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Abstract. The problem of water waves generated in a horizontally oscillating basin is considered, with specific
emphasis on the transient evolution of the wave amplitude. A third-order amplitude evolution equation is solved
analytically in terms of Jacobian elliptic functions. The solution explicitly determines the maximum amplitude and
nonlinear beating period of the resonated wave. An observed bifurcation in the amplitude response is shown to
correspond to the elliptic modulus approaching unity and the beating period of the interaction approaching infin-
ity. The theoretical predictions compare favorably to fully nonlinear simulations of the sloshing process. Due to
the omission of damping, the consideration of only a single mode, and the weakly nonlinear framework, the ana-
lytical solution applies only to finite-depth, non-breaking waves. The inviscid numerical simulations are similarly
limited to finite depth.
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1. Introduction

Sloshing waves generated in a rectangular basin have been well studied in the past, theo-
retically, experimentally, and numerically. Initially, emphasis was placed on determining the
steady-state amplitude response. Many of the salient features of steady-state response dia-
grams, including the effects of nonlinearity, dispersion, and damping, are discussed by Chester
[1] and Chester and Bones [2]. Weakly nonlinear inviscid studies of the steady-state response
in water of finite depth were carried out by Ockendon and Ockendon [3] and Faltinsen [4]. A
thorough review is provided by Ibrahim et al. [5].

Some investigations have looked at the transient behavior of the amplitude as well. Of
interest are how the transient maximum amplitude compares to the steady-state value and
how the nonlinear beating period varies with the parameters of the problem. Lepelletier and
Raichlen [6] solved the shallow-water equations numerically and demonstrated good agree-
ment between their calculations and experiments. Representing a different approach, Wu et al.
[7] used finite elements to investigate three-dimensional sloshing in inviscid rectangular basins
of finite depth.

Faltinsen et al. [8] developed an infinite-dimensional modal system and then reduced it,
through the assumption of small forcing amplitude, in order to apply it to sloshing tanks.
The theory was found to agree well with experiments, provided the water was relatively deep.
Faltinsen and Timokha [9] extended this work to improve its applicability to shallower water.
Their results accurately reproduced transient behavior in shallow experiments as well as repro-
duced the steady-state response diagrams of Chester and Bones [2]. In addition, discussion
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Figure 1. Schematic of basin geometry.

of the dissipation associated with wave breaking was given, with the conclusion that an ade-
quate theory does not yet exist.

An analytical study of the maximum transient amplitude, in the limits of no damping,
weak nonlinearity, and finite depth was carried out by Hill [10]. His theoretical predictions
showed qualitative agreement with the experiments of Lepelletier and Raichlen [6] and good
quantitative agreement with the experiments of Faltinsen et al. [8].

The primary contribution of the present paper is to present an analytic solution for the
full transient evolution of a finite-depth wave in a basin set into motion from a state of
rest. Following the approach of Weiland and Wilhelmsson [11, Chapter 14], a solution to
the amplitude evolution equation in terms of Jacobian elliptic functions is obtained. From
this solution, the timescale of the nonlinear evolution and the maximum wave amplitude are
explicitly determined. From an application point of view, this knowledge is significant. As an
example, consider the case of a seismically generated wave in a harbor or fluid-storage con-
tainer. If the predicted maximum amplitude is large, but the timescale of evolution signifi-
cantly exceeds the duration of the finite forcing, the wave will never have the opportunity to
grow to this maximum value.

The advantage of the present analytic approach is that an extremely compact result is
obtained, allowing for rapid and straightforward exploration of a broad range of parameter
space. To clarify the scope of the present analysis, however, the weakly nonlinear approach
constrains the oscillation amplitude of the basin and therefore the maximum allowable wave
steepness. Moreover, the consideration of a single mode and the omission of damping pre-
clude application to shallow water.

To investigate the validity of the analytic solution, it is then compared to fully nonlinear
finite-difference simulations of the sloshing process. For a test case in water of finite depth, it
is found that the two methodologies yield extremely similar results.

2. Formulation

To begin, consider an inviscid, two-dimensional, first-mode wave of wavenumber k, linear fre-
quency ω, and linear amplitude a in a basin of length L and depth h, as shown in Figure 1.
The wavenumber is therefore equal to π/L. The basin is oscillated along the x-axis with an
amplitude b and excitation frequency ωe =ω+�. The ratio b/L is taken to be much less than
unity and is adopted as the expansion parameter ε.

The variables of interest are the velocity potential �(x, y, t), which satisfies Laplace’s equa-
tion, and the free-surface displacement η(x, t). The boundary conditions on these variables
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include the condition of zero normal velocity, i.e., �n = 0 on all solid boundaries. Note that
the ‘n’ subscript denotes the derivative in the normal direction. The boundary conditions also
include the familiar kinematic and dynamic conditions [12, Section 227] imposed at the free
surface (y =η(x, t)). Taylor expanding these conditions to the undisturbed free surface (y =0)
and truncating at the third order yields

gη+�t =−1
2
∇� ·∇�−η�ty − 1

2
η2�tyy − 1

2
η(∇� ·∇�)y (1)

�y −ηt =�xηx −η�yy − 1
2
η2�yyy +�xyηηx. (2)

The problem is next scaled by adopting the following:

(h∗, x∗, y∗)= (h, x, y)

L
t∗ = t

√
g/L (ω∗,ω∗

e )= (ω,ωe)√
g/L

�∗ = �

ε2/3
√

g/L
a∗ = a

ε1/3L
,

where asterisks denote scaled quantities. The asterisks are subsequently dropped and non-
dimensional quantities are understood, unless otherwise specified.

Finally, both the free-surface displacement and the velocity potential are taken to be series
expansions in the parameter ε. For example, the expression for the free-surface displacement
is given by

η= ε1/3η01 cos (πx)e−iωet + ε2/3η10 cos (2πx)+ ε2/3η12 cos (2πx)e−2iωet

+εη21 cos (πx)e−iωet + εη23 cos (3πx)e−3iωet + c.c, (3)

where c.c. denotes the complex conjugate of the expression.
Solution of this boundary-value problem at successive orders of ε is straightforward but

lengthy, with full details provided by Hill [10]. The first order yields the linear solution while
the second order yields a superharmonic (η12) term and a temporally steady, spatially peri-
odic (η10) term. Finally, at the third order, there is a third-order superharmonic (η23) and a
secular forcing term that is in phase with the fundamental harmonic (η21).

In order to guarantee a solution at this third order, a solvability, or orthogonality, condi-
tion [13, p. 54] is required in order to remove the secular terms. The application of this solv-
ability condition leads directly to an evolution equation for the wave amplitude,

ȧ = i�a − iβ − iλ|a|2a. (4)

Note that the dot notation refers to differentiation with respect to a slow time scale τ =ε2/3t

and that β and λ are, respectively, forcing and depth parameters given by

β = 2ωe

π
tanh(πh), λ=ωeπ

2 cosh(6πh)−6 cosh(4πh)−15 cosh(2πh)−16
−8 cosh(6πh)+16 cosh(4πh)+8 cosh(2πh)−16

·

The case of λ= 0 that occurs when πh= 1·06 corresponds to the so-called ‘critical depth’
[14] and the cases of λ ≷ 0 correspond to πh ≶ 1·06. In the vicinity of this critical depth,
the scaling adopted above becomes invalid. As shown by Waterhouse [15], a more rigorous
re-scaling of the problem yields a result that is uniformly valid for all non-shallow depths.
This approach would yield an evolution equation quintic, rather than cubic, in wave ampli-
tude. As this higher-order evolution equation would significantly complicate analytic solution,
this re-scaling is not adopted in the present analysis, with the consequence that the obtained
solution is not expected to be valid at the critical depth.
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Noting that the amplitude a in (4) is complex, it may be represented as a real amplitude
and phase, a =Aeiθ , yielding the coupled equations

Ȧ=−β sin θ, (5)

Aθ̇ =−β cos θ +�A−λA3. (6)

Next, it is straightforward to show that

βA cos θ − 1
2
�A2 + 1

4
λA4 ≡� (7)

is a constant of motion. For a basin starting from rest, with the initial condition Ai =0, it is
clear that � =0. As a result, it can be shown from (7) that

cos θ = �

2β
A− λ

4β
A3

for all subsequent times. Combining this with (5) leads to
[

d
dt

(A2)

]2

=−λ2

4

[
(A2)4 − 4�

λ
(A2)3 + 4�2

λ2
(A2)2 − 16β2

λ2
A2

]
=f(A2), (8)

where it is noted that the right-hand side is quartic in A2. In the straightforward extension
to non-zero initial conditions (� �=0), the polynomial on the right-hand side of (8) would be
modified by the presence of �.

3. Solution

The solution to this equation is provided by Weiland and Wilhelmsson [11, Chapter 14] and
the details depend upon whether f(A2)=0 has four real roots or two real roots and a com-
plex conjugate pair. It can be shown that the case of four real roots will occur when

�≥
(

27λβ2

2

)1/3

λ positive,

�≤
(

27λβ2

2

)1/3

λ negative.

It will be seen in Section 4.1 that this corresponds precisely to the bifurcation frequency in
the amplitude response diagram.

In this case of four real roots, denote them as A2
d ≥ A2

c ≥ A2
b ≥ A2

a . Next, the change of
variables

s2 = (A2
d −A2

b)(A
2 −A2

a)

(A2
b −A2

a)(A
2
d −A2)

reduces (8) to

(ṡ)2 =n2(1− s2)(1−m2s2), (9)

where the parameters n and m are given by

n2 = λ2

16
(A2

c −A2
a)(A

2
d −A2

b), (10)

m2 = (A2
b −A2

a)(A
2
d −A2

c)

(A2
c −A2

a)(A
2
d −A2

b)
. (11)
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The solutions for s and, in turn, A are given in terms of the elliptic function sn:

s2 = sn2[n(τ + τ0),m], (12)

A2 =A2
d − (A2

d −A2
a)(A

2
d −A2

b)

A2
d −A2

b + (A2
b −A2

a)sn2[n(τ + τ0),m]
, (13)

where τ0 is determined by the initial condition on A.
From this solution, it is seen that A oscillates between the minimum amplitude Aa and the

maximum amplitude Ab. Significantly, it is also seen that the period of the oscillation, also
called the nonlinear interaction period, or the beating period, is explicitly given by

T = 2K(m)

n
, (14)

where K is the complete elliptic integral of the first kind. If the basin is starting from rest,
which has indeed been assumed, Aa =0 and τ0 =0 by definition.

In the case of only two real roots, denote them as A2
b ≥A2

a and represent the complex con-
jugate pair as p ±qi. Introducing

G1 =
√

(A2
b)

2 −2pA2
b +p2 +q2, G2 =

√
(A2

a)
2 −2pA2

a +p2 +q2,

the solution for A is now given by

A2 = 2(A2
b −A2

a)G1G2/(G1 −G2)
2

(2G2/G1 −G2)+1− cn[2n(τ + τ0),m]
+ A2

aG1 −A2
bG2

G1 −G2
. (15)

In this instance, the parameters n and m are given by

n2 =G1G2
λ2

16
, (16)

m2 = 1
2

{
1− 1

G1G2
[A2

aA
2
b −p(A2

a +A2
b)+p2 +q2]

}
. (17)

As previously, A oscillates between Aa and Ab with a period given by T =2K(m)/n.

4. Results

4.1. General characteristics

Some of the general features of the amplitude evolution are illustrated in Figure 2, for the
case of β = λ = 1. Given that λ > 0 in this case, the water depth is less than the critical
value. Figure 2(a) shows the temporal evolution of the wave amplitude for three representa-
tive values of the detuning parameter �. It is clear that both the maximum amplitude Ab and
the beating period T are strong functions of �. Moreover, both Ab and T initially increase
with increasing �. At larger values of �, however, both Ab and T are seen to dramatically
decrease, suggesting the present of a bifurcation point somewhere in the range of 2<�<4.
Hill [10] showed that this bifurcation point was given by

�=
(

27λβ2

2

)1/3

. (18)

As this bifurcation point is approached, the interaction period of the response approaches
infinity. Mathematically, this corresponds to the elliptic modulus m approaching unity, which
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Figure 2. (a) Temporal evolution of wave amplitude A

for the cases �=0, 2, 4; β =λ=1. (b) Temporal evolu-
tion of wave amplitude for the cases �= 2·3811, 2·3812
(values bracketing the bifurcation point); β =λ=1.

Figure 3. (a) Contours of maximum amplitude Ab as
a function of β and � for λ=1. (b) Contours of beat
period T as a function of β and � for λ=1.

replaces the sn and cn functions with the hyperbolic tanh and sech functions. Additionally, at
this point, the amplitude ‘jumps’ between the values (8�/3λ)1/2 and (2�/3λ)1/2. This sharp
change in amplitude response is clearly shown in Figure 2(b), which shows the temporal evo-
lution of the wave amplitude at two values of � narrowly bracketing the bifurcation value.

Further increases in � lead to steady decreases in the maximum amplitude and period.
This is the classic hard-spring Duffing-type response that has been extensively demonstrated
for steady-state [3,4] and transient [6,10] sloshing waves. Had λ been negative in this example,
the response would have followed that of a soft-spring oscillator instead.

Figure 3 shows contours of the maximum amplitude Ab and beat period T in (�,β)

parameter space, for the case of λ=1. In both instances, the curve, or bifurcation ‘line,’ given
by (18) is clearly evident. The results that were shown in Figure 2 (β = 1, variable �) are
therefore just a subset of the information shown in Figure 3. This can be seen by scanning
horizontally in Figure 3(a) at the value β =1. A slow steady increase in Ab with increasing �
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Figure 4. Dimensional response diagrams for the maximum amplitude Ab, as predicted by the present inviscid
analytical solution and the viscous numerically-integrated solution of Hill [10]. The dimensional parameters are
h=L=1 m, b=0·005 m, ν =10−6 m2 s−1.

is initially observed. At the bifurcation frequency, there is a dramatic drop in response, fol-
lowed by further decreases in Ab with increasing �.

What is new in this figure is information about how Ab and T vary with changes in β.
The effect of the forcing parameter on the maximum response is fairly straightforward. It is
observed that Ab increases monotonically and smoothly with increasing β for �<0. For the
case of � > 0, the increase in Ab is again monotonic with increasing β, but a bifurcation,
or finite upwards jump, is observed. The effect of changes in β on the beat period is more
complex. For �< 0, there is a slight monotonic decrease in T with increasing β. For �> 0,
however, the beat period initially asymptotically increases towards infinity as the bifurcation
point is approached. Further increases in β lead to monotonic decreases in T .

Before moving on to consider comparisons between the weakly nonlinear perturbation
solution and fully nonlinear numerical simulations, it is worth remarking upon the omission
of damping from the present solution. For any non-zero fluid viscosity, the wave amplitude
will tend towards a steady-state value, rather than oscillate in the manner shown in Figure 2.
However, for a weakly viscous wave in a non-shallow basin, the amplitude does so extremely
slowly [8]. For a basin set into motion from a state of rest, therefore, the difference in the
global maximum amplitudes as predicted by viscous and inviscid theories is extremely small.
To show this, a comparison will be made between the analytic solutions of (13) and (15) and
numerical integration of the damped version of the evolution equation given by Hill [10].

Specifically, consider the dimensional example of water waves (kinematic viscosity
ν =10−6 m2 s−1) in a basin having great breadth and a length and depth of 1 m. Forcing fre-
quencies in the band of 85–115% of the natural frequency of 5·541 rad s−1 are considered. In
all cases, the forcing amplitude is 0·5 cm. As shown in Figure 4, the resulting viscous and
inviscid transient amplitude response diagrams are nearly indistinguishable. The maximum
percent difference between the two curves is 1·2%.

Additional support for the conclusion that damping is relatively unimportant for weakly
viscous waves in non-shallow basins comes from Wu et al. [16], who consider damping in
basins in the linear limit. They define a Reynolds number as (dimensional variables)

Re= h
√

gh

ν
,



194 D. Hill and J. Frandsen

+ + +
+

+

+

+
+

+ + +

η m
ax

 (m
)

0.9 1 1.1
0

0.1

0.2

0.3

0.4

0.5
Numerical
Analytical+

ωe / ω

0 10 20 30
-0.2

0

0.2

0.4

0 10 20 30

0 10 20 30
-0.2

0

0.2

0.4

0 10 20 30
-0.2

0

0.2

0.4

η 
(m

)
η 

(m
)

η 
(m

)
η 

(m
)

0 10 20 30

-0.1

0

0.1

0.2

0.3

t (s)

t (s)

t (s)

t (s)

t (s)

t (s)

t (s)

t (s)

t (s)

t (s)

t (s)

η 
(m

)

η 
(m

)
η 

(m
)

η 
(m

)
η 

(m
)

η 
(m

)
η 

(m
)

0 10 20 30
-0.2

0

0.2

0.4

-0.2

0

0.2

0.4

-0.2

0

0.2

0.4

-0.2

0

0.2

0.4

-0.2

0

0.2

0.4

-0.2

0

0.2

0.4

-0.2

0

0.2

0.4

Numerical
Analytical

0 10 20 30

0 10 20 30

0 10 20 30

0 10 20 30

0 10 20 30

(a) (g)

(b) (h)

(c) (i)

(d) (j)

(e) (k)

(f) (l)

Figure 5. (a) Analytical (+) and numerical (◦) response diagrams for maximum end-wall free-surface elevation;
h = L = 1 m, b = 0·005 m. (b)–(l) analytical calculations (−) and numerical (◦) simulations of the transient end-
wall free-surface elevation, h = L = 1 m, b = 0·005 m. Subplots (b)–(l) correspond to ωe/ω = 0·85,0·88, 0·91,

0·94, 0·97, 1·00, 1·03, 1·06, 1·09, 1·12, 1·15.

and their calculations show that, for Reynolds numbers on the order of 103, the damping
effects become quite slight. Given that, for the present calculations, the Reynolds number is
on the order of 106, the omission of damping does indeed seem justified.

4.2. Comparison with numerical simulations

Experimental investigations suitable for comparison to the present theory are scarce. One of
the problems is that most existing studies [2,6,17] were carried out with shallow basins. As is
well-known and as discussed at length by Faltinsen and Timokha [9], shallow water presents
a problem in that the higher modes are internally resonant rather than being bound Stokes
waves. In this case, solvability requires an evolution equation for each mode, resulting in a
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coupled set. While analytic solution of this set remains possible for a low number of modes
(see Mei and Unluata [18, pp. 181–202], for the progressive-wave, two-harmonics solution),
numerical integration becomes the solution method of choice for larger sets. Application of
the present theory, which only derives an amplitude equation for the fundamental mode, to
the case of shallow water will result in severe over-estimation of the maximum amplitudes, as
shown by Hill [10].

A second problem is that most existing studies [2,19,17] present response diagrams for the
steady-state amplitudes and give no information about the transient amplitudes or the non-
linear beat period. Notable exceptions include the works of Lepelletier and Raichlen [6] and
Faltinsen et al. [8]. Precluding precise comparisons with these last two studies, however, are
the facts that the former experiments were conducted for quite shallow basins and that the
latter experiments were conducted with initially non-quiescent free surfaces.

Therefore, in order to assess the performance of the present analytical solution, it will be
compared with numerical simulations of the sloshing process. The two-dimensional simula-
tions are carried out with a fully nonlinear finite-difference potential-flow solver. As discussed
in the previous section, the omission of viscosity is justified for large basins. The equations
and boundary conditions are the same as given in Section 2 with the significant exception that
the free-surface boundary conditions are utilized in their fully nonlinear forms, rather than in
the weakly nonlinear forms demanded by the analytical solution.

The equations are discretized using a second-order Adams–Bashforth scheme. A modified
σ transformation is used to map the liquid domain onto a rectangle, such that the moving
free surface in the physical plane is mapped to a fixed line in the computational domain. In
this way, the re-meshing ordinarily required by a moving free surface is avoided. Additionally,
this formulation avoids the need to calculate the free-surface velocity components explicitly.
The numerical model is limited to non-breaking waves and is valid for any water depth except
for shallow water, where viscous effects would become important. A complete description of
the numerical model is provided by Frandsen [20].

By use of the same dimensional parameters as given in Section 4.1, the transient evo-
lution of the free-surface elevation η at the tank end-wall was computed from the pres-
ent weakly nonlinear analytical solution and the fully nonlinear numerical simulation just
described. Comparisons were made for 11 forcing frequencies in the range of 85–115% of the
natural frequency ω. Note that, in the case of the analytical results, the free-surface elevation
was derived from the wave amplitude involving the second- and third-order Stokes wave solu-
tions [14]. For most of the numerical simulations, a 40×80 spatial grid was used, with a time
step of 0·003 s. For the most resonant case, a refined grid of 80×120 and a refined time step
of 0·0015 s were used.

As shown in Figure 5(b–l), the agreement between the weakly and the fully nonlinear
results is generally excellent, both in terms of wave amplitude and beat period. Cases (b)
and (l) are the furthest away from resonance and the responses in these cases are very nearly
linear. This is evidenced by the small observed elevations, the symmetry between crest and
trough, and beat periods which are very close to the linear prediction of 2π/|�|=7·56 s. Cases
(e) and (i) are more resonant and begin to display nonlinearity in the form of asymmetry
between crest and trough and, more prominently, in the beat period. Whereas the linear pre-
diction in cases (e) and (i) is 18·90 s, the nonlinear results are 23 and 16 s, respectively.

For the maximum-response case at ωe/ω = 0·97 (case (f)), the numerical simulation fails
due to excessive wave steepness, ka ∼ 1. Up until the point of failure, however, the analyti-
cal and numerical predictions are in agreement. The one noticeable discrepancy between the
analytical and numerical results is demonstrated in case (g). Up to the point of maximum
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Figure 6. Analytical and numerical values of maximum end-wall free-surface elevation plotted against each other;
h=L=1, b=0·005 m. The dashed line corresponds to perfect agreement. Individual points correspond to the differ-
ent values of excitation frequency ωe detailed in Figure 5 (b–l).

response, the two methodologies are in agreement. Past the point of the maximum response,
the two solutions continue to predict similar trough elevations, but the numerical solution
yields higher crest elevations than the analytical solution. For the two cases (f) and (g), it
is anticipated that the numerical difficulty could be resolved in part by adding free-surface
smoothing, as discussed by Longuet-Higgins and Cokelet [21] and Dold [22].

For both methodologies, values of maximum free-surface elevation (ηmax) were then
extracted and plotted against relative forcing frequency (ωe/ω) in Figure 5(a) to form
maximum-elevation response diagrams. The close overlap of the symbols (numerical – ◦; ana-
lytical – +) from the numerical and the analytical results again confirms the good agreement
between the two methodologies. The lack of a numerical data point at ω/ωe =0·97 is due to
the numerical difficulty discussed above.

An alternative way to visualize this agreement is presented in Figure 6. This figure was
created with the pairs of numerical and analytical ηmax values that were extracted from Fig-
ure 5(b–l). The two values from each pair were plotted against each other, with the numerical
value on the vertical axis and the analytical value on the horizontal axis. If the two methodol-
ogies were in exact agreement, all of the symbols would fall on the line passing through the
origin with a slope of 1. As the figure shows, there are deviations from this line of perfect
agreement, but they are limited to only a few percent.

5. Concluding remarks

In summary, an analytic solution for the transient development of inviscid sloshing waves in
horizontally oscillating rectangular tanks has been presented. The solution is based upon a
third-order amplitude equation, previously obtained, for the fundamental mode and is given
in terms of Jacobian elliptic functions. The analytic solution thereby explicitly determines the
maximum transient amplitude and the nonlinear beat period of the resonated wave. In addi-
tion to depending upon the forcing amplitude and frequency, the response of the basin is
found to be a function of its relative depth.

There is a bifurcation point in the response, which is easily derived. At this point, the
response amplitude is found to jump between two values that differ by a factor of two. Addi-
tionally, as the bifurcation point is approached, the beat period tends to infinity. Mathemat-
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ically, this corresponds to the elliptic functions governing the response tending to hyperbolic
functions instead.

The analytic theory was compared to fully nonlinear finite-difference simulations of the
sloshing process. For a finite-depth test case, the agreement between the two methodologies
was found to be very good over a wide range of forcing frequencies. At frequencies very close
to resonance, the numerical simulations failed, precluding comparisons at those values.

The omission of viscosity in both the analytical and the numerical approaches has been
justified for relatively large tanks, where damping is relatively unimportant. In addition to
this limitation, the analytical theory is inappropriate for shallow water since it developed
an amplitude equation for only the fundamental mode. Consideration of coupled evolu-
tion equations for several modes will extend the range of applicability of the perturbation
solution.

Finally, there are several attractive future extensions of this work. Three-dimensional
effects will obviously appear for more complex basins and/or more complex forcing patterns.
For the present case of forcing aligned with an axis of a rectangular basin, three-dimensional
waves can not be generated directly by the oscillating tank walls. This is a principle of sym-
metry similar to the explanation [19] of why, in the two-dimensional case, only waves with
odd mode numbers are allowed. However, once large two-dimensional waves have been reso-
nated, it is possible that higher-order interactions can lead to the growth of three-dimensional
modes. Additional work of interest includes the effects of random forcing on the response.
Repetto and Galletta [23] recently studied the effects on narrow-banded forcing on Faraday
resonance and found that the response diagram widened and decreased in amplitude as the
forcing bandwidth increased.
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