged mean square vorticity,√
〈
r 〉, plotted as a function ofRe for the two different tanks, (b) the

corresponding trend of the surface maximum radial vorticity.

ation of all components of the mean velocity gradient and
thus vorticity and dissipation fields associated with the mean
flow. Here we will investigate the scaling of both vorticity
and dissipation for the two tanks. The phase-averaged mean
radial vorticity can be defined in terms of the mean flow as

〈
r 〉 = 1

r

�〈uz〉
��

− �〈u�〉
�z

. (4)

The square-root of surface-averaged mean square vorticity,√
〈
r 〉, as a function ofRe for the two different tanks is

shown inFig. 12a and the corresponding trend of the surface
maximum radial vorticity is shown inFig. 12b. Compared
to the mean flow the approach to Reynolds number inde-
pendence is delayed for the case of mean vorticity, which
is dictated more by the smaller scales of motion. For the
small tank an approximate Reynolds number independent
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Fig. 13. Contours of dissipation associated with the mean velocity plotted
on the�.z plane atR ≈ 1.06 for the small tank at (a)Re = 4300, (b)
Re = 63,180 and for the large tank at (c)Re=4229 and (d)Re = 78,308.

behavior can be observed aboveRe = 45,000 and for the
large tank even a higher Reynolds number needs to be
reached before attaining full Reynolds number indepen-
dence. The difference between the two tanks decreases with
increasing Reynolds number, however, a complete collapse
is not observed.
Nondimensional dissipation associated with the phase-

averaged mean flow can be defined as

�m = 2
�〈ui〉
�xj

�〈ui〉
�xj

, (5)

where all the nine components of the gradient of the mean
velocity field can be obtained from the measurements on the
three vertical plane. The resulting dissipation can then be
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Fig. 14. (a) The surface-averaged dissipation of mean flow plotted as a
function ofRe for the two different tanks, (b) the corresponding trend of
the surface maximum.

interpolated onto the cylindrical surface atr ≈ 1.06. A con-
tour plot of �m for the small tank is shown inFigs. 13a and
b for the two Reynolds numbersRe=4330 and 63,180. The
distribution is similar to that of vorticity and the primary
contribution to dissipation from the mean flow appears to be
associated with the tip vortex pair. Again the distribution is
qualitatively similar for both the Reynolds numbers, how-
ever, the magnitude of dissipation decreases with increasing
Reynolds number. The corresponding dissipation fields for
the large tank forRe=4229 and 78,308 are shown in frames
(c) and (d). As with the vorticity field, the dissipation of the
mean flow is higher for the large tank.
It must be cautioned that, owing to the quadratic depen-

dence of dissipation on velocity,�m does not correspond to
the mean dissipation one would obtain from an ensemble av-
erage of dissipation computed at individual instances. In the
present set of experiments, since the individual realizations
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on the different vertical planes are temporally uncorrelated,
it is not possible to compute the instantaneous dissipation
accurately.�m simply represents dissipation associated with
the phase-averaged mean flow and its magnitude can be ex-
pected to be much smaller than mean dissipation, since the
fluctuating small scales play the dominant role in dissipative
process. Also there is evidence to show that dissipation in-
creases within the impeller-induced flow fromr =1 to about
r =1.4 (Escudie and Line, 2003). The surface-averaged dis-
sipation as a function ofRe for the two different tanks is
shown inFig. 14a and the corresponding trend of the sur-
face maximum�m is shown inFig. 14b. The approach to
Reynolds number independence is similar to that for mean
vorticity observed inFig. 12.

4. Conclusions

Experimental measurements of flow induced by a Rush-
ton turbine in an unbaffled stirred tank have been performed
over a wide range of operating speeds. Two different tank
sizes were used with water as the working fluid to cover
a Reynolds number range of 4000–80,000. Phase-locked
stereoscopic PIV measurements were made on three differ-
ent vertical planes near the impeller to obtain all three com-
ponents of the impeller-induced flow. Instantaneous realiza-
tions were averaged to obtain the phase-averaged velocity on
a 60◦ sector of a cylindrical plane of nondimensional radial
location,r ≈ 1.06, just beyond the blade tip radius. Data on
this cylindrical surface dictates the flow in the interior of the
tank. Hence, the Reynolds number scaling of this velocity
data can serve as a proxy for the Reynolds number scaling
of the entire flow. The phase-averaged velocity is dependent
on both� andz, from which�- and surface-averaged mean
velocities are deduced.
All three components of the mean velocity are observed

to scale with the blade tip velocity beyond a Reynolds num-
ber of about 15,000, in agreement with the findings of pre-
vious researchers. The phase-averaged mean flow was de-
composed into circumferential, jet and tip vortex elements
and the parameters associated with the tip vortex pairs and
the circular jet were extracted from the experimental mea-
surements. It is observed that the nondimensional jet and
tip vortex strength appears to become Reynolds number in-
dependent only at largeRe. The thickness of the jet ap-
pears to scale with the dimensions of the impeller above a
modest Reynolds number of about 20,000; however the di-
ameter of the tip vortex does not appear to scale similarly.
The virtual origin of the circular jet, however, shows only
a slow tendency towards Reynolds number independence.
In the case of tip vortex pairs, the location of their cen-
ters on the plane of mean flow measurement(r ≈ 1.06)
remains independent ofRe and the tip vortex orientation
(with respect to the radial direction), quickly approaches
an asymptotic value of about 60◦ with increasing Reynolds
number.

The distribution of dissipation illustrates the importance
of the tip vortex contribution to the mean flow. The spa-
tial compactness of the tip vortex pairs contributes to higher
gradients and thus to gradient dependent quantities such as
dissipation. Reynolds number independence for the nondi-
mensional dissipation is observed above a Reynolds number
of about 45,000 and the difference between the small and
large tanks persist even at the higher Reynolds numbers.
The most significant finding of the study is the extreme

sensitivity of the flow within the tank to small geometric de-
tails of the impeller. The small and large tanks used in this
study were geometrically similar. The Rushton turbine was
also geometrically scaled from the small to the large tank;
however, small differences exist between the two. The blade
and disk thickness were not perfectly scaled and similarly
small differences existed in blade length. If the two tanks
were geometrically similar in every respect thenRe is the
only controlling parameter (since free surface was avoided
with a lid, Froude number is not relevant in the present case).
The persistent difference in the mean velocity that exists be-
tween the small and the large tanks even at asymptotically
large Reynolds numbers (seeFig. 7), can only be attributed
to the small deviations in the scaling of the impeller. These
results suggest a sensitive dependence of even the mean flow
to the geometric details of the impeller. The main conclu-
sion to be drawn is that scale-up will not work well unless
all aspects of the turbine blade are scaled perfectly. In most
industrial scale-up from small laboratory to large production
sized tanks it is conceivable that a perfect geometric scaling
is often not realized. Based on present results, this will cer-
tainly be a contributing factor to lack of a consistent scaling
behavior.
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