
Chapter 2

ADCIRC Model - Overview,
Compilation, and Execution

This chapter deals directly with the ADCIRC model, which is the underly-
ing tidal hydraulics model used by the author. It gives a brief overview of
the model’s capabilities, which should be of interest and accessible to the
generalist. Additionally, this chapter provides highly specific details on how
to access, compile, and run ADCIRC. This information will be of interest
only to individuals interested in running ADCIRC themselves. As will be
discussed in detail later, ADCIRC can be run in a ‘serial’ fashion on a single
computer or in a ‘parallel’ fashion on a cluster of computers. The details on
parallel operation will necessarily be specific to the high-performance com-
puting resources found at Penn State.

2.1 Model Overview

The source code for the ADCIRC model, along with a user’s manual, the-
ory report, an email listserv, and other resources are all available online at
http://www.adcirc.org. The development of ADCIRC is generally attributed
to Luettich & Westerink (1991). Since that time, many modifications and
upgrades to the model have been made and ADCIRC presently enjoys very
wide use among the academic community and federal agencies such as the
Army Corps of Engineers, NOAA, and the Naval Research Laboratory.

17

2.1.1 Features and Capabilities

ADCIRC presently has the ability to operate in two-dimensional and three-
dimensional barotropic (vertical density profile not resolved) mode. A three-
dimensional baroclinic (vertical density profile resolved) is under develop-
ment. In barotropic mode, the model solves for water elevation and water
velocity.

The model uses an unstructured finite-element mesh to represent the
domain. This approach is optimal for complex bathymetry and coastline
boundaries as elements of varying size can be incorporated as needed (Fig.
2.1).

4.34 4.36 4.38 4.4 4.42 4.44 4.46 4.48 4.5 4.52

x 105

6.48

6.482

6.484

6.486

6.488

6.49

6.492

6.494
x 106

Figure 2.1: Finite element mesh of the region near the Beardslee Islands.

ADCIRC is a Fortran program which requires, at a bare minimum, two
input files to run:

1. fort.14: this file describes the structure of the finite element mesh (see
Chapter 3).

2. fort.15: this file is a parameter file that describes the particulars of the
current ADCIRC run (see Chapter 4). This file is highly customizable

18

depending upon which features the user wishes to incorporate.

In addition to these files, there are many optional files that may or may
not have to be present, depending upon which features the user wishes to
incorporate into a particular run. For example, note that the ADCIRC model
can be ‘forced’ by the following:

1. Gravity / tidal potential. These effects are dominant in most simula-
tions. For a closed basin, such as one of the Great Lakes, tides will be
forced due to the gravitational attraction on the water in the closed
basin. For domains that have an ‘open boundary,’ tidal information
must be specified on these open boundaries.

2. Meteorological conditions. One of the primary applications of ADCIRC
is to storm surge predictions during large storm events. Users wishing
to incorporate meteorological forcing will need to develop a fort.22 file
(see Chapter 6).

3. Freshwater inflows. ADCIRC has the ability to incorporate freshwater
inputs, i.e. rivers, into its simulations. Users wishing to models domains
with river inflows will need to develop a fort.20 file (see Chapter 5).

One additional ‘optional’ input file is associated with the transport of
passive scalars. Users wishing to study the dispersal of such tracers in the
water column will need to provide a fort.10 file, which simply describes the
initial concentration field in the domain. This feature may be of particular
interest to biologists interested in the dispersal of the larvae of any number
of species.

2.1.2 Model Output

Regarding the output of the model, ADCIRC provides for great flexibility.
For example, the user can specify that water surface elevations and veloc-
ities be written only at selected points in the domain (fort.61 and fort.62
files, respectively). Alternatively, output at all points in the domain can be
requested (fort.63 and for.64, respectively, for elevation and velocity output).

An additional feature of ADCIRC is that it has the ability to perform har-
monic analysis of the elevation and velocity fields. In other words, ADCIRC,
following a sufficiently long run, is able to determine the tidal constituents
(amplitudes and phases) at either selected points in the domain (fort.51 and

19

fort.52, respectively, for elevation and velocity) or at all points in the domain
(fort.53 and fort.54, respectively, for elevation and velocity). These files pro-
vide valuable information about the tides and currents at all points in a model
domain. Presently, knowledge of this information is limited to very sparse
NOAA tidal stations or tidal databases such as the Eastern Pacific Tidal
Database (http://www.unc.edu/ims/ccats/tides/tides.htm), which does not
cover Glacier Bay proper.

2.2 Model Compilation

In this section, specific instructions on compiling the ADCIRC source code
(Fortran) into an executable are provided. When the source code is down-
loaded and unzipped, a file folder structure as shown in Fig. 2.2 is obtained.

Figure 2.2: File folder structure obtained after unzipping ADCIRC source
code.

2.2.1 Serial Model

Compilation of the source code is a platform dependent option. The follow-
ing describes the steps required to compile a serial version of ADCIRC on the
Linux clusters available at Penn State. These resources are described in de-
tail at http://gears.aset.psu.edu/hpc/index.shtml. The web pages therein de-

20

scribe the different clusters, how to obtain an account, and how to access this
account using the secure shell client (http://css.its.psu.edu/internet/ssh/).

With an active and connected account on one of the clusters (e.g. li-
onxo.aset.psu.edu), it is a simple matter to use the ssh client (Fig. 2.3) to
upload the ADCIRC source files to the account.

Figure 2.3: Graphical user interface of the ssh client.

Next, using a terminal window, change directories to the work folder.
Third, before compiling, the permissions on the file config.guess must be
changed with the command

>> chmod +x config.guess

Finally, issuing the command

>> make adcirc

will result in the creation of the executable file adcirc. At this point, the
model is ready to run and can be executed with the simple command

./adcirc

21

2.2.2 Parallel Model

The ADCIRC model source code has been parallelized to run on intercon-
nected processors. The obvious advantage of this is decreased run times. If a
run can be spread out over 8 processors, it should run approximately 8 times
faster. Given the large computational grid (∼80,000 elements) and the small
time step (∼1 second) for the present application to Glacier Bay, this is a
very real consideration.

To get ADCIRC to compile, in parallel form, on the PSU Linux cluster,
change directories to the work folder and open the file cmplrflags.mk. Line
9 must be changed from the existing

PFC := mpif90

to the following

PFC := mpif90 -f90=pgf90 -config=pgf90

Once this is done, issuing the command

>> make all

will result in the creation of five executable files: adcprep, adcprep2, adcirc,
padcirc, and adcpost. For a parallel run, described in the next section, the
1st, 4th, and 5th of these executables will be used.

2.3 Model Execution

Once the model has been compiled, there a variety of ways in which it can
be executed. The steps for both serial and parallel runs are described below.

2.3.1 Serial Model

The simplest way to run the model is to issue the command

>> ./adcirc

22

from the directory in which the executable file resides. The input files fort.14
and fort.15 (and others, depending upon the run) must also be present. This
approach is slightly inconvenient if one has many directories containing many
different input files for simulation. In this case, the executable would have
to be copied into each of these folders.

A slightly different approach is to store the executable file adcirc in a
single location, say in the directory /adcirc files/ created in your home di-
rectory. Then, if this location is added to the path variable, the executable
can be accessed from any directory.

In Linux, the present path can be checked by issuing the command:

>> echo $PATH

A permanent change to the path is made by opening up the file .bash profile,
found in your home directory. There, you will find a line something like

PATH=$PATH:$HOME/bin

This line should be changed to

PATH=$PATH:$HOME/bin:/home2/dfh4/adcirc_files

where /home2/dfh4/ represents (in this case mine) the user’s home directory.
The next time you log in, reissue the echo $PATH command and you should
see the updated path.

You can now run the adcirc executable from any folder simply by issuing
the command

>> adcirc

As before, the necessary input files must be in the directory from which the
command is issued.

Batch Runs

While ADCIRC will run successfully as described above, this ‘command line’
operation is only of limited use on the PSU Linux clusters. This is because
jobs started in this way run on the ‘login’ node and are limited to only
one hour of run time. As alluded to above, realistic (i.e. days to weeks long)
simulations with ADCIRC will require much more than one hour of computer
time.

23

To execute longer runs, jobs must be submitted in ‘batch mode.’ This is
done by preparing a small script file which is then sent in to start the job.
For example, the following:

#PBS -l nodes=1:ppn=1

#PBS -l walltime=23:00:00

#PBS -j oe

cd $PBS_O_WORKDIR

echo " "

echo "started on ‘hostname‘ at ‘date‘"

adcirc

echo " "

echo "ended at ‘date‘"

echo " "

could be saved as a file called myjob. The command

>> qsub myjob

submits this job to be placed in the queue. A few notes:

1. The walltime places an upper bound on the computer time that will
be allocated to the job. It is therefore important that one estimate the
time required in order to prevent an early program termination.

2. The nodes / ppn line, as written, requests one processor. In serial form,
this is all that can be utilized.

3. Finally, the adcirc syntax (no preceding ./) is assuming that the path
variable has been changed, as described in the previous section.

The status of your request can be reviewed at any time with the command

>> qstat -u dfh4

where, in this case, dfh4 is my account user id.

2.3.2 Parallel Model

As mentioned above, ADCIRC can run in parallel fashion, thereby greatly
reducing computational times. A parallel run has three main steps. The
discussion below will assume that all of the relevant executables are in a
location that is in the path.

24

1. adcprep - issuing this command at the prompt the user to specify the
number of processors to be utilized (say 4, 8, 16, etc.). When this
program is completed, the user will note that a number (the same
number entered by the user) of folders will have been created.

2. padcirc - while this parallel version of the ADCIRC executable can be
run from the command line, it is not recommended, due to the time
limits discussed above. As a result, a script file should be prepared and
submitted with the qsub command. The following is an example script
file:

#PBS -l nodes=4:ppn=2

#PBS -l walltime=8:00:00

#PBS -j oe

cd $PBS_O_WORKDIR

echo "Job started at ‘date‘"

/usr/global/bin/icmpirun padcirc

echo "Job ended at ‘date‘"

In this script, the first line requests 4 nodes and 2 processors per node,
for a total of 8 processors. This total number must match with the
number that was specified during adcprep.

3. adcpost - when the run is complete, the user will find ‘partial’ input
and output files in the folders that were created during the adcprep run.
Typing adcpost at the command prompt will step the user through the
process of recombining these individual files into global output files.

As an aside, the author has found that the combined file is much greater
in size than the sum of the individual files. Some investigation revealed
that this is due to the fact that, during recombination, ‘trailing zeros’
are added to each line. This does not pose any problems, in terms
of post-processing / visualization of the output, but it can lead to
unreasonably large file sizes.

Discussions with other researchers have led to the following ‘fix’ for
this problem. In the file post.f, which is found in the folder prep in the
source code distribution, one will find lines of code like:

25

WRITE(xx,80) OUTMSG

where the xx is 63, 64, or some other output file designation. If this
line of code is changed to

WRITE(xx,*) TRIM(OUTMSG)

and the adcpost code is recompiled, the trailing zeros will be eliminated.

26

