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Experimental and theoretical investigations into the generation of internal gravity
waves by monochromatic progressive surface waves are presented. Using the method
of nonlinear resonant interactions, a triad consisting of a single surface wave and two
oblique internal waves in a two-layer model is considered. A multiple scales analysis
is adopted and the boundary value problem is expanded in a power series of the
surface-wave steepness. At the leading order, the linear harmonics are obtained and
the conditions for resonance are determined. A second-order analysis is then used to
derive temporal evolution equations for the internal-wave amplitudes. As a conse-
quence of having a single generating train of the surface waves, two oblique trains of
internal waves of much shorter wavelength are found to be resonated exponentially
in time. Both linear and nonlinear bounds on surface-wave frequency, density ratio
and interaction angle are found, demonstrating that the instability is highly narrow
banded. It is found that the internal waves grow most rapidly at the linear cut-off
values. Experimental evidence is presented and demonstrates good agreement with
the theoretical results. Discussion of an application of the theory to the nonlinear
energy transfer between very-low-frequency waves in the deep ocean is then provided.
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1. Introduction

The generation of internal waves in a stratified system is a problem of obvious prac-
tical interest and one which has received a great deal of attention. Of particular
interest among the numerous possible generating mechanisms is that of generation
by surface waves. Ting & Raichlen (1986) used a purely linear analysis to quantify
the linear resonance of internal waves inside a trench of finite width.

Ball (1964) used a second-order nonlinear resonance theory to demonstrate that
linear growth of an internal wave could result from the interactions between two
finite-amplitude surface waves. Similar studies were undertaken by Thorpe (1966),
Hasselmann (1966) and Brekhovskikh et al. (1972). Fundamental to all of these
analyses was that two surface waves were required to resonate a single internal wave.

Watson et al. (1976) extended this concept by considering how a spectrum of sur-
face waves could generate a corresponding spectrum of internal waves. Their work
considered specifically the limit in which the internal waves had much lower fre-
quencies and longer wavelengths than that of the surface waves. It was hypothesized
that energy could then be cascaded down to shorter internal waves via interactions
between internal waves.
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Experimental studies of this triad were undertaken by Joyce (1974) and Lewis
et al. (1974). The former author specifically investigated a triad consisting of two
standing surface waves and a single standing internal wave. In this case, the interac-
tions between the two surface waves resonated the internal wave. The latter authors
considered instead the perturbation to a surface wave induced by the presence of
an internal wave. Thus, the interactions between the surface and internal waves res-
onated a second surface wave.

Common to all of these studies, both theoretical and experimental, is that the
wave triad consisted of two surface waves and a single internal wave. Motivated by
the desire to instead describe internal-wave evolution by a single surface wave, Hill
& Foda (1996) considered, for the first time, a triad consisting of two perturbation
internal waves and a single finite-amplitude surface wave. The implications of this
are considerable for two reasons. First, natural sea states are commonly described by
narrow-banded spectra (see, for example, Pierson & Moskowitz 1964) where energy
is clustered around a mean frequency and direction. Therefore, the adoption of a
monochromatic surface-wave field may be viewed as a realistic representation of such
narrow-banded sea states. Second, a single wave is now the primary carrier of energy,
and resonates the other two waves via exponential, rather than linear, growth. This
is clearly a much stronger interaction and assures that, no matter how small the
initial disturbances, the internal waves will grow to finite amplitudes. Instead of two
pre-existing surface waves of finite amplitude and specific orientation resonating a
single internal wave linearly in time, a single train of surface waves is now all that
is required to resonate two internal-wave trains exponentially in time. Furthermore,
unlike earlier studies, the proposed mechanism provides for a direct energy transfer
into the short range of internal-wave wavelengths.

The authors considered the limit in which all three waves were plane and parallel,
with the internal waves travelling in opposite directions. Furthermore, as motivated
by laboratory observations, the surface wave was assumed to be much longer than
the internal waves. In the limit of two inviscid layers, no growth was found. Weak
viscosity was then introduced into the lower layer and, through use of a boundary
layer approximation, it was shown that the internal waves did grow exponentially in
time.

The current paper extends the previous work by relaxing the restriction that the
three waves be plane and parallel. Additionally, no approximations are made based
on the relative magnitudes of the wavenumber vectors. Linear analysis and the impo-
sition of appropriate resonance conditions yield the internal-wave parameters as func-
tions of the physical properties of the system and the surface-wave frequency. It is
found that there is a surface-wave cut-off frequency below which a resonant triad
cannot exist. This is seen to correspond to the case of exact subharmonic parametric
instability, where the internal waves propagate at equal and opposite angles to the
surface wave.

Utilizing a perturbation expansion of the velocity potential in surface-wave steep-
ness and carrying the analysis to the second order, it is found that substantial growth
exists in the inviscid limit. This, contrasted with the previous results of Hill & Foda
(1996), highlights the significance of the internal waves being allowed to be oblique
to the generating surface wave. It is found that the most unstable internal wave
modes occur at the surface-wave cut-off frequency. Furthermore, the nonlinear anal-
ysis reveals that there is an upper bound on surface-wave frequency, beyond which,
even though a resonant triad exists, no growth is found.
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Figure 1. Experimental set-up.

Measurements of internal-wave growth in a small flume are presented and com-
pared with the theoretical results. The measured internal wave frequencies are in
excellent agreement with those predicted by the linear analysis. Furthemore, the
measured band of frequency within which growth occurs agrees very well with the
theory. The experimentally determined internal-wave growth rates are found to be
of the same order as the theoretical predictions.

Applications of the theory to estuarine and open-ocean scales are then considered.
In particular, the nonlinear energy transfer from barotropic tides to near-inertial
baroclinic modes is suggested as a possible manifestation of this mechanism.

2. Experimental investigation

(a ) Set-up
The earlier experiments reported by Hill & Foda (1996) involved a two-layer sys-

tem of water over fluidized sediment. The practical difficulties of obtaining detailed
quantitative data with this set-up led the authors to construct a new experimen-
tal apparatus. The goal was to study the dynamics of the interface between two
immiscible fluids on a small scale. A flume was constructed of 95 mm thick Plexiglas,
having a length L = 4.88 m, a depth D = 30 cm, and a width W = 15 cm. A hinged
wavemaker, driven by a rotary motor, was placed at one end of the tank. Note that
the paddle of the wavemaker extended to the bottom of the flume, and that only
the barotropic mode was generated by its motion. The waves were absorbed at the
other end of the tank by a 1 : 4 sloping beach constructed of a fibrous horsehair type
material. The details of the experimental set-up are shown in figure 1.

Originally, it was desired to have water as the upper fluid and a non-conducting
fluid as the lower. In this manner, resistance wave gauges could be used to make
simultaneous measurements of the free surface and the interface (see Lewis et al.
1974). However, this configuration was decided against, due to the safety and envi-
ronmental concerns associated with handling fluids such as carbon tetrachloride or
freon. As a result, light mineral oil was used for the upper layer and fresh water for
the lower, yielding a density ratio of γ ≡ (ρ/ρ′) = 0.85, where ρ is the density of the
mineral oil and ρ′ is the density of the water. A consequence of this, of course, was
that data via resistance wave gauges could be obtained at the interface only.

To address the significance of both free surface and interfacial tension in the labora-
tory experiments, note that a typical value of surface tension for water is 0.07 N m−1.
Consequently (see Lamb 1932, art. 267), the capillary length scale is approximately
1.7 cm. This is fully two orders of magnitude shorter than the wavelengths of the free
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surface waves mechanically generated in the laboratory experiments. At the inter-
face, note that a typical value of interfacial tension between mineral oil and water
is 0.05 N m−1. This value, combined with the known density ratio of 0.85, leads to
an interfacial capillary length scale of approximately 3.7 cm. The internal waves res-
onated in the experiments had wavelengths one order of magnitude greater than this.
Given that both the free surface and internal wavelengths are much greater than the
free surface and interfacial capillary wavelengths, omission of surface and interfacial
tension in the subsequent theoretical analysis is justified.

The data acquisition system consisted of two gauges located at 1 m and 3.2 m
downstream of the wavemaker. Both were postitioned at a distance of 2.5 cm from
the side wall of the tank. The gauges penetrated both fluid layers so as to provide
accurate measurement of the interfacial displacement. A multi-probe isolator and
amplifier (Daytronic Model 9005) connected the gauges to a PC equipped with a
UPC card.

(b ) Procedure and analysis
The gauges were calibrated in 5 mm increments at the beginning of each set of

experimental runs, with the data being fitted to a linear curve. While remarkably con-
sistent, the gauges were nonetheless recalibrated frequently to account for changes in
ambient temperature. Four parameters could be varied with the set-up as described:
the two fluid layer depths, surface-wave frequency and surface-wave amplitude. Runs
were conducted for three different combinations of layer depths: H = 10.5 cm and
h = 10.5 cm; H = 12.5 cm and h = 7.9 cm; and H = 13.6 cm and h = 5.5 cm, where
H is the upper layer depth and h the lower layer depth. In turn, for each depth
configuration, numerous runs were conducted at various frequencies and amplitudes.

Before beginning detailed experimental runs, it was desirable to determine the
effectiveness of the beach at absorbing the waves generated by the wavemaker. This
would allow for an estimate of what percentage of the incident wave field was being
reflected back into the tank. To facilitate this, a single pulse of the wavemaker was
generated, sending a packet of waves down the tank. As this packet impinged upon
the beach, a certain portion of the wave energy was dissipated and the rest was
reflected back into the tank as a packet with severely reduced amplitude. As a crude
measure of the reflectivity of the beach, the maximum amplitude of the reflected
packet was compared to the maximum amplitude of the incident packet. It was
found that the ratio of these amplitudes was of the order of 5%.

In each experimental run, data were collected at 50 Hz for a period of 300 s.
Depending upon the frequency and amplitude of the surface wave, significant sub-
harmonic motion at the interface would or would not be visually detected. Figure 2
shows a series of three photographs during a typical experimental run where sub-
harmonic internal waves were detected. Note that the lower fluid has been dyed to
make the interface more visible. The total fluid depth is 21 cm and the waves are
propagating from right to left.

In the first photograph, a large amplitude internal wave is seen. Note that the
interface is tilted towards the camera, so that the crest of the internal wave is on the
back wall of the flume and the trough of the internal wave is on the front wall. It
is clear that, in the cross-tank direction, the lowest mode has been excited. Further-
more, it is clear from this image that the internal-wave vectors are highly oblique to
the surface-wave vector, which points down the tank. In the second image, which is
at one surface-wave period later in time, the interface is 180◦ out of phase so that
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Figure 2. Photographs of typical experimental run. The images are spaced at intervals of one
surface-wave period and demonstrate that the internal waves are subharmonic and highly oblique
to the surface wave. Note that the total fluid depth is 21 cm and that the direction of wave
propagation is from right to left.
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Figure 3. (a) Sample interfacial time series demonstrating development of subharmonic internal
waves. (b) Amplitude spectrum indicating the three peaks associated with the three waves of
the resonant triad. Note that the sum of the two low-frequency internal waves is equal to the
frequency of the surface wave. (c) Harmonic analysis of time series showing the evolution of the
internal-wave amplitudes. H = 12.5 cm, h = 7.9 cm, λz = 20.6 m−1, γ = 0.85.

the crest of the internal wave is now on the front wall of the tank. In the final image,
which was taken at two suface wave periods after the first image, the interface looks
largely as it did in the first image. Therefore, it is clear that the interfacial waves
are subharmonic to the surface wave. It was visually observed that the internal-wave
pattern slowly propagated down the flume, indicating that the internal-wave vectors
were not exactly normal to the surface-wave vector.

A segment of a sample internal-wave time series is show in the first portion of
figure 3. The segment shown is roughly the third minute of the experimental run
and demonstrates the first indication of subharmonic wave generation. At the start
of the time series, the interface is oscillating in phase with the surface wave, but as
time progresses, a clear period doubling is apparent. This indicates the presence of
subharmonic internal waves. The beating seen is due to the fact that the frequencies
of the resonated internal waves are not exactly equal. By taking the Fourier transform
of the wave record, the three frequencies, one due to the surface wave and two due
to the internal waves, could be ascertained. The second portion of figure 3 illustrates
this. The peak with the highest frequency is that of the surface wave. The two peaks
which are close together and at lower frequency are those of the internal waves.
Note that the internal-wave frequencies are nearly equal and are subharmonic to the
surface wave. Finally, with the frequencies determined, a harmonic analysis could be
performed in order to determine the evolution of the internal-wave amplitudes. This
is shown in the last portion of figure 3. The internal-wave amplitudes clearly grow
with time. Note that the data here are plotted on a semilog axis, so that this final
plot, which can be fit to a straight line, represents exponential growth. With this for
motivation, attention is turned to the theoretical formulation of the problem and a
comparison of the theoretical and experimental results.
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3. Theoretical formulation

The origin of a three-dimensional Cartesian coordinate system is placed on the
undisturbed interface between an inviscid surface layer of depth H and density ρ,
and an inviscid lower layer of depth h, density ρ′. The y-coordinate is defined as
pointing vertically upward and the x- and z-coordinates define the horizontal. The
density ratio γ = (ρ/ρ′) is assumed to be less than unity. To the leading order, the
wave field is made up of a linear progressive surface wave of amplitude A, wave
vector k̄ and frequency ω. The vector, k̄, is aligned with the positive x-axis. The
displacement η of the free surface from its equilibrium value of y = H is therefore
given by

η = Aei(kx−ωt).
The interface will oscillate synchronously with η, with a reduced amplitude Ar in
response to the passage of the surface wave. In addition, perturbation internal waves
of amplitudes a1 and a2, wave vectors λ̄1 and λ̄2 and frequencies σ1 and σ2 are
introduced. Therefore, the displacement, ξ, of the interface from its equilibrium value
of y = 0 is given by

ξ = Arei(kx−ωt) + a1ei(λ1xx+λ1zz−σ1t) + a2ei(λ2xx+λ2zz−σ2t) + ξnl,

where ξnl refers to the bound nonlinear displacement due to interactions between
the three linear wave harmonics. The orientations of the wavenumber vectors are
detailed in figure 4. Note that a1, a2 and A are taken to be complex and σ1 and
σ2 are defined to be positive real values. Furthermore, a1 and a2 are taken to be
functions of a slow time scale, t1. In a similar manner, slow spatial variation of the
resonated internal waves may be included. This is omitted in the current analysis,
however, as the time scale of the interaction is of paramount interest. For second-
order interactions to occur, the phase functions of the two internal waves must sum
up to equal the phase function of the surface wave. This requires satisfaction of the
following conditions:

λ̄2 + λ̄1 = k̄, (3.1)
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σ1 + σ2 = ω. (3.2)

The first of these conditions merely dictates that the wave vectors of the three
waves form a triangle in the x–z plane. The second requires that the internal wave
frequencies sum up to equal the surface-wave frequency.

Turning to the governing equations and boundary conditions, the assumption of
potential flow and use of incompressible continuity reveal that the velocity potential
is governed by Laplace’s equation throughout the depth of the fluid:

∇2Φ = 0, −h 6 y 6 H + η. (3.3)

At the free surface, the usual dynamic and kinematic conditions are given by

Φt + gη + 1
2∇Φ · ∇Φ = 0, y = H + η, (3.4)

Dη/Dt = Φy, y = H + η. (3.5)
Note the absence of surface tension in (3.4), as was justified in the previous section.

At the interface, there are similar conditions of continuity of normal stress and
velocity.

ρ(Φt + gξ + 1
2∇Φ · ∇Φ)+ = ρ′(Φt + gξ + 1

2∇Φ · ∇Φ)−, y = ξ, (3.6)

Dξ/Dt = Φ+
y = Φ−y , y = ξ. (3.7)

Again, interfacial tension has been omitted due to the disparity between the wave-
lengths of the resonated internal waves and the characteristic length scale of inter-
facial capillary waves. Note that the + and − superscripts denote evaluation just
above and just below the interface, respectively. Finally, the no-flow bottom bound-
ary condition is simply

Φy = 0, y = −h. (3.8)

4. Solution

The velocity potential, Φ, is expanded in a power series of a small parameter ε:

Φ = εφei(kx−ωt) + ε2{ψei(λ1xx+λ1zz−σ1t) + χei(λ2xx+λ2zz−σ2t) + q(φ, φ)} (4.1)

+ε3{· · ·+ ψ′ei(λ1xx+λ1z−σ1t) + χ′ei(λ2xx+λ2zz−σ2t) + · · ·}+ c.c., (4.2)

where the expansion parameter is taken to be given by the steepness of the surface
wave:

ε = kA.

In the expansion for Φ, the first three terms are the linear harmonics describing
the interacting wave triad. The analysis is restricted to the case of small internal
waves only so the internal wave harmonics appear at O(ε2) and not at O(ε). Recall
that a1 and a2 are functions of the slow time scale, which, with the introduction of
the expansion parameter can be formalized as t1 = εt. The fourth term represents
the forced motion due to self interaction of the surface wave. Terms in the second
bracket are forced harmonics due to interactions between the surface wave and the
internal waves, and c.c. denotes the complex conjugate. To clarify what is meant
by a forced harmonic, note for example that the product of φ exp{i(kx − ωt)} and
ψ exp{i(λ1xx + λ1zz − σ1t)} yields, with the help of the resonance conditions (3.1),
(3.2), a term that is in phase with χ exp{i(λ2xx+ λ2zz− σ2t)}. Such terms will then
provide boundary forcing in the inhomogeneous boundary value problem for χ′.
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Figure 5. Internal wave frequencies and x-direction internal wave-vector components as
functions of ω. H = 10.5 cm, h = 10.5 cm, γ = 0.85, λz = 20.6 m−1.

(a ) Linear solutions
The linear harmonics all satisfy Laplace’s equation (3.3) and the linear versions of

the boundary conditions (3.4)–(3.8). Solution for the velocity potentials and disper-
sion relationships of the three harmonics is quite straightforward (see Lamb 1932,
art. 231) and is not presented here.

So if the fluid layer depths and densities are known and the surface-wave frequency
is specified, five equations exist for six unknowns. The equations are (3.1), (3.2) and
the two internal-wave dispersion relationships. The unknowns are σ1, σ2, λ1x, λ2x,
λ1z and λ2z. It is clear that by allowing for the internal waves to be oblique, two
new unknowns, but only one new equation have been introduced. Therefore, the
components of the internal-wave vectors in the z-direction, which must be equal and
opposite, are free parameters. Once a value is chosen for λz ≡ λ1z = −λ2z, the
remaining internal-wave parameters may be determined.

As an example, it was visually observed in the laboratory that the width of the
flume contained one half of an internal-wave wavelength. Thus, λz ≡ (π/W ). Figure 5
details the internal-wave parameters as functions of ω for the case where H = 10.5 cm
and h = 10.5 cm. Note that there is a surface-wave frequency, a cut-off frequency,
below which resonant triads do no exist. This cut-off frequency is a function of H,
h, γ and λz. Furthermore, the critical frequency corresponds to the case in which
the internal waves are exactly subharmonic to the surface wave, i.e. σ1 = σ2 = 1

2ω,
and are propagating at equal and opposite angles to the surface wave. Therefore, the
linear theory is able to identify the conditions under which resonant triads exist. As
will be shown subsequently, this existence of a triad is certainly necessary for the
resonance of internal waves, but is not sufficient.

(b ) Forced harmonics
With the linear harmonics determined, solution of the second-order inhomogeneous

boundary-value problem can be pursued. Note that at this order, boundary forcing
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arises from quadratic interactions between the linear harmonics. As a result of the
homogeneous, first order problem having a non-trivial solution, the inhomogeneous
second-order problem has a solution only if the forcing terms are orthogonal to
the homogeneous solution. This introduces a solvability condition, known as the
Fredholm alternative, which is obtained by applying Green’s theorem.

For example, to solve for χ′, which represents the forced second-order harmonic
in phase with χ, (4.2) is substituted into the governing equation and boundary
conditions. Then, terms proportional to ε3 and exp{i(λ2xx+λ2zz−σ2t)} are collected
to yield the inhomogeneous problem. Applying Green’s theorem to χ′ and χ across
the depths of both layers yields∫ H

0
(χχ′yy − χ′χyy) dy = [χχ′y − χ′χy]H0 ,∫ 0

−h
(χχ′yy − χ′χyy) dy = [χχ′y − χ′χy]0−h.

With manipulation, these equations lead to the following evolution equation:

da2

dt
= iα2a

∗
1A. (4.3)

The interaction coefficient α2 is a purely real coefficient whose length precludes its
display here.

Repeating this process for the other internal forced harmonic, ψ′, yields the second
evolution equation.

da1

dt
= iα1a

∗
2A. (4.4)

Presentation and discussion of the interaction coefficients is provided in the
Appendix. Cross differentiation of (4.3) and (4.4) reveals that the internal wave
amplitudes are governed by exponentials.

a1, a2 ∝ e±
√−α1α2At. (4.5)

Clearly, if the interaction coefficients are of the same sign, there is no growth and the
only result is a modulation of the frequencies of the internal waves. If the interaction
coefficients are of opposite signs however, the square root is a real value and the
amplitudes of the internal waves grow exponentially in time.

5. Theoretical results and comparison

To validate the theoretical formulation, comparisons between theory and experi-
ment were made for each of the three experimental depth configurations. Considering
first the linear theory, the internal-wave frequencies obtained from spectral analysis
were compared to the predicted values. This is detailed in figures 6a–c. The error bars
indicate the uncertainty in both the surface-wave frequency and the internal-wave
frequencies, due to the resolution of the FFT of the interfacial time series. Clearly,
there is excellent agreement, indicating that the triad postulated was indeed the one
observed in the laboratory. Of interest is that the differences observed between the-
ory and experiment are very systematic. This is most likely due to the influence of
viscosity, in the form of oscillatory boundary layers on the side walls and bottom of
the flume.
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Figure 6. Theoretical and experimental internal-wave frequencies as functions of ω. Error bars
indicate uncertainty in determining ω, σ1 and σ2: (a) H = 10.5 cm, h = 10.6 cm, γ = 0.85,
λz = 20.6 m−1; (b) H = 12.5 cm, h = 7.9 cm, γ = 0.85, λz = 20.6 m−1; (c) H = 13.6 cm,
h = 5.5 cm, γ = 0.85, λz = 20.6 m−1.

Moving on to the nonlinear results, it must be stressed that the initial goal of the
authors was to simply predict the frequency band within which growth would occur.
However, the success of the experiments in confirming the linear results strongly
motivated a comparision between the exponential growth rates predicted by the
theory and those that could be estimated from the experiments.

As was discussed in the section on experimental procedure, the use of mineral oil as
an upper layer precluded the use of resistance wave gauges to record the displacement
of the free surface and hence the surface-wave amplitude. Instead, the FFT of the
interfacial data and linear wave theory were used to calculate the amplitude of the
surface wave. At the beginning of each experimental run, before significant evolution
of the subharmonic internal waves, the interface would oscillate in phase with the
surface wave, with a reduced amplitude. By performing a Fourier transform on this
portion of the recorded data, an accurate measure of this reduced amplitude was
obtained. The amplitude of the wave at the free surface was then inferred from the
following equation from linear theory:

A =
Ar

cosh(kH)− (gk/ω2) sinh(kH)
.

It must be acknowleged that the use of linear theory in the case of finite-amplitude
waves is expected to introduce an error of the order of ε.

To obtain the experimental values of interfacial growth rate, the results from the
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Figure 7. Theoretical and experimental growth rates as functions of ω. Note that growth rates are
normalized with respect to surface-wave amplitude: (a) H = 10.5 cm, h = 10.5 cm, γ = 0.85,
λz = 20.6 m−1; (b) H = 12.5 cm, h = 7.9 cm, γ = 0.85, λz = 20.6 m−1; (c) H = 13.6 cm,
h = 5.5 cm, γ = 0.85, λz = 20.6 m−1.

harmonic analysis were plotted on a semilog axis and a linear regression was then
performed to find the best straight-line fit. In many of the experimental runs, the
internal-wave amplitudes were found to level off at steady-state values. As such, the
results of their hamonic analyses could be divided into two regions; one of initial
exponential growth, and one of equilibrium amplitude. The determination of the
dividing point between these two regions involved an amount of subjectivity.

The comparisons between theory and experiment for the three depth configura-
tions are detailed in figures 7a–c. The vertical axis is scaled as growth rate (gr)
divided by the amplitude of the surface wave, thereby normalizing the results with
respect to this parameter. Note that in each figure, there is a value of ω, the cut-
off surface-wave frequency, below which no triad, and therefore no growth exists. As
discussed, this is a consequence of the linear theory and is purely geometric. Further-
more, the maximum growth rate occurs right at this critical frequency. Additionally,
there is an upper bound on ω, beyond which no growth exists. This limit is a result
of the nonlinear analysis and corresponds to the threshold where the interaction
coefficients change from having the same sign to having different signs. The result
is that, with all other parameters fixed, instability occurs within only a very narrow
band of surface-wave frequency.

The agreement between the theory and experiment is clearly not as good as it was
for the linear theory. This is to be expected, in light of the issues mentioned above.
However, figures 7a, b in particular demonstrate the clear success of the theory in
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Figure 8. Variation of growth rate with fluid layer depth. The individual curves represent vari-
ation of one of the layer depths while the other is held fixed. γ = 0.99, ω = 0.6283 rad s−1,
λz = 2.0 m−1.
Figure 9. Variation of growth rate with angle of propagation relative to k̄. Dotted lines denote
angles of 1

2π and − 1
2−π. H = 5 m, h = 5 m, ω = 0.6283 rad s−1, γ = 0.99.

determining the band of surface-wave frequency within which instability occurs. The
additional result that measured growth rates are found to be within a factor of
two of those predicted by the theory is encouraging and motivates further, refined
experimental efforts.

With these comparisons as validation, attention is turned lastly to the trends in
growth rate with variation of the other physical parameters, as predicted by the
theory. To place the results in the context of more realistic scales, conditions typical
of an estuarine environment were considered.

Figure 8 details the effects of the fluid layer depths on the growth rates. Note
that γ = 0.99 and ω = 0.6283 rad s−1, corresponding to 10 s swell in a region of
weak stratification. For each of the two curves, one of the layer depths is fixed and
the other is variable. Linear analysis reveals that resonant triads exist for all values
of H and h. However, figure 8 indicates that, at very low values of either H or
h, there will be no growth observed. Due to the existence of triads even at these
shallow depths, it can then be concluded that the absence of growth is a nonlinear,
rather than a linear, effect. At the other extreme, as H becomes very large, the
growth rate vanishes, while as h becomes very large, the growth rate asymptotes to
a finite positive value. This is quite easy to explain from linear theory. Recall that
quadratic interactions between any two of the waves are responsible for resonating the
third. As the upper layer becomes infinitely deep, the value of Φ and its derivatives
evaluated at y = 0 approach zero. Similarly, the values of the internal-wave potentials
and their derivatives evaluated at y = H approach zero. Therefore, the boundary
forcing vanishes, yielding no growth of the internal waves. On the other hand, as the
lower layer becomes infinitely deep, the boundary forcing at the interface and surface
remains finite and there continues to be exponential growth of the internal waves.

Figure 9 details the directional spectrum of internal waves that will be generated
by a specific monochromatic wave train. The growth rate is plotted as a function of
θ, the angle between the wave vector of the surface wave and the wave vector of one
of the internal waves. Note that the dashed lines indicate values of 1

2π and −1
2π. It is

clear that the directional spectrum generated is very narrow-banded. Furthermore, it
is clear that the internal waves generated are all very close to normal to the surface
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wave. The usefulness of figure 9 is as follows: given the physical parameters of a
certain environment (e.g. fluid-layer depths and stratification) and the frequency of
the incoming surface waves, the initial temporal evolution of the interfacial wave
field is specified.

The effect of stratification is found to be equivalent to that of surface-wave frequen-
cy and is only mentioned here in passing. A lower bound, below which no resonant
triads exist is predicted by linear theory. An upper bound, one which is a conse-
quence of the second-order theory, is also found, with the net effect that the growth
of internal waves is confined to a narrow band of density ratio.

6. Concluding remarks

In an effort to develop a mechanism for the generation of internal waves by surface
waves, an inviscid second-order nonlinear resonant interaction formulation has been
pursued. The triad considered consists of a single progressive surface wave of finite
amplitude and two perturbation internal waves. Fundamentally different from the
works of previous authors, this approach is significant for several reasons. First,
by requiring only a single surface wave, the formulation is valid in any situation
where the surface-wave field is narrow-banded in frequency and direction. Second,
since a single surface wave is now the primary carrier of energy, the internal waves
are resonated by exponential, rather than linear, growth, demonstrating a much
stronger interaction than has been shown before. And finally, the mechanism allows
for a direct transfer of energy to short internal-wave wavelengths.

Linear analysis is used to determine the conditions for resonance and reveals that
there are critical cut-off values of ω, γ and λz, beyond which it is impossible for res-
onant triads to exist. When the analysis is carried to second order, in order to deter-
mine the internal-wave growth rates, it is found that nonlinear bounds on all of the
parameters of the problem exist. These bounds correspond to thresholds where the
interaction coefficients go from having different signs to having the same sign. Beyond
these threshold values, although a resonant triad exists, no exponential growth is pre-
dicted. The net effect of these various bounds is that instability of the internal waves,
i.e. internal-wave growth, is found to be a very selective process, occurring under very
specific conditions.

An experimental investigation into this mechanism of subharmonic internal-wave
generation was undertaken and the results presented. Spectral analysis of the
internal-wave records revealed that the measured internal-wave frequencies agreed
extremely well with those predicted by the linear theory. In addition the theory
proved successful in determining the frequency band within which growth would
occur. Harmonic analysis of the records then allowed experimental growth rates to
be estimated, and the results agreed reasonably well with the nonlinear theory.

The formulation presented is a useful predictive tool, indicating under what con-
ditions significant internal-wave action in a stratified system will occur. It is hoped
that knowledge of the presence and characteristics of this increased internal-wave
climate will be of use to researchers interested in mixing and transport phenomena
in stratified media.

It was found that the growth rates of the internal waves remained finite even as
the lower-layer depth became very large. This suggests that the formulation may be
well suited to thermocline dynamics and may be able to augment what is already
known about the generation and distribution of internal-wave energy in the open
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ocean. Along this line, it is well established that the buoyancy frequency in the
ocean is typically much less than the frequency of incident swell. A typical value
of the former is 0.001 s−1 while a characteristic value for the latter is 0.1 s−1. As
such, internal waves subharmonic to swell frequencies would still be well above the
buoyancy frequency, rendering this mechanism inappropriate. However, the authors
wish to point out that at low latitudes, specifically between 28.8 ◦S and 28.8 ◦N, the
semi-diurnal tidal frequency is greater than twice the inertial frequency, but far less
than the buoyancy frequency of the open ocean. As such, internal waves subharmonic
to the semi-diurnal tide would have allowable frequencies. In other words, a path
of interaction between the semi-diurnal barotropic tide and near-inertial baroclinic
modes certainly does exist! Reformulation of the analysis to account for continuous
stratification and planetary rotation will allow for consideration of such interactions.

Finally, the exponential growth predicted by this second-order formulation clearly
describes initial growth only. By carrying the analysis to the third order, a description
of the steady-state amplitudes of the internal waves can be obtained and compared
to the experimental measurements.

This work was supported in part by grants from the National Science Foundation (grant CTS-
9215889) and the Environmental Protection Agency (grant R817170020). D.F.H. acknowledges
support from the National Defense Science and Engineering Graduate Fellowship.

Appendix A.

For the case of general fluid depths, the expressions for the interaction coefficients
are so lengthy that the only practical way of handling them is to leave them as internal
calculations in a symbolic software package such as Maple. However, they become
more tractable in the asymptotic limits of deep or shallow fluid layers. For example,
if the fluid layers are taken to be shallow with respect to all of the wavelengths, then
the interactions are given by

αi =
{
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h|λ̄i|2
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(
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, i = 1, 2.

The forcing functions are given by the following expressions:
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,
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F1 =
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Other simplified forms of the interaction coefficients may be obtained by consid-
ering the limits of deep fluid layers and weak stratification.
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