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The Faraday resonance of interfacial waves in a two-layer, weakly-viscous system in a rectangular
domain is presented. A perturbation analysis is pursued and, at the second-order, the scaling of the
viscosity results in boundary layer corrections at the solid walls and at the interface. Special
attention is paid to the damping in the meniscus region where the interface contacts the side-walls.
As a result of the presence of both destabilizing effects~vertical oscillation! and stabilizing effects
~viscosity!, a threshold condition for instability is determined. The derived analytic results are quite
general and prove useful in elucidating the influences of the various boundary layers, as well as the
threshold for growth. In an effort to describe the maximum amplitude attained by the resonated
wave, a third-order analysis is then presented for the idealized case of equal-depth, inviscid layers,
with a rigid-lid condition at the free surface. A balance between cubic nonlinearity and the vertical
shaking yields a Landau-type equation for the interfacial wave amplitude. Comparisons with some
existing experimental data are made at both orders and indicate very good agreement. ©2002
American Institute of Physics.@DOI: 10.1063/1.1425846#
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I. INTRODUCTION

Succinctly defined by Drazin and Reid,1 a parametric
instability is an instability that occurs when the base flow
a fluid system is periodic in time. Careful tuning of the for
ing can yield resonated modes that are either superharmo
or subharmonics of the forcing frequency.

It is this instability that was observed by Faraday2 when
he immersed a vibrating plate in water. Specifically, he no
the presence of subharmonic waves on the free surface.
rigorous explanation of this phenomenon was provided
Benjamin and Ursell.3 They first noted that a vertically os
cillating system is equivalent to a stationary system in
presence of a periodic gravitational field. Then, by linear
ing the equations of motion, they reduced the boundary va
problem to a form of Mathieu’s equation. A concise su
mary is provided by Drazin and Reid1 ~Sec. 48.2!.

An example of a parametric instability driven by nonli
ear interactions, rather than periodic vertical acceleration
the presence of edge waves on sloping boundaries. T
trapped modes propagate in the longshore direction and w
shown, by Guza and Davis,4 to be resonated by weakly non
linear, normally incident surface waves. It has been s
gested that edge waves play a role in the developmen
regularly spaced beach cusps in many coastal areas. A re
of parametrically excited surface waves, including both
cillating basins and nonlinear resonance, is given by M
and Henderson.5

It has recently been shown by Hill and Foda6 that inter-
facial and internal waves are also susceptible to subharm
resonance by weakly nonlinear surface waves. It was sh
that monochromatic surface waves could resonate two tr

a!Telephone: 814-863-7305. Electronic mail: dfhill@engr.psu.edu
1581070-6631/2002/14(1)/158/12/$19.00
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of oblique waves at the interface of a two-layer syste
Laboratory experiments verified both the first and seco
order theoretical predictions for growth and revealed that
interfacial waves would grow in size until they began
break, and subsequently mix fluid across the interface.

Faraday resonance continues to attract the attentio
numerous researchers, due in parts to the significance of
tically oscillating flows and to the convenient framework
provides for studies of stability and damping. An example
the former is provided by Foda and Chang,7 who studied the
Faraday resonance of thin viscoelastic layers. This mec
nism was offered as an explanation of the short-scale v
ability of amplification factors observed in the seism
records of many earthquakes. Kumar8 also studied the Fara
day resonance of waves in viscoelastic fluids, noting its
tential application as a tool for measurement of rheologi
properties. Of particular interest were the differences in
havior between viscoelastic and Newtonian fluids.

With regards to stability and damping studies, a wea
of literature exists on the subject of the growth and damp
of capillary waves in right circular cylinders. In the dampin
studies, while the Faraday resonance itself may not alw
be of primary interest, it is often used as the mechanism
generating the waves whose damping rates are subsequ
measured. The convenience of studying temporal growth
decay rates, as opposed to spatial growth and decay rat
a wave channel, has facilitated very precise study of num
ous phenomena, including contact line dynamics9 and the
effects of surfactants.10

In addition to being ideally suited for experimental stu
ies, the simplicity of the Faraday instability has allowed e
ploration with several different analytic techniques. For e
ample, straightforward multiple-scales analyses
frequently used in conjunction with solvability conditions
© 2002 American Institute of Physics
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159Phys. Fluids, Vol. 14, No. 1, January 2002 The Faraday resonance of interfacial waves
order to obtain an amplitude evolution equation. Miles,11 on
the other hand, computed the Lagrangian of the system
then used Hamilton’s principle to arrive at the evoluti
equation. More recently, Miles12 discussed a rather mor
compact approach that relied upon specification of
surface-wave ‘‘impedance’’ in order to arrive at the thresh
forcing required for growth.

The current paper considers the Faraday resonanc
waves at the interface between two weakly-viscous flu
Through restriction to weak viscosity, the viscous effects
confined to boundary layers at the solid walls and interf
and introduce velocity corrections to the second-order pr
lem. These corrections lead to attenuation of the wave
plitude and a slight frequency shift away from the invisc
value. The damping rates determined in this fashion
when care is exercised near the interfacial meniscus, ide
cal to those determined by computing the dissipation in
boundary layers.

The competition between the forcing and the damp
results in an analytical expression for the critical forcing a
plitude necessary for growth. More generally, an amplitu
evolution equation of the form,

ȧ; iaa* 1ba,

wherea is the complex amplitude,a a real instability coef-
ficient, andb a complex damping coefficient, is obtained.

While damping in stratified fluids has received wide
tention in the past, it has been primarily from the point
view of its effect on surface waves. Dalrymple and Liu13

Hsiao and Shemdin,14 and Piedra-Cueva15 all considered the
damping rates of progressive surface waves due to the
cosity in the lower layer of a two-layer system. These inv
tigations varied in terms of the assumed lower layer rheol
and whether or not a boundary layer formulation was e
ployed. The lattermost author explicitly considered side-w
effects, a result of particular relevance to experimental st
ies. Studies that have specifically focused on internal
interfacial wave damping include those of Schooley a
Stewart,16 Thorpe,17 and, more recently, Benielli an
Sommeria,18 hereafter referred to as B&S. The first two p
pers discuss dissipation in side-wall and bottom bound
layers, but for approximate cases only, such as deep laye
equal viscosity. The lattermost paper is of particular inter
and significance to the current study as it discusses inte
cial Faraday resonance. Throughout the analysis prese
herein, therefore, attempts will be made to contrast the
rent results with those of B&S.

Third-order effects are also considered in the current
per, for a simplified case. It is well known that parametrica
excited waves will attain some maximum amplitude, as
frequency of the resonated wave detunes from the forc
frequency. In the context of edge waves, for example,
maximum has been described by Guza and Bowen19 and
Minzoni and Whitham.20 The derivation of this amplitude is
straightforward in principle, but proves to be quite tedious
practice for baroclinic modes. Therefore, restriction is ma
for this third-order analysis only, to inviscid layers of equ
but general, depth, with a rigid-lid at the free surface. T
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result in this case is an evolution equation of the gene
form,

ȧ; iaa* 1 ila* a2,

wherel is a nonlinear interaction coefficient.
The results of the current investigation are of inter

since the growth and dissipation of interfacial and inter
waves play important roles in the dynamics of lakes a
coastal and estuarine areas. As illustrated above, the att
ation of surface waves is a topic of great interest. While
attenuation due to lower layer viscosity has been treate
great detail, similar attention has yet to be paid to the tran
of energy, demonstrated by Hill and Foda,6 from surface
waves to the internal wave field.

Another relevant mechanism that has been detailed
series of papers by Raichlen and Ting21 and Ting22,23 is that
of forced internal and interfacial waves in rectangu
trenches. With the goal of understanding the dynamics
fluid-mud layers in dredged navigation channels, the auth
investigated the linear resonance of internal and interfa
waves in finite domains for a variety of conditions. Viscou
viscoelastic, and continuously stratified lower layers were
considered. Whether or not mud waves in these chan
could be resonated by parametric instability as well is still
open question.

Finally, the breaking of internal and interfacial wave
both on sloping boundaries and in the fluid interior, has m
tivated a great deal of research in recent years. This is lar
due to the role that this breaking plays in vertical mixing a
the horizontal transport of scalars. For example, Ivey a
Nokes24 and Taylor25 both experimentally investigated th
turbulent boundary layer that was generated on a cons
slope due to the breaking of critical internal waves. Measu
ments of the vertical mixing were made and simple dye st
ies illustrated that this localized process could cause glo
or basin-scale, horizontal transport in the form of intrusio
of mixed fluid into the interior. Thorpe17 and McEwan,26 on
the other hand, studied breaking internal waves in the
sence of topographic variation. An interesting and very
cent numerical study of two-dimensional interfacial Farad
waves by Wrightet al.27 is noteworthy as it seems to indica
breaking. By analyzing the oscillations at the interface b
tween two semi-infinite fluids, the authors were able to de
onstrate strong deformation and eventual breakup of the
terface, suggesting the onset of breaking.

The present results could therefore be used to guide
ther experiments on internal wave breaking in the fluid in
rior and the accompanying mixing efficiency. For while th
experiments of Hill and Foda6 were useful in identifying
surface waves as a significant source of internal wave ene
the quantification of subsequent mixing due to breaking
the interior proves difficult in the case of progressive wav
in a channel. The inevitable mixing along the sloping bea
and in the vicinity of the wavemaker will artificially and
significantly inflate the overall mixing observed in the cha
nel. On the other hand, standing interfacial waves, exc
through Faraday oscillation, provide a straightforward me
through which to quantitatively further the study of th
breaking process.
 AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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160 Phys. Fluids, Vol. 14, No. 1, January 2002 D. F. Hill
II. INSTABILITY FORMULATION

As illustrated in Fig. 1, a layer of depthH, densityr and
viscosityn overlies a layer of depthh, densityr8, and vis-
cosity n8. The density ratiog5r/r8 is assumed to be les
than unity. The fluid layers are contained in a box with ho
zontal dimensionsL by D. A Cartesian coordinate system
fixed at the interface between the two fluids and at one c
ner of the box as shown.

The base of the system is assumed to oscillate abou
mean position ofy52h with a frequency 2v and an ampli-
tude of displacementb. With the coordinate system fixed a
the interface, thereby oscillating as well, this leads to
modulated gravitational acceleration. The effective grav
tional constant is given by

ge5
g

2
12v2be2ivt1c.c.,

where c.c. denotes the complex conjugate. Hereafter,
complex conjugate will be understood in expressions for
displacement variables and the velocity potentials.

To describe interfacial wave motion, a small departure
the interface from its equilibrium planey50 is given by

h5
a

2
cos~kxx!cos~kzz!eivt.

The frequency of the wave isv, exactly one-half the fre-
quency of the oscillating base. Additionally, the amplitude
a, and the wave number vector is given byk5kxı̂1kzk̂. The
motion of the free surface, in response to this barocli
mode, is given by the reduced amplitude,

z5
ar

2
cos~kxx!cos~kzz!eivt.

At this point, it is worth briefly commenting on the re
sponse of the interface in the context of the stability
Mathieu’s equation. To simplify matters, assume, for the ti
being, that both layers are inviscid and of equal depthH.
Furthermore, assume that the free surface is replaced
rigid lid and that the waves are two-dimensional (kz50).
These are the same assumptions that will be made in Se
Finally, take the forcing to be at a frequency twice that of t
fundamental (kx5p/L) mode.

FIG. 1. Schematic of the weakly viscous two-layer fluid system.
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Following the analysis and nomenclature of Benjam
and Ursell,3 and expanding the variables in terms of the co
plete orthogonal set of eigenfunctions, it can be shown t

d2am

dT2 1@pm22qm cos~2T!#am50,

wherem51,2,3,...,am and km are the amplitude and wave
number of eigenfunctionm, T5vt, and

pm5
gkm~12g!tanh~kmH !

v2~11g!
,

qm52bkm tanh~kmH !
12g

11g
.

Since the forcing is at a frequency twice that of the fund
mental free wave,p151 by definition. This places the firs
mode at the center of the subharmonic tongue of the Math
stability chart, which is shown in Fig. 2. Ifqm is sufficiently
large, it is technically possible for the response of the surf
to be synchronous, but a quick inspection reveals that,
realistic values ofg andb, qm!1 and the response will be
subharmonic. For example, forg50.79, H512.5 cm, b
53.5 cm, andL526.1 cm, it is found thatq150.0896.

There is the slight possibility of higher modes fallin
within the other tongues of the stability chart, but this
unlikely since the second and third tongues of the stabi
chart are extremely narrow forqm!1. Because of the non
linear nature of the dispersion relationship, it is unlikely th
higher values ofp will be sufficiently close to 4 and 9 so a
to place the~p,q! pairs in these tongues. Using the sam
parameters as in the previous paragraph, (p2 ,q2)

FIG. 2. Stability chart for the solutions of Mathieu’s equation. Reprint
from Benjamin and Ursell~Ref. 3! with permission from the Royal Society
of London.
 AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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161Phys. Fluids, Vol. 14, No. 1, January 2002 The Faraday resonance of interfacial waves
5(2.20,0.20) and (p3 ,q3)5(3.31,0.30). Moreover, and
practically speaking, even if this did occur, higher mod
tend to be suppressed in dissipative systems.

Returning now to the formulation of the genera
weakly-viscous problem, the fluid velocity vectors in bo
layers are assumed to be the sums of irrotational and r
tional parts, so thatu5(u,v,w)5¹F1U. Here,F is a ve-
locity potential andU5(U,V,W) is a solenoidal vector. As a
result, the equation of continuity in both layers reduces
Laplace’s equation,

¹2F50 2h<y<H. ~1!

The momentum equation yields the following two equatio
for the solenoidal vectors,

Ut2n¹2U50 0<y<H, ~2!

Ut2n8¹2U50 2h<y<0. ~3!

As for boundary conditions, the no slip and no flow co
ditions require that the fluid velocity vectoru vanish on all
solid boundaries,

¹F1U50, y52h; x50,L; z50,D. ~4!

At the free surface, there are the usual kinematic and
namic conditions, the latter departing from its familiar for
with the addition of the viscous normal stress,

z t5v, y5H, ~5!

F t1gez12nvy50, y5H. ~6!

There is an additional condition at the free surface that ar
from the inclusion of viscosity. The condition is that th
shear stresses vanish,

rn~uy1vx!5rn~wy1vz!50, y5H. ~7!

At the interface, there is first the condition of continui
of velocity,

u15u2, y50. ~8!

Note that the1 and2 superscripts denote quantities in th
upper and lower layers, respectively. In addition, there
the equations describing the continuity of shear stress
normal stress at the interface,

gn~uy1vx!
15n8~uy1vx!

2, y50, ~9!
Downloaded 10 May 2002 to 130.203.207.181. Redistribution subject to
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gn~wy1vz!
15n8~wy1vz!

2, y50, ~10!

g~F t1geh22nvy!15~F t1geh22n8vy!2, y50.
~11!

Next, the following scalings are adopted. Note that t
asterisks denote dimensionless quantities and that the a
isks are subsequently dropped,

t* 5tAguku, v* 5
v

Aguku
, F* 5

F

bAg/uku
,

U* 5
U

bAguku
, ~n* ,n8* !5

uku2~n,n8!

e* 2Aguku
,

~kx* ,kz* !5
~kx ,kz!

uku
,

e* 5
2bv2

g
, h* 5

h

b
, a* 5

a

b
,

~x* ,y* ,z* ,H* ,h* ,L* ,D* !5uku~x,y,z,H,h,L,D !.

The parametere quantifies the acceleration due to th
vertical oscillation relative to gravity and is assumed to
much less than unity. Note that the viscosities of both lay
have been scaled ase2. Recalling that the thickness of a
oscillatory boundary layer goes by the square root of
viscosity, this is therefore equivalent to scaling the bound
layer thicknesses asO(e). This weak scaling greatly simpli
fies the boundary conditions, as many terms are remove
higher orders.

III. INSTABILITY SOLUTION

To solve the problem, the velocity potential is first e
panded in a power series ofe, so that

F5f~y,t!cos~kxx!cos~kzz!eivt, ~12!

with f5f01ef11¯ . Note thatt5et is the slow time
scale that will govern the growth of the internal waves.

A. O„1…

At this order, a homogeneous boundary value probl
for f0 is obtained. Both the modified gravitational effec
and the viscous effects are absent. The solutions are
known ~e.g., Lamb,28 Article 231!.

f05
ia~t!

2 F S v cth~h!

g
2

12g

gv D ch~y!1v sh~y!G , ~13!

f085
iva~t!

2 sh~h!
ch~y1h!, ~14!
v25
@cth~h!1cth~H !#2A@cth~h!1cth~H !#224~12g!@g1cth~h!cth~H !#

2@g1cth~h!cth~H !#
.
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In the above, note that cth, ch, and sh are used for brevit
represent coth, cosh, and sinh. For the no flow bound
conditions on the side walls to be satisfied, the wave num
components must take on the values,

kx5
np

L
, kz5

mp

D
,

wheren andm are positive integer values. Since the sca
wave number vector has a magnitude of unity, the mo
numbers satisfy

~np/L !21~mp/D !251. ~15!

B. Boundary layer correction

With these solutions in hand, the leading-order bound
layer corrections at the solid walls and at the interface can
found. Because of the scaling of the viscosity, Eqs.~2!, ~3!
demand a fast coordinate in the direction normal to
boundary under consideration. IfxN is the coordinate norma
to a wall, the positive direction beinginto the fluid, then the
appropriate fast coordinate isj5xN /e. Note that at the in-
terface, since there are two boundary layers, there are
fast coordinates, one pointing into the upper layer, and
into the lower layer.

As detailed by Mei and Liu,29 the diffusion equations for
the rotational velocity componentstangential to the bound-
ary are solved for each boundary layer. In the cases of
solid walls, they are solved subject to~4!, while in the cases
of the interfacial boundary layers, they are solved subjec
~8!–~10!. For all boundary layers, use is also made of
condition that the corrections vanish asj→`. The final step
is to integrate continuity in order to obtain the component
the rotational velocitynormal to each boundary. Due to th
boundary layer structure, this normal component isO(e),
while the tangential components andF are allO(1).

For the current problem, there are a total of elev
boundary layers~one at the bottom, two at the interface, a
eight at the side walls! which must be accounted for. Solu
tion for these terms, while lengthy, is straightforward. As
example, in the bottom boundary layer, the three compon
of the rotational velocity vector are found to be

U5
iva~t!kx

2 sh~h!
expF2~11 i !A v

2n8
jGsin~kxx!cos~kzz!,

W5
iva~t!kz

2 sh~h!
expF2~11 i !A v

2n8
jGcos~kxx!sin~kzz!,

V5
~11 i !va~t!

2 sh~h!
A n8

2v

3expF2~11 i !A v

2n8
jGcos~kxx!cos~kzz!.

The solutions for the other boundary layers follow simila
and are not presented here.
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C. O„e…

At this order, an inhomogeneous problem forf1 is ob-
tained. Specifically, the boundary conditions now contain l
ear forcing terms due to the viscous boundary layer corr
tions and the vertical oscillation. In addition, terms allowin
for the slow modulation of the wave amplitude are prese

Since this problem is inhomogeneous and the homo
neous problem had a nontrivial solution, it is necessary
apply an orthogonality condition. This is known as the Fre
holm alternative~e.g., Garabedian30! and is accomplished by
applying Green’s Theorem tof0* andf1 . For example,

E
V
~f0* ¹2f12f1¹2f0* !dV

5E
S
S f0*

]f1

]n
2f1

]f0*

]n DdS, ~16!

where theV andS denote volume and surface, respective
Noting that¹2f0* 5¹2f150 andf0n

* 50 at all solid bound-

aries, we can apply this to the upper and lower layers, yie
ing

05E
Sw

~f0* f1n
!dS1E

Sfs

~f0* f1y
2f1f0y

* !dS

1E
Si

~2f0* f1y
1f1f0y

* !dS, ~17!

05E
Sw

~f0* f1n
!dS1E

Sb

2f0* f1y
dS

1E
Si

~f0* f1y
2f1f0y

* !dS. ~18!

In these equations,Sw denotes the wall surfaces,Sfs the free
surface,Sb the bottom, andSi the interface. The subscriptn
denotes differentiation along theoutwardnormal direction.

The final step is to combine the equations, specifically
the form g(17)1(18), and substitute in the homogeneo
and inhomogeneous boundary conditions. In subseque
evaluating the integrals, care must be exercised at the in
face. Specifically, the region of overlap between the inter
cial boundary layers and the side wall boundary layers is
interest. As discussed by Mei and Liu,29 and as illustrated in
Fig. 3, V in the interfacial boundary layers varies in magn
tude fromO(e) at the edges of the side wall layers toO(1)
at the side walls themselves. It is this contribution, eas
overlooked when employing a Poincare´ boundary layer for-
mulation, that was identified as the source of the discrepa
found by Ursell,31 who computed different values of damp
ing by adding up boundary layer dissipation and by comp
ing the rate of pressure working from the inviscid interior
the boundary layers.

To clarify this with an example, consider the results
Keulegan,32 who computed the damping of standing surfa
waves in a basin of depthH, lengthL, and breadthB. Adding
up the dissipation in the boundary layers, he found that
dimensional damping rate for a two-dimensional, first-mo
wave (kx5p/L[k,kz50) was given by
 AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Anv

2 F 1

B
1

1

L
1

k~122H/L !

sh~2kH! G . ~19!

If the Poincare´ boundary layer method of Mei and Liu29

and the current author is used instead, but the meniscu
gion is overlooked, the damping will be underpredicted a

~12 i !Anv

2 F2
1

L
1

k~122H/L !

sh~2kH! G ,
where the (12 i ) factor reinforces that the frequency shift
also obtained. It is only upon inclusion of the meniscus
gion that the correct result~19! is recovered.

In summary, the boundary layer method of the pres
analysis and the energy methods of previous analyses y
the same resultonly if the former technique pays carefu
attention to the damping in the meniscus region. Neit
method, however, sufficiently accounts for the discrepan
between theory and experiment noted by Keulegan.32 Such
discrepancies are most likely due to surface tension or s
other physical mechanism not considered in that or the
rent study.

For the current problem, lengthy manipulation of~17!
and ~18! eventually reveals the exponential growth/decay
the wave amplitude,

a;edt, ~20!

d5Re~b!6Aa22@ Im~b!#2. ~21!

In this expression,a is a positive, real-valued instability co
efficient andb is a complex-valued damping coefficient. Th
forms of these coefficients are quite lengthy and are provi
in the Appendix. Of particular note,b can be written as

b5bb1b i1bm1buw1b lw ,

where the individual terms represent damping in the bott
boundary layer, the interfacial layers, the meniscus reg
the upper side-walls and the lower side-walls. As will
demonstrated in the following section, it is useful to have
damping broken up into these separate contributions so th
physical understanding of the dominant damping process
be readily obtained. Finally, from~21!, the following thresh-
old condition for internal wave growth is readily derived:

FIG. 3. Closeup of thex50 wall showing the region of overlap between th
interfacial and side-wall boundary layers.
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IV. INSTABILITY RESULTS

The analytic results for the damping can be quickly ve
fied by considering the asymptotic limit of no upper laye
By letting H→`, g→0, andn→0, the result of Keulegan32

discussed in the previous section is indeed recovered.
Next, the variation of the scaled growth rate with th

dimensionless parameters can be investigated with~21!.
Note that the sheer number of parameters coupled with
that many are related through the dispersion relationship
make interpretation of the trends somewhat difficult.

The most easily understood influence is that of fluid v
cosity. This is because viscosity affects neither the leadi
order dispersion relationship nor the instability coefficie
Figure 4 illustrates the influence of the lower layer viscos
The damping rates of the various boundary layers, as we
the instability coefficient~a! and net growth rate~d! are plot-
ted. Note that, for the sake of clarity, all of the dampin
associated with the side-walls, including the meniscus te
has been lumped into a single coefficient, i.e.,

bw5bm1buw1b lw .

The obvious result is that the growth rate of the wa
decreases with increasing viscosity. If the viscosity is la
enough, the instability of the vertical oscillation is su
pressed and the internal wave is damped instead. Since
lower layer is relatively deep in this example, the dampi
due to the bottom boundary layer is very small and the b
of the damping comes from the interfacial and side-w
boundary layers. The influence of upper layer viscosity
the various terms is similar, but not quite as severe. This
consequence of having a no-shear rather than a no-slip
dition at the free surface.

The dependence upon the lower layer depth is exami
in detail in Fig. 5. Clearly, the growth rate of the intern
waves diminishes as the lower layer becomes shallow. T
is due primarily to the increasing significance of damping

FIG. 4. Variation of damping and instability terms with lower layer visco
ity. H5h52, n5m51, L5D54.44,n50.05,g50.9.
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the bottom boundary layer, as can be seen in the plot ofbb .
If the lower layer becomes shallow enough, the instability
the waves is once again suppressed and there will be
growth.

The relative influence of the side wall damping can
observed by letting the domain containing the waves beco
large compared to the wavelength. While this does
change theamount of energy dissipation in the side wa
boundary layers, this amount as a percentage of the
wave energy in the domain will asymptote to zero. An alt
native way of thinking about this is to note that the volum
of fluid in the side-wall boundary layers will become neg
gible compared to the volume of the domain. For the sake
simplicity, consider a square box (D5L) having equal
modes in the two horizontal directions (m5n). From ~15!,
therefore, the dimension of the box and the mode number
related byL5&pn. Finally, assume that the two laye
have the same viscosity (n85n).

Figure 6 details the damping and instability terms
functions of the mode numbern. Note that since the domai
is increasing in size accordingly, the wavelength of t
waves is not changing. Rather, the size of the domain
simply increasing to accommodate more waveleng
Therefore, the waves are not becoming any shallower
deeper and there is, as expected, no variation seen in e
the interfacial or the bottom boundary layer damping. Ho
ever, note that the effect of the side-wall damping dies
fairly rapidly as the domain becomes larger. Depending u
the value of the viscosity, the first few modes may actua
be suppressed, as is the case in this example.

To lend some physical insight to these results, it is use
to briefly consider some dimensional results consistent w
laboratory scales. Consider a box of lengthL540 cm and
width D560 cm. Assume that a 20 cm layer of fresh wa
(r51000 kg/m3, n51026 m2/s) overlies a 20 cm layer o
salt water (n851026 m2/s) of some densityr8. The forcing
amplitude is taken to beb52.5 cm. Figure 7 details, as
function ofg, the frequency and growth rate for several~n,m!

FIG. 5. Variation of damping and instability terms with lower layer dep
H52, n5m51, L5D54.44,n5n850.01,g50.9.
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pairs. Note that the slow, scaled growth rated has now been
converted back to its fast, dimensional equivalent. T
e-folding time constants are seen to be on the order of ha
minute, confirming that the Faraday resonance of interfa
waves should be readily observable in the laboratory.

Indeed, a comparison can now be made with the num
cal and laboratory results of B&S. While they focused p
marily on internal wave Faraday resonance, they do pre
some limited data on interfacial Faraday experiments. In p
ticular, Fig. 4 of their paper presents the exponential grow
of waves at the interface between kerosene and water.
parameters arer5790 kg/m3, r851000 kg/m3, n51.6
31026 m2/s, n85131026 m2/s, L50.261 m, D
50.096 m, h5H50.125 m, n51, and b50.035 m. Their
measurements indicate a growth rate ofd50.104 s21, but
their calculations overpredict the growth rate as beingd
50.119 s21. In contrast, the current formulation~21! predicts
a growth rate of 0.1046 s21. B&S ascribe the difference be
tween their measurements and predictions to wetting eff
on the sidewalls and point out that the discrepancy increa
with mode number~Table I!. While the current model show
a similar increase in error with mode number, it appears to
a substantial improvement to the prediction of damping
interfacial waves. In addition, the analytic expression o
tained is completely general, allowing for layers of differe
depths and viscosities, as well as a free surface.

Finally, the threshold condition for growth~22! can be
investigated for the current example. This condition prov
to be of particular use from a design point of view, facilita
ing the proper selection ofg, as well as the appropriate forc
ing amplitude and frequency. For the same dimensional
rameter values used in generating Fig. 7, the critical forc
amplitude bcrit , i.e., the minimum amplitude required fo
growth, is shown in Fig. 8.

V. EQUILIBRIUM FORMULATION

To describe the equilibrium of the resonated waves,
effects of nonlinear detuning must be included. To prev

FIG. 6. Variation of growth rate with mode number.H5h52, g50.9, m
5n, L5D5&pn, n85n50.1.
 AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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the results of this section from being obscured by algeb
complexity, two steps will be taken. First, the solution pr
cedure, which is well-known and rooted in perturbation te
niques, will be presented in summary fashion only. Fo
detailed overview~for the case of edge waves! the reader is
referred to, e.g., Minzoni and Whitham.20

Second, several simplifying assumptions will be ma
for the current example. Specifically, two-dimensional (kz

FIG. 7. Dimensional frequencies~a! and growth rates~b! as functions of
density ratio and mode numbers.r51000 kg/m3, n5n851026 m2/s, L
540 cm, D560 cm, h5H520 cm, b52.5 cm.

TABLE I. Comparison of measured and calculated damping rates. Data
from Benielli and Sommeria~Ref. 18!. L50.261 m, D50.096 m, H5h
50.125 m,g50.79,n51.631026 m2/s, n851.031026 m2/s.

Mode numbern 1 2

b ~s21! ~meas. by B&S! 4.631022 7.331022

b ~s21! ~calc. by B&S! 3.131022 4.231022

b ~s21! ~calc. by Hill! 4.5031022 6.6431022
Downloaded 10 May 2002 to 130.203.207.181. Redistribution subject to
ic
-
-
a

e

50) standing waves between inviscid layers of equal de
~H! will be considered. Additionally, a rigid-lid condition
will be assumed at the free surface. Finally, it proves to
convenient to pursue the analysis with dimensional variab
Hence, all of the variables in this and the following sectio
are assumed to be dimensional.

As before, Laplace’s equation holds in both layers a
no-flow conditions must be satisfied at the solid bounda
y56H andx50, L. The nonlinear kinematic and dynam
interfacial boundary conditions are Taylor-expanded arou
y50 to yield

Fy
12h t5Fx

1hx2hFyy
1 1hhxFxy

1 2 1
2h

2Fyyy
1 , ~23!

Fy
22h t5Fx

2hx2hFyy
2 1hhxFxy

2 2 1
2h

2Fyyy
2 , ~24!

g@F t
11geh#2F t

22geh

5hF ty
21

1

2
~Fx

221Fy
22!2ghF ty

12
g

2
~Fx

121Fy
12!

1
h

2
@hF ty

21Fx
221Fy

222ghF ty
1

2g~Fx
121Fy

12!#y . ~25!

VI. EQUILIBRIUM SOLUTION

Following the line of reasoning of Minzoni an
Whitham20 and Mei33 ~Sec. 11.4!, the orders of magnitude o
the wave amplitude and the forcing amplitude are taken to
A andB, respectively. Postulating an equilibrium between t
cubic terms, which areO(A3), and the forcing terms, which
areO(AB), implies that, at equilibrium,A;B1/2. Thus, the
following orderings are adopted:

re

FIG. 8. Critical forcing amplitude as a function of density ratio and mo
numbers. r51000 kg/m3, n5n851026 m2/s, L540 cm, D560 cm, h
5H520 cm.
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F5B1/2f01cos~kx!eivt1Bf12cos~2kx!e2ivt

1B3/2f21cos~kx!eivt,

h5B1/2h01cos~kx!eivt1Bh12cos~2kx!e2ivt1Bh10

1B3/2h21cos~kx!eivt,

ge5
g

2
1B2v2be2ivt.

In the dual subscript notation being used here, e.g.,fpq , the
first index refers to theorder of the term. The second inde
refers to the frequency of the term, i.e.,eiqvt.

A. O„B 1Õ2
…

At this order, the linear solution for the interfacial wav
which satisfies the no flow boundary conditions aty56H,
is found to be~e.g., Lamb,28 Article 231!,

f01
1 5

2 iva

2k sh~kh!
ch@k~y2H !#,

f01
2 5

iva

2k sh~kh!
ch@k~y1H !#,

h015
a

2
,

v25gk
12g

11g
th~kH!.

B. O„B …

Next, the quadratic self-interaction off01 will force both
a bound superharmonic, i.e., a Stokes wave, as well a
steady ‘‘set-down’’ of the interface. Note that the vertic
oscillation is still not felt. The superharmonic is readi
shown to have the following solution:

f12
1 5

iva2~12g!

32~11g!sh4~kH! F232
4

12g
sh2~kH!G

3ch@2k~y2H !#,

f12
2 5

2 iva2~12g!

32~11g!sh4~kH! F231
4g

12g
sh2~kH!G

3ch@2k~y2H !#,

h125
ka2~12g!ch~kH!

16~11g!sh3~kH!
@2 ch2~kH!11#.

By letting g→0 ~i.e., no upper layer!, note that the familiar
surface-wave solution for the Stokes wave is recovered.

The ‘‘zeroth’’ harmonic, on the other hand, is easily d
termined from the dynamic boundary condition and is giv
by

h105
1
8v

2uau2@11cth2~kH!#cos~2kx!

2
kuau2

4 sh~2kH!

12g

11g
.
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Note in particular the spatially periodic contribution, whic
is absent for the case of progressive waves~e.g., Dean and
Dalrymple,34 Sec. 11.2.4!.

C. O„B 3Õ2
…

Finally, at the third-order, there is an inhomogeneo
problem for the fundamental harmonicf21. Forcing terms
on the right-hand sides of the interfacial boundary conditio
originate from cubic self-interactions of the first-order so
tions (f01,h01), quadratic interactions between the firs
order solutions and the second-order solutio
(f12,h12,h10), and the vertical shaking. As before, since t
homogeneous problem had a nontrivial solution, the am
tude is allowed to be a slowly-varying function of time. Th
application of solvability conditions~17!, ~18! to the two
layers leads to the following evolution equation:

da

dt
5

ibv3

g
a* 1 ila* a2, ~26!

where the nonlinear interaction coefficient is given by

l52
vk2

256~11g!2 sh4~kH!ch2~kH!
@~11g!2 ch~6kH!

2~12g!~22g!6 ch~4kH!2~7g2210g17!

3ch~2kH!16~12g!~4g23!#. ~27!

Thus, initially, when the wave amplitude is small, th
second term on the right-hand side vanishes and the e
nential growth rate of the previous section is recovered, s
ject to the simplifying assumptions made in this sectio
More generally, the evolution equation can be integrated
merically in order to determine the slow evolution of th
phase and amplitude of the wave.

VII. EQUILIBRIUM RESULTS

Figure 9 illustrates this evolution, along with the phas
plane diagram, for then51, b50.035 m case of B&S. For
the case of exact subharmonic resonance, their experim
indicate a maximum amplitude of approximately 4 cm. Th
calculations, based in part upon the results
Sekerzh-Zen’kovich,35 predict that the maximum amplitud
can be given by

amax5
4v

k
A b

2g

11g

A11g2
, ~28!

which, for the current example, yields 7.34 cm.
The current analysis proves to be very similar, yielding

prediction of 6.76 cm for the maximum amplitude. Som
care should be taken in comparing this number to experim
tal data. Due to second-order Stokes-wave contributions,
maximum interfacial displacement will deviate noticeab
from uau. Specifically, observations of the interface at an a
tinode such asx50 will reveal a sharp crest and a fla
trough. The current calculations predict a maximumcrest
elevation of 7.14 cm.
 AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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The success of the current analysis in reproducing ob
vations can be substantially improved if viscosity is retain
In this case, the evolution equation is given by

da

dt
5

ibv3

g
a* 1ba1 ila* a2, ~29!

where the damping coefficient from Sec. III must be mo
fied to account for the rigid lid at the free surface. For t
parameter values of B&S being considered here, this yie
b520.0466(11 i ) s21. Figure 10 clearly demonstrates, fo
these values, the saturation of the wave amplitude at a v
of 3.89 cm. This corresponds to a maximum crest eleva
of 4.49 cm which is in very good agreement with their o
servations.

The simplicity and generality of~26! allow for easy ex-
ploration of the results. One trend of interest is the variat
in maximum amplitude with mode number. It is common
held that fundamental (n51) modes are the most unstab
and will resonate to larger amplitudes than higher modes
indicated by Fig. 11, however, this is not the case. Rat
there is an initial increase and then decrease in maxim

FIG. 9. Evolution of amplitude and phase~a!, and phase-plane diagram~b!
for H512.5 cm,g50.79,L526.1 cm,n51, b53.5 cm,n5n850 m2/s.
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amplitude with mode number, i.e., as the wave goes fr
shallow to transitional to deep. Figure 11 also clearly de
onstrates that the analytical result of Sekerzh-Zen’kovich35 is
simply the deep-water limit of the present analysis.

VIII. CONCLUDING REMARKS

A general analytical formulation of the Faraday res
nance of interfacial waves has been developed. First, the
stability problem was solved for stably-stratified layers
arbitrary depth, but weak viscosity. The assumption of we
viscosity allowed for a perturbation approach and Poinc´
boundary layer formulation to be used. The second-or
analysis yielded the temporal growth rates of the waves
the minimum forcing amplitude required to overcome t
viscous damping.

A third-order analysis was then carried out for a simp
fied case. In this case, the layers were assumed to b

FIG. 10. Evolution of amplitude forH512.5 cm,g50.79,L526.1 cm,n
51, b53.5 cm,n51.631026 m/s2, n851.031026 m/s2.

FIG. 11. Maximum amplitude, as predicted by~26! and ~28!, as a function
of mode number.H512.5 cm,g50.79,L5100 cm,b53.5 cm.
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equal, but still arbitrary, depth. A compact evolution equ
tion, including cubic nonlinearity, was derived for the inte
facial wave amplitude. Integration of this equation then
lowed for the determination of the maximum amplitude
the resonated wave. Both the second-order and third-o
results were compared with the experimental and numer
results of previous authors and demonstrated very g
agreement.

Finally, results for typical laboratory scales were d
cussed throughout in order to assess the feasibility of ut
ing the Faraday resonance mechanism to generate and
interfacial waves. The compact and simple geometry of
Faraday mechanism has many advantages over progre
wave flumes. The results indicated that interfacial waves
easily resonated to significant values of steepness, suffic
for breaking. These results, and the work of previous auth
on breaking internal waves indicate an exciting potential
the study of breaking interfacial waves in the future.

APPENDIX: DETAILS OF THE DAMPING COEFFICIENT

Note that the results in this appendix are nondimensio
results and are related to the general instability problem.
instability coefficienta is given simply by

a5
v

2
.

The damping coefficientb is substantially more lengthy
and it is most convenient to treat it as the sum of a numbe
terms:

b5bb1b i1bm1buw1b lw .

These terms represent the damping contributions, res
tively, of the bottom boundary layer, the interfacial laye
the meniscus region, the upper side walls and the lower
walls. The contribution of the bottom layer turns out to
the most compact and is given by

bb5H 2LD~11 i !
v2

4 sh2 h
A n8

2vJ Y @ #.

In this and in subsequent expressions, the denominato
given by

@ #5
LDgv

2 F S v cthh

g
2

12g

gv D chH1v shHG2

1
~12g!LD

2v
.

The interfacial contribution is given by

b i5H 2LD~11 i !S v cthh2
1

wD 2

3
~12g!2

4gA2v

Ann8

gAn1An8
J Y @ #.

The contribution due to the interfacial meniscus is given
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bm5H 2v2~11 i !~L1D !FA n8

2v
cthh

1A n

2v S 12g

v2 2cthhD G J Y @ #.

Finally, turning to the side walls, the contribution from th
side walls in the upper layer is given by

buw5H g~11 i !A n

2v F S v cthh

g
2

12g

gv D 2S 1

2
chH shH

1
1

2
H D1v sh2 H•S v cthh

g
2

12g

gv D
1v2S 1

2
chH shH2

1

2
H D G~kx

2D1kz
2L !J Y @ #,

while that from the side walls in the lower layer is given b

b lw5H ~11 i !
v2

sh2 h
A n8

2v S 1

2
chh shh1

1

2
hD

3~kx
2D1kz

2L !J Y @ #.
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