Tidal Modeling of Glacier Bay, Alaska - Methodology, Results, and Applications

D.F. $Hill^1$

Department of Civil & Environmental Engineering The Pennsylvania State University University Park, PA 16802

June 2007

 $^1\mathrm{Contact:}$ 814.863.7305, dfh@engr.psu.edu

Contents

1	\mathbf{Intr}	oductio	on	11
	1.1	Oceano	ography of Glacier Bay	11
	1.2	Scope of	of Present Work	13
	1.3	Study A	Approach	15
2	AD	CIRC N	Model - Overview, Compilation, and Execution	17
	2.1	Model	Overview	17
		2.1.1	Features and Capabilities	18
		2.1.2	Model Output	19
	2.2	Model	Compilation	20
		2.2.1	Serial Model	20
		2.2.2	Parallel Model	22
	2.3	Model	Execution	22
		2.3.1	Serial Model	22
		2.3.2	Parallel Model	24
3	fort	.14 Fil€	e - Domain Mesh	27
	3.1	Obtain	ing Data	27
		3.1.1	Coastline	27
		3.1.2	Bathymetry Data	28
	3.2	Prepari	ing Data	31
		3.2.1	Conditioning Coastline Data	31
		3.2.2	Conditioning Bathymetry Data	33
	3.3	Mesh C	Generation	34
		3.3.1	Preliminary Steps	34
		3.3.2	First Cut Mesh Generation	35
		3.3.3	Diagnostic Plotting	37
		3.3.4	Mesh Refinement	38

		3.3.5 Refinement in xmGredit	39
	3.4	Final Mesh Characteristics	40
	3.5	Writing fort.14 File	41
		3.5.1 xmGredit	41
		3.5.2 Matlab	43
4	fort	.15 File - Parameter File	47
	4.1	General Parameters	47
	4.2	Tidal Parameters	48
		4.2.1 Interior Forcing	48
		4.2.2 Boundary Forcing	48
	4.3	Output Specification	51
5	fort	.20 File - Freshwater Inflows	52
	5.1	Inflow Data	53
	5.2	Estimation / Modeling of Inflows	53
		5.2.1 Obtaining Data	53
		5.2.2 Delineating Watersheds	56
		5.2.3 Characterizing Watersheds	61
		5.2.4 Estimation of Peak Flows	61
		5.2.5 Annual Flow Statistics	62
		5.2.6 Estimating Annual Hydrograph	63
6	fort	.22 File - Meteorological Conditions	73
	6.1	Data Availability	73
	6.2	Preparation of Data	74
	6.3	fort.22 Creation	76
7	Pos	t Processing, Visualization, and Sample Output	77
	7.1	Water Surface Elevation	77
		7.1.1 Time Series of Elevation	78
		7.1.2 Contour Plots / Animations of Elevation	78
	7.2	Two Dimensional Velocity Fields	80
	7.3	Particle Trajectories	84
		7.3.1 Numerical Integration	85
		7.3.2 Application to ADCIRC Output	86

8	Mo	lel Testing and Validation 9	1
	8.1	Spin up Time	1
	8.2	Validation of Water Surface Elevation Calculations 9	2
9	Mo	leling Results for Glacier Bay 9	8
	9.1	Water Surface Elevation	8
		9.1.1 Tidal Amplification and Phase Lag 9	8
		9.1.2 Spatial Variation of Tidal Datums	3
	9.2	Tidal Velocity	7
		9.2.1 Root Mean Square Tidal Speeds	0
	9.3	Particle Trajectories	6
	9.4	Influence of Meteorological Forcing	4
		9.4.1 Velocity Data	4
		9.4.2 Elevation Data	5
		9.4.3 Calculated Trajectories	5
	9.5	Influence of Inflows	1
10	Con	clusions and Recommendations 13	5
	10.1	Future Work	6

List of Figures

1.1	Satellite image of Glacier Bay National Park. Photo credit:	
	NASA (http://glacier-bay.gsfc.nasa.gov/).	12
1.2	Glacier coverage in 1700; source: Glacier Bay Ecosystem CD	13
1.3	Glacier coverage in 1985; source: Glacier Bay Ecosystem CD	14
1.4	Conceptual model of the major oceanographic processes in Glacier Bay. Figure is reproduced from Hooge & Hooge (2002),	
	and is based upon a figure from Syvitski <i>et al.</i> (1987)	15
2.1	Finite element mesh of the region near the Beardslee Islands	18
2.2	File folder structure obtained after unzipping ADCIRC source	
	code	20
2.3	Graphical user interface of the ssh client	21
3.1	Graphical output fromt he Coastline Extractor program indi-	
	cating the coastline data in the vicinity of Glacier Bay	28
3.2	Graphical output from GEODAS indicating the bathymetry data obtained for the Classier Bay region. The solid red line	
	indicates the bounding polygon identified by the user. The	
	light gray lines indicate coastlines and the heavier black lines	
	indicate individual data sets	29
33	Scatter plot of domain bathymetry	30
3.4	Incorrect data (red dats in the main channel) in the vicinity	00
0.4	of Gustavus AK	31
3.5	Reduced domain shoreline with open boundaries placed at	01
0.0	the Gulf of Alaska and the Lynn Canal	32
3.6	Illustration of original vs. smoothed shoreline data. Area shown	02
0.0	is Berg Bay	33
3.7	Structure of the poly file required by BATTRI	35
3.8	Sample domain and corresponding poly file.	36
5.0		

3.9	Intermediate plot output from BATTRI. The area shown is	
	Charpentier Inlet; the blue dots and red lines indicate the	
	boundary as specified by the .poly file, the blue x marks indi-	
	cate user added interior points.	37
3.10	Sample mesh, as generated by BATTRI, for Tarr Inlet.	38
3.11	Refined (final) mesh for Glacier Bay and Icy Strait / Cross	
	Sound.	44
3.12	Histograms of grid element parameters.	45
3.13	Histograms of grid element parameters.	46
0.20		
5.1	Locations of weather stations used in determining rainfall and	
	temperature values	54
5.2	Digital elevation data for Glacier Bay National Park	57
5.3	Forest cover, superimposed upon the elevation DEM	58
5.4	Snow / ice cover, superimposed upon the elevation DEM	59
5.5	Point and line watersheds, ad delineated with GIS analysis,	
	for the Glacier Bay domain.	60
5.6	Streamflow analysis regions for Alaska. Figure reproduced	
	from Curran $et al.$ (2003).	68
5.7	Flow duration curve for the Glacier Bay domain	69
5.8	Normalized annual precipitation and runoff for the Gulf of	
	Alaska from Wang <i>et al.</i> (2004). The hydrograph of Royer	
	(1979), as determined from the meteorological data in Wang	
	et al. (2004) is also shown.	70
5.9	· · · · · · · · · · · · · · · · · · ·	71
5.10	Modeled annual hydrograph for Glacier Bay Domain	72
6.1	Select climate data stations in the vicinity of Glacier Bay	74
6.2	Plot of surface pressure over an 18 year period. Also shown is	
	the data, binned hourly and averaged over the 18 year period	
	of the record	75
71	User selection of the fort 61 stations to plot as time series	70
1.1 7.0	Time gaping of water gupfage algorithm for the galacted station (a)	19
1.2	Sample contour plot of free surface elevation for the selected station(s).	00
1.3	Sample contour plot of free surface elevation at a given simu-	01
	lation time	81

7.4	Sample velocity vectors showing the two-dimensional flow field and contours of bathymetric depth in the Sitakady Narrows
	area
7.5	Sample velocity vectors showing the two-dimensional flow field
	and contours of water speed in the Sitakady Narrows area 83
7.6	Sample particle trajectories, based upon the Euler method,
	using small and large time steps. Also shown are the exact
	trajectories.
7.7	Sample particle trajectories, based upon the Runge-Kutta method,
	using small and large time steps. Also shown are the exact tra-
	jectories. Note that the time steps used are the same as in Fig.
	7.6
7.8	Particle trajectories, in the Beardslee Islands area, calculated
	with both the Euler (solid lines) and the Runge-Kutta meth-
	ods (dots)
8.1	Comparison of output from a 7 day and a 14 day simulation.
	Also shows is the absolute value of the difference between the
	two runs
8.2	Interactive map allowing for the extraction of historic tidal
	data and tidal predictions
8.3	Comparison of NOAA predictions and ADCIRC calculations
	at the Elfin Cove Station for the 14 day period beginning
	6/25/2002
8.4	Comparison of NOAA predictions, ADCIRC calculations, and
	observational data at the Elfin Cove Station for the 14 day
	period beginning $1/1/2006$
91	Domain man indicating five stations specified for time series
5.1	output 00
92	Domain man indicating five stations specified for time series
5.2	output 100
93	Color contours of water surface elevation 101
9.4	Color contours of water surface elevation in Glacier Bay proper 102
9.5	Color contours of MHHW in meters
9.6	Color contours of MLLW in meters.
9.7	Color contours of tidal range in meters

9.8	Sample velocity vectors showing the two-dimensional flow field
	and contours of water speed in the Sitakady Narrows area 108
9.9	Illustration of complex eddying in Sitakaday Narrows, between
	Young Island and Rush Point
9.10	Color contours of root mean square tidal speed. $\ldots \ldots \ldots \ldots 112$
9.11	Color contours of root mean square tidal speed in the Sitaka-
	day Narrows area
9.12	Location of oceanographic data collection stations. Figure re-
	produced from Etherington et al. (2004)
9.13	Particle trajectories for trial 2 for the entire domain 118
9.14	Particle trajectories for trial 2 for the lower bay region 119
9.15	Particle trajectories for trial 1 for the lower bay region 120
9.16	Particle trajectories for trial 4 for the lower bay region 121
9.17	Particle trajectories for trial 3 for the lower bay region 122
9.18	Particle trajectories for spring tides in the Beardslee Islands
	area
9.19	Wind speed and direction data for the period in question 127
9.20	Model domain, with the five recording stations identified 128
9.21	Normalized absolute value of the difference between the 'wind'
	and 'no wind' x and y components of velocity
9.22	Normalized absolute value of the difference between the 'wind'
	and 'no wind' calculations of water surface elevation 130
9.23	Particle trajectories, for spring tide conditions, as calculated
	in the presence (red markers) and absence (blue markers) of
	freshwater input. Tracks correspond to three hours of simula-
	tion time. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 133
9.24	Particle trajectories, for spring tide conditions, as calculated
	in the presence (red markers) and absence (blue markers) of
	freshwater input. Tracks correspond to two days of simulation
	time

List of Tables

5.1	Mean annual precipitation (MAP) and mean minimum Jan- uary temperature (MMJT) values for weather stations in the vicinity of Glacier Bay	55
5.2	Regression equations (for regions 1 and 3) for various recur- rence intervals. Q_T is the discharge in cfs, A is drainage area in square miles, ST is the area of lakes and ponds in percent, P is the mean annual precipitation in inches, J is the mean min- imum January temperature in degrees Fahrenheit. Equations are taken from Curran <i>et al.</i> (2003)	62
5.3	Peak discharge values, for various recurrence intervals, for the	02
	Glacier Bay domain.	63
5.4	Regression equations (for regions 1 and 3) for annual high duration flows. OSn is the discharge, having an n percent ex- ceedence probability, in cfs, A is drainage area in square miles and P is the mean annual precipitation in inches. Equations	
5.5	are taken from (Wiley & Curran, 2003, Table 2) Regression equations (for region 1) for annual low duration flows. J-Sn is the discharge, having an n percent exceedence probability, in cfs, A is drainage area in square miles, P is the mean annual precipitation in inches, and E is the mean basin elevation in feet. Equations are taken from (Wiley & Curran, 2002, Table 2)	64
5.6	Normalized mean monthly flows for several USGS gaging sta-	00
0.0	tions in southeast Alaska	66
9.1	Root mean square tidal speeds at USGS oceanographic station locations	15
9.2	Summary of trajectory information for particles released at 5 stations within the domain.	26

Preface

The work described in this report is the result of a 10 day kayak trip in Glacier Bay during the summer of 2004 and a healthy dose of serendipity. On the way to an up-bay drop off point, the author overhead two other kayakers discussing acoustic doppler current profilers. This is decidedly *not* in the lexicon of your average kayaker and it certainly caught the ear of the author. The ensuing conversation with Dr. Lisa Etherington (then of the U.S.G.S.) and a well-timed sabbatical leave granted by the Pennsylvania State University to the author during the 2005-2006 academic year are responsible for the following pages.

The author is indebted to Dr. Etherington for her interest in and enthusiasm for a hydrodynamic study of the tides in Glacier Bay and for her provision of many useful data and reports regarding the Bay. Additional thanks are due to Jennifer Mondragon, Erika Madison, and Jennifer Fisher, all of whom provided valuable physical data to the author. This work was financially supported, in part, through a grant from the National Park Service. The author would like to also acknowledge the significant assistance he received from Lewis Sharman of the NPS. Finally, financial assistance from the U.S.G.S. allowed the author to attend and participate in the 2004 Glacier Bay Science Symposium.

This report serves two very different purposes and two very different audiences. On the one hand, it is a 'user's guide' of sorts, laying out, in rather extensive detail, the steps involved in running simulations of the tidal flows in Glacier Bay. These steps involve extensive pre-processing, parallel computations on a Linux cluster, and extensive post-processing and data visualization. The path taken by the author relied heavily on freely-available software and data and this report should assist other researchers similarly interested in conducting open-source numerical studies of tidal circulation.

On the other hand, the report serves the non-specialist who is interested in the 'big picture' of tides in the Bay. Biologists and ecologists stand to benefit from an appreciation of circulations in the bay. Model runs have produced extensive data sets which are easily queried in order to produce information on tidal elevations, water velocities, and particle trajectories.

Summary

A tidal circulation model (ADCRIC) has been adapted to Glacier Bay National Park. The model domain includes Glacier Bay proper and the outlying waters of Icy Strait and Cross Sound. A very high spatial resolution was used in constructing the model domain, allowing for the resolution of many of the small islands and tidal channels in the bay.

The model is forced with tides at the open boundaries in the Gulf of Alaska and Lynn Canal, meteorological conditions, and freshwater inputs. Presently, model runs are two-dimensional (depth integrated), allowing for accurate simulation of the water surface elevation and barotropic tidal velocities.

Model output includes time series of elevation and velocity at specified locations, global elevation and velocity output, and harmonic analysis of these fields. The simulations have been validated against tidal data and known tidal constituents and have shown very good agreement.

Specific results of interest include predictions of tidal datums, such as mean high water, tidal range, etc., at all points in the model domain. Additionally, calculations of root-mean-square tidal speed have been made and are indicative of regions of strong tidal mixing. Lagrangian particle tracking has been performed and demonstrates the dramatic variability in tidal excursions in the bay.

The ADCIRC model is open source and the pre- and post-processing tools developed by the author are also freely available. The net effect of this is a modeling package that is available to any interested scientist.

Future work on this project is centered upon extending the model to three dimensions. Given the strong freshwater inputs to Glacier Bay and the documented strong vertical stratification, this step is essential to a full understanding of the baroclinic currents in the bay.