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ABSTRACT

A theoretical investigation into the subharmonic parametric instability of internal gravity waves to progressive
surface waves in a continuously stratified medium is presented. A perturbation and multiple scales analysis is
utilized and is carried out to the third order. Recent parallel efforts for a two-layer model have shown that
surface waves can resonate, exponentially in time, two oblique internal wave trains whose frequencies are nearly
subharmonic to that of the surface wave. This analysis is generalized in the current paper to allow for continuous
variation of density with depth, as well as planetary rotation. Specific attention is focused on the energy transfer
from the semidiurnal barotropic tide to near-inertial baroclinic motion. At low latitudes, linear analysis dem-
onstrates that such a resonant triad indeed exists, suggesting that this mechanism may play a role in the de-
velopment of the inertial peak seen in many internal wave spectra. At the second order, evolution equations are
obtained that demonstrate that the internal waves initially grow exponentially in time. Finally, when the analysis
is carried to the third order, it is shown that an equilibrium exists. Nonlinear detuning of the internal wave
frequencies results in the internal wave amplitudes reaching a steady-state value, which is readily calculated.

1. Introduction

Numerous mechanisms have been proposed for the gen-
eration of internal waves in the ocean. Reviews of the
main energy sources are given by Thorpe (1975), Phillips
(1966), and LeBlond and Mysak (1978). Conspicuously
absent in many of these reviews is the role of the ever-
present tide as a possible source in the open ocean. It is
true that the generation of baroclinic modes by barotropic
flow over sharp topography, such as the continental shelf
break, is a mechanism that is now well understood (e.g.,
Baines 1971; Cox and Sandstrom 1962). However, in
regions far removed from coastal boundaries, the tide has
not been viewed as a viable source.

The present paper proposes a generation mechanism
that provides for the direct transfer of energy, without
the aid of topography, from the barotropic tide to a group
of baroclinic modes in the near-inertial frequency band.
It is within this near-inertial band that most oceanic
internal wave energy has been documented to reside. In
the Garret and Munk (1975) model spectrum, the fre-
quency band between f and 2 f, where f denotes the
inertial frequency, accounts for more than 30% of the
total internal wave energy. In spite of numerous at-
tempts, the mechanisms responsible for this clustering
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of energy near the inertial limit have not been conclu-
sively demonstrated. In particular, some of the main
physical processes responsible for maintaining the ob-
served energy distributions are still missing. The nature,
and indeed the very existence, of such a balance are
still open questions.

McComas and Bretherton (1977) proposed a subhar-
monic parametric instability, which was shown to lead
to the cascading of energy from higher-frequency in-
ternal waves toward the inertial limit. The instability
involved a resonant triad of internal waves, where en-
ergy was transferred from a primary long-scale internal
wave to a pair of much shorter perturbation internal
waves with half the frequency. The authors acknowl-
edged, however, that their instability mechanism, which
fed energy into the inertial range, needed to be balanced
by an energy sink in that range in order to achieve
equilibrium. Indeed, long-term averages of month-long
open-ocean records certainly show little variation
around what appears to be some sort of equilibrium level
(Fofonoff and Webster 1971). Without such a sink, no
steady-state saturation would be possible and a full ex-
planation of the inertial peak observed in many internal
wave spectra would still be lacking. Unfortunately, no
appropriate mechanism was identified by the authors as
a candidate for the necessary sink.

The current paper is concerned more with the gen-
eration than the redistribution of internal wave energy.
The proposed mechanism is intended to offer a self-
contained interaction between barotropic and baroclinic
modes, leading, at maturity, to a balance between a clear
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source and a clear sink. As such, the analysis will lead
to a definite equilibrium amplitude. To motivate this,
note that the full interaction will be described by a non-
linear Schroedinger equation having the following form:

]B
25 ibAB* 1 ig |B| B.

]t

In this equation, B is the amplitude of the internal wave
mode, A is the amplitude of the generating surface wave,
and a and b are constant interaction coefficients. Ini-
tially, B is extremely small so that the last term in the
above equation is negligible. As such, there will be an
exponential growth of the internal waves at the expense
of the surface wave. As B grows, the cubic term gains
prominence, representing a feedback effect. In other
words, energy is returned to the surface wave and this
path provides the required sink for the internal waves.
Invoking balance between the last two terms implies
that, at equilibrium, |B| ; |A|1/2. This suggests that if |A|
; O(e), where e is a small parameter, then the steady-
state internal wave amplitude reaches the much higher
value of |B| ; O(e1/2).

It is important to note that this work is a contribution
to a wide body of literature on the general interaction
problem between surface and internal waves. Ball
(1964) initiated this area of study, and important ad-
vancements were contributed by Thorpe (1966), Joyce
(1974), and Watson et al. (1976), among others. The
interactions in these studies were fundamentally differ-
ent from the current investigation, however, in that the
resonant triad consisted of two surface waves and a
single internal wave of much longer scale.

Significant additional contributions were made by
Dysthe and Das (1981), who considered the nonlinear
coupling of internal waves to modulations in the surface
wave spectrum, and Olbers and Herterich (1979), who
investigated the generation of internal waves by surface
waves in the framework of spectral scattering theory.
Both analyses were pursued without the usual assump-
tion of coherent wave trains possessing deterministic
phase relations, rendering them more realistic models
of observed oceanic processes.

In a series of papers, Watson (1985, 1990, 1994) has
recently contributed a great deal to the understanding
of the various sources and fluxes of internal wave en-
ergy. The foremost of these works considered the in-
teractions between internal waves and mesoscale cur-
rents in an effort to describe the transferral of near-
inertial internal wave energy to higher vertical wave-
numbers. In the lattermost, a substantial transfer of en-
ergy from the internal wave field to the surface wave
field was demonstrated.

Hill and Foda (1998) recently identified the additional
path of interaction consisting of a single finite-amplitude
surface wave and two perturbation internal waves. It
should be noted that Smith (1972) considered this triad
but from the point of view of having a single finite-

amplitude internal wave, with perturbation surface and
internal waves completing the triad. His motivation was
the study of how a single finite-amplitude internal wave
could modify the surface wave field.

The present investigation formulates this interaction
problem for the case of a fluid layer of constant buoy-
ancy frequency. It is important to note that the goal of
this work is not to introduce any new techniques or offer
any improvements to the works of the authors mentioned
above. Rather, the aim is to highlight, using a simplistic
approach, one path of interaction that has not been spe-
cifically considered before and that may be responsible
for some observed characteristics of internal wave spec-
tra. A full understanding of the internal wave spectrum
in the ocean, however, will require careful consideration
of all of the physical processes present.

A perturbation and multiple timescale analysis is used
to solve the boundary value problem at successive or-
ders. At the leading order, the linear solutions are ob-
tained and the conditions for resonance are determined.
It is demonstrated that at latitudes below 28.88 in the
Northern Hemisphere, a resonant triad consisting of the
semidiurnal barotropic tide and two near-inertial baro-
clinic waves exists. Observational spectra that lend sup-
port to this hypothesis are considered.

At the second order, evolution equations for the in-
ternal wave amplitudes are derived. It is shown that,
initially, the internal wave amplitudes grow exponen-
tially in time. Finally, the equilibrium problem is con-
sidered. As mentioned above, when the internal wave
amplitudes grow to be sufficiently large, a balance exists
between quadratic and cubic terms, allowing for deter-
mination of the steady-state internal wave amplitude.
This equilibrium amplitude is readily calculated and is
shown to be a function of latitude, stratification, and
internal wave vertical mode number.

2. Theoretical formulation

The origin of a three-dimensional Cartesian coordi-
nate system is placed on the undisturbed free surface of
an ocean of constant depth H and density profile r0(z).
The z coordinate is defined as pointing vertically upward
and the x and y coordinates define the horizontal. The
density is assumed to vary exponentially with depth so
that the buoyancy frequency is constant. As noted by
Cox and Sandstrom (1962), this is not the most realistic
model of stratification in the deep ocean, but serves as
a useful and tractable first approximation.

The wave field is assumed to be made up of a single
surface wave train and two internal wave trains. The
surface wave has amplitude A, wavenumber vector k,
which is aligned with the positive x axis, and frequency
v. The internal waves have amplitudes a1 and a2, wave-
number vectors l1 and l2, and frequencies s1 and s2.
The phase functions of the three linear waves are there-
fore given by the following:
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u 5 i(l ·x 2 s t)1 1 1

u 5 i(l ·x 2 s t)2 2 2

u 5 i(kx 2 vt).3

The three amplitudes a1, a2, and A are taken to be com-
plex and functions of a slow timescale t1.

For resonant interactions to occur, it is necessary for
the following resonance conditions to be satisfied:

l 1 l 5 k (1)1 2

s 1 s 5 v. (2)1 2

The first of these conditions simply dictates that the
wavenumber vectors of the wave triad form the sides
and diagonal of a parallelogram in the x–y plane. The
second requires that the individual dispersion relation-
ships be satisfied.

The governing equations are given, to the Boussinesq
approximation, by the following statements of conti-
nuity and conservation of momentum:

= ·u 5 0

r9 1 wr 5 2u ·=r9t 0z

2p9xu 2 f y 1 u ·=u 5t r0

2p9y
y 2 f u 1 u ·=y 5t r0

2p9zw 1 u ·=w 5 2 r9g.t r0

In the above, u 5 (u, y , w) is the fluid velocity vector,
r9 and p9 are the perturbation density and pressure, r0

is the equilibrium density, f is the Coriolis parameter,
and g is the gravitational acceleration. Note that the x,
y, z, and t subscripts are used to denote differentiation.

The boundary value problem is to be solved subject
to the following boundary conditions:

w 5 h 1 u ·=h, z 5 ht

p 1 p9 5 0, z 5 h0

w 5 0, z 5 21.

In the above, h is the free surface displacement from
equilibrium and p0 is the equilibrium fluid pressure. It
is convenient to recast the problem nondimensionally,
so the following scalings are adopted:

z
(x*, y*) 5 k(x, y) z* 5

H

(v, s , s , f )1 2t* 5 kÏgH t (v*, s*, s*, f *) 51 2 1/2k(gH )

h p9 w
h* 5 p*9 5 w* 5

1/2A r gA Ak(gH )0

(u, y)H r9H H
(u*, y *) 5 r*9 5 N* 5 N

1/2 !A(gH ) r A g0

(l , l )1 2(l*, l*) 5 .1 2 k

Note that N is the buoyancy frequency and that the as-
terisks denote dimensionless quantities and are hereafter
dropped for convenience. Given the recast equations, if
Airy theory is adopted, which is appropriate for tidal fre-
quencies in the deep ocean, the vertical momentum equa-
tion is replaced by the hydrostatic approximation.

Manipulation of the equations of motion yields the
following nonlinear equation for the vertical velocity:

2 2 2w 1 ¹ (N w) 1 f wttzz h zz

25 e{¹ (u ·=r9) 1 (u ·=u) 1 (u ·=y)h xzt yzt

1 f (u ·=y) 2 f (u ·=u) }. (3)xz yz

Note the presence of e, which is the longwave nonlin-
earity parameter defined by A/H. Furthermore, note that

denotes the horizontal Laplacian operator and that2¹h

the equation exhibits quadratic nonlinearity.
Revisiting the boundary conditions, the bottom

boundary condition remains unchanged and is linear in
w. The free surface boundary conditions may be com-
bined, in order to eliminate h, and Taylor expanded
around z 5 0. As such, the following two conditions
are obtained:

w 5 0, z 5 21 (4)

2 2w 1 f w 2 ¹ wttzz z h

2 25 e{¹ (w p9 2 N p9p9 2 (p9p9) 2 u ·=p9) 1 (u ·=u) 1 (u ·=y) 1 f (u ·=y) 2 f (u ·=u) }h z t z t xt yt x y

1 1 1 1 1
2 2 2 2 2 2 2 2 3 4 21 e ¹ N w h 1 w hp9 1 p9p9w 2 ¹ h N 1 hp9 (N p9 1 p9) 2 h N 2 h p9h z z z zz h z z zz5 1 2 11 2 22 2 2 6 2

t

1
2 2 22 ¹ u ·= h N 1 hp9 2 p9(u ·=h) , z 5 0. (5)h z z1 2 62
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FIG. 1. Resonant triad wavenumber vector orientation for case of
exact subharmonic resonance.

In the free surface boundary condition, terms up to
O(e2) have been retained, so that both quadratic and
cubic nonlinearity are present.

3. Initial instability

To address first the instability problem, the internal
waves are assumed to be very small in comparision to
the surface wave. The internal wave amplitudes may
therefore be scaled as follows:

(a , a )1 2(a*, a*,) 5 .1 2 eA

Again, the asterisks denote nondimensional values and
are subsequently dropped. At this point in the analysis,
restriction is made to the case of exact subharmonic
resonance only. In other words, s1 5 s2 5 v/2, l1x 5
l2x 5 1/2, and l1y 5 2l2y [ ly. The internal waves
therefore propagate at angles of 6f relative to the sur-
face wave, as demonstrated in Fig. 1. The motivation
for restricting the analysis to this special case is twofold.
Note first that, in general, a continuous spectrum of pairs
of internal waves may be resonated by a single surface
wave. The only restriction is that (1), (2) be satisfied.
As demonstrated by Hill and Foda (1998) for the two-
layer model, the pair of internal waves that grew at the
fastest rate was the one that was exactly subharmonic
to the surface wave. This same result can be shown for
the current case of continuous stratification, and it is
reasonable to consider here only this most unstable pair.
Second, and of no less importance, the algebraic sim-
plifications that result are enormous and result in the
analysis being highly more compact.

To proceed, the variables of the problem are expanded

in power series of e. For example, the vertical velocity
w is expanded as follows:

iu iu iu3 1 2w 5 w (z)e 1 ew (z)e 1 ew (z)e3 1 2

2 iu 2 iu1 21 e w9(z)e 1 e w9(z)e 1 · · · 1 c.c.1 2

The first three terms in the expansion are the linear
harmonics describing the interacting wave triad. The
internal wave harmonics appear at O(e) since, for the
moment, attention is focused on initial instability only.
The slow timescale, of which the wave amplitudes are
functions, is formalized as t1 5 et. The remaining terms
in the expansion are forced internal harmonics in phase
with the linear internal harmonics. To clarify this, note
that the product of and , with the helpiu iu3 1w (z)e w (z)e3 1

of (1), (2), is in phase with . As such, the qua-iu2w9(z)e2

dratic terms in the governing equation and free surface
boundary condition will provide forcing in the inho-
mogeneous boundary value problem for (z).w92

a. O(1)

At the leading order, the homogeneous boundary val-
ue problem for the linear surface wave is obtained. So-
lution for the vertical velocity component and, in turn,
the other linear variables is quite straightforward (see
Gill 1982) and is not presented here in its entirety. In
summary, normal mode analysis reveals that the eigen-
values of the linear problem are given by

N
NC 5 tan . (6)e 1 2Ce

The first eigenvalue of (6) is that of the surface wave
and is given by C0 ø 1, with the accompanying dis-
persion relationship

v2 5 1 1 f 2.

b. O(e)

At the next order, homogeneous boundary value prob-
lems for the linear internal waves arise. At this point,
the additional restriction that the internal waves be of
the same vertical mode number is imposed. Again, this
is done to simplify the analytic results. The restriction
represents little loss of generality, fortunately. For it can
be readily shown that interactions do exist for triads
containing internal waves of different vertical mode
numbers. However, the interactions are found to be or-
ders of magnitude weaker than those interactions where
the internal waves are of the same vertical mode number.

The dispersion relationship of the internal waves is
given by the following:

2v
2 2 25 C |l| 1 f , (7)n4

where Cn is any eigenvalue of (6) subsequent to C0 and
is, upon invocation of the rigid-lid approximation, given
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FIG. 2. Angle of propagation of internal waves as a function of
buoyancy frequency and vertical mode number: v 5 1.146, f 5
0.5606

FIG. 3. Internal wave frequency spectrum from the western Sar-
gasso Sea. Note the presence of peaks at the semidiurnal ( f t) and
inertial ( f ) frequencies. Additionally note that f t ø 2 f. [After Gould
et. al. (1974)].

by Cn ø N/(np). The vertical mode number of the in-
ternal waves is given by the integer n. Invoking this
approximation, in the framework of a perturbation anal-
ysis, is only valid so long as the order of the error
introduced is less than O(e).

The linear analysis to this point is sufficient for de-
termining the frequencies and wavenumbers of the in-
ternal waves. The frequencies and x components of the
wavenumber vectors are given by the condition of exact
subharmonic resonance. The y components of the wave-
number vectors are found by first solving (7) for |l|.

For a numerical example, v and f are set to values
of 1.146 and 0.5606 respectively, corresponding, in an
ocean depth of 4 km, to the semidiurnal tidal frequency
f t and a latitude of 288N. The internal waves then have
a frequency of 0.573, which is indeed very near to the
inertial limit. Note that resonant triads in the Northern
Hemisphere are possible only at latitudes below 28.88N.
At higher latitudes, the semidiurnal frequency will be
less than twice the inertial frequency, with the result
that subharmonic internal waves are not permissible.
Therefore, at low latitudes only, there exists a possibility
for energy to be transferred from the barotropic tide to
subharmonic, near-inertial internal waves. The angle of
propagation of the internal waves is shown in Fig. 2 as
a function of both buoyancy frequency and vertical
mode number. Note that the internal waves are highly
oblique to the surface wave.

To provide evidence that this period doubling phe-
nomenon exists, thereby establishing this mechanism as
a possible candidate for the generation of internal wave
energy, observational internal wave spectra demonstrat-
ing peaks at both f and f t were sought out. A convincing
example of this can be found in the observations of
Gould et al. (1974). The authors reported on a series of
observations from the western Sargasso Sea, located at
288N. As can be seen from Fig. 3, strong peaks in the

internal wave spectrum are indeed seen at both inertial
and semidiurnal frequencies.

c. O(e2)

With the linear harmonics determined, solution of the
second-order inhomogeneous boundary value problem
for the internal waves can be pursued. Note that at this
order forcing that is in phase with one of the internal
waves, in both the governing equation and the free sur-
face boundary condition, arises from quadratic inter-
actions between the surface wave and the other internal
wave. As a result of the homogeneous problem having
a nontrivial solution, the inhomogeneous problem has
a solution only if this forcing is orthogonal to the ho-
mogeneous solution. This introduces a solvability con-
dition, known as the Fredholm alternative, which is ob-
tained by applying Green’s theorem.

For example, applying Green’s theorem to (z) andw92
w2(z) across the depth of the fluid layer yields

0

[w (z)w9 (z) 2 w9(z)w (z)] dzE 2 2 2 2zz zz

21

05 [w (z)w9 (z) 2 w9(z)w (z)] . (8)2 2 2 2 21z z

Through substitution of the bottom boundary con-
ditions, the free surface boundary conditions, and the
governing equations for w2(z) and (z), lengthy butw92
straightforward manipulation leads to the following
evolution equation:

da2 5 iaa*. (9)1dt1

The asterisk in this instance denotes the complex con-
jugate. Repeating this process for the other internal
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FIG. 4. Internal wave growth rate as a function of buoyancy fre-
quency and vertical mode number: v 5 1.146, f 5 0.5606

forced harmonic, , yields the second evolution equa-w91
tion:

da1 5 iaa*. (10)2dt1

The interaction coefficient a that appears is a purely
real coefficient, given by the simple expression:

2N v
a 5 2 .

2 22vn p 2

Cross differentiation of (9) and (10) reveals that the
internal wave amplitudes grow exponentially in time,

a1, a2 } exp(6at1).

Therefore, the absolute value of a is the growth rate,
on the slow timescale, of the internal waves. This growth
rate is shown in Fig. 4, again as a function of both
stratification and vertical mode number. Of interest is
that higher vertical modes are found to have larger
growth rates and that the effect of rotation is not felt.

4. Equilibrium analysis

The result that the internal waves grow exponentially
in time is clearly one that is not uniformly valid. For,
as t → `, the amplitudes grow to be infinitely large,
violating the assumption of weak nonlinearity implicit
in a perturbation analysis such as this. The possibility
of a steady state, however, arises when the cubic inter-
actions heretofore ignored are retained. As discussed in
the introduction, this equilibrium requires that the rel-
ative scaling between the internal wave amplitudes and
the surface wave amplitude be given by

1/2e (a , a )1 2(a*, a*) 5 ,1 2 A

where, once again, the asterisks are temporarily used to
denote the scaled amplitudes. Note that these scaling

arguments, and those of the previous section, are iden-
tical to those made by Minzoni and Whitham (1977)
for the highly analogous case of edge waves on a sloping
boundary.

The variables of the problem are rescaled correspond-
ingly. For example, the expansion for the vertical ve-
locity takes the revised form

21/2 iu 21/2 iu iu1 2 3w 5 e w (z)e 1 e w (z)e 1 w (z)e1 2 3

1/2 iu 1/2 iu1 21 e w9(z)e 1 e w9(z)e 1 · · · 1 c.c.1 2

In this expansion, the surface waves appear at O(1) as
before. The linear internal waves appear at O(e21/2) how-
ever, since they are, at equilibrium, much larger than
the surface wave. The final two terms in the expansion,
as before, represent the forced internal harmonics.

a. O(e21/ 2)

No forcing exists at this order, yielding homogeneous
boundary value problems for the two internal waves.
The linear solutions and dispersion relationships ob-
tained are identical to those discussed in the previous
section.

b. O(1)

At this order, an inhomogeneous boundary value
problem for the surface wave is obtained. This is be-
cause quadratic products between the two linear internal
waves will yield terms of the same phase and order as
the surface wave. There will be both a homogeneous
and a particular solution so that, for example, the vertical
velocity can be expressed as follows:

w3(z) 5 .w (z) 1 w (z)3 3h p

The homogeneous part of the solution may be taken to
be the linear solution discussed previously. The partic-
ular solution is readily found from (3) to be as follows:

2 2 2ia a 6vnpN (l /|l| )1 2 yw 53p 2 2 24n p 2 N

3 cos[np(z 1 1)] sin[np(z 1 1)].

Particular solutions for the other variables of the prob-
lem are found in a similar fashion.

c. O(e1/ 2)

Finally, the forced internal wave harmonics are con-
sidered. As before, there is forcing in both the governing
equation and the free surface boundary condition. Now,
however, cubic interactions are considered in addition
to the quadratic interactions considered previously. Note
that terms cubic in internal wave amplitude arise both
from third-order self-interactions of the internal waves
and second-order interactions between the internal
waves and the particular solution of the surface wave.
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The process of solvability is identical to before. A
solution to the inhomogeneous problem is ensured only
if the forcing is orthogonal to the eigenfunction of the
homogeneous problem. Revisiting (8), manipulation
leads to the following:

da2 2} iba* 1 ig |a | a . (11)1 1 2dt1

Clearly, a steady state exists when the two terms on the

right-hand side balance. The companion equation for
the other internal wave is found to be

da1 2} iba* 2 ig *|a | a . (12)2 2 1dt1

The interaction coefficients b and g are real and com-
plex, respectively, and are given by the following:

1
2 2 2 2b 5 v(N 2 v n p )

8

2 2 2 2 2 326vnpN l n p N l3 1 Ny y2 2 2 2g 5 2 npN l 2 i f l np vn p 1 2 (vl 1 i f ).y y y2 2 2 2 25 1 26|l| (4n p 2 N ) 8 4 8v 4|l|

FIG. 6. Equilibrium internal wave amplitude as a function of Cor-
iolis paramter: v 5 1.146, N 5 0.1, n 5 1

FIG. 5. Equilibrium internal wave amplitude as a function of buoy-
ancy frequency: v 5 1.146, f 5 0.5606, n 5 1

The equilibrium physical amplitude ae that the two
internal waves will attain is therefore given simply as
follows:

|b|
a 5 .e !|g |

The dependence of this result upon the strength of the
stratification is shown in Fig. 5. Note that the equilib-
rium amplitude decreases with increasing stratification,
a result consistent with intuition. For, if a given amount
of energy is supplied to the internal wave field and the
stratification is strong, the resulting internal wave am-
plitude will be less than if the stratification had been
weak. To give some physical significance to the results,
note that, if 40 cm is taken to be the surface wave
amplitude, then a scaled value of ae 5 1 corresponds
to a dimensional value of 40 m.

The effect of the inertial frequency on the equilibrium
amplitude is detailed in Fig. 6. The dependence is seen

to be significant, with ae becoming very large as the
latitude approaches the limit of 28.88N. As such, it is
expected that internal wave spectra taken at latitudes
near this limit will be the likeliest to demonstrate the
presence of this mechanism.

Finally, Fig. 7 demonstrates the dependence of the
equilibrium amplitude on the vertical mode number of
the internal waves. While the second-order analysis in-
dicated that internal waves of higher vertical mode num-
ber would be resonated on a faster timescale, the third-
order analysis reveals that the lowest vertical mode will
achieve the largest amplitude.

5. Concluding remarks

A third-order multiple-scales analysis has been pre-
sented in an effort to describe a path of energy transfer
from the surface wave field to the internal wave field
that has been heretofore largely ignored. Specific atten-
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FIG. 7. Equilibrium internal wave amplitude as a function of verti-
cal mode number: v 5 1.146, f 5 .5606, N 5 0.1

tion has been directed to the transfer, at low latitudes,
from the semidiurnal barotropic tide to near-inertial bar-
oclinic modes. The motivation for pursuing this was to
demonstrate that the ever-present barotropic tide may
be in part responsible for the development of the inertial
peak seen in many internal wave energy spectra.

The initial instability problem, in which the internal
waves were assumed to be small perturbations, was
solved first. Solution of the inhomogeneous boundary
value probem for the internal waves revealed that the
amplitudes grew exponentially in time.

To describe the equilibrium, or saturation, of the in-
ternal waves, however, it was necessary to consider
third-order effects. It was shown that a balance existed
when the internal waves had grown to be much larger
in amplitude than the forcing surface wave. This balance
between second- and third-order terms allow for the
ready calculation of the equilibrium amplitudes of the
internal waves. The dependence of these steady-state
amplitudes on stratification strength, latitude, and in-
ternal wave vertical mode number was discussed.

In closing, the goal of this work was to offer a com-
pact and straightforward analysis of a mechanism of
substantial significance to the budget of internal wave
energy in the ocean. The emphasis was on the generation
rather than the redistribution of energy and the identi-
fication of the barotropic tide as a viable source was of
paramount importance.

Acknowledgments. This work was supported in part
by grants from the National Science Foundation (Grant

CTS-9215889) and the Environmental Protection Agen-
cy (Grant R817170020). D. F. Hill would like to ac-
knowledge support from the National Defense Science
and Engineering Graduate Fellowship.

REFERENCES

Baines, P. G., 1971: The reflexion of internal/inertial waves from
bumpy surfaces. J. Fluid Mech., 46, 273–292.

Ball, K., 1964: Energy transfer between external and internal gravity
waves. J. Fluid Mech., 19, 465–478.

Cox, C., and H. Sandstrom, 1962: Coupling of internal and surface
waves in water of variable depth. J. Oceanogr. Soc. Japan, (20th
Ann. Vol.), 499–513.

Dysthe, K. B., and K. Das, 1981: Coupling between a surface-wave
spectrum and an internal wave: Modulational interaction. J. Flu-
id Mech., 104, 483–503.

Fofonoff, N. P., and F. Webster, 1971: Current measurements in the
Western Atlanties. Philos. Trans. Roy. Soc. London A, 270, 423–
36.

Garrett, C., and W. Munk, 1972: Space-time scales of internal wave.
Geophys. Fluid Dyn., 2, 225–264.

Gill, A. E., 1982: Atmosphere Ocean Dynamics. Academic Press, 662
pp.

Gould, W. J., W. J. Schmitz, and C. Wunsch, 1974: Preliminary field
results for a Mid-Ocean Dynamic Experiment (MODE-0). Deep-
Sea Res. 21, 911–932.

Hill, D. F., and M. A. Foda, 1998: Subharmonic resonance of oblique
internal waves by a progressive surface wave. Proc. Roy. Soc.
London, 454A, 1129–1144.

Joyce, T. M., 1974: Nonlinear interactions among standing surface
and interval gravity waves. J. Fluid Mech., 63 (Part 4), 801–
825.

LeBlond, P. H., and L. A. Mysak, 1978: Waves in the Ocean. Elsevier,
602 pp.

McComas, C. H., and F. P. Bretherton, 1977: Resonant interactions
of oceanic internal waves. J. Geophys. Res., 82 (9), 1397–1412.

Minzoni, A. A., and G. B. Whitham, 1977: On the excitation of edge
waves on beaches. J. Fluid Mech., 79 (Part 2), 273–287.

Olbers, D. J., and K. Herterich, 1979: The spectral energy transfer
from surface waves to internal waves. J. Fluid Mech., 92 (Part
2), 349–379.

Phillips, O. M., 1969: The Dynamics of the Upper Ocean. Cambridge
University Press, 261 pp.

Smith, R., 1972: An instability of internal gravity waves. J. Fluid
Mech., 52 (Part 2), 393–399.

Thorpe, S. A., 1966: On wave interactions in a stratified fluid. J.
Fluid Mech., 24, 737–751.
, 1975: The excitation, dissipation, and interaction of internal
waves in the deep ocean. J. Geophys. Res., 80, (3), 328–337.

Watson, K. M., 1985: Interaction between internal waves and me-
soscale flow. J. Phys. Oceanogr., 15, 1296–1311.
, 1990: The coupling of surface and internal gravity waves:
Revisited. J. Phys. Oceanogr., 20, 1233–1248.
, 1994: Energy transfer between surface and internal waves in
the North Pacific Ocean. J. Geophysi. Res., 99 (C6), 12 549–
12 560.
, B. West, and B. I. Cohen, 1976: Coupling of surface and internal
gravity waves: A mode coupling model. J. Fluid Mech., 77 (Part
1), 185–208.


