
Chapter 7

Post Processing, Visualization,
and Sample Output

Upon successful execution of an ADCIRC run, a number of output files will
be created. Specifically which files are created depends upon how the fort.15
file was structured, i.e. what type of output was requested.

ADCIRC output can be written either in ASCII (simple text) or binary
format. The former has the advantage of being easily read in by a wide
variety of applications (text editors, spreadsheets, etc.) while the latter has
the advantage of being far more compact. As ADCIRC output is very dense,
both spatially (large finite-element grids) and temporally (output is available
at as many time steps as the user desires), output data files can quickly
become extremely large.

Finding efficient and attractive ways to visualize this output is crucial to
the end user. The intent of the current chapter is to outline several Matlab
scripts written by the author with the goal of visualizing and / or animating
the model output. Sample results will be provided to help illustrate the
capability of these scripts. Specific and more detailed results, pertaining to
issues of interest in Glacier Bay, are reserved for later chapters.

7.1 Water Surface Elevation

Water surface elevation data can be written in one of two ways. First, data
can be written at only specified points (fort.61 files). Second, data can be
written at all nodal points in the mesh (fort.63 files). The former is useful

77



if the user wants to inspect a highly-resolved time series of elevation (much
like a tide gage) while the latter is useful if the user wishes to plot a contour
map of elevation over the entire (or a portion) domain.

With regards to temporal resolution, note that, since fort.61 only outputs
data at (presumably limited) requested points, data may be requested at a
very small time interval while still yielding an output file of modest size. As
a point of comparison, NOAA frequently provides water elevation data at 6
minute intervals. For the purposes of comparison (model output to data),
therefore, there is no need to request time series output at a smaller time
step than this.

In principle, one can extract time series of elevation from the global fort.63
file, but the temporal resolution of global output is generally limited (say,
one half hour to one hour) by file size. Therefore, it is recommended that the
fort.61 output option be used when time series at limited points are desired.

7.1.1 Time Series of Elevation

The Matlab script read fort61.m is used to load and plot the time series data
written to fort.61. When executed, the user first loads the specified files
and is then presented with a graphical rendering of the domain (Fig. 7.1.
Symbols indicate the locations (as was specified in the fort.15 file for that
run) where time series elevation data was requested. The user can then click
on any number of these stations in order to select a subset for plotting. Upon
completion of this selection, time series from the selected stations are plotted
in a second figure (Fig. 7.2. The horizontal axis is in days and is referenced
to 12:00 a.m. (GMT) of the first day of the simulation period.

7.1.2 Contour Plots / Animations of Elevation

While the time series are helpful in understanding the tides at a give point
or points, it is also useful to visualize the tides as a ‘field variable.’ In other
words, it is helpful to make a two-dimensional plot or ‘snapshot’ of the water
surface elevation at a given time.

The Matlab script view elevation.m allows the user to view such a snap-
shot at any of the times that were written to the fort.63 file. Additionally,
the program allows the user to create an animation of the elevation fields over
the entire duration of the simulation. This animation can then be written out
to an .avi file, which is readily viewed by a number of graphics applications.

78



-8 -6 -4 -2 0 2 4 6

x 104

-6

-4

-2

0

2

4

6

8
x 104

Please click on locations (red circles)
you would like to plot (return to end)

1

Figure 7.1: User selection of the fort.61 stations to plot as time series.

Upon execution of this script, the user is prompted to load the related
data files and then is asked to choose between making a single contour plot
of the elevation at a given time or an animation. In the case of the anima-
tion, the user will need to (if desired) zoom in on the region of interest before
proceeding. Additionally, it is necessary for the user to specify expected min-
imum and maximum elevation, as these values set the range of the ‘colorbar’
used for visualizing the results. Values on the order of -3 m and 3 m work
well in most cases for the Glacier Bay domain. Finally, if an animation is
selected, the user is prompted to specify the file name (.avi format) to which
the animation should be saved. A sample ‘snapshot’ of elevation is given in
Fig. 7.3. Note that, in the case of the animation, the script is fairly slow as a
tremendous amount of data has to be read and then rendered to the screen
as graphical output.

79



0 5 10 15
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Time (days)

E
le

va
tio

n 
(m

)

Time origin is 12 a.m. GMT on 6/11/2002.

 

 
location 1

Figure 7.2: Time series of water surface elevation for the selected station(s).

7.2 Two Dimensional Velocity Fields

The work described in this report comes from ADCIRC runs in ‘two-dimensional’
mode. This means that, at each grid point, a two-dimensional horizontal ve-
locity vector is output. This velocity vector represents the vertical average
over the water column. For a system, such as Glacier Bay, where significant
salinity gradients exist, a fully three-dimensional approach would be ideal
and this is the subject of ongoing work.

As was the case with elevation, velocity information can be reported in
one of two ways. The first, contained in the fort.62 file, reports velocity
at specified locations only. This would be useful, for example, for compar-
ing calculations to data obtained from a moored velocity meter, such as an
acoustic doppler current profiler. The second, contained in the fort.64 file,
reports velocity in the ‘global’ sense, i.e. at all grid elements. In this latter
case, it is very useful to make a plot where the two-dimensional velocity vec-
tors are displayed. This provides the user with a good grasp of the flow field
at the given time.

80



Figure 7.3: Sample contour plot of free surface elevation at a given simulation
time.

The Matlab script view global velocity.m has many of the same features
as the view global elevation.m script described above. Upon execution, it
will prompt the user to load the fort.14, fort.15, and fort.64 files. The user
can then select between a plot at a single time step, or an animation of all of
the results available in the fort.64 file. In the case of a static plot, the entire
domain is plotted and the user can subsequently go in and zoom in / out
and pan around the domain, in order to explore the results more closely.

In both cases (static plot and animation), the user has the choice of
plotting, along with the velocity vectors, contours of either the bathymetry,
the water speed, or the vorticity. Vorticity is a measure of the ‘rotation’ of
a fluid and regions of high vorticity are indicative of swirling motions and
possibly eddies. For the case of a static plot, the minimum and maximum
limits of the contour plot are set by the global minimum and maximum from
the entire domain. For an animation, the user will have to specify expected
minimum and maximum values. While this may take a bit of practice and
experience, it is necessary to ensure that all contour plots throughout the

81



animation are on an identical scale. Figures 7.4-7.5 illustrate sample results
in the area of Sitakady Narrows.

Figure 7.4: Sample velocity vectors showing the two-dimensional flow field
and contours of bathymetric depth in the Sitakady Narrows area.

82



Figure 7.5: Sample velocity vectors showing the two-dimensional flow field
and contours of water speed in the Sitakady Narrows area.

83



7.3 Particle Trajectories

Finally, it is of great interest to be able to predict that path, or trajectory,
taken by an identified parcel of water over time. This concept brings into
focus the difference between Eulerian and Lagrangian approaches to mechan-
ics. An Eulerian approach calculates output variables as ‘field variables.’ In
other words, velocity or elevation information gets reported at fixed points
in space. In this framework, a flow variable is a function of both space and
time.

A Lagrangian approach, on the other hand, identifies what are called
‘material elements’ and tracks them as they move. In this case, which is
precisely the case of a released drifter or drogue, velocity information is
solely a function of time and of the initial position of the material element.

For an environmental hydraulics application, there are a number of rea-
sons why it would be of interest to calculate trajectories taken by marked
particles. One might be interested in the transport of a spilled contaminant,
or of a passive biological species. In any case, provided that the assumption
that the tracer of interest follows the flow is a suitable one, the velocity fields
output by ADCIRC may be used to calculate trajectories over time.

Before illustrating this, there are a few practical considerations to take
into account. ADCIRC generally utilizes a very small time step in making its
calculations. However, and as has been discussed previously, results are not
written out at each of these time steps. If that were the case, then output
files would be excessively large. Instead, the model outputs data at a user-
specified interval. Given the large mesh for the present application, a fort.64
file containing ASCII output at 100 times results in a file of approximately
150 MB. If these times span a single day, then the time resolution of the
output is on the order of 15 minutes.

The issue of consequence here has to do with the calculation of Lagrangian
particle paths based upon Eulerian data at relatively coarse temporal reso-
lution. Recall first that the semi-diurnal tide repeats every 12 hours. If
velocity data were only available every hour, calculated trajectories would
demonstrate significant error. There is, therefore, a balance to be struck
between managable file size and requirements for accuracy.

84



7.3.1 Numerical Integration

Next, consider a very brief introduction on exactly how particle paths may
be calculated from the velocity fields in the fort.64 file. The two horizontal
velocity components are defined by

dx

dt
= u ≡ f1(x, t) (7.1)

dy

dt
= v ≡ f2(x, t). (7.2)

The functions f1 and f2 are called ‘derivative functions.’ These differen-
tial equations are continuous and smoothly varying in time. However, since
we have information only at discrete points in time (separated by the user-
specified interval), we choose to replace the differential equations with equiv-
alent difference equations.

Euler Method

The simplest way of doing this is to replace, for example,

dx

dt
→ xn+1 − xn

∆t
, (7.3)

where ∆t is the time interval and the subscripts refer to the time step. Thus,
the equation is rearranged to obtain

xn+1 = un∆t+ xn. (7.4)

This so-called ‘explicit Euler method’ states that the position of a particle
at the ‘next’ time step can be computed from the position and velocity of
the particle at the present time step. While this method is extremely easy to
implement, it is relatively low-order and can lead to large errors accumulated
over time, especially if ∆t is too large.

Consider as a simple example the case of ‘stagnation flow.’ This steady,
two-dimensional flow field is given by the velocity components u = y and
v = −x. Based upon an initial location of x0, y0, it is straightforward to
show that the exact answer for the trajectory taken by a particle upon its
release is given by the equation xy = x0y0. This exact answer, along with
two approximate trajectories, as calculated by the Euler method, is shown
in Fig. 7.6. Note that the flow comes in from the top and exits to the right.
Note also the significant variation of the trajectory with time step.

85



Runge Kutta Method

A far more accurate method than the first-order Euler method is the fourth
order Runge-Kutta method. With this method, we have (using, as above,
the x component of velocity as an example)

xn+1 = xn +
1

6
(∆x1 + 2∆x2 + 2∆x3 + ∆x4), (7.5)

where

∆x1 = ∆tf1(xn, tn) (7.6)

∆x2 = ∆tf1

(
xn +

∆x1

2
, tn +

∆t

2

)
(7.7)

∆x3 = ∆tf1

(
xn +

∆x2

2
, tn +

∆t

2

)
(7.8)

∆x4 = ∆t(xn + ∆x4, tn + ∆t). (7.9)

Similar equations exist for y. As is evident from this formulation, calcu-
lation of xn+1 now requires more than just xn and un = f1|n. Sample results,
for the same time steps used in Fig. 7.6, are given in Fig. 7.7. Note that,
even for the very coarse time step, the approximate results are in excellent
agreement with the exact results.

7.3.2 Application to ADCIRC Output

The Matlab script trajectory.m was written in order to allow the user to
visualize the paths taken by identified material elements. Presently, there
are a number of ways in which the initial locations of the elements may be
set. When the script is executed, and the grid and model run files (fort.14 and
fort.15) are loaded, the user is presented with the option of placing individual
particles, a ‘cloud’ of particles, or a ‘rake’ (evenly distributed along a line)
of particles. Note that it is possible to combine multiple instances of all of
these release methods.

When the user is finished, the velocity data is loaded and the Lagrangian
paths taken by the particles are computed via the Runge-Kutta method.
Figure 7.8 illustrates the consequences of relying on the less-accurate Euler
method. For this example, the global velocity output is at 5 minute in-
tervals. Many of the trajectories show a steadily accumulating discrepancy

86



between the Euler and Runge-Kutta methods. One, in particular, shows how
these small errors can, depending on the bathymetric details, lead to wildly
different ending locations for the particles.

87



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
Small Δ t
Large Δ t
Exact result

Figure 7.6: Sample particle trajectories, based upon the Euler method, using
small and large time steps. Also shown are the exact trajectories.

88



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
Small Δ t
Large Δ t
Exact result

Figure 7.7: Sample particle trajectories, based upon the Runge-Kutta
method, using small and large time steps. Also shown are the exact tra-
jectories. Note that the time steps used are the same as in Fig. 7.6.

89



-12000-11000-10000 -9000 -8000 -7000 -6000 -5000 -4000 -3000
2000

3000

4000

5000

6000

7000

8000

9000

Trajectories computed with Euler and Runge-Kutta methods

Note diverging paths

Figure 7.8: Particle trajectories, in the Beardslee Islands area, calculated
with both the Euler (solid lines) and the Runge-Kutta methods (dots).

90


