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Transient and steady-state amplitudes of forced waves
in rectangular basins
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A weakly-nonlinear analysis of the transient evolution of two-dimensional, standing waves in a
rectangular basin is presented. The waves are resonated by periodic oscillation along an axis aligned
with the wavenumber vector. The amplitude of oscillation is assumed to be small with respect to the
basin dimensions. The effects of detuning, viscous damping, and cubic nonlinearity are all
simultaneously considered. Moreover, the analysis is formulated in water of general depth.
Multiple-scales analysis is used in order to derive an evolution equation for the complex amplitude
of the resonated wave. From this equation, the maximum transient and steady-state amplitudes of
the wave are determined. It is shown that steady-state analysis will underestimate the maximum
response of a basin set into motion from rest. Amplitude response diagrams demonstrate good
agreement with previous experimental investigations. The analysis is invalid in the vicinity of the
‘‘critical depth’’ and in the shallow-water limit. A separate analysis, which incorporates weak
dispersion, is presented in order to provide satisfactory results in shallow water. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1569917#
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I. INTRODUCTION

A. Nonlinear standing waves

While studies of finite-amplitude effects can be trac
back to Stokes,1 for the case of progressive waves, a simi
study of standing waves did not occur for another centu
Penney and Price2 formulated a weakly-nonlinear theory fo
standing waves in infinite depth and Tadjbakhsh and Kel3

considered the more general case of arbitrary depth. The
sults for the standing wave case were found to be simila
the progressive wave case in the sense that the wave
quency became amplitude dependent and the free-su
profile distorted due to the presence of bound superharm
ics. Of particular interest was the result that the sign of
frequency shift~from the linear value! depended upon the
relative depth~ratio of depth to wavelength! of the water.
Tadjbakhsh and Keller3 found the critical value of this ratio
to be equal to 0.17. Motivated by this work, Fultz4 conducted
an experimental study which confirmed the presence of
frequency reversal, but showed the critical value to be 0
In a multiple-scales, slowly-varying analysis of finite dep
standing waves, Roskes5 demonstrated that sideband inst
bilities would occur beyond a critical depth of 0.162, whi
is precisely the critical depth determined in the present stu

B. Parametric instability

The above studies focused on the characteristics offree,
i.e., unforced, weakly-nonlinear standing waves, with lit
emphasis on the generation of the waves. Vertical oscillat
known as Faraday resonance, of a fluid domain, can gene
subharmonic standing waves. Because the base state o
flow in this case is periodic, this type of instability is know
as a parametric instability.6 First observed by Faraday,7 the
1571070-6631/2003/15(6)/1576/12/$20.00

Downloaded 12 May 2003 to 130.203.207.181. Redistribution subject to
r
y.

r
re-
to
re-
ce
n-
e

is
4.

y.

n,
ate
the

rigorous explanation of this phenomenon was provided
Benjamin and Ursell.8 Since then, theoretical and experime
tal studies of Faraday waves have significantly advanced
understanding of nonlinear standing waves. A detailed
view is given by Miles and Henderson.9

Faraday resonance results in initial exponential grow
of the forced wave. The inclusion of weak viscosity reduc
the growth rate and establishes a minimum forcing amplitu
necessary for growth.10 If cubic nonlinearity is considered, i
can be shown that the waves do not grow unbounded,
rather attain a maximum amplitude due to nonlinear f
quency detuning. Generally speaking, an evolution equa
of the form

ȧ5 iDa2 iba* 2~12 i !aa2 ila2a* ~1!

is obtained, wherea is a complex amplitude, andD, b, a,
and l are real-valued detuning, forcing, damping, and no
linear interaction coefficients.

Investigations of Faraday resonance have not been
ited only to surface water waves. For example, Foda
Tzang11 and Kumar12 both studied the Faraday resonance
thin viscoelastic layers. Umbanhowaret al.13 have shown
that Faraday resonance can excite three-dimensional st
ing ‘‘waves’’ in a pure granular medium as well. Finally, th
Faraday resonance of interfacial waves has been pursue
many authors, including Benielli and Sommeria14 and Hill.15

The experimentally determined growth rates and maxim
amplitudes of the former authors were found to agree w
with the predictions of the latter author.

Parametric instabilities may also be driven by nonline
interactions between modes. An elegant example is tha
edge waves on sloping boundaries. These trapped m
6 © 2003 American Institute of Physics
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propagate in the alongshore direction and were shown
Guza and Davis16 to be resonated by weakly nonlinear, no
mally incident surface waves. It has been hypothesized
edge waves resonated in this fashion play a role in gene
ing the regularly spaced beach cusps that are found in m
coastal areas. As with the case of Faraday resonance, a m
mum resonated wave amplitude, which is much larger t
the incident wave amplitude, can be determined. This th
order analysis has been performed by Guza and Bowe17

Minzoni and Whitham,18 and Rockliff.19

C. Horizontal resonance

If a basin of fluid is oscillated horizontally, rather tha
vertically, waves can again be resonated, although there
some important differences. Generally speaking, an am
tude evolution equation of the form

ȧ5b1 iDa2~12 i !aa2 ila2a* , ~2!

where D, b, a, and l are as above, is now obtained. Th
initial growth is now linear in time and the effect of viscosi
is to contribute to placing an upper bound on the wave a
plitude rather than solely reducing the rate of growth.

There have been a number of studies in the past
have dealt with horizontal resonance. Chester20 and Chester
and Bones21 included the effects of weak dispersion a
weak viscosity in their theoretical and experimental stud
of resonant waves. The individual roles played by nonline
ity, dispersion, and damping are summarized by the la
authors:21

The leaning over of the curve near a local maximum...m
be a nonlinear effect closely associated with ‘‘hard sprin
solution of Duffing’s equation. The existence of seve
maxima is the result of dispersion, and the fact that a ma
mum is actually attained and that the response curve is
nected arises from dissipation.

The experimental data indicated that the number of
furcation points in the amplitude response diagram wa
decreasing function of the relative depth of the fluid. F
example, experiments performed at identical forcing am
tudes yielded a response curve with six bifurcations when
relative depth was 0.042, but a curve with only three bif
cations when the depth was 0.083.

Lepelletier and Raichlen22 used long-wave theory, als
with dispersive and dissipative terms, and paid particular
tention to the transients associated with the commencem
and cessation of the basin motion. Their study gave an
plicit result for the initial linear growth rate of the resonat
wave. Solving the nonlinear problem numerically, the a
thors produced amplitude response diagrams that showe
same lean to the right as the studies listed above. Maxim
amplitudes were found to be one to two orders of magnit
greater than the forcing amplitude and experiments w
found to agree very well with the theory.

The work of Waterhouse23 is significant in that it paid
special attention to resonance at near-critical depths. Foll
ing the lead of Ockendon and Ockendon,24 the problem was
re-scaled to handle this special case. Prior to this, resp
curves3,4 had demonstrated a transition from ‘‘hard sprin
Downloaded 12 May 2003 to 130.203.207.181. Redistribution subject to
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to ‘‘soft spring’’ behavior as the water depth had pass
through the critical value. The re-scaling by Waterhous23

unified the two responses, illustrating that the shallow-wa
hard-spring behavior was, in actuality, a soft-spring respo
with an extra ‘‘kink.’’ As a result, a quintic equation in max
mum amplitude was derived.

Finally, the important works of Faltinsen25 and Faltinsen
et al.26 must be discussed, as they closely relate to the
rent analysis. In the former paper, the author used pertu
tion methods and inviscid analysis to derive a cubic equa
governing the maximum wave amplitude in water of gene
depth. A solution of this equation yielded an amplitude
sponse curve similar to those discussed above. The la
paper relaxed many of the assumptions of the former
used multi-dimensional modal analysis to analyze the tr
sient behavior of the resonated waves. Damping was con
ered phenomenologically. Good agreement between the
and experiment was reported and many of the observat
are consistent with the present analysis. Of particular not
the conclusion that, in large tanks, steady-state analysis is
particularly valuable. This is because~i! the maximum tran-
sient amplitude can far exceed the steady-state amplitude
~ii ! the time that it takes to actually achieve a steady-s
can far exceed the duration of the forcing.

D. Present analysis

The present analysis distinguishes itself from previo
studies in that it simultaneously considers the effects of w
viscosity, general water depth, and transient wave evolut
Most previous studies focused only on steady-state ana
and did not describe the temporal evolution of the amplitu
Those that gave consideration to transient analysis22,26 were
numerical in nature, with only limited results being pr
sented. By using a multiple-scales analysis, the present s
yields an amplitude evolution equation with extremely co
pact coefficients. As a result, consideration of a wide ran
of parameter space is possible. Upon comparison with ex
ing experimental studies, the present analysis is seen to
form well.

The present study also elaborates upon the differe
between transient and steady-state amplitude response
grams. In this context, ‘‘transient’’ refers to the maximu
amplitude the system will obtain once set into motion fro
rest and ‘‘steady-state’’ refers to the fixed-point solution
the system. Upon comparison, it is seen that previ
formulations20,21 will underestimate the maximum respon
of a basin set into motion from a state of rest.

One potential application of the current study is to t
prediction of seismically forced waves in lakes, reservo
and fluid storage containers. An understanding of the rat
growth and maximum amplitude of resonated waves will
low for a prediction of shoreline inundation, spillway ove
topping, and dynamic loading. As an example, Rusche27

conducted experimental studies of a scale model of the
Angeles Reservoir following the 1994 Northridge Eart
quake. The results noted in particular the rich variety
modes that can be generated in seemingly simple geome
 AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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II. FORMULATION

As illustrated in Fig. 1, two-dimensional waves,
wavenumberk, in a basin of depthh and lengthL are con-
sidered. The breadth of the basin isD. The fluid density and
kinematic viscosity arer andn, respectively. Periodic forc
ing of the basin in thex direction is facilitated by prescribing
the velocity of thex50 andx5L vertical walls to be

U05UL5
bv

2
e2 i (v1D)t1c.c., ~3!

whereb is a real-valued displacement amplitude,v is a lin-
ear resonant frequency of the basin,D is some small detun
ing from this resonant frequency, and c.c. denotes the c
plex conjugate.

The free-surface displacement is described byj(x,t). If
the fluid is assumed to be weakly-viscous, the velocity v
tor, u5(u,v,w), is given by the sum of the gradient of
potential function,F(x,y,t), which satisfies Laplace’s equa
tion,

¹2F50, 2h<y<j, ~4!

and a rotational velocity vectorU5(U,V,W). By definition,
therefore,“•U50. Through a restriction to weak viscosit
the rotational velocity vector is only of significance in th
vicinity of boundaries. A solution for these boundary lay
corrections and their incorporation into the boundary va
problem are discussed at length by Mei and Liu28 and Mei29

and will not be presented here.
The problem is to be solved subject to the famil

boundary conditions

u50, all solid boundaries, ~5!

gj1F t1
1
2 u•u50, y5j, ~6!

j t1ujx5v, y5j. ~7!

Since cubic nonlinearity will be considered, the free surfa
boundary conditions are Taylor expanded about the un
turbed free surface, yielding

FIG. 1. Schematic of rectangular basin geometry. The basin length, bre
and undisturbed depth are given byL, D, andh, respectively.
Downloaded 12 May 2003 to 130.203.207.181. Redistribution subject to
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gj1F t52 1
2 u•u2jF ty2 1

2 j2F tyy2
1
2 j@u•u#y ,

y50, ~8!

v2j t5ujx2jvy2 1
2 j2vyy1uyjjx , y50. ~9!

Next, the problem is to be solved at successive ord
based upon an expansion in a small parametere. In this case,
the small parameter is formalized as the ratio of the forc
amplitudeb to the tank lengthL. For cubic nonlinearity to
balance the forcing, therefore, it is seen from~2! that a
;e1/3 is required. Additionally, both detuning and the slo
time scale on whicha evolves should scale bye2/3. Finally,
the viscosity of the fluid should scale bye4/3. Thus, the prob-
lem may be nondimensionalized by adopting the followin

h* 5
h

L
, D* 5

D

L
, b* 5

b

eL
[1,

t* 5tAg/L, v* 5
v

Ag/L
, D* 5

D

e2/3Ag/L
,

a* 5
a

e1/3L
, n* 5

n

e4/3L2Ag/L
, u* 5

u

e1/3LAg/L
,

j* 5
j

e1/3L
.

The asterisks are subsequently dropped and nondim
sional quantities are understood. In the results section, s
dimensional results will be presented to facilitate compa
sons with previous studies. This will be clarified locally.

The free-surface displacement is taken to be

j5e1/3h01cos~npx!e2 ivt1e2/3h10

1e2/3h12cos~2npx!e22ivt1eh21cos~npx!e2 ivt

1eh23cos~3npx!e23ivt1c.c., ~10!

wheren is the integer mode number of the wave. As ind
cated by this expansion, both a bound superharmonic a
set-down of the water surface are expected at second o
At third order, a bound superharmonic and a term in ph
with the fundamental are expected. The expansion for
velocity potential is similar, with the exception that there
no equivalent set-down term.

At the leading order, there is only the well-known sol
tion for the linear standing wave,

h015
a

2
, ~11!

f015
2 iav

2np sinh~nph!
cosh@np~y1h!#, ~12!

with v25np tanh(nph).
At the next order, the familiar Stokes wave solution f

the superharmonic is found:3

th,
 AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1579Phys. Fluids, Vol. 15, No. 6, June 2003 Transient and steady-state amplitudes
h125
a2np cosh~nph!

16 sinh3~nph!
@2 cosh2~nph!11#, ~13!

f125
23iva2

32 sinh4~nph!
cosh@2np~y1h!#. ~14!

The ‘‘zeroth’’ harmonic, i.e., the steady-state set-down
the water surface, is given by

h105
1
8 v2uau2@11coth2~nph!#cos~2npx!

2
npuau2

4 sinh~2nph!
. ~15!

Tadjbakhsh and Keller3 derived the first term, which applie
to standing waves only, but omitted the second term, wh
is well-known29,30and which applies to both progressive a
standing waves.

Finally, at the third order, there are two problems
solve. The first is for the bound superharmonich23, whose
free surface displacement is given by

h23

5
3n2p2a3@118 cosh6~nph!#

512@cosh6~nph!23 cosh4~nph!13 cosh2~nph!21#
.

~16!

Second, and of greater interest, an inhomogeneous p
lem for the fundamental harmonic is obtained. Because
the choice of scalings, the forcing, damping, detuning, a
cubic nonlinearity all enter the problem at this order. Due
the existence of a nontrivial solution at leading order, it
necessary to impose an orthogonality condition on the ho
geneous and inhomogeneous solutions to guara
solvability.31 Known as the Fredholm alternative, this app
cation of Green’s theorem leads directly to a temporal e
lution equation for the wave amplitude:

ȧ5 iDa2~12 i !aa1b2 iluau2a, ~17!

where the differentiation is with respect to the slow tim
scalet.

In this equation,a is a damping coefficient, given b
Keulegan32 as

a5
1

np
Anv

2 F 1

D
111

np~122h!

sinh~2nph!G . ~18!

It should be noted that this result is not exact, as it is ba
upon a boundary layer approximation and neglects damp
in the bulk. Indeed, the measurements of Keulegan32 differed
significantly from~18! in the case of small, nonwetting~dis-
tilled water and lucite! basins. If the basin was large or we
ting ~glass!, the differences were only slight. In both case
the discrepancies were partly attributed to surface-ten
and surface-contamination effects. Martelet al.33 give a
more complete treatment of damping, where the rate of
ergy dissipation in the bulk is included. Given the small v
ume to surface area ratio of their experiments on capill
waves, this was warranted. Given the large volume to sur
area ratio of the experiments discussed in Sec. III A, t
Downloaded 12 May 2003 to 130.203.207.181. Redistribution subject to
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level of detail is unwarranted in the present analysis. Mo
over, within the formal framework of the current perturbatio
approach and the chosen scaling of the viscosity, dampin
the bulk does not enter the problem until an order higher t
what is being considered. Thus, the use of~18! is justified.

The forcing coefficientb is given by

b5@11~21!n21#
1

Anp
@ tanh~nph!#3/2, ~19!

and the nonlinear interaction coefficientl is given by

l5
vn2p2

256 sinh4~nph!cosh2~nph!
@2cosh~6nph!

16 cosh~4nph!12417 cosh~2nph!#. ~20!

Settingl50 reveals the critical depth to be 0.162. Note
well that l is a monotonically decreasing function of bothh
andn and thatl→` ash→0, indicating the invalidity of the
solution in shallow water.

Noting that the complex amplitudea can be expressed a
its amplitude and phase, i.e.,a5uaueiu, ~17! is decomposed
into the coupled equations,

duau
dt

5b cosu2auau, ~21!

uau
du

dt
52b sinu1~D1a!uau2luau3. ~22!

As an example, Fig. 2 shows the evolution of the amp
tude uau with t for the case ofa50.25, b51, l51, andD
50. Clearly evident are the maximum transient amplitu
AT and the steady-state amplitudeAS .

III. RESULTS

Before considering the nonlinear results, there are a
interesting points to make. First of all, note that, from a st

FIG. 2. Temporal evolution of wave amplitudeuau, obtained from~21!–~22!
for the case ofa50.25, b51, l51, andD50.
 AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1580 Phys. Fluids, Vol. 15, No. 6, June 2003 D. F. Hill
of rest, no growth (b50) is predicted for even modes. Th
is because the horizontal forcing is anti-symmetric and tw
dimensional waves with even mode numbers
symmetric.34

Next, if the linear limit is considered (l50), it is
straightforward to derive expressions for the maximum tr
sient and steady-state amplitudes:

AT5
b

@a21~D1a!2#1/2F11expS 2
2ap

ua1Du D
12 expS 2

ap

ua1Du D G
1/2

, ~23!

AS5
b

@a21~D1a!2#1/2, ~24!

which, in the inviscid limit, becomeAT52b/D and AS

5b/D.
Figure 3 shows the variation ofAT with D and a for a

fixed value ofb. The steady-state amplitude response cur
are similar in shape. From~23!–~24!, it is clear that when
D52a, AS5AT and when u11D/au@1 or a→0, AS

→AT/2. Similar response curves were shown by Lepelle
and Raichlen,22 minus the frequency shift due to viscosity

Of much greater interest is the response when nonlin
ity is included. Considering first the steady-state respon
the derivatives in~21!–~22! are set to zero and the equatio
are subsequently squared and added to yield

uau62
2~D1a!

l
uau41

a21~D1a!2

l2 uau22
b2

l2 50. ~25!

This equation, which is cubic inuau2, is easily solved~e.g.,
Abramowitz and Stegun35! to obtain the response diagra
for AS . For nonzeroa, there are two bifurcation points. I
the inviscid limit, the single bifurcation point is easily show
to be at

FIG. 3. Transient amplitude response diagrams, obtained from~23!, for the
case ofb51.0. The different curves denote different amounts of dampi
Downloaded 12 May 2003 to 130.203.207.181. Redistribution subject to
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D5F27lb2

4 G1/3

. ~26!

The transient response is more difficult to obtain analy
cally, in the case of generala. However, as will be illustrated
in Sec. III A, it turns out thata!1 for water waves in large
tanks. As a result, the damping in this case has little role
determiningAT and it is reasonable to deduce a transie
response diagram for the inviscid limit. To do this,~21!–~22!
are first divided and then rearranged to take the form o
perfect differential. Integrating, it is seen that the quantity

buausinu2 1
2 Duau21 1

4 luau4 ~27!

is a constant of the motion.
Next, if the basin is being set into motion from a state

rest (uau50), it follows that the constant is zero for all time
Finally, whenuau reaches a local maximum, the inviscid lim
of ~21! shows thatu56p/2. Thus, the equation

uau32
2D

l
uau6

4b

l
50 ~28!

may be solved exactly to obtainAT . The single bifurcation
point of the transient response occurs at

D5F27lb2

2 G1/3

. ~29!

Figure 4 shows the variation ofAS , as obtained from
~25!, with a andD for fixed values ofb andl. In this case
l.0, so the water is relatively shallow~i.e., less than the
‘‘critical’’ depth !. As the damping increases, there is a slig
migration of the response curve to the left and, more p
nounced, the two bifurcation points tend towards one

.

FIG. 4. Transient and steady-state amplitude response diagrams, as
dicted by nonlinear theory~25!, ~28!. Also shown are sample transient re
sults from numerical integration of the nonlinear equation~17! and sample
transient results from linear theory~23!. b51.0 for all curves andl51.0
for all nonlinear curves. Damping values are specified in the legend.
 AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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other. Note that the second bifurcation point is within t
graph axes only for thea50.5 case. At large enough value
of a, the bifurcation points vanish altogether and the am
tude response becomes single-valued for allD. For the cur-
rent example, this occurs whena50.86.

Also shown, for the sake of comparison, are the u
damped transient response curves, obtained from~23! and
~28!. The former is included in order to highlight the ina
equacy of the linear theory near resonance. Note that w
~28! predicts three possible amplitudes at values of detun
beyond the bifurcation point, the two highest amplitudes
spurious. This is because, in addition to the initial condit
uau50 that was used in deriving~28!, there are other com
binations of nonzerouau andu that result in~27! being zero.
Finally, the damped (a50.1) transient response curve, o
tained by numerically integrating~17! from the initial condi-
tion a50, is also shown. A fourth-order explicit Runge
Kutta scheme, utilizing the Dormand–Prince pair,36 was used
to carry out the integration and, as alluded to earlier,
omission of weak damping in~28! leads to only a slight
overestimation ofAT . Note also the ‘‘jump’’ to the lower
branch of the numerically-obtained transient response
gram with increasingD.

Further insight into the steady-state and transient s
tions shown in Fig. 4 can be gained by introducingu
5uaucosu andv5uausinu, in which case the constant give
in ~27! becomes

bv2 1
2 D~u21v2!1 1

4 l~u21v2!2. ~30!

Figure 5 shows contours of this constant forb51, l51, D
51, 2, 3. Recall as well thata50 was assumed in obtainin
~27! and, therefore,~30!. In the case ofD51, there is a
single, stable steady-state solution, as was shown in Fig
Tracing the zero contour from the initial condition ofu5v
50, it is clear that the maximum transient response exce
the steady state. In the case ofD52, there are two stable
steady-state solutions, corresponding to the maximum
minimum roots of~25!, and one unstable solution. Conside
ation of the contour passing through the origin reveals t
the maximum transient response exceeds all of the ste
state values. Finally, in the case ofD53, there are again two
stable steady-state solutions and one unstable steady
solution. While Fig. 4 suggests that there should be th
possible solutions forAT at this value of detuning, recall tha
the two largest solutions are spurious. This is evident w
the contour passing through the origin is considered. Co
paring Figs. 5~b!–5~c!, it is clear that the zero contour ha
‘‘pinched off,’’ leading to the dramatic jump to the lowes
branch of the transient response diagram, as was observ
the numerical results in Fig. 4.

An additional point of significant interest is under wh
conditions the linear and the nonlinear theories diverge.
calling Fig. 4, the linear and nonlinear transient respo
diagrams were nearly coincident at large values of detun
Figure 6 shows, in gray, the regions of validity of the line
theory for multiple values ofa and l. Here, validity is de-
fined by the arbitrary criterion that the linear prediction
within 610% of the nonlinear prediction. Regions that a
Downloaded 12 May 2003 to 130.203.207.181. Redistribution subject to
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FIG. 5. Phase-plane diagrams of~30! for b51 andl51. Note that~30! was
derived assuminga50. ~a! D51; ~b! D52; ~c! D53. In ~a!, one stable
steady-state exists while in~b! and~c!, two stable and one unstable stead
states exist. Tracing the contour that passes through the origin reveal
maximum transient that occurs in a basin excited from rest.
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FIG. 6. An illustration of the range of validity of the linear theory. Gray denotes regions where linear predictions ofAT are within 610% of nonlinear
predictions ofAT . White regions indicate linear predictions that are more than 10% greater than nonlinear predictions and black regions indica
predictions that are more than 10% below the nonlinear predictions.~a! l51, a50; ~b! l51, a50.5; ~c! l51, a51; ~d! l510, a50; ~e! l510, a
50.5; ~f! l510, a51.
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Consider first the undamped (a50) moderately nonlin-
ear (l51) case shown in~a!. First, it is clear, and intuitive,
that as the system is forced harder, the detuning band w
the linear theory is invalid increases. More interesting is
change in behavior withD at a fixed value ofb. If the spe-
cific value ofb51 is considered, the conditions are the sa
as the inviscid transient curve in Fig. 4. At large negat
values ofD, the linear response is limited by the detunin
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yielding amplitudes consistent with the nonlinear theory.
D approaches 0, the ‘‘hard-spring’’ nature of the nonline
response results in the linear theory over-predicting the
plitudes. AsD becomes positive, the two response curv
cross, leading to a brief band of agreement before the lin
theory begins, severely under-predicting the response.
nally, when the nonlinear response ‘‘jumps’’ down to th
lower branch of the response curve, the two theories
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again brought into agreement. The other plots in Fig. 6 ill
trate that, as damping increases, the range of applicabilit
the linear theory broadens while, as nonlinearity increa
the range obviously narrows.

A. Comparison with experiments

Figure 7 shows the predictions of the present analy
along with the experimental measurements of Lepelletier
Raichlen.22 The dimensional parameters for this dataset
L50.6095 m, D50.23 m, h50.06 m, b51.9631023 m,
n59.431027 m2 s21, andn51. The relative depth is there
fore 0.0492. The corresponding nondimensional parame
area50.0605,b50.185,l5141, ande50.00321. The ex-
perimental results have been converted to the present no
mensional convention. Note that the vertical axis indica
the maximum crest elevations, not the maximum values
AT andAS .

Considering first the steady-state results, the agreem
is quite good. The theory correctly predicts the major bif
cation at D;3.1, but is unable to predict the dispersio
associated bifurcation atD;21.5. This clearly shows the
inability of the present analysis to treat resonance in the s
low water limit.

With regards to the transient results, the agreemen
reasonable, but it is clear that the theory consistently o
predicts the free-surface elevation and fails to correctly p
dict the location of the major bifurcation. Portions of th
discrepancy can be attributed to the shallowness of the b
and the omission of viscosity in deducing the transient
sponse diagram, as was illustrated in Fig. 4. A possible
planation for part of the balance of the discrepancy is offe
by Faltinsenet al.26 They note that the maximum transie
amplitude is quite sensitive to initial conditions. They fou
that very slight motions existing in the tank at the co

FIG. 7. A comparison between the present theory and the experimenta
of Lepelletier and Raichlen~Ref. 22!. Both transient and steady-state am
plitude response diagrams are shown.a50.0605, b50.185, l5141, e
50.00322.
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mencement of an experiment could lead to values ofAT that
were ;10% different those predicted with the assumptio
which was used in deriving~28!, of zero initial conditions.

Some data on experiments in water of greater rela
depth are provided by Feng.34 The reported dimensional pa
rameters areL50.2286 m,D50.127 m, h50.104 m, and
n53. The relative depth is therefore 0.67. The kinema
viscosity was not reported and is assumed to be
31026 m2 s21. Regarding the forcing amplitude, the auth
controlled his tank with a function generator. The unfort
nate aspect of this is that, as the forcing frequency was
ied, so was the forcing amplitude. The only reference to
actual amplitude of oscillation is a statement that ‘‘the pe
to-peak amplitude of the moving platform...is about 0
mm.’’ Assuming, therefore, thatb50.15 mm, the nondimen
sional parameters area50.0808,b50.651,l5234.0, and
e50.000656. As shown in Fig. 8, the agreement between
observations and the theory is reasonable, although large
crepancies exist at low forcing frequencies. More accur
information about the forcing amplitudes is needed to furt
investigate this discrepancy.

Additional experiments were conducted by Faltins
et al.26 Note that, in the following comparison, the variabl
are assumed to be dimensional, so as to facilitate compar
with reproduced figures. In their study, first-mode oscil
tions of a tank 1.73 m in length and 0.2 m in breadth we
considered. The water depth was 0.6 m, yielding a rela
depth of 0.173. While the authors do not present amplitu
response diagrams, they do provide transient records of f
surface elevation at the tank end-wall.

Figure 9 shows the initial evolution of the free-surfa
displacement at the tank end-wall for two different values
detuning. For each case, the measurements and calcula
of Faltinsenet al.26 are shown, along with the calculations o
the present study. In the first case,b53.2 cm and D
50.424 rad s21. The corresponding nondimensional para

ataFIG. 8. A comparison between the present theory and the experimental
of Feng ~Ref. 34!. Only steady-state amplitude response diagrams
shown.a50.0808,b50.651,l5234.0, e50.000656.
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FIG. 9. A comparison of end-wall free-surface displacement between~a! the measurements of Faltinsenet al. ~Ref. 26!; ~b! the calculations of Faltinsenet al.
~Ref. 26!, and ~c! the calculations of the present study. Note that this figure presents results in dimensional format.L51.73 m, D50.2 m, h50.6 m, b
53.2 cm,n51, D50.424 rad s21, n5131026 m2 s21. Portions~d!, ~e!, and~f! are similar, but withb52.9 cm andD51.07 rad s21. Portions~a!, ~b!, ~d!,
and ~e! reproduced with permission from Cambridge University Press.
m

sin
-

ons.
h is
ct-
aly-
to
eters aree50.0185, a50.015, b50.453, D52.55, andl
520.409. In the second case,b52.9 cm and D
51.07 rad s21. The corresponding nondimensional para
eters aree50.0168, a50.0160, b50.453, D56.83, and
l520.409.

Note first of all that, in both experimental runs, the ba
was not set into motion untilt;6 s, hence the lack of syn
Downloaded 12 May 2003 to 130.203.207.181. Redistribution subject to
-

chronization between the observations and the calculati
For both experimental cases, the present analysis, whic
extremely compact, performs very well in terms of predi
ing the maximum free-surface elevation. The present an
sis correctly predicts the period of the nonlinear ‘‘beating’’
be;6 s in the case ofD51.07 rad s21, but somewhat over-
estimates the period at;15 s for the case ofD
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50.424 rad s21. The observations and calculations of Falti
senet al.26 show the period to be closer to 13 s.

B. Comparison with existing theories

As discussed in Sec. I C, there have been many prev
theoretical studies of forced waves in tanks. It is theref
worthwhile to highlight the distinctions between those wor
and the present study. For example, consider the resul
Ockendon and Ockendon24 and Faltinsen.25 Both approaches
were inviscid investigations of the steady-state respons
an oscillating tank.

As shown in Fig. 10, the steady-state predictions of b
Ockendon and Ockendon24 and Faltinsen25 are very nearly
identical to those predicted by~25! with a50. Since, as
suggested by the data in Fig. 7, transient amplitudes can
exceed steady-state amplitudes, an application of these
vious theories will underestimate the maximum amplitude
a basin set into motion from a state of rest. Another sh
coming of steady-state analysis is that, as pointed out
Faltinsen,26 it can take an inordinate amount of time for
weakly-damped system to attain a fixed-point solution.

IV. SHALLOW WATER

As is well known and as pointed out by Faltinsen26

theories formulated in general depth fail in shallow wat
Quadratic self-interactions of the fundamental mode will
sult in higher harmonics evolving on a slow time sca
rather than being bound. Thus, the problem must be
formulated, following the lead of Mei and Unluata.37 Note
that the formulation in this section is presented in a dim
sional format. Using the shallow water equations,

j t1hux1jux1ujx50, ~31!

FIG. 10. A comparison of amplitude response diagrams obtained from
present transient theory~28!, the present steady-state theory~25!, the theory
of Ockendon and Ockendon~Ref. 24!, and the theory of Faltinsen~Ref. 25!.
a50, b50.185,l5141, e50.00322.
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ut1uux1gjx1 1
3 h2uxxt50, ~32!

the free-surface displacement and horizontal velocity are
panded as

j5 (
q51

n
aq

2
cos~qkx!e2qi(v1D)t, ~33!

u5 (
q51

n
ivaq

2kh
sin~qkx!e2qi(v1D)t, ~34!

wheren now refers to the number of modes retained and
complex conjugate is once again understood.

If weak detuning, viscosity, nonlinearity, and dispersi
are all considered simultaneously, the following evoluti
equation for theqth mode is obtained:

ȧq5FqiD1
i ~qv!3h

6g
2~12 i !Aqnv

2

2h1D

2hD Gaq

2
3iv

8h Fq

2
aq/2

2 1q(
p51

n2q

ap* ap1q

1q (
p51

q/221

apaq2pG , q even;

ȧq5d1q

2bvh

L
1FqiD1

i ~qv!3h

6g
2~1

2 i !Aqnv

2

2h1D

2hD Gaq2
3iv

8h Fq(
p51

n2q

ap* ap1q

1q (
p51

(q11)/221

apaq2pG , q odd; ~35!

where d is the Kronecker delta. As an example, if sev
modes are retained, the evolution equation for the prim
(q51) mode is given by

ȧ15
2bvh

L
1F iD1

iv3h

6g
2~12 i !Anv

2

2h1D

2hD Ga1

2
3iv

8h
@a1* a21a2* a31a3* a41a4* a51a5* a6

1a6* a7#.

While the techniques that led to~25! and ~28! could, in
principle, be applied here to obtain coupled equations for
transient and steady-state solutions, it is more expedien
integrate the evolution equations numerically from the init
condition of a15a25¯5an50. As in Sec. III, a fourth-
order explicit Runge–Kutta scheme is used to carry out
integration. As an example, Fig. 11 shows the transient a
plitude response curves for primary-mode resonance i
shallow basin (L5117.5 cm, D512 cm, h56 cm, b
53.9 mm, n59.431027 m2 s21), as computed from the
general-depth and the shallow-water theories. For comp
son, the data of Lepelletier and Raichlen22 are shown as well.
Note that the dimensional results are plotted in a nondim

e
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sional format consistent with Lepelletier and Raichlen.22 It is
clear that the general-depth theory~28! is inadequate, as i
massively over-predicts the response. However, the shal
water approach outlined above, with seven modes retai
does a very good job of reproducing the observations.
only are the amplitudes well predicted, but the major bif
cation point„(D1v)/v;1.08… and both minor bifurcation
points (;0.97, 1.02! are captured by the theory. For rece
and much more detailed work on the transient respons
shallow basins, the reader is referred to Faltinsen.38

V. CONCLUDING REMARKS

The conclusions of the present study can be summar
as follows. First, steady-state analysis has, with some sl
differences, reproduced the theoretical amplitude respo
predictions of previous investigations. It was shown that
inclusion of viscosity is of minor consequence for large b
sins. In the inviscid limit, an extremely simple expression
the bifurcation frequency was found. The theory was fou
to compare reasonably well with existing experimental d
in both shallow and deep water.

Second, transient analysis, which has received only l
ited attention previously, has been pursued and has reve
several interesting results. First of all, as with the stea
state response, it was shown that weak damping plays
role in determining the maximum response. Next, a comp
son of the transient and steady-state amplitude resp
curves showed that the maximum response of a basin set
motion from rest can far exceed the steady-state respons
the basin. In the analysis of a reservoir or storage conta
during a shaking event of finite duration, this may be
significance in terms of overtopping potential or ceiling im
pact. Finally, the bifurcation point of the transient respon
was found to occur at a larger~by a factor of 21/3) value of
detuning than the steady-state response.

FIG. 11. A comparison between the general-depth and shallow-water
sient amplitude response diagrams.L5117.5 cm,D512 cm, h56 cm, b
53.9 mm, n59.431027 m2 s21. The data of Lepelletier and Raichle
~Ref. 22! are also shown.
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Third, the theory, as formulated in water of arbitra
depth, is invalid at the critical depth and is also invalid
very shallow water. By revisiting the analysis with th
shallow-water Boussinesq equations and retaining a s
cient number of modes, it was shown that good agreem
with experiments in shallow water could be obtained. In p
ticular, the additional bifurcation frequencies associated w
dispersion were shown to be captured by the shallow-w
theory.

In closing, the differences between the transient a
steady-state responses raise some interesting questions
could be answered by future experimentation. Of particu
interest is the hysteretic behavior that is observed in stea
state response diagrams when experiments are performe
scanning through forcing frequencies both forwards a
backwards. When scanning along the lower branch, there
jump to the upper branch in the vicinity of~26!. Scanning in
the opposite direction along the upper branch, however,
sults in a jump to the lower branch at a detuning value
greater magnitude. In light of the presence of an additio
bifurcation frequency~29! associated with transient motion
and the lack, to the author’s knowledge, of any publish
experiments on the matter, it would be interesting to inv
tigate the experimental location of this second jump. Also
interest is the question of whether steady-state respo
curves obtained in a continuous experiment, where the
quency is incrementally adjusted, are identical to those
tained in a series of experiments at different frequenc
each beginning from rest.
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