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Weakly nonlinear cubic interactions between surface waves and interfacial
waves: An analytic solution
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A set of third-order equations describing the interactions between surface waves and interfacial
waves is presented. The specific interaction studied is that of exact subharmonic resonance of two
interfacial waves by a single surface wave. The coupled amplitude evolution equations are solved
analytically in terms of Jacobian elliptic functions. Upon specification of the initial conditions, the
minimum and maximum amplitudes attained by the surface and interfacial waves, along with the
nonlinear interaction period, are obtained. The results from the third-order theory are contrasted
with those from second-order theory and highlight the importance of the cubic interactions.
© 2004 American Institute of Physic§DOI: 10.1063/1.1645277

Nonlinear interactions between surface and interfacialight mineral oil over a layer of fresh water, breaking in the
waves were first studied by Bdllin contrast to the work of classic sensewas not observed, but significant mixing, as
Phillips” on deep-water surface waves, where a quartet ogvidenced by droplets of water in the oil layer and vice versa,
waves was required for resonance, the multiple branches fas observed.
the dispersion relationship for a two-layer system were  The present Brief Communication extends the theoreti-
shown by Balt to require only a triad of waves for reso- cal analysis of this triad by considering the later stages of
nance. The specific triad studied consisted of two Surfacﬁevelopment of the interfacial waves. As they grow, qua-
waves and a single interfacial wave. Experimgntal;nvestigadratic and cubic interactions begin to modify the surface
tions ff this triad were conducted by Lewstal® and \\ave field. Multiple-scales and perturbation analyses are
Joyce: used to obtain a coupled set of third-order amplitude evolu-

. A triad CO”S'?t”.‘g of a _smgle surface wave and two Ob'tion equations. In the limit of no damping, these equations
lique subharmonic interfacial waves was more recently stud-

ied theoretically and experimentally by Hill and F3dand can be solyed ex.ac.tly In terms of Qacobian eII.iptic functigns.
A . . . The benefit of this is that the maximum amplitudes attained
Jamali’ Theoretically, these studies were limited to theb the interfacial d th i “beating” period
second-order determination of the initial exponential growth y Ihe Intertacialwaves and the nontinear “beating perio
rates of the interfacial waves. During this initial stage, theOf the lqteractlon are explicitly det.ermlned. )
surface wave amplitude is assumed to be much larger than Begin by_ assuming that a ﬂu',d layer of densjtyand
the interfacial wave amplitudes and, therefore, constant. ThidePthH overlies a layer of density” and great depth. Both
triad is fundamentally different from that studied by Baii ~ ayers are assumed to be inviscid. A Cartesian coordinate
that the interfacial waves now have frequencies that, whilyStem is fixed at the interface with teoordinate pointing
still less than, are now comparable to the frequency of tha/pwards and the andz coordinates defining the horizontal.
surface wave. Given the typically weak stratification encoun- A surface wave of complex amplitudgy, wavenumber
tered in most field situations, these frequencies correspond t6 and frequency» is present and is propagating in the posi-
quite short wavelengths. tive x direction. The interfacial wave field is made up of two
The problem is therefore of interest because it suggestwaves that propagate at equal and opposite angles to the
that large-amplitude, short-wavelength interfacial waves casurface wave. In order to satisfy the conditions of exact sub-
be generated and maintained by a monochromatic surfadearmonic resonance, thecomponents of the wavenumber
wave field. Depending upon the parameters of the problemyectors of the two interfacial waves are bdtf2 and the
such as surface wave amplitude, density ratio, etc., this infrequencies of both interfacial waves ai#¢2. The ampli-
teraction may be of sufficient strength to bring the interfacialtudes of the interfacial waves are bath. Thez components
waves to the point of breaking. If so, this could contribute toof the wavenumber vectors of the interfacial waves aie
vertical mixing in stratified water bodies and to the transportand the magnitudes of the interfacial wavenumber vectors
of “fluid mud” in estuarine environments. Such breaking and are both therefora = (12+ k?/4)2.
mixing was observed in the experiments of Jarhalihich Next, while it is possible to solve the interaction problem
utilized a layer of fresh water over a layer of salt water. Infor arbitrary layer depths, the results quickly become alge-
the experiments of Hill and Fodawhich utilized a layer of  prajcally tedious. Thus, in addition to the lower layer being
deep with respect to all three waves, the upper layer is taken
dTelephone: 814.863.7305; electronic mail: dfhill@engr.psu.edu to be deep with respect to the interfacial waves. Also, the
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perturbation framework of this analysis makes the implicit g, =A%, a,=A,e'%,

assumption that the nonlinearity is weak. . :
At the leading order, the displacements of the free surWhere theA and 6 terms are now real quantities. Upon this

face and the interface, respectively, are given by substi.tution, and the definitio® =26, — 6,, the evolution
equations are recast as

_ i(kx— ot) - .
n=(ay/2) € +cc, A;=a;AA,sin0, €

£= (ay/2) (¥2H1z=0l2) 4 (g ) gi(kX2-12=0/2 4 ¢ ¢ A2= _ azAi sin®, @)

where c.c. denotes the complex conjugate. The linear har- ®=[2a1A2—a2(A§/A2)]COS+(2,811— le)Af

monics are well-known and the limiting forms consistent )

with the above depth restrictions are easily derived from +(2B12— B2 A3 5)
Lamb,” Art. 231. The dispersion relationship for the surface While it is straightforward to numerically integrate these

wave iso”=gk, wheregis gravity, and, combining this with equations, it is also possible to solve them exady? With
the dispersion relationship for the interfacial wave, it can bethe following definitions and scalings

shown that

A A A
wherey=p/p’ is the density ratio. A
At the second and third orders, quadratic and cubic in- = 2 T=—a;\— 2a,Wt,

teractions in the boundary conditions yield terms that are in v 2a2W'
phase with the fundamental harmonics. In order to remove,
these secular terms, the wave amplitudes must be allowed to
vary slowly with time. For any given harmonic, the standard U= —uv sin®, (6)
techniqué of applying Green’s theorem to the homogeneous
and inhomogeneous solutions will then lead to the evolution
equation for the amplitude of that harmonic. For the present :
problem, the evolution equations for the amplitudes of the ~ ®=In(u?v) cot® + pu?+qu?, (8)
interfacial and surface wave fields are found to be

e evolution equations are recast as

b=u?sin®, (7)

where the dot notation now indicates derivatives with respect

L . . to the slow time scale andp andq are constants given b
a;=iajala,+ipaila|?+iBai)asl?, 1 P 4 g y

@) P=(2B11— B V— (2wW/ ap),
q=(2B12— Ba)\ — (2awla3).

32= | aza%"f‘ | B21a2|a1|2+ I 1822a2|a2|2'

where the dot notation indicates derivatives with respect to

time and thex and 8 terms are given by In addition to the well-known Manley—Rowe relation?
+v2=1, itis possible to derive an additional constant of the
w3(3y?—2y+3)e kM motion
AT T eyl y)? 2 4 4
gliry u?v cos® — (p/4) u*+ (q/4) v*=T. (9)
o wk?(6+ 62— 13y) Finally, these p(l)gs:]ants arle incorporated into the evolution
B11= 3A1—7)? , equations to yield the single equation
— P q
B1o= — 5 wk?e  2KM, (02)2=4((1—v2)2 2= T+ 7(1-v%)?- Zu“} ]
wk(3y3—5y?+5y—23) =f(v?). (10
a2_4(1+ y)?[2ysinhkH)+e kH]’ At this point a distinction between two possible cases
must be made. If the four roots 6fv?)=0 are real, denote
wk?(25y%— 46y+ 25) them asv3=v2=v2=v2. The solution ta(10) is then given
P = (e 1)’ it
. (vi—v3)(vi—vp)
wk?(e 3KH(1—y)+ yekh) vi=vg— 11

vi—vi+(wi—vdstn(r+ p),m]’

B2o=— - —k
2[2 kH)+ekH
[2ysinh(kH)+e™*"] wherem andn are given by

To facilitate solution of these equations, the complex ) s o o )
amplitudes are represented as n“=(vg—va)(vg—vp) [(P—q)/16],
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FIG. 1. Transient evolution ofa) v and (b) u for the conditionsy;=0.9,

,=0.0, and various values of the nonlinearity param da. FIG. 2. Contours ofa) interaction periodl and(b) U, in (p,g parameter

space for the conditions;=0.9 and®;=0.0.

m*=[(v§—vd)(vp—v) W[ (vi—vp) (vi—v2],

and 7, is determined from the initial condition on. It is
clear, therefore, thai? oscillates between?2 andv? with a
period given by

T=2K(m)/n, (12) 1

m?=={1— [vivi-a(v+vd)+a?+b?]
where K is the complete elliptic integral of the first kind. 2 GG, 2P a'"b :
Upon conversion back to dimensional values, the maximum 5 _ ) - ) _
and minimum amplitudes of the surface and interfaciat?9@in, v= oscillates between; andv;, with a period given

waves, along with the beat period of the nonlinear interactior?Y (1?)- ) ]
are obtained. Figure 1 illustrates the temporal evolutionw&ndu for

The other case corresponds to two real roots and a conf€veral values of the nonlinearity parameeendq and for
plex conjugate pair. In this case, denote the two real roots d§€ initial conditions®;=0, v;=0.9. Noting thatp=q=0

where the parametersandm are now defined by

n*=G,G,[(p—q)?/16],

05202 and represent the complex conjugate paigashi. corresponds to the second-order theory, it is evident that in-
FollovSing Weiland and WilhelmssoH introduce creasing third-order nonlinearity serves to restrict the growth
of the interfacial waves. Also, the interaction period first
G, = \/(v§)2—2av§+ a’+b?, lengthens, and then decreases with increasing nonlinearity.
These trends are more fully illustrated {p,q parameter
G.= 2)2_ 92,24 224 2, space in F_|g. 2 Contours of the nonlinear |nteract|on period
.2 \/(Ua) ve_‘ o are given in Fig. 2a) and contours of the maximum value
In this case, the solution is given by attained by the interfacial modee., Uy, are given in Fig.
2(02-12)G,G 2(b). o . .
(vbv—a)lzz 2G. —u2G The obvious line in Fig. @) where the interaction pe-
2= (G1—Gy) + Va1~ Upo2 riod tends to infinity is a special case where all of the energy

2G, G1—G; is asymptotically transferred from the fundamental harmonic
———+1—crn(7+7),m] : . .
G,—G, (interfacial wavé to the second harmonisurface wavg In
(13 this case,m—1, and the elliptic functions sn and cn are
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) component of the interfacial wavenumber vector is, given
! 3 moderate to weak stratification, much greater than the
- / / / / streamwise componeifite., |>k/2), a breaking criterion of
/ 5 / 2IA;__>0.3 will be used. The factor of two takes into ac-
1+ /// / & / 3 / count the fact that the interfacial wave field is made up two
B S/ / 5 interfacial wave trains, each having amplitutig.
::, // /// / / / 7 Consider surface swell with a period of 12 s propagating
- @/ p / on an upper layer that is 20 m deep. Figure 3 shows, as a
05 -//// //\ // function of the layer density ratigr and initial surface wave
~/1’00// // /050 ampl!tudeAzi, the_ thwd-o_rder pred_lctlons for the maximum
— | amplltud.e of thellnterfamal wave field e%'ma) and th(? cor-
0.9 0.92 0.94 0.96 0.98 responding maximum steepnessl/(@ma). The maximum
! interfacial amplitude is observed to be a strongly decreasing
(b) function of the density ratio, but the dependence of the wave
T E— steepness on the density ratio is observed to be fairly weak.
I I — In order to exceed the critical steepness of 0.3, a surface
— wave amplitude of approximately 80 cm is required.
I T ] In stark contrast to these results, calculations based only
2 ! '\03 upon quadratic interactions show the interfacial amplitude to
= OKMO‘ ] be a strongly increasing function of density ratio. Moreover,
< \ the second-order calculations significantly over-predict the
0_5;\ — ] interfacial wave amplitude; in the same/,(b\zi) parameter
i 0‘20\020_ space as shown in Fig. 3, the second-order theory predicts
T T maximum amplitudes of up to 15 m, whereas the third-order
o0~ ] theory predicted maximum amplitudes only up to 3 m.
09 092 00t 0.96 098 In conclusion, this analysis has shown that surface
Y ’

waves have the ability, through a subharmonic resonance
_ _ : _ ~mechanism, to generate large-amplitude interfacial waves.
steepnessl:@\lmax of resonated interfacial wave field as functions of density The analytic solution of the evolution equations fuIIy deter-
ratio y and initial surface wave amplitudd,. H=20m, T=12s, A, . . .
—0.0Llm ! ' mines the maximum and minimum values of the waves and
R the nonlinear interaction period. The results indicate that the
algebraic temptation to truncate the analysis at the second

order will significantly overestimate the maximum interfacial
replaced by the hyperbolic tangent and secant functions, reqmplitude.

spectively. It is readily shown that this occurs along the line
in (p,0g) space defined by

FIG. 3. Contours of(a) maximum amplitude Almax and (b) maximum
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