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The Faraday resonance of interfacial waves in a two-layer, weakly-viscous system in a rectangular
domain is presented. A perturbation analysis is pursued and, at the second-order, the scaling of the
viscosity results in boundary layer corrections at the solid walls and at the interface. Special
attention is paid to the damping in the meniscus region where the interface contacts the side-walls.
As a result of the presence of both destabilizing efféetstical oscillation and stabilizing effects
(viscosity), a threshold condition for instability is determined. The derived analytic results are quite
general and prove useful in elucidating the influences of the various boundary layers, as well as the
threshold for growth. In an effort to describe the maximum amplitude attained by the resonated
wave, a third-order analysis is then presented for the idealized case of equal-depth, inviscid layers,
with a rigid-lid condition at the free surface. A balance between cubic nonlinearity and the vertical
shaking yields a Landau-type equation for the interfacial wave amplitude. Comparisons with some
existing experimental data are made at both orders and indicate very good agreem@02 ©
American Institute of Physics[DOI: 10.1063/1.1425846

I. INTRODUCTION of obligue waves at the interface of a two-layer system.
Laboratory experiments verified both the first and second-
Succinctly defined by Drazin and Refida parametric  order theoretical predictions for growth and revealed that the
instability is an instability that occurs when the base flow ofinterfacial waves would grow in size until they began to
a fluid system is periodic in time. Careful tuning of the forc- break, and subsequently mix fluid across the interface.
ing can yield resonated modes that are either superharmonics Faraday resonance continues to attract the attention of
or subharmonics of the forcing frequency. numerous researchers, due in parts to the significance of ver-
It is this instability that was observed by Faraflahen tically oscillating flows and to the convenient framework it
he immersed a vibrating plate in water. Specifically, he notegyrovides for studies of stability and damping. An example of
the presence of subharmonic waves on the free surface. Thige former is provided by Foda and Chahgho studied the
rigorous explanation of this phenomenon was provided by-araday resonance of thin viscoelastic layers. This mecha-
Benjamin and Urseff. They first noted that a vertically 0s- nism was offered as an explanation of the short-scale vari-
cillating system is equivalent to a stationary system in theapility of amplification factors observed in the seismic
presence of a periodic graVitational field. Then, by IineariZ'records of many earthquakes_ Kuﬁ]afso Studied the Fara-
ing the equations of motion, they reduced the boundary valugay resonance of waves in viscoelastic fluids, noting its po-
problem to a form of Mathieu’s equation. A concise sum-tential application as a tool for measurement of rheological
mary is provided by Drazin and RéidSec. 48.2 properties. Of particular interest were the differences in be-
An example of a parametric instability driven by nonlin- hayvior between viscoelastic and Newtonian fluids.
ear interactions, rather than periodic vertical acceleration, is  \jth regards to stability and damping studies, a wealth
the presence of edge waves on sloping boundaries. Thegg jiterature exists on the subject of the growth and damping
trapped modes propagate in the longshore direction and wegs capillary waves in right circular cylinders. In the damping
shown, by Guza and Davisto be resonated by weakly non- stydies, while the Faraday resonance itself may not always
linear, normally incident surface waves. It has been sughe of primary interest, it is often used as the mechanism for
gested that edge waves play a role in the development Qfenerating the waves whose damping rates are subsequently
regularly spaced beach cusps in many coastal areas. A revieeasured. The convenience of studying temporal growth and
of parametrically excited surface waves, including both OStlecay rates, as opposed to spatial growth and decay rates in
cillating basins and nonlinear resonance, is given by Mile, ave channel, has facilitated very precise study of numer-

and Hendersob. _ _ ous phenomena, including contact line dynarhiaad the
It has recently been shown by Hill and F8dhat inter- effects of surfactant?

facial and internal waves are also susceptible to subharmonic |, aqgition to being ideally suited for experimental stud-
resonance by Wea_kly nonlinear surface waves. It was shoyvl’réS’ the simplicity of the Faraday instability has allowed ex-
that monochromatic surface waves could resonate two trainSioration with several different analytic techniques. For ex-
ample, straightforward multiple-scales analyses are
dTelephone: 814-863-7305. Electronic mail: dfhill@engr.psu.edu frequently used in conjunction with solvability conditions in
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order to obtain an amplitude evolution equation. Miften  result in this case is an evolution equation of the general
the other hand, computed the Lagrangian of the system arfdrm,
then used Hamilton’s principle to arrive at the evolution
equation. More recently, Milé$ discussed a rather more
compact approach that relied upon specification of thavherel is a nonlinear interaction coefficient.
surface-wave “impedance” in order to arrive at the threshold ~ The results of the current investigation are of interest
forcing required for growth. since the growth and dissipation of interfacial and internal
The current paper considers the Faraday resonance @faves play important roles in the dynamics of lakes and
waves at the interface between two weakly-viscous fluidscoastal and estuarine areas. As illustrated above, the attenu-
Through restriction to weak viscosity, the viscous effects areation of surface waves is a topic of great interest. While the
confined to boundary layers at the solid walls and interfaceattenuation due to lower layer viscosity has been treated in
and introduce velocity corrections to the second-order probgreat detail, similar attention has yet to be paid to the transfer
lem. These corrections lead to attenuation of the wave anmef energy, demonstrated by Hill and Fotdrom surface
plitude and a slight frequency shift away from the inviscid waves to the internal wave field.
value. The damping rates determined in this fashion are, Another relevant mechanism that has been detailed in a
when care is exercised near the interfacial meniscus, identieries of papers by Raichlen and Tihgnd Ting>%is that
cal to those determined by computing the dissipation in thef forced internal and interfacial waves in rectangular
boundary layers. trenches. With the goal of understanding the dynamics of
The competition between the forcing and the dampingfiuid-mud layers in dredged navigation channels, the authors
results in an analytical expression for the critical forcing am-investigated the linear resonance of internal and interfacial
plitude necessary for growth. More generally, an amplitudeyaves in finite domains for a variety of conditions. Viscous,

a~iaa* +iNa*a?

evolution equation of the form, viscoelastic, and continuously stratified lower layers were all
considered. Whether or not mud waves in these channels
a~iaa* + Ba, could be resonated by parametric instability as well is still an
open question.
wherea is the complex amplitudey a real instability coef- Finally, the breaking of internal and interfacial waves,

ficient, andB a complex damping coefficient, is obtained. both on sloping boundaries and in the fluid interior, has mo-
While damping in stratified fluids has received wide at-tivated a great deal of research in recent years. This is largely
tention in the past, it has been primarily from the point of due to the role that this breaking plays in vertical mixing and
view of its effect on surface waves. Dalrymple and Hu, the horizontal transport of scalars. For example, Ivey and
Hsiao and Shemditf; and Piedra-Cuevaall considered the Noke$* and Taylof® both experimentally investigated the
damping rates of progressive surface waves due to the vigurbulent boundary layer that was generated on a constant
cosity in the lower layer of a two-layer system. These invesslope due to the breaking of critical internal waves. Measure-
tigations varied in terms of the assumed lower layer rheologynents of the vertical mixing were made and simple dye stud-
and whether or not a boundary layer formulation was emies illustrated that this localized process could cause global,
ployed. The lattermost author explicitly considered side-wallor basin-scale, horizontal transport in the form of intrusions
effects, a result of particular relevance to experimental studef mixed fluid into the interior. Thorgé and McEwarf® on
ies. Studies that have specifically focused on internal anthe other hand, studied breaking internal waves in the ab-
interfacial wave damping include those of Schooley andsence of topographic variation. An interesting and very re-
Stewart:® Thorpe!’ and, more recently, Benielli and cent numerical study of two-dimensional interfacial Faraday
Sommeria® hereafter referred to as B&S. The first two pa- waves by Wrighet al?’ is noteworthy as it seems to indicate
pers discuss dissipation in side-wall and bottom boundarypreaking. By analyzing the oscillations at the interface be-
layers, but for approximate cases only, such as deep layers tfieen two semi-infinite fluids, the authors were able to dem-
equal viscosity. The lattermost paper is of particular interesbnstrate strong deformation and eventual breakup of the in-
and significance to the current study as it discusses interfaerface, suggesting the onset of breaking.
cial Faraday resonance. Throughout the analysis presented The present results could therefore be used to guide fur-
herein, therefore, attempts will be made to contrast the curther experiments on internal wave breaking in the fluid inte-
rent results with those of B&S. rior and the accompanying mixing efficiency. For while the
Third-order effects are also considered in the current paexperiments of Hill and Fodawere useful in identifying
per, for a simplified case. It is well known that parametrically surface waves as a significant source of internal wave energy,
excited waves will attain some maximum amplitude, as thehe quantification of subsequent mixing due to breaking in
frequency of the resonated wave detunes from the forcinghe interior proves difficult in the case of progressive waves
frequency. In the context of edge waves, for example, thisn a channel. The inevitable mixing along the sloping beach
maximum has been described by Guza and BdWwemd and in the vicinity of the wavemaker will artificially and
Minzoni and Whithant® The derivation of this amplitude is significantly inflate the overall mixing observed in the chan-
straightforward in principle, but proves to be quite tedious innel. On the other hand, standing interfacial waves, excited
practice for baroclinic modes. Therefore, restriction is madethrough Faraday oscillation, provide a straightforward means
for this third-order analysis only, to inviscid layers of equal, through which to quantitatively further the study of the
but general, depth, with a rigid-lid at the free surface. Thebreaking process.
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FIG. 1. Schematic of the weakly viscous two-layer fluid system.
isochronous
|
1. INSTABILITY FORMULATION
As illustrated in Fig. 1, a layer of deptH, densityp and 2
viscosity v overlies a layer of depth, densityp’, and vis- half-frequency, N /
cosity »'. The density ratioy=p/p’ is assumed to be less / / / / ; N/ . L,
than unity. The fluid layers are contained in a box with hori- 0 2 4 8 10 12
zontal dimensiong by D. A Cartesian coordinate system is q

fixed at the interface between the two fluids and at one cor- o ) ) ) )
FIG. 2. Stability chart for the solutions of Mathieu’s equation. Reprinted
ner of the box as shown.

. . from Benjamin and UrselRef. 3 with permission from the Royal Society
The base of the system is assumed to oscillate about ii& London.

mean position of/= —h with a frequency & and an ampli-
tude of displacemertt. With the coordinate system fixed at
the interface, thereby oscillating as well, this leads to a

. : . . Following the analysis and nomenclature of Benjamin
modulated gravitational acceleration. The effective gravita- . : X
. o and Ursel and expanding the variables in terms of the com-
tional constant is given by

plete orthogonal set of eigenfunctions, it can be shown that

_9 2|, 2i ot d2a
9e=3 F2wberCe, 577 +[Pn 20 C0S2T) Jan=0,

where c.c. denotes the complex conjugate. Hereafter, the _ .
. . : . wherem=1,2,3,...a,, andk,, are the amplitude and wave-
complex conjugate will be understood in expressions for the

. . : . humber of eigenfunctiom, T= n
displacement variables and the velocity potentials. umber of eigenfunctiom, ot, and

To describe interfacial wave motion, a small departure of _ gkn(1—y)tanik,H)
the interface from its equilibrium plang=0 is given by Pm= w?(1+7y) '
=§cos{k x)cog k,z)e'“t 1-v
7 2 X z ' qm=2bkmtanh(ka)lTy.

The frequency of the wave ie, exactly one-half the fre- gince the forcing is at a frequency twice that of the funda-
guency of the oscillating base. Additionally, trje arrjphtude iSmental free wavep,=1 by definition. This places the first

a, and the wave number vector is givenloy ki +kzk. The = mode at the center of the subharmonic tongue of the Mathieu
motion of the free surface, in response to this baroclinicstability chart, which is shown in Fig. 2. i, is sufficiently

mode, is given by the reduced amplitude, large, it is technically possible for the response of the surface
a _ to be synchronous, but a quick inspection reveals that, for
(= Ercos{kxx)cos{kzz)e'“’t. realistic values ofy andb, g,,<1 and the response will be

subharmonic. For example, fop=0.79, H=12.5cm, b
At this point, it is worth briefly commenting on the re- =3.5cm, and.=26.1cm, it is found thatj; = 0.0896.

sponse of the interface in the context of the stability of  There is the slight possibility of higher modes falling
Mathieu’s equation. To simplify matters, assume, for the timewithin the other tongues of the stability chart, but this is
being, that both layers are inviscid and of equal dedth unlikely since the second and third tongues of the stability
Furthermore, assume that the free surface is replaced bydhnart are extremely narrow fay,,<1. Because of the non-
rigid lid and that the waves are two-dimensionél<€0). linear nature of the dispersion relationship, it is unlikely that
These are the same assumptions that will be made in Sec. hgher values op will be sufficiently close to 4 and 9 so as
Finally, take the forcing to be at a frequency twice that of theto place the(p,g) pairs in these tongues. Using the same
fundamental K,= 7/L) mode. parameters as in the previous paragraph,,q,)
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=(2.20,0.20) and g3,d3)=(3.31,0.30). Moreover, and yr(Wy+v,) " =v'(wy+v,)", y=0, (10)

practically speaking, even if this did occur, higher modes

tend to be suppressed in dissipative systems. N L
Returning now to the formulation of the general,  Y(®itGen—2vvy)" =(Pi+gen—2v'vy) ", y=0.

weakly-viscous problem, the fluid velocity vectors in both (11)

layers are assumed to be the sums of irrotational and rota- Next, the following scalings are adopted. Note that the

tional parts, so thati=(u,v,w)=V®+U. Here,® is a ve- asterisks denote dimensionless quantities and that the aster-

locity potential andJ=(U,V,W) is a solenoidal vector. As a isks are subsequently dropped,

result, the equation of continuity in both layers reduces to

Laplace’s equation,

1) o
t*=tyglk|, ©*=—, &*=——,
V2h=0 —h<y=<H. (1) ValK| bvg/[k|
The momentum equation yields the following two equations ., U (V% '%) = K|2(v,v")
for the solenoidal vectors, byglk|’ ’ e*2\glk| ’
U—»V2U=0  0O<y=H, 2 (K K= (ke ky)
, X 1z |k| 1
U,—v'V°U=0 —h=<y=0. (3) . 2bw? o _ a
As for boundary conditions, the no slip and no flow con- €= g 7"y a = b’
ditions require that the fluid velocity vectar vanish on all
solid boundaries, (x*,y*,z* ,H* ,h* ,L*,D*)=|k|(x,y,z,H,h,L,D).
The parametek quantifies the acceleration due to the
Vd+U=0, y=-h; x=0L; z=0D. (4)  vertical oscillation relative to gravity and is assumed to be

. , much less than unity. Note that the viscosities of both layers
At the free surface, there are the usual kinematic and dyhave been scaled a€. Recalling that the thickness of an

na_lrr:lichcon(;j(;t_i(_)ns, tfhi latter departing flrom its familiar form o cijatory boundary layer goes by the square root of the
with the addition of the viscous normal stress, viscosity, this is therefore equivalent to scaling the boundary
layer thicknesses a3(¢€). This weak scaling greatly simpli-

{=v, Yy=H, (5) fies the boundary conditions, as many terms are removed to
higher orders.
®+gel +2v0,=0, y=H. (6) . INSTABILITY SOLUTION

There is an additional condition at the free surface that arisesan;jrg dsi?llvae tgsvgzzlﬁg;’ et?govter:gf'ty potential is first ex-
from the inclusion of viscosity. The condition is that the P P ’

shear stresses vanish, ® = ¢(y, r)coq k,x)cogk,z)e' !, (12
with ¢= ¢+ ed,+---. Note thatr=et is the slow time
pr(Uytuy)=pr(Wy+v,)=0, y=H. (7) scale that will govern the growth of the internal waves.
At the interface, there is first the condition of continuity
) A. O(1)
of velocity,
At this order, a homogeneous boundary value problem
ut=u-, y=0 ®) for ¢, is obtained. Both the modified gravitational effects

and the viscous effects are absent. The solutions are well
Note that the+ and — superscripts denote quantities in the known (e.g., Lamt?® Article 231).
upper and lower layers, respectively. In addition, there are

the equations describing the continuity of shear stress and d,oz'a(T) wcth(h) 1- 7) Ch(y)-i-wsl‘(y)}, 13
normal stress at the interface, 2 y yo

,_iwa(T) h y

yv(uyt+v,) T =v"(uy+v,) ", y=0, ) =2 s ch(y+h), (14)

,_[eth(h)+cth(H)]— y[cth(h) + cth(H) 2= 4(1— y)[ y+ cth(h)cth(H) ]
@ = 2[ y+cth(h)cth(H)] :
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In the above, note that cth, ch, and sh are used for brevity t€. O(e)
represent coth, cosh, and sinh. For the no flow boundary

conditions on the side walls to be satisfied, the wave numbe[rain
components must take on the values,

At this order, an inhomogeneous problem by is ob-
ed. Specifically, the boundary conditions now contain lin-
ear forcing terms due to the viscous boundary layer correc-
tions and the vertical oscillation. In addition, terms allowing
ke=——, Ky=—, for the slow modulation of the wave amplitude are present.
D Since this problem is inhomogeneous and the homoge-
o . neous problem had a nontrivial solution, it is necessary to
wheren andm are positive integer values. Since the scaledypply an orthogonality condition. This is known as the Fred-
wave number vector has a magnitude of unity, the mode,o|m alternative(e.g., Garabedidf) and is accomplished by

numbers satisfy applying Green’s Theorem té§ and ¢,. For example,
nm/L)?+(mm/D)?=1. 15
(L)% (melD) N R AR ALY
B. Boundary layer correction dpq g
— * — -
With these solutions in hand, the leading-order boundary _f (% an 1 an )ds (16

layer corrections at the solid walls and at the interface can be .
found. Because of the scaling of the viscosity, E@3, (3) where theV and S denote volume and surface, respectively.

demand a fast coordinate in the direction normal to theNOting thatVZ¢g =V2¢,=0 and¢g =0 at all solid bound-
boundary under consideration Xf; is the coordinate normal aries, we can apply this to the upper and lower layers, yield-
to a wall, the positive direction beirigto the fluid, then the  Ing

appropriate fast coordinate &= xy/e. Note that at the in-

terface, since there are two boundary layers, there are two Ozj (p5 b1 )ds+f (¢ p1.— p1pg )AS

fast coordinates, one pointing into the upper layer, and one Sw ! Sts g Y

into the lower layer.

As detailed by Mei and Lid? the diffusion equations for + J (=5 o+ ¢1¢3y)d3 a7
the rotational velocity componentangentialto the bound- S
ary are solved for each boundary layer. In the cases of the
solid walls, they are solved subject (), while in the cases 0= f (45 ¢1)dS+ f -5 $,,dS
of the interfacial boundary layers, they are solved subject to Sw %

(8)—(10). For all boundary layers, use is also made of the . .

condition that the corrections vanish &s>. The final step + JS_(% b1, ~ b1, )dS, (18
is to integrate continuity in order to obtain the component of '

the rotational velocitynormal to each boundary. Due to the In these equations5, denotes the wall surfaceS; the free
boundary layer structure, this normal componenOig),  surface,S, the bottom, ands the interface. The subscript
while the tangential components addare allO(1). denotes differentiation along tfeutward normal direction.

For the current problem, there are a total of eleven  The final step is to combine the equations, specifically in
boundary layergone at the bottom, two at the interface, andthe form y(17)+(18), and substitute in the homogeneous
eight at the side waljswhich must be accounted for. Solu- and inhomogeneous boundary conditions. In subsequently
tion for these terms, while lengthy, is straightforward. As anevaluating the integrals, care must be exercised at the inter-
example, in the bottom boundary layer, the three component@ce. Specifically, the region of overlap between the interfa-
of the rotational velocity vector are found to be cial boundary layers and the side wall boundary layers is of

interest. As discussed by Mei and L4tiand as illustrated in

iwa(7)ky ) ® _ Fig. 3,V in the interfacial boundary layers varies in magni-
= Sanmy &R —(L+i)\/ 55 &|sin(kex)cogk;z),  tude fromO(e€) at the edges of the side wall layers@g1)
2 shth) 2v . ST Y .
at the side walls themselves. It is this contribution, easily
iwa(rk overlooked when employing a Poincdseundary layer for-
_ z

-’ — i - i mulation, that was identified as the source of the discrepancy
2 shh) exr{ (1D N 7,7 £]coshegsinticz), found by Ursel! who computed different values of damp-

ing by adding up boundary layer dissipation and by comput-
(1+i)wa(r) v’ ing the rate of pressure working from the inviscid interior to
~2shh) V2o the boundary layers.

To clarify this with an example, consider the results of
Keulegar®? who computed the damping of standing surface
waves in a basin of deptH, lengthL, and breadttB. Adding
up the dissipation in the boundary layers, he found that the
The solutions for the other boundary layers follow similarly dimensional damping rate for a two-dimensional, first-mode

and are not presented here. wave K,=m/L=k,k,=0) was given by

cogk,x)cogk,z).

w
XeX[{—(l'H) gg
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FIG. 4. Variation of damping and instability terms with lower layer viscos-

1 1 Kk(1-2H/L) ity. H=h=2,n=m=1, L=D=4.44,»=0.05,y=0.9.

rYw
N2 |B LT “shzkn)

If the Poincareboundary layer method of Mei and 13U a?>| % (22
and the current author is used instead, but the meniscus re-
gion is overlooked, the damping will be underpredicted as |y |NSTABILITY RESULTS

1 k(1—2H/L)

(19

rw

(1-i) /22 The analytic results for the damping can be quickly veri-
2

fied by considering the asymptotic limit of no upper layer.

L “sh2kA)
where the (1) factor reinforces that the frequency shift is By letting H—e, y—0, andv—0, the result of Keulegaf
discussed in the previous section is indeed recovered.

also obtained. It is only upon inclusion of the meniscus re- - :
y up Next, the variation of the scaled growth rate with the

ion that the correct resu{iL9) is recovered. . ) . .
g 9 gimensionless parameters can be investigated \Wat).

In summary, the boundary layer method of the presen K
Y Y ay P ote that the sheer number of parameters coupled with fact

analysis and the energy methods of previous analyses yie@] lated th h the di . lationshi
the same resulonly if the former technique pays careful that many are related through the dispersion relationship can

attention to the damping in the meniscus region. Neithepwak_(rah|nterpretatlo_ln of :jhe treng§ ?lomewh_at ﬂ'ff'm;l;i id vi

method, however, sufficiently accounts for the discrepancies . € ”?OS.t easily un e.rstoo_ influence 'S.t at ot fiu vis-
between theory and experiment noted by Keule§a8uch cosity. This is because viscosity affects neither the leading-
discrepancies are most likely due to surface tension or Som%rder dispersion relationship nor the instability coefficient.

other physical mechanism not considered in that or the Cwaigure 4 illustrates the influence of the lower layer viscosity.
rent study; The damping rates of the various boundary layers, as well as

For the current problem, lengthy manipulation (@f7) the instability coefficienta) and net growth ratés) are plot-

and (18) eventually reveals the exponential growth/decay ofied- Note th?t' for th_e sake Of. clarit_y, all of the_ damping
the wave amplitude, associated with the side-walls, including the meniscus term,

has been lumped into a single coefficient, i.e.,
a~e’, (20)

=B+ + By -
5o RqB)+ 2_[|m(ﬁ)]2 (21) :8W ,Bm . ,Buw IBIW .
—Va ' The obvious result is that the growth rate of the wave

In this expressiong is a positive, real-valued instability co- decreases with increasing viscosity. If the viscosity is large
efficient and@ is a complex-valued damping coefficient. The enough, the instability of the vertical oscillation is sup-
forms of these coefficients are quite lengthy and are providegressed and the internal wave is damped instead. Since the
in the Appendix. Of particular noteg can be written as lower layer is relatively deep in this example, the damping
due to the bottom boundary layer is very small and the bulk
B=PBot Bit Bt Buwt B of the damping comes frgm }t/he interf)e/lcial and side-wall
where the individual terms represent damping in the bottonboundary layers. The influence of upper layer viscosity on
boundary layer, the interfacial layers, the meniscus regionthe various terms is similar, but not quite as severe. This is a
the upper side-walls and the lower side-walls. As will beconsequence of having a no-shear rather than a no-slip con-
demonstrated in the following section, it is useful to have thedition at the free surface.
damping broken up into these separate contributions so that a The dependence upon the lower layer depth is examined
physical understanding of the dominant damping process can detail in Fig. 5. Clearly, the growth rate of the internal
be readily obtained. Finally, frort21), the following thresh- waves diminishes as the lower layer becomes shallow. This
old condition for internal wave growth is readily derived: is due primarily to the increasing significance of damping in
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FIG. 5. Variation of damping and instability terms with lower layer depth. FIG. 6. Variation of growth rate with mode numbét=h=2, y=0.9,m
H=2,n=m=1,L=D=4.44,v=7»"=0.01,y=0.9. =n, L=D=v2wn, v'=v=0.1.

) pairs. Note that the slow, scaled growth rateas now been
the bottom boundary layer, as can be seen in the pl,0f  onyerted back to its fast, dimensional equivalent. The

If the lower layer becomes shallow enough, the instability ofg ¢ 4ing time constants are seen to be on the order of half a
the waves is once again suppressed and there will be nQin e “confirming that the Faraday resonance of interfacial
growth. o . ) waves should be readily observable in the laboratory.

The relative influence of the side wall damping can be ,qeeqd, a comparison can now be made with the numeri-
observed by letting the domain containing the waves becomg,| anq |aboratory results of B&S. While they focused pri-
large compared to the wavelength. While this does nof,rily on internal wave Faraday resonance, they do present
change theamountof energy dissipation in the side wall s5mne jimited data on interfacial Faraday experiments. In par-
boundary layers, this amount as a percentage of the t0tgl,|ar, Fig. 4 of their paper presents the exponential growth

wave energy in the domain will asymptote to zero. An alter-4¢ \yayes at the interface between kerosene and water. The
native way of thinking about this is to note that the vqumeparameters arep=790kg/n?, p'=1000kg/ni, »=1.6
of fluid in the side-wall boundary layers will become negli- % 10-6 12/ »'=1x10°m%s. L=0261m. D

gible compared to the volume of the domain. For the sake of. 5 596 h=H=0.125m n=1. andb=0.035m. Their

simplicity, consider a square boxDEL) having equal  eaqyrements indicate a growth rate ®£0.104s™, but
modes in the two horizontal directions&n). From(19),  ineir calculations overpredict the growth rate as being
therefore, the dimension of the box and the mode number are 3 119 | contrast. the current formulatid@) predicts
related byL=v2mn. Finally, assume that the two layers , growth rate of 0.1046°4. B&S ascribe the difference be-
have the same viscosity(=v). _ . tween their measurements and predictions to wetting effects
Figure 6 details the damping and instability terms asq yhe sidewalls and point out that the discrepancy increases
functions of the mode number Note that since the domain with mode numbefTable )). While the current model shows

is increasing in size accordingly, the wavelength of the; gimijar increase in error with mode number, it appears to be

waves IS not changlng. Rather, the size of the domain ig g hstantial improvement to the prediction of damping of
simply increasing to accommodate more wavelengthSyertacial waves. In addition, the analytic expression ob-
Therefore, the waves are not becoming any shallower of,ineq is completely general, allowing for layers of different
deeper and there is, as expected, no variation seen in e'thaépths and viscosities, as well as a free surface.

the interfacial or the bottom bounqlary layer dam_ping._ How- Finally, the threshold condition for growtf22) can be
ever, note that the effect of the side-wall damping dies offi,estigated for the current example. This condition proves
fairly rapidly as the domain becomes larger. Depending UpOR, he of particular use from a design point of view, facilitat-
the value of the visposity, the first f_ew modes may actuallying the proper selection of, as well as the appropriate forc-
be suppressed, as is the case in this example. ing amplitude and frequency. For the same dimensional pa-

TO lend some physical _|nS|gh.t to these results, _'t IS usef,”l’ameter values used in generating Fig. 7, the critical forcing
to briefly consider some dimensional results consistent Wlt%mp"tudeb ., i.e., the minimum amplitude required for
crity

Iaporatory scales. Consider a box of lendgtk-40cm and growth, is shown in Fig. 8.
width D=60cm. Assume that a 20 cm layer of fresh water
(p=1000kg/n?, =10 %m?/s) overlies a 20 cm layer of
salt water ¢' =10 ®m?/s) of some density’. The forcing
amplitude is taken to b&=2.5cm. Figure 7 details, as a To describe the equilibrium of the resonated waves, the
function of y, the frequency and growth rate for sevdraim effects of nonlinear detuning must be included. To prevent

V. EQUILIBRIUM FORMULATION
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¥ FIG. 8. Critical forcing amplitude as a function of density ratio and mode
numbers. p=1000 kg/mi, v=»"=10"®m?s, L=40cm, D=60cm, h
=H=20cm.
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i n=1, m=1
§ — — — - n=2,m=1
— —-— n=1,m=2 . F o]
N - n=2, m=2 =0) standing waves between inviscid layers of equal depth
0.04

(H) will be considered. Additionally, a rigid-lid condition
will be assumed at the free surface. Finally, it proves to be
convenient to pursue the analysis with dimensional variables.
Hence, all of the variables in this and the following sections
are assumed to be dimensional.

As before, Laplace’s equation holds in both layers and
no-flow conditions must be satisfied at the solid boundaries
y==*H andx=0, L. The nonlinear kinematic and dynamic
interfacial boundary conditions are Taylor-expanded around
‘ e y=0 to yield
%.9l = lo.gll = IO.I92, = 0.93l - |0.1)47\l J l0,'9\5I - I0.96

Y Oy — =D 50— Pyt D~ 17Dy, (23)

FIG. 7. Dimensional frequencig®) and growth rategb) as functions of

B ; _ —r—10-6 m2 - _ - - - 124
density ratio and mode numbers=1000 kg/mi, v=v'=10"5m%s, L (I)y — =D, p— 77<I)yy+ 7777X(I)Xy— 57 (I)yyy, (24)
=40cm,D=60cm,h=H=20cm,b=2.5cm.

V[q):—+ge77]_(b;_ge77
the results of this section from being obscured by algebraic 1 y
complexity, two steps will be taken. First, the solution pro- = »®_ + §(©;2+ D %)= yndy— E((I);2+ dJ?)
cedure, which is well-known and rooted in perturbation tech-
niques, will be presented in summary fashion only. For a

Y _ _ _
detailed overview(for the case of edge wavethe reader is + 5 [Py + O, 2+ 02— ynd
referred to, e.g., Minzoni and Whithaff\.
Second, several simplifying assumptions will be made — D2+ Dy )], . (25)

for the current example. Specifically, two-dimensionk} (

VI. EQUILIBRIUM SOLUTION
TABLE |. Comparison of measured and calculated damping rates. Data are

from Benielli and SommeridRef. 18. L=0.261m, D=0.096m, H=h Following the line of reasoning of Minzoni and
=0.125m,y=0.79,»=1.6x10 " m7s, »'=1.0x10"" mYs. Whithant® and Mer? (Sec. 11.4 the orders of magnitude of
Mode numbem 1 P the wave amplitude and the forcing amplitude are taken to be

- — — A andB, respectively. Postulating an equilibrium between the
%(fs,l))({;‘;is'bsy&? g'ii 18,2 Zgi 18,2 cubic terms, which ar®(A3), and the forcing terms, which
5 (s (cale. by Hil 4500102 6.64% 10-2 are O(AB), implies that, at equilibriumA~BY2 Thus, the
following orderings are adopted:
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® =BY2¢y; cogkx)e'“t+ B, coq 2kx)e? Note in particular the spatially periodic contribution, which
3 ot is absent for the case of progressive wageg., Dean and
+ B¢, cogkx)e'”, Dalrymple3* Sec. 11.2.4
n= 81/27701C01 kX)ei wt+ B 7;12C0§(2kx)62i“’t+ B 710 C. O(BSIZ)
3/2 it
+ B2 cogkx)e™, Finally, at the third-order, there is an inhomogeneous
9 . problem for the fundamental harmonit,,. Forcing terms
9e=5 +B2w?be? !, on the right-hand sides of the interfacial boundary conditions

originate from cubic self-interactions of the first-order solu-

In the dual subscript notation being used here, @g,, the  tions (¢o1,701), quadratic interactions between the first-
first index refers to the@rder of the term. The second index order solutions and the second-order solutions

refers to the frequency of the term, i.e'9¢", (b12,7m12, m10),» @and the vertical shaking. As before, since the
homogeneous problem had a nontrivial solution, the ampli-
A. O(BY? tude is allowed to be a slowly-varying function of time. The

application of solvability conditiong17), (18) to the two

At this order, the linear solution for the interfacial wave, layers leads to the following evolution equation:

which satisfies the no flow boundary conditionsyat =H,

is found to be(e.g., Lamb® Article 231), da ibe® _
—= a*+ina*a?, (26)

L —iwa K dt
¢°1_2k sh(kh) chik(y=H)I, where the nonlinear interaction coefficient is given by

- iwa A= — ok? [(1+ y)?ch(6kH)
$01= Zcsnikhy CLKOYTHL, 2561+ )2 sif(kH)chP(kH) -~ ¥

a —(1—)(2—v)6 chl4kH)— (7y?>—10y+7)

0177 X ch(2kH) +6(1— y)(4y—3)]. 27)

) 1—vy Thus, initially, when the wave amplitude is small, the
w =gk1+—yth(kH). second term on the right-hand side vanishes and the expo-
nential growth rate of the previous section is recovered, sub-
ject to the simplifying assumptions made in this section.
B. O(B) M Ily, th luti ti be integrated nu-
ore generally, the evolution equation can be integrated nu
Next, the quadratic self-interaction ¢f; will force both  merically in order to determine the slow evolution of the
a bound superharmonic, i.e., a Stokes wave, as well as phase and amplitude of the wave.
steady “set-down” of the interface. Note that the vertical
oscillation is still not felt. The superharmonic is readily

shown to have the following solution: VIl. EQUILIBRIUM RESULTS
L ied(l-y) | 4 ' . , : , ,
b= = —3— TS|»?(|(|-|) Flggre 9 illustrates this evolution, along with the phase-
321+ y)sti(kH) | 1=y ] plane diagram, for th@=1, b=0.035m case of B&S. For
X ch 2k(y—H)], the case of exact subharmonic resonance, their experiments

indicate a maximum amplitude of approximately 4 cm. Their
. —iwad¥(l-vy) | 4y ] calculations, based in part upon the results of

$12= 32(1+ y)sh(kH) —3+ ryshz(kH) Sekerzh-Zen’kovich?® predict that the maximum amplitude

) ’ can be given by

Xch 2k(y—H)],

40 [b 1
ka2(1— y)ch(kH) amasz‘” /= +72, (28)
712~ 1615 ) sH(KH [2 cHP(kH)+1]. 29 J1+y

By lett 0 i | hat the famili which, for the current example, yields 7.34 cm.
y letting y—0 (i.e., no upper laygr note that the familiar The current analysis proves to be very similar, yielding a

surficr:]e-\‘/}/ave i?lﬁt'on for the SLokeshwa\k/}e 'Z rgcover_|ed(.j prediction of 6.76 cm for the maximum amplitude. Some
. ed ?erot h a;rmomg, (t))n t g other ;n » 15 eda'S|y. € care should be taken in comparing this number to experimen-
termined from the dynamic boundary condition and Is 9V€Mia| data. Due to second-order Stokes-wave contributions, the

by maximum interfacial displacement will deviate noticeably
N10= sw?|a|?[ 1+ cth?(kH)]cog 2kx) from |a]. Specifically, observations of the interface at an an-
5 tinode such ax=0 will reveal a sharp crest and a flat
B klal 1-vy trough. The current calculations predict a maximenast
4 sh2kH) 1++y° elevation of 7.14 cm.
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FIG. 9. Evolution of amplitude and phag®, and phase-plane diagrafin
for H=12.5cm, y=0.79,L=26.1cm,n=1, b=3.5cm, v=1'=0 n¥/s.

The success of the current analysis in reproducing obse
vations can be substantially improved if viscosity is retained
In this case, the evolution equation is given by

da ibw? * 4 Bating*a?

—= a a+ila*a“,

dt g B

where the damping coefficient from Sec. Il must be modi-

(29
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FIG. 10. Evolution of amplitude foH=12.5cm,y=0.79,L=26.1cm,n
=1,b=3.5cm,»=1.6x10 *m/&, »'=1.0x10 * m/S.

amplitude with mode number, i.e., as the wave goes from
shallow to transitional to deep. Figure 11 also clearly dem-
onstrates that the analytical result of Sekerzh-Zen’koVith
simply the deep-water limit of the present analysis.

VIIl. CONCLUDING REMARKS

A general analytical formulation of the Faraday reso-
nance of interfacial waves has been developed. First, the in-
stability problem was solved for stably-stratified layers of
arbitrary depth, but weak viscosity. The assumption of weak
viscosity allowed for a perturbation approach and Poincare
boundary layer formulation to be used. The second-order
analysis yielded the temporal growth rates of the waves and
the minimum forcing amplitude required to overcome the
viscous damping.

A third-order analysis was then carried out for a simpli-
fied case. In this case, the layers were assumed to be of

hall

E o2

=1

£
fied to account for the rigid lid at the free surface. For the g
parameter values of B&S being considered here, this yields2
B=—0.0466(1+i) s~ L. Figure 10 clearly demonstrates, for g 01
these values, the saturation of the wave amplitude at a valué
of 3.89 cm. This corresponds to a maximum crest elevation'g
of 4.49 cm which is in very good agreement with their ob- & s
servations. =
The simplicity and generality of26) allow for easy ex-
ploration of the results. One trend of interest is the variation
in maximum amplitude with mode number. It is commonly
held that fundamentaln(=1) modes are the most unstable
and will resonate to larger amplitudes than higher modes. As

0.06

e

L= I8 N L L Y I A M B I D O B B N i |

—

indicat_ed bY_ F'Q ]_-1’ however, this is not the case. RatherFlG. 11. Maximum amplitude, as predicted 86) and(28), as a function
there is an initial increase and then decrease in maximursf mode numberH=12.5 cm, y=0.79,L =100 cm,b=3.5 cm.
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equal, but still arbitrary, depth. A compact evolution equa- N

tion, including cubic nonlinearity, was derived for the inter- ,Bm—{ w?(1+i)(L+D) \/ Cthh
facial wave amplitude. Integration of this equation then al-

lowed for the determination of the maximum amplitude of v [1—y

the resonated wave. Both the second-order and third-order \Y} 2 ( cthh ] / [

results were compared with the experimental and numerical
results of previous authors and demonstrated very goo#inally, turning to the side walls, the contribution from the
agreement. side walls in the upper layer is given by

Finally, results for typical laboratory scales were dis-

cussed throughout in order to assess the feasibility of utiliz Y14D) / (w Cthh 1- 7) (1 chH shH
ing the Faraday resonance mechanism to generate and bre‘gﬁ” 0Z0)

interfacial waves. The compact and simple geometry of the

Faraday mechanism has many advantages over progressive 4 |+ o, st H- ( @ Cthh_ ﬂ)

wave flumes. The results indicated that interfacial waves are 2 Y yw

easily resonated to significant values of steepness, sufficient
for breaking. These results, and the work of previous authors
on breaking internal waves indicate an exciting potential for

the study of breaking interfacial waves in the future.

1 1 2 2
2 EchHshH—EH”(kXDJrkZL)]/[ 1

while that from the side walls in the lower layer is given by

G \/V, L hhshht Sh
(1) 5 Vg |2 Chhshh+ 5

Note that the results in this appendix are nondimensional < (K2D + K2L
results and are related to the general instability problem. The (K ) [
instability coefficienta is given simply by
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