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Weakly nonlinear cubic interactions between surface waves and interfacial
waves: An analytic solution
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A set of third-order equations describing the interactions between surface waves and interfacial
waves is presented. The specific interaction studied is that of exact subharmonic resonance of two
interfacial waves by a single surface wave. The coupled amplitude evolution equations are solved
analytically in terms of Jacobian elliptic functions. Upon specification of the initial conditions, the
minimum and maximum amplitudes attained by the surface and interfacial waves, along with the
nonlinear interaction period, are obtained. The results from the third-order theory are contrasted
with those from second-order theory and highlight the importance of the cubic interactions.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1645277#
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Nonlinear interactions between surface and interfa
waves were first studied by Ball.1 In contrast to the work of
Phillips2 on deep-water surface waves, where a quarte
waves was required for resonance, the multiple branche
the dispersion relationship for a two-layer system w
shown by Ball1 to require only a triad of waves for reso
nance. The specific triad studied consisted of two surf
waves and a single interfacial wave. Experimental investi
tions of this triad were conducted by Lewiset al.3 and
Joyce.4

A triad consisting of a single surface wave and two o
lique subharmonic interfacial waves was more recently st
ied theoretically and experimentally by Hill and Foda5 and
Jamali.6 Theoretically, these studies were limited to t
second-order determination of the initial exponential grow
rates of the interfacial waves. During this initial stage, t
surface wave amplitude is assumed to be much larger
the interfacial wave amplitudes and, therefore, constant. T
triad is fundamentally different from that studied by Ball1 in
that the interfacial waves now have frequencies that, w
still less than, are now comparable to the frequency of
surface wave. Given the typically weak stratification enco
tered in most field situations, these frequencies correspon
quite short wavelengths.

The problem is therefore of interest because it sugg
that large-amplitude, short-wavelength interfacial waves
be generated and maintained by a monochromatic sur
wave field. Depending upon the parameters of the probl
such as surface wave amplitude, density ratio, etc., this
teraction may be of sufficient strength to bring the interfac
waves to the point of breaking. If so, this could contribute
vertical mixing in stratified water bodies and to the transp
of ‘‘fluid mud’’ in estuarine environments. Such breaking a
mixing was observed in the experiments of Jamali,6 which
utilized a layer of fresh water over a layer of salt water.
the experiments of Hill and Foda,5 which utilized a layer of

a!Telephone: 814.863.7305; electronic mail: dfhill@engr.psu.edu
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light mineral oil over a layer of fresh water, breaking in th
classic sense7 was not observed, but significant mixing, a
evidenced by droplets of water in the oil layer and vice ver
was observed.

The present Brief Communication extends the theor
cal analysis of this triad by considering the later stages
development of the interfacial waves. As they grow, qu
dratic and cubic interactions begin to modify the surfa
wave field. Multiple-scales and perturbation analyses
used to obtain a coupled set of third-order amplitude evo
tion equations. In the limit of no damping, these equatio
can be solved exactly in terms of Jacobian elliptic functio
The benefit of this is that the maximum amplitudes attain
by the interfacial waves and the nonlinear ‘‘beating’’ perio
of the interaction are explicitly determined.

Begin by assuming that a fluid layer of densityr and
depthH overlies a layer of densityr8 and great depth. Both
layers are assumed to be inviscid. A Cartesian coordin
system is fixed at the interface with they coordinate pointing
upwards and thex andz coordinates defining the horizonta

A surface wave of complex amplitudea2 , wavenumber
k, and frequencyv is present and is propagating in the po
tive x direction. The interfacial wave field is made up of tw
waves that propagate at equal and opposite angles to
surface wave. In order to satisfy the conditions of exact s
harmonic resonance, thex components of the wavenumbe
vectors of the two interfacial waves are bothk/2 and the
frequencies of both interfacial waves arev/2. The ampli-
tudes of the interfacial waves are botha1 . Thez components
of the wavenumber vectors of the interfacial waves are6 l
and the magnitudes of the interfacial wavenumber vec
are both thereforel5( l 21k2/4)1/2.

Next, while it is possible to solve the interaction proble
for arbitrary layer depths, the results quickly become al
braically tedious. Thus, in addition to the lower layer bei
deep with respect to all three waves, the upper layer is ta
to be deep with respect to the interfacial waves. Also,
© 2004 American Institute of Physics
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perturbation framework of this analysis makes the impl
assumption that the nonlinearity is weak.

At the leading order, the displacements of the free s
face and the interface, respectively, are given by

h5 ~a2/2! ei ~kx2vt !1c.c.,

j5 ~a1/2! ei ~kx/21 lz2v/2!1 ~a1/2! ei ~kx/22 lz2v/2!1c.c.,

where c.c. denotes the complex conjugate. The linear
monics are well-known and the limiting forms consiste
with the above depth restrictions are easily derived fr
Lamb,8 Art. 231. The dispersion relationship for the surfa
wave isv25gk, whereg is gravity, and, combining this with
the dispersion relationship for the interfacial wave, it can
shown that

l/k 5 ~11g!/@4~12g!# ,

whereg5r/r8 is the density ratio.
At the second and third orders, quadratic and cubic

teractions in the boundary conditions yield terms that are
phase with the fundamental harmonics. In order to rem
these secular terms, the wave amplitudes must be allowe
vary slowly with time. For any given harmonic, the standa
technique9 of applying Green’s theorem to the homogeneo
and inhomogeneous solutions will then lead to the evolut
equation for the amplitude of that harmonic. For the pres
problem, the evolution equations for the amplitudes of
interfacial and surface wave fields are found to be

ȧ15 ia1a1* a21 ib11a1ua1u21 ib12a1ua2u2, ~1!

ȧ25 ia2a1
21 ib21a2ua1u21 ib22a2ua2u2, ~2!

where the dot notation indicates derivatives with respec
time and thea andb terms are given by

a152
v3~3g222g13!e2kH

8g~11g!2 ,

b1152
vk2~616g2213g!

32~12g!2 ,

b1252 13
32 vk2e22kH,

a25
vk~3g325g215g23!

4~11g!2@2g sinh~kH!1e2kH#
,

b2152
vk2~25g2246g125!

32~12g!~ge2kH112g!
,

b2252
vk2~e23kH~12g!1gekH!

2@2g sinh~kH!1e2kH#
.

To facilitate solution of these equations, the comp
amplitudes are represented as
Downloaded 29 Apr 2004 to 130.203.207.181. Redistribution subject to AI
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a15A1eiu1, a25A2eiu2,

where theA andu terms are now real quantities. Upon th
substitution, and the definitionQ52u12u2 , the evolution
equations are recast as

Ȧ15a1A1A2 sinQ, ~3!

Ȧ252a2A1
2 sinQ, ~4!

Q̇5@2a1A22a2 ~A1
2/A2!#cosQ1~2b112b21!A1

2

1~2b122b22!A2
2. ~5!

While it is straightforward to numerically integrate the
equations, it is also possible to solve them exactly.10–12With
the following definitions and scalings

w52
A1

2

2a1
2

A2
2

2a2
, u5

A1

A22a1w
,

v5
A2

A22a2w
, t52a1A22a2wt,

the evolution equations are recast as

u̇52uv sinQ, ~6!

v̇5u2 sinQ, ~7!

Q5 ln~u2v !

•

cotQ1pu21qv2, ~8!

where the dot notation now indicates derivatives with resp
to the slow time scalet andp andq are constants given by

p5~2b112b21!A2 ~2w/a2!,

q5~2b122b22!A2 ~2a2w/a1
2!.

In addition to the well-known Manley–Rowe relation,u2

1v251, it is possible to derive an additional constant of t
motion

u2v cosQ2 ~p/4! u41 ~q/4! v45G. ~9!

Finally, these constants are incorporated into the evolu
equations to yield the single equation

~v2
•

!254H ~12v2!2v22FG1
p

4
~12v2!22

q

4
v4G2J

5 f ~v2!. ~10!

At this point a distinction between two possible cas
must be made. If the four roots off (v2)50 are real, denote
them asvd

2>vc
2>vb

2>va
2. The solution to~10! is then given

by

v25vd
22

~vd
22va

2!~vd
22vb

2!

vd
22vb

21~vb
22va

2!sn2@n~t1t0!,m#
, ~11!

wherem andn are given by

n25~vc
22va

2!~vd
22vb

2! @~p2q!2/16# ,
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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m25@~vd
22vc

2!~vb
22va

2!#/@~vd
22vb

2!~vc
22va

2!# ,

and t0 is determined from the initial condition onv. It is
clear, therefore, thatv2 oscillates betweenva

2 andvb
2 with a

period given by

T5 2K~m!/n , ~12!

where K is the complete elliptic integral of the first kind
Upon conversion back to dimensional values, the maxim
and minimum amplitudes of the surface and interfac
waves, along with the beat period of the nonlinear interact
are obtained.

The other case corresponds to two real roots and a c
plex conjugate pair. In this case, denote the two real root
vb

2>va
2 and represent the complex conjugate pair asa6bi.

Following Weiland and Wilhelmsson,11 introduce

G15A~vb
2!222avb

21a21b2,

G25A~va
2!222ava

21a21b2.

In this case, the solution is given by

v25

2~vb
22va

2!G1G2

~G12G2!2

2G2

G12G2
112cn@n~t1t0!,m#

1
va

2G12vb
2G2

G12G2
,

~13!

FIG. 1. Transient evolution of~a! v and ~b! u for the conditionsv i50.9,
Q i50.0, and various values of the nonlinearity parametersp andq.
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where the parametersn andm are now defined by

n25G1G2 @~p2q!2/16# ,

m25
1

2 H 12
1

G1G2
@va

2vb
22a~va

21vb
2!1a21b2#J .

Again, v2 oscillates betweenva
2 andvb

2 with a period given
by ~12!.

Figure 1 illustrates the temporal evolution ofv andu for
several values of the nonlinearity parametersp andq and for
the initial conditionsQ i50, v i50.9. Noting thatp5q50
corresponds to the second-order theory, it is evident that
creasing third-order nonlinearity serves to restrict the grow
of the interfacial waves. Also, the interaction period fir
lengthens, and then decreases with increasing nonlinea
These trends are more fully illustrated in~p,q! parameter
space in Fig. 2. Contours of the nonlinear interaction per
are given in Fig. 2~a! and contours of the maximum valu
attained by the interfacial mode~i.e., umax) are given in Fig.
2~b!.

The obvious line in Fig. 2~a! where the interaction pe
riod tends to infinity is a special case where all of the ene
is asymptotically transferred from the fundamental harmo
~interfacial wave! to the second harmonic~surface wave!. In
this case,m→1, and the elliptic functions sn and cn a

FIG. 2. Contours of~a! interaction periodT and~b! umax in ~p,q! parameter
space for the conditionsv i50.9 andQ i50.0.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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replaced by the hyperbolic tangent and secant functions
spectively. It is readily shown that this occurs along the l
in ~p,q! space defined by

q5 @~4v i cosQ i !/~911v i
2!#2 @~12v i

2!/~11v i
2!# p.

The net effect of selecting other values for the initial con
tionsv i andQ i will be to alter the slope and intercept of th
line.

From a practical point of view, a major question of i
terest is whether or not this resonance mechanism is st
enough to break interfacial waves at typical field scales
should be stressed that the weakly nonlinear methodolog
the present analysis cannot, by itself, describe wave br
ing. Indeed, the only question that can answered her
whether or not an interfacial wave field can be forced to
steepness where breaking is expected to occur. For guid
in setting a threshold steepness, recall that Thorpe,7 in his
studies of standing interfacial waves, found that breaking
the nodes was first observed at a steepness of around 0.
was clearly obvious at a steepness of 0.4. While it is
immediately obvious that this result applies to the pres
interfacial wave field, which is standing in one direction a
progressive in another, a representative critical steepnes
0.3 will nevertheless be adopted. Moreover, since the lat

FIG. 3. Contours of~a! maximum amplitude 2A1max
and ~b! maximum

steepness 2lA1max
of resonated interfacial wave field as functions of dens

ratio g and initial surface wave amplitudeA2i
. H520 m, T512 s, A1i

50.01 m.
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component of the interfacial wavenumber vector is, giv
moderate to weak stratification, much greater than
streamwise component~i.e., l @k/2), a breaking criterion of
2lA1max

.0.3 will be used. The factor of two takes into a
count the fact that the interfacial wave field is made up t
interfacial wave trains, each having amplitudeA1 .

Consider surface swell with a period of 12 s propagat
on an upper layer that is 20 m deep. Figure 3 shows, a
function of the layer density ratiog and initial surface wave
amplitudeA2i

, the third-order predictions for the maximum
amplitude of the interfacial wave field (2A1max

) and the cor-
responding maximum steepness (2lA1max

). The maximum
interfacial amplitude is observed to be a strongly decreas
function of the density ratio, but the dependence of the w
steepness on the density ratio is observed to be fairly we
In order to exceed the critical steepness of 0.3, a surf
wave amplitude of approximately 80 cm is required.

In stark contrast to these results, calculations based o
upon quadratic interactions show the interfacial amplitude
be a strongly increasing function of density ratio. Moreov
the second-order calculations significantly over-predict
interfacial wave amplitude; in the same (g,A2i

) parameter
space as shown in Fig. 3, the second-order theory pred
maximum amplitudes of up to 15 m, whereas the third-or
theory predicted maximum amplitudes only up to 3 m.

In conclusion, this analysis has shown that surfa
waves have the ability, through a subharmonic resona
mechanism, to generate large-amplitude interfacial wav
The analytic solution of the evolution equations fully dete
mines the maximum and minimum values of the waves a
the nonlinear interaction period. The results indicate that
algebraic temptation to truncate the analysis at the sec
order will significantly overestimate the maximum interfac
amplitude.
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